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We have designed and implemented an external pager 
facility on the ConvexOS for Convex supercomputers 
to enhance memory management capability within the 
kernel. A group of generic interfaces that can be used 
to construct a memory manager at user level is pro- 
posed. Furthermore, a highly modularized subsystem 
that provides dynamic configuration and portability is 
presented. 

1. INTRODUCTION 

The benefits of virtual memory go without saying: 
almost every high-performance computer in exis- 
tence today has one. The UNIX operating system 
traditionally provides a memory manager embedded 
within the kernel. This manager is dedicated to 
solving all virtual memory-related problems, such as 
page faults, main memory shortage, and so on. 

Because the clients of the memory manager in- 
clude other components of the system, the manager 
requires some privileges and is therefore bound 
tightly within the UNIX kernel. As a result, user 
programs can participate neither in the decision 
making nor the paging strategy of the memory man- 
ager; only a single scheme for virtual memory man- 
agement is provided through the entire operating 
system. However, in contemporary environments, 
one usually has specific requirements for backing 
storage management, consistency management, or 
paging mechanisms. It is obvious that a predeter- 
mined unique memory management policy within 
the kernel is not powerful enough. 
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Mach (Tevanian, 1987; Young et al., 1987) is a 
multiprocessor operating system being developed at 
Carnegie Mellon University. The design of the vir- 
tual memory system separates the machine-indepen- 
dent portion from the machine-dependent one (Forin 
et al., 1989; Young et al., 1987; Young, 1989). Mach 
gives the user the ability to create memory objects, 
which can be managed by user-defined processes, 
called external pages. 

In this article, we propose an external pager facil- 
ity (Rozier et al., 1990; Tevanian, 1987; Young, 
1989) on BSD UNIX to enhance the functionality of 
the memory manager. This facility enables users to 
construct their own memory manager outside the 
kernel in order to deal with user-specific require- 
ments. Although the external pager feature origi- 
nates from Mach, the design and implementation of 
our external pager have distinct advantages, de- 
scribed as follows: 

l In the realization of our external pager in Con- 
vexOS, which is a member of the BSD UNIX 
family, we divide the whole external pager subsys- 
tem into an operating system-dependent part, 
which is responsible for low-level architecture-re- 
lated operations, and an operating system-inde- 
pendent part, which basically acts as the supervi- 
sor of the external pager subsystem. This applica- 
bility of the operating system-independent por- 
tion to any BSD UNIX operating system, which 
greatly simplifies the task of migrating the external 
pager facility, is not available with Mach. The 
consequence of adopting such a modularized im- 
plementation strategy is that the entire subsystem 
becomes highly portable and flexible. 

0 The implementation of our external pager retains 
the original system organization and just adds 
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some hooks for the convenience of users. The 
default memory manager can still operate undis- 
turbed within the kernel and cooperate with the 
external pager at any time. 

The similarity between our external pager facility 
and the Mach operating system makes the porting 
of relevant user application programs very easy. 

The rest of the article is organized as follows. 
Section 2 provides a sketch of the architecture of the 
Convex supercomputer. Section 3 provides a de- 
tailed explanation of the external pager interface. In 
addition, the modularized implementation and an 
application of the external pager facility are de- 
scribed. Section 4 evaluates our work, and Section 5 
summarizes some previous related work. Finally, 
concluding remarks and suggestions for future re- 
search are given in Section 6. 

2. THE CONVEX MACHINE 

2.1 A Close Look at the Convex Architecture 

The Convex Cl and C2 machines manufactured by 
the Convex Computer Corporation adopt 4.2 BSD 
UNIX as their primary operating system and incor- 
porate a number of enhancements on the original 
BSD UNIX implementation (CONVEX 1988, 1990, 
1991). 

