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ABSTRACT

We consider optimal encoding of a sequence of video units under a given set of rate constraints which may arise
from finite codec delay, finite channel capacity, and finite codec buffer sizes. A Lagrange-multiplier approach is
employed and some useful properties of the optimal Lagrange-multiplier solution are obtained under the assumption
that the allowed video data rates are continuous. Based on these properties, we derive two solution algorithms for
discrete rate allocation. The algorithms are more efficient than that have been presented to date. The solution is
optimal when the distortion-rate relations of the video units are convex and the selectable rates of the video units are
uniformly spaced with the same granularity. When these conditions do not hold, the Lagrange-multiplier solution
may be suboptimal, but can be improved or optimized by a search about the solution.

Keywords: video sequence coding, bit allocation, quantizer control, buffer control, Lagrange-multiplier optimization

1 INTRODUCTION

In video coding, the encoder has the task of producing highest-possible coded video quality subject to a set of
constraints on codec delay, codec buffer sizes and channel transmission rate.1'2 In packet networks such as ATM,
the channel buffer size or policing mechanism also enters the constraining relationship.4'5'2 In typical video coding
schemes such as ITU-T's H.26x68 and ISO's JPEG9 and MPEGx,'°'7 the coded video quality is controlled by choice
of quantizer scales for, or equivalently, allocation of available bits to, the video units in the video sequence. An
efficient algorithm for optimal bit allocation (that minimizes a sum-distortion) under a single total-rate constraint
has been derived by Shoham and Gersho.'1 The algorithm employs a Lagrange-multiplier optimization technique.
A few researchers, including the present authors, have also attacked the more complicated problem of optimal bit
allocation (minimizing a sum-distortion) under multiple constraints for delayed video coding.

A tree/trellis-search approach is discussed by some.1215'2 The approach is based on the observation that, be-
ginning at a certain point, the collection of all possible quantizer choices for all subsequent video units forms a
tree. Hence the desired optimal bit allocation can be obtained by a search over the tree. For "independent coding"
where successive video units possess independent D-R (distortion-rate) relations, the algorithm can be simplified
by observing that each tree path defines a sequence of cumulated coded data rates, or equivalently, a sequence of
codec buffer levels. The collection of all allowed rates or buffer levels at each time can be treated as states and the
coding tree can thus be arranged into a trellis. A Viterbi-type algorithm can then be employed to obtain the optimal
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constrained bit allocation over the tree/trellis. However, the computational load quickly becomes overwhelming with
the size of the tree/trellis.

The Lagrange-multiplier approach provides an efficient solution in this case, though probably suboptimal due to
its confinement of the solution to the convex hull of certain D-R relations."2"6 The approach has been taken to in-
vestigate optimal delayed video coding for constant bit-rate transmission' as well as variable bit-rate transmission.2'3
Different solution algorithms have been presented.'6'2'3 One algorithm'6 only controls buffer overflows and is optimal
in a certain sense (to be further characterized later) when only buffer overflows may occur. When buffer underfiows
may occur, it ceases to be optimal. Another algorithm2'3 controls both buffer over- and underfiows. However, the
complexity of the algorithm is seen to show a difference, between the worst case and some more favorable cases, of
one to two orders of magnitude in the number of video units in the delayed-coding window. Moreover, it is desirable
to have more in-depth characterization of the discrete bit allocation solution. In this paper, we present more efficient
algorithms based on the Lagrange-multiplier approach. And we comment on the solution's properties in discrete rate
allocation.

In what follows, Sec. 2 formulates the optimization problem and introduces the Lagrange-multiplier approach. Sec.
3 discusses the properties of the optimal Lagrange-multiplier solution which are of use in arriving at efficient solution
algorithms, under the assumption that the allowed video data rates are continuous. Based on these properties, Sec.
4 derives two solution algorithms for discrete rate allocation and considers their complexity. It also discusses the
properties of the algorithm solutions in discrete rate allocation. Finally, Sec. 5 gives the conclusion.