The Convex Cl00 series architecture defines 4 
Gbytes of virtual address space. From the point of 
view of hardware, this virtual memory is partitioned 
into eight 512Mbyte segments. Logically, the 4 
Gbytes of virtual address space of a processor are 
divided into five partitions, called rings. Each ring 
has a different level of privilege for execution and 
access, so the ring structure architecture embodies 
the fundamental memory protection mechanisms. 
The ConvexOS maps segments to rings as follows: 

l Segment 0 is always assigned to ring 0, which 
contains primarily the operating system kernel in- 
structions. Because a set of privileged instructions 
can be executed only in this ring, the kernel has 
the privilege to perform all these functions. 

l Segment 1 is assigned to ring 1, which is used by 
the kernel to map page tables (described below) 
into virtual memory so that ConvexOS can oper- 
ate on them through virtual addresses. 

l Segment 2 is assigned to ring 2. To date, ring 2 has 
been left unused. 

l Segment 3 is assigned to ring 3. Various buffers 
used to cache fickle kernel data structures are 
allocated here. 

l Segments 4-7 are assigned to ring 4, which has 
the lowest level of privilege. This area is used for 
the user context of Convex process. 

To govern the large virtual address space, the 
Convex architecture uses a sequence of data struc- 
tures organized in a hierarchical fashion (Figure 1). 
The top level of management involves a set of eight 
segment descriptors. Each segment descriptor points 
to the beginning of a first-level page table. When a 
process is loaded for execution, the appropriate seg- 
ment descriptors must be loaded into the CPU’s 
segment descriptor registers (SDRs). The second 
and third stages of management are accomplished 
by use of a number of first- and second-level page 
tables. A page table is a page that contains 4-byte 
entries called page table entries @I%). Each PTE 
conveys information needed to determine whether a 
page is resident in physical memory or not. Figure 1 
also shows a virtual-to-physical translation of a 32-bit 
virtual address by consulting the hierarchical tables. 

2.2 Memory Management in ConvexOS 

ConvexOS is a demand-paging virtual memory oper- 
ating system for supercomputers. To provide a flex- 
ible and reliable virtual memory programming envi- 
ronment, four basic memory management data 
structures are used in ConvexOS (Figure 2): 

1. 

2. 

3. 

4. 

Core map (cmap): an array of structures used to 
manage main memory. 
Virtual space (vspace): A top level sketch of the 
virtual address space. The major component is 
composed of a linked list of entries termed 
vm _ region. 
Virtual memory object (vm_o&ect): a single 
shareable unit that can be mapped into the vir- 
tual address space of one or more processes. 
Examples of objects are files, swap space (backing 
storage), and zero-filled pages. 
Page tables: a machine-dependent memory-map 
ping data structure. 

All knowledge concerning the virtual address space 
of a process is acquired through the use of the 
corresponding vspace data structure. Most of the 
information recorded in vspace is machine indepen- 
dent, for example, the current access mode of a 
process context, the permitted maximum resident 
size, and so on. 

The only machine-dependent information in 
vspace is described in an array named vs_sdr. The 
contents of us_& correspond to the eight SDRs 
required by hardware architecture and are loaded to 
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machine SDRs each time this process is scheduled each entry (um_region> maps to a contiguous range 
for execution. When the SDRs are switched, the of virtual addresses. Each urn-region contains basic 
corresponding page tables are also exchanged, so the information such as the protection right specific to 
system views a different virtual address space. this region, the range of the region, and so on. 

From the point of view of a memory manager, the 
linked list indicated by the us_regions field of vspace 
is the most important data structure. This linked list 
is sorted in order of ascending virtual address and 

Basically, two um_ob~ects are attached to each 
region by fields in the region entry, called re_object 
and re_bucking. The tist (primary) object is used 
for providing pages to the page fault handler when 
the desired pages have not yet been paged out to 
backing storage, for instance, the zero-filled pages or 
the permanent text portion in execution programs. 
The second (backing) object is used to transfer 
swapped pages between main memory and backing 
storage. 

Figure 2. ConvexOS virtual memory system operating 
principles. 

32-biia Vifiu~l Addmu 

The virtual memory subsystem of ConvexOS rep- 
resents a typical form of the BSD UNIX. We use 
ConvexOS as a testbed to explore the interface 
required to support paging control activity outside of 
the kernel. 