2 PROBLEM FORMULATION

Consider delayed coding with delay equal to N video units, where a video unit may be any pertinent grouping
of the picture elements, such as (in MPEG terms) a picture, a slice, or a macroblock. That is, at some time n
the encoder buffers up the most recent N + 1 video units (i.e., video units n — N through n) and conducts a joint
bit allocation for these video units together. Such delayed source coding is long known to be able to yield better
performance than non-delayed coding.'7 Several variants of the same delayed-coding theme can be envisioned. For
example, we may consider sliding-window coding in which only the video unit n —N is actually encoded at time n
(although video units [n—N+1, n] are employed in optimizing the bit allocation), then video unit n—N+1 at time
n+ 1, etc. For another example, we may consider jumping-window coding in which not only bit allocation but also
actual encoding is done for video units [n—N, n] at time n, then the encoder is halted until time n+N+ 1 when bit
allocation and encoding of video units [n+1, n+N+1J are done, etc.

Let b(n — N) be the number of bits allocated to video unit n — N by the encoder at time n. Normally, b(.) are
subject to constraints of the following form

L(n — N, k) < b(i) < U(n — N, k), k = n — N, n — N + 1, . . . , n, (1)
i=n-N

where L(n —N, k) and U(n — N, k) are bounds arising from constraints on codec delay, codec buffer sizes and channel
transmission rate"2 Violation of the lhs constraints usually corresponds to encoder buffer underfiow and violation of
the rhs constraints usually corresponds to encoder buffer overflow. Hence these violations will sometimes be referred
to as underflow and overflow, respectively.

Consider a sum-of-distortion performance measure. Then the optimization objective is

mm D(i) (2)
Q(i),n—N<i<n i=n—N

subject to the above constraints, where Q(i) denotes all possible ways of coding video unit i and D(i) denotes the
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corresponding distortion in this video unit. Applying the Lagrange multiplier method, we obtain

Q(i) n_N<i<n D(i) + ob(n —N) + nfl b(i) + . . . + N b(i)} J, (3), - - i=n-N i=n-N i=n—N

where , = 0, 1, • . . , N, are the Lagrange multipliers. The desired optimal solution can be obtained by carrying out
the above minimization with a proper set of Lagrange multiplier values such that the constraints (1) are satisfied.
The key to obtaining the solution is therefore finding this optimal set of Lagrange multiplier values.

Before proceeding, we note that the Lagrange multiplier method only finds solutions on the convex hull of a D-R
relation, while it is known that actual D-R relations for real video may be non-convex.11 This issue will be further
touched on later. For the time being, assume that the D-R relations possess the required convexity for the Lagrange
multiplier solution to be optimal.

For convenience, define the prime Lagrange multipliers

n-N+ij (4)

where i = 0, 1, . . . , N, so that

J = Q(j),<j<{• [D(i) + Ab(i)]} =
•
E min[D(i) + b(i)]. (5)

— — z=n—JV• z=n—N

In writing the last equality, we have assumed independence among D-R relations of the video units [n —N, n]. This
is the case, for example, for motion JPEG coding and certain ways of intraframe coding. However, even if the D-R
relations exhibit dependency, the ensuing algorithms can still be employed to effect a suboptimal solution.

There is a one-to-one correspondence between {} and {N+j}• Hence the characterization of the optimal
Lagrange multipliers can be accomplished by characterizing the optimal prime Lagrange multipliers. Since Lagrange
multipliers define slopes on the constituent functions in an optimization, for monotone decreasing D-R functions (for
the video units) the prime Lagrange multipliers are nonpositive.'8

To proceed, assume tentatively that the D-R relations associated with the video units are continuous and strictly
convex. Solution algorithms are derived under this assumption and applied to discrete rate allocation. Some char-
acteristics of the ensuing discrete solution are then discussed.

3 PROPERTIES OF THE OPTIMAL SOLUTION

Assume the optimal bit allocation touches one of the two boundaries in (1) at the end of video units v (i.e., for
k = vi), where i = 1, . . . , V + 1 and v [n — N, n] Vi. In particular, it touches the upper boundary at the end of
video unit n with n = VV+1 50 as to fully utilize the available transmission capacity. This last assumption can be
interpreted as letting

L(n — N, n) = U(n — N, n). (6)

Further, let v0 = n — N — 1. Then we have the following result.

LEMMA 3.1. (The Segmental Uni-Slope Property) The optimal bit allocation is such that the prime Lagrange
multipliers j= n — N,.. . , n, are constant over each video subsequence {v_1 + 1, vi], i = 1,. . ., V + 1.

Proof. Suppose, in the optimal solution, ) < )(< 0) for some p, q E [v_1 + 1, vi]. Then in minimization of
D(j) + b(j) for j = p, q we have the situation in Fig. 1 where b and bq are the optimal solutions. Due to the
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Figure 1 : Nonoptimality with unequal Lagrange multipliers in the case of continuous D-R functions.

different slopes in D-R curves at b and bq , we can reduce the total distortion without changing the total rate by
moving bits from Rq to R2, until either ), = or until a constraint in (1) is reached somewhere in [p, q). The former
contradicts the optimality assumption of the original solution while the latter contradicts the assumption that the
boundaries in (1) are not touched in (v_1, vi). U

Define the docker points, or simply dockers, d (j = 1 2, . . .) as those v across which the optimal prime Lagrange
multipliers change values. For example, the first docker point d1 is the last video unit before which the optimal prime
Lagrange multipliers are equal, i.e., )tN = .. . Assume there are A such points. For convenience,
define two additional dockers d0 = n —N — 1 and dA+1 = n. Fig. 2 illustrates the concept of docker points. Term
a docker at which the rate allocation touches the lower (resp. upper) boundary in (1) a lower (resp. upper) docker.
And term the subsequence (d_1, d] the jth docker subsequence. Since L(n —N, n) = U(ri — N, n), dA+1 is both a
lower docker and an upper docker.

The significance of the docker points is that, once we know where they are, the total rate for each docker
. d3 . . . .

subsequence, given by >Ii=d_1+1 b(z) for = 1, . . . , A, can be determined from (1). And the problem of optimal fit
allocation subject to the multiple constraints in (1) is simplified to A independent problems, one for each subsequence
subject to only one rate constraint. The latter can be solved, for example, using Shoham and Gersho's technique.1'
The following property ofthe optimal prime Lagrange multipliers is of use in arriving at a method to find the dockers.

LEMMA 3.2. (The Slope-Change Property) The opiimalprime Lagrange mullipliers are such ha ) <
for any upper docker poini d and . > for any lower docker point d, where i [1, A].

Proof. The proof relies on a look into the convexity of D-R relations as in the previous lemma. Consider only
the case where d is an upper docker, as the other case is complementary. Suppose the optimal prime Lagrange
multipliers are such that . > . Then for the optimal solution we have the situation depicted in Fig. 1 with d
in the role of q and d + 1 in the role of p. Due to the different slopes in D-R curves at b and bq , we can reduce the
total distortion without changing the total rate by moving bits from Rq to R, i.e., from video unit d to video unit
d + 1. But this would shift the total rate up to d, inside the upper boundary specified in (1) and thus contradict
the assumption that the optimal solution touches that boundary there. 0

Our objectives are an efficient way to determine if dockers exist in [n —N, n) and, in their presence, an efficient
way to locate them. For the first objective, consider the minimization

n

min[D(i) + )t1b(i)]
i=n—N Q(i)

(7)

where ' is some number, given or to be determined according to some criterion. Note that this minimization is
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Figure 2: Concept of docker points. Abscissa denotes time (index of video units). Ordinate positions of circles denote
optimal cumulated bit allocation for video units [n — N,in]. The plot assumes that = A2 = V3 k. k5 =
'V6 AV7. For simplicity, the upper and the lower bounds on cumulated rate are drawn as straight lines, which is
the case for constant bit-rate transmission. For variable bit-rate transmission the bounds may be jagged.

equivalent to (3) with )o = )Ni = 0 and \N = )'. It is also equivalent to (5) with AN = . . .

Now consider the minimization (7) subject to the total-rate constraint, i.e.,

b(i) = U(n-N, n) (8)
i=---N

by proper choice of the )'. For convenience, term this optimization a irial opimizaion over [n — N, n] the ensuing
solution a frial solution, and the resulting value of )' the associated optimal irial Lagrange multiplier. We have the
following result which can be employed to check whether a docker exists. The proof is given in the full paper.'9

THEOREM 3.3. (The Docker-Free Condition) There exists no docker point in [n — N, n) if and only if the
trial solution for [n — N, n} satisfies all the rate constraints specified in (1). Further, when either proposition holds,
the trial solution gives the desired constrained optimal solution to (2).

Suppose there is at least one docker in [n — N, n), i.e., A > 0. It appears difficult to further characterize an
arbitrary docker to the extent that they can be easily identified, except the first and the last in [n —N, n). We only
discuss the properties of the first docker. Properties of the last docker are complementary.

Two cases can be differentiated: (i) the first docker in {n — N, n) is an upper docker; and (ii) the first docker
in [n — N,n) is a lower docker. Consider Case (i) first. Let dK be the first lower docker [n —N, n] . (Recall that
dA+, n is both an upper and a lower docker. Hence a lower docker always exists in [n — N, i-i].) Then by the
Slope-Change Property, A < A for d1 < i < dK. Consider (7). If A' = A , then by convexity of the D-R relations,
the b(i) obtained from this minimization will be smaller than that in the optimal solution, for d, < i < dK . As a
result, underfiow will occur at dK (and possibly even before it) while no overflow may occur up to dK . Situation for
Case (ii) is complementary to that for Case (i). Further derivation yields the following result.'9

THEOREM 3.4. (The First-Docker Identification Theorem) There exists at least a docker point in In —N, n)
and the first of which is an upper (resp. lower) docker if and only if there exists a )t which yields a solution of the
following properties to (7): (i) there exists some p � n — N such that the rate constraints (1) are satisfied for video
units [n — Np] (i.e., for k = n — N, . . . ,p,); (ii) the upper (resp. lower) rate boundary is touched at p; and (iii)
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there exists some q > p such thai the rate consirainis (1) are saiisfied for video units (p, q), with strid inequality for
the rhs (resp. i/is) constraints, and such that the bi1 allocation commits underfiow (resp. overflow) a video unilq.
Further, when the second proposition holds, we have )' = and p = d1.

Based on the fact the first docker is relatively easily identifiable, we consider an approach to the optimal bit
allocation problem by way of successively identifying the dockers from the first to the last. We first derive a
prototype algorithm which employs binary search to find the dockers. We analyze the algorithm complexity. Then
we present ways to accelerate the algorithm, one of which uses the results in Chen and Lin.2

4 EFFICIENT BIT ALLOCATION ALGORITHMS

4.1 The basic forward progression algorithm

To effect an efficient solution, we consider binary search for the first docker. The search proceeds as follows. First,
a trial optimization over [n — N, n] is conducted. If some rate constraints are violated in the trial solution, then by
the Docker-Free Condition we know that at least one docker exists. To search for the first docker, let n =n — N/2
and conduct the minimization (7) subject to some rate constraints over the video subsequence [n — N, n1]. The
constraints should be chosen so as to facilitate determination of whether the first docker is located before, at, or after
nl . We find that the following two sets of constraints can be used, viz.,

b(i) < U(n — N, k) Vk [n — N, n1] (9)
i=n-N

with exact equality at some k, and

b(i) � L(n — N, k) Vk {n — N,ni] (10)
i=n-N

also with exact equality at some k. For convenience, the minimization (7) subject to either (9) or (10) is termed a
docked trial opiimizaion, the associated minimization solution a docked frial solution, and the associated optimal
Lagrange multiplier value an optimal docked irial Lagrange muliiplier. When it is of help to distinguish between the
two cases, the former is further modified by upper (e.g., upper docked trial optimization) and the latter by lower.
Let A and A denote the optimal upper and lower docked trial Lagrange multiplier values, respectively.

Suppose now we have determined whether the first docker is located before or after n1 . Then the value of n1 is
increased or decreased by N/4 accordingly, as one would in a binary search, and two new docked trial optimizations
are conducted over the new subsequence [n —N, n']. This continues, with halved increment/decrement to n1 with
each iteration, until we find d1 , the first docker. Then the subsequence (d1 ,n] takes over the role of the original
sequence [n — N, n] and the whole procedure is repeated on it to find the first docker therein.

To see how the relation between d1 and n1 can be determined from the docked trial solutions, we examine the
properties of these solutions under the three possible conditions: (i) n1 = d1 , (ii) n1 < d1 , and (iii) n > d1.
Condition (iii) can be further divided into (a) situation where the dockers located in [n — N, n1] are of the same
kind (upper or lower) and (b) situation where both kinds of dockers exist in [n —N, n1]. The condition n1 = d1 can
be identified by checking the trial solutions against the properties listed in the First-Docker Identification Theorem.
For the other conditions, we have the following result, whose proof is given in the full paper.'9

THEOREM 4.1. (Properties of the Docked Trial Solutions) In Condiüon (ii) (i.e., iha n < d,), we have
� A and ) < . In case A > the upper docked trial solution will commit overflow at some video unit

u > n while satisfying all the rate constraints in (1) for video units [n —N, u) (i.e., for k = n — N,. , u in (1)).
Conversely, in case ) < the lower docked trial solution will commit underfiow at some video unit £> n1 while
satisfying all the rate constraints in (1) for video units {n — N, £).
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In Condition (iii)(a) (i.e., thai n1 > d1 and the dockers located in [n — N, ni] are of The same kind), we have
either 'L 'd or ) = )1 And the properties given in the First-Docker Idenificaion Theorem can be checked o
delermine which case holds.

In Condition (iii)(b) (i.e., thai n1 > d1 and boTh kinds of dockers exist in [n —N, ni]), i is also possible iha
\4 = Ad1 or ) = . Further, we have ) < . And he upper docked trial soluiions will commit underfiow
somewhere in [n — N,nil and ihe lower docked trial solution will commit overflow somewhere in [n —N, n1].

Based on the above theorem, a method to determine the relation between d1 and n1 can be easily derived. Note
that in Conditions (i) and (iii)(a), we must have = or = A , which can be identified by checking the
properties listed in the First-Docker Identification Theorem. In Conditions (ii) and (iii)(b), it is also possible that
'L 'd or = . When these equalities do not hold, Conditions (ii) and (iii)(b) are differentiated by whether
;\4 > .AL OF ) <

To arrive at a complete solution algorithm for the constrained optimization problem (2), note that it is for
notational convenience that the preceding theorems are couched in terms of optimization over [n — N,n] . They can
be made to apply to any subsequence of [n — N, n], say [nt, ne], by simply redefining n, = n and n, —nt = N, as

. . . . . n—1 . nlong as the beginning and ending rate sums for this subsequence, i.e., >jnN b(z) and jnN b(z), are known. In
particular, the theorems can be made to apply to the subsequence (d ,n] by redefining N = — d1 — 1 , provided we
know whether d is an upper or a lower docker. Of course, in this case the d1 in these theorems would correspond to
d1 in the original problem. We thus obtain the following algorithm.

ALGORITHM 1 . (The Basic Forward Progression Algorithm)

so (Initialization) Le no fi — N, Li N, and i = 1.

Si (Trial optimization, optional) Do trial opiimiza1ion over En0, no + ]. If all the raie consrains associated
with video units [rio, no + L] are satisfied (i.e., if (1) holds Vk E [rio, n0 + Li]), then exiL

52 £ei L = z/2 and n1 = n + z.

53 (Upper docked trial optimization) Do upper docked trial optimization over [rio, flu]. Check if there exist
p, q E [n0, n) thai satisfy Properiies (i), (ii,), and (iii) in he Firsi-Docker Ideniificaion Theorem. If so, then
we have d = p and A. = let n0 = d + 1, LI = fi —no, and i = i + 1 and go to Si. If not, then go to the
next step.

54 (Lower docked trial optimization) Do lower docked trial optimization over [flu, flu. Check if there exist
p, q E [flO, fl) that satisfy Properties (i), (ii,), and (iii) in the First-Docker Identification Theorem. If so, then
we have d = p and . = ,\; let no d + 1, fl — no, and i = i + 1 and go to Si. If not, then go to the
next step.

55 If) > ''e' then let = /2 and n1 = i + 1.1, else (i.e., ) < A) let L\ = L/2 and i = i — L. Go to S3.

Step Si in the algorithm is optional because it is merely used to determine if dockers exist in [flu ,rL]. While it
provides a one-step solution to the constrained optimization problem when there is no docker, it only contributes to
computational overhead when dockers exist. In the case where there is no docker, the binary search via docked trial
optimizations can eventually yield the same conclusion as this simple trial optimization, albeit in more steps.

However, it has been shown2 that the trial solution provides more information than mere indication of docker
presence/absence: it also provides a bound on the location of the first docker. Properties of the docked trial solutions
as given in the last theorem can also be further exploited to bound the docker locations. Below we make use of these
facts to improve on the algorithm efficiency, after an analysis of the complexity of the above algorithm.
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4.2 Complexity of the basic forward progression algorithm

The above algorithm presumes known D-R relations for the video units to be encoded. Thus to use this algorithm,
we first need to generate these D-R relations, which typically amounts to quantization of each macroblock in each
video unit with all possible quantizer scales. Assume that, in addition to generating the D-R relations, we further
compute and sort the "singular Lagrange multiplier values" for these video units. (A singular Lagrange multiplier
for video unit m is a number ) for which there is more than one solution to the problem h72flQ(m){D(712) + )tb(m)},
i.e., there is more than one way of quantizing the video unit to yield the minimum. It is equal to the slope of a line
segment on the convex hull of the D-R relation of the video unit.) Under this assumption, we analyze the complexity
of the above algorithm.

Steps 51, 53, and 54 are where the complexity lies. Assume there are A singular Lagrange multipliers per video
unit. A is upper-bounded by the product of the number of macroblocks in each video unit and the number of
selectable quantizers for each macroblock. A pass over Si, 53, or 54 requires, at worst, search among (A + 1)A
singular Lagrange multipliers (with different numerical values for L in Si and 53/54), at a complexity on the order
of log2[(z. + 1)A] steps employing binary search. For Si, each search step requires up to the order of L + 1 additions
to sum up the total rate and 2 comparisons with the constraint. For the docked trial optimization in 53 or 54, each
search step may also require up to the order of L + 1 additions to compute the rates, plus up to the order of A+ 1
comparisons with the rate constraints. The checking of Properties (i), (ii) and (iii) requires up to the order of n —n1
additions to compute the rates and 2(n — n,) comparisons with the rate constraints.

Let K = log2(N + 1). Then for the solution of d, and A , the worst-case complexity, denoted W3(N + 1), is on
the order of

W3(N+1) = (N+3)log2[(N+1)A]+ 4(2+1)log2(2A)+ 3(N+1—2)
i=K-1 i=K-1

= O(8(N+ 1)log2(N + 1) + 5(N+ 1)log2A) (11)

arithmetic operations, which is an order of magnitude lower than the worst-case complexity of an earlier algorithm.2
Analysis of the overall algorithm can be carried out using similar techniques.

4.3 Acceleration of the forward progression algorithm

Assume there is at least one docker in [no, nJ, where n0 is as defined in the earlier algorithm statement. A notion
that is of use to improving the algorithm efficiency is that of the anchor poini2 in the trial solution over [no ,n],
defined as the last video unit that commits overflow that precedes the first underfiow, or the last video unit that
commits underflow that precedes the first overflow, whichever condition holds. If only overflows or only underfiows
occur over [no, nJ, then it is the last video unit where such occurs. The idea of anchor points is illustrated in Fig. 3.
We expand the idea and define the extended anchor point as the first-comer ofthe following two: (i) the anchor point,
and (ii) the last video unit that touches the rhs (resp. lhs) rate boundary that precedes the first underfiow (resp.
overflow), or the last video unit that commits overflow (resp. underfiow) that precedes the first touching of the lhs
(resp. rhs) rate boundary, whichever condition holds. We have the following result (cf. Lemma 2 in Chen and Lin2).

LEMMA 4.2. (The Anchor Position Property) The exiended anchor point in the trial soluiion is locaied a
or after Ihe firsi docker point in [flu, n].

From the above property, the binary search for the first docker need be conducted only over the extended anchor
subsequence [no, a], where a denotes the extended anchor point, instead of over the whole [no, n]. In addition, from
the result concerning Condition (iii)(b) in Theorem 4.1, we can show that, for an upper (resp. lower) docked trial
solution, if the rate boundary that is violated at the anchor point v is the lhs (resp. rhs) boundary, then there exist
at least one upper and one lower docker in the anchor subsequence [no, vJ. We thus obtain a modified algorithm as
follows.
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ALGORITHM 2. (The Anchor-Assisted Forward Progression Algorithm)

so (Initialization) Lei n0 = n — N, z = N, and i = 1.

Si (Trial optimization, optional) Do 2rial opiimizaion over [no, no + z]. If all the raie consrainü associated
with video units [no, n0 + E] are satisfied (i.e., if (1) holds Vk E [no, n0 + zJ), then exit. Otherwise, locate the
extended anchor point a and let L = a — no.

S2 Let/.=L/2 and ni=no+&

53 (Upper docked trial optimization) Do upper docked trial optimization over [no, ni]. Check if there exist
p, q E {no, n) that satisfy Properties (i), (ii), and (iii) in the First-Docker Identification Theorem. If so, then
we have d = p and ,\. = ); locate the anchor point v in the upper docked trial solution, let n0 = d + 1,
L = V — nO, and i = i+ 1, and go to Si. Ifnot, then go to the next step.

S4 (Lower docked trial optimization) Do lower docked trial optimization over [no, n1}. Check if there exist
p, q E [no, n) that satisfy Properties (i), (ii), and (iii) in the First-Docker Identification Theorem. If so, then
we have d = p and ) = ,\; locate the anchor point v in the lower docked trial solution, let n0 = d + 1,
L = V — no, and i = i + 1, and go to Si. If not, then go to the next step.

S5 If > "e, then let L\ = z/2 and n1 = n1 + E and go to S3, else (i.e., ) < ) do the following. Locate
the extended anchor point a in the upper docked trial solution and the extended anchor point a in the lower
docked trial solution. Let = min(a — no, at — no)/2 and n1 = n0 + '. Go to 53.

Further acceleration of the algorithm is possible. For example, we may selectively employ the present algorithms or
an earlier algorithm (which is based on repeated trial optimizations over successive anchor subsequences) 2 depending
on the value of L in Si. We may also be able to arrange the sequence in which S3 and S4 are carried out, dynamically
according to the properties of some intermediate algorithm results, so as to maximize the number of occasions that
only one of them is required. We may further be able to bound the docker locations more elegantly than the ways
described in the above algorithms.
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b(n)

D(n-1)+D(n)

b(n-1)+b(n)
=U(n-1,n)

A0

b(n-1)+b(n) B
=L(n-1 ,n)

I

b(n-1)+b(n)
. .

b(n-1) L(n-1,n) U(n-1,n)
L(n-1,n-1) U(n-1,n-1)

(a) (b)

Figure 4: Example illustrating a mechanism underlying the segmental uni-slope solution's potential suboptimality in
discrete rate allocation. (a) A typical region of permitted rate combinations when coding delay = 1 video unit and
four out of all selectable rate combinations denoted A, B, C, and D. (b) The aggregate D-R relation of the four rate
combinations.

4.4 Considerations in discrete rate allocation

In discrete rate allocation, we may not be able to impose the exact equalities in (6), (8), (9), and (10), but have
to allow for deviation due to rate granularity. This is relatively easy by our use of the singular Lagrange multipliers,
which can find the solution that has minimum deviation from the rate boundary."

Somewhat more complicated to handle is the fact that the Lagrange-multiplier method only finds solutions on
the convex hull of the D-R relations. To examine the situation more closely, recall that our solution observes a
"segmental uni-slope property," that is, the prime Lagrange multipliers in the solution are equal over each docker
subsequence (di, (where i = 0, 1, . . . , A) or equivalently, the (original) Lagrange multipliers in the solution are
all zero except Adjn+N (where i = 1, . . . , A). For ease of reference, term our solution as the segmenial uni-slope
soluiion and the associated optimization approach the segmental uni-slope opiimizaiion.

Consider the simple case where there is no docker in {n —N, n) . Cases where dockers exist exhibit corresponding
characteristics. With no dockers in [n — N, n), the prime Lagrange multipliers in our solution are all equal, or
equivalently, the (original) Lagrange multipliers in the solution are all zero except )N . Therefore, the solution
obtained by the algorithms is located on the convex hull of the aggregate D-R relation of the video units [n —N, n], i.e.,
on the convex hull formed by all possible pairs of >1k=n—N D(k) and nN b(k). However, what the constrained
optimization (2) really looks for is the optimum over all possible combinations of b(lc), k = n — N, . . . , i-, i.e., the
optimum over the N-dimensional function of D(k) vs. {b(Jc), Ic = n —N, . . . , n}. The two may not coincide
in the case of discrete rate allocation (although in continuous rate allocation, they do, as has been shown in the
foregoing discussion).

For example, when N = 1, we may have the situation illustrated in Fig. 4. The circles in the figure represent
several selectable rate combinations for video units n — 1 and n. Fig. 4(b) shows that Points B and D are on the
convex hull of the aggregate D-R relation while Point C is not. Indeed, Point B gives the segmental uni-slope
solution. However, the truly optimal solution is at Point C. Note that this situation may happen even if both the
component D-R relations, i.e., D(n — 1)-R(n — 1) and D(n)-R(n), are convex. In fact, when both the component
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D-R relations are convex, the three-dimensional plot of D(k) vs. {b(k) , Jr n — 1 , n} is convex and the truly
optimal solution is characterized by two prime Lagrange multipliers of unequal values. Regrettably, the segmental
uni-slope optimization does not find this solution unless n — 1 is a docker (and hence a change in prime Lagrange
multiplier value there is possible). But a Lagrange-multiplier solution for the truly optimal solution in the above
situation appears quite complicated. Thus we shall be content with the segmental uni-slope solution for the time
being. It should be of interest to obtain quantitative characterization of the potential suboptimality in the segmental
uni-slope solution, which is left for potential future work.

When an improved solution than the segmental uni-slope solution is desirable, a tree/trellis search over the D-R
relations in the proximity of the latter solution can be conducted.'2'5'2 This is applicable to the situation where
the D-R relations of the video units are convex as well as the situation where these D-R relations are non-convex to
start with.

There is a condition when the segmental uni-slope solution is guaranteed optimal in discrete rate allocation.
That is when the D-R relations of the video units are all convex and the selectable rates for the video units are all
uniformly spaced with the same granularity. We omit the proof here.

5 CONCLUSION

We studied optimal bit allocation for delayed-coding of a sequence of video units under multiple rate constraints
which may arise from finite codec delay, finite channel capacity, and finite codec buffer sizes. An approach employing
multiple Lagrange multipliers was adopted and two efficient solution algorithms were derived. The algorithms are
based on efficient ways of searching for a particular kind of points in time called the docker points. By identification
of the docker points the multiple Lagrange-multipliers optimization problem is decomposed into a series of one
Lagrange-multiplier problems readily solvable by known techniques.

The solution is optimal when the distortion-rate relations of the video units are convex and the selectable rates of
the video units are uniformly spaced with the same granularity. When these conditions do not hold, the Lagrange-
multiplier solution may be suboptimal, but can be improved or optimized by a search about the solution. Simulations
results will be presented in the full paper.'9

The problem has been studied under the assumption of independent coding, that is, the D-R relations of later
video units in a delayed-coding window do not depend on how earlier video units in the window are encoded. However,
the algorithms can be employed in dependent coding to obtain suboptimal solutions. In addition, the results are
applicable to both constant-rate and variable-rate transmission environments.
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