3. AN EXTERNAL PAGER FACILITY UNDER A 
BSD UNIX ENVIRONMENT 

Normally, the UNIX operating system offers a mem- 
ory manager embedded within the kernel. Such a 
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memory manager performs all activities between 
backing storage and main memory (a page pool), i.e., 
main memory is used as the cache of backing stor- 
age. We refer to this job as cache management. User 
programs can neither see the memory manager nor 
participate in its activities. However, users might 
wish to write a memory manager if they have specific 
requirements for one of the following: 

Backing storage management (such as the source 
of storage or its format, e.g., compressed or en- 
crypted). 

Consistency management of the backing store ver- 
sus the memory cache. Examples include mapped 
file support, transaction-based virtual memory, and 
distributed shared memory. 

Paging mechanisms. The memory manager is di- 
rectly involved with the paging mechanisms for the 
object it manages. It has indirect influence on 
overall paging policy by its actions. 

To meet these requirements, a traditional operat- 
ing system such as the BSD UNIX must be modified 
to provide users with the ability to write their own 
memory manager in user mode. This section focuses 
on the mechanism and implementation of such an 
external pager facility and describes an application 
that uses the external pager facility to construct 
virtual shared memory on distributed systems. 

3.1 The Generic Interface Design 

We have developed a prototype system of the exter- 
nal pager facility on ConvexOS by providing a group 
of interfaces among the user, kernel, and external 
pager. Because most of these interfaces are imple- 
mented as remote procedure calls, we use client and 
server models to explain these interfaces. The initia- 
tor of the request is the client; the one satisfying the 
request is the server. Application of this facility on 
distributed environments makes it possible for the 
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user, kernel, and external pager to locate on differ- 
ent sites. 

To provide an external pager facility, the kernel 
has to redirect the original processing flow for pag- 
ing, forward the requests to the user-level manager, 
and then wait for a reply. In addition, the kernel 
must supply the external pager with the capability to 
access the contents of the pages it needs and to 
update related internal data structures, such as the 
cmap, the page tables, the um_regions, and so on. 

The operations described above can be divided 
into two parts, according to whether the initiator of 
the operation is the kernel or the manager. Basi- 
cally, the kernel may launch the following types of 
requests to the manager: 

requests for data from the backing storage man- 
aged by the pager when a nonresident page fault 
occurs; 

requests for more access permission for the data 
cached in the kernel when a protection violation 
fault occurs (e.g., a write fault on a page previ- 
ously marked as read-only); 

requests to flush modified cached data to the 
associated backing storage if the amount of free 
memory is less than a certain threshold. 

On the other hand, an external pager may raise 
the following demands for cache management while 
performing consistency maintenance: 

require that the kernel writes the pages in ques- 
tion back to the manager; 

clear the cached data in main memory and mark 
the corresponding pages as nonresident; 

invalidate a range of the virtual address space of a 
certain process. 

Based on these requests and demands, we con- 
struct a sequence of interfaces to implement an 
external pager. Table 1 summarizes the interface 
calls made by the kernel on the external memory 

Table 1. Summary of the External Pager Interface (from Kernel to Pager) 

data_init (backing storage to map, virtual address, process id) Contacts the manager of a cache that is mapped for the first 
time, for initial handshake 

datu_terminate (backing storage, virtual address, size, process 
id) 

Notification of removal from cache 

data-request (backing storage, faulting virtual address, desired 
size, desired access, faulting process) 

data_unlock (backing storage, faulting virtual address, desired 
size, desired access, faulting process) 

Request for a range of pages that the kernel does not have in 
its cache 

Requires more access permissions for a range of pages 

data-write (backing storage, buffer, buffer size, offset in 
backing storage, process id) 

Pageout of dirty pages from main memory 

lock_completed (backing storage, virtual address, size, process 
id) 

Completion of the requested paging operation 
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manager. We implement each call as a remote pro- 
cedure call (RPC). That is, the function body lies on 
the external pager side. In an actual implementa- 
tion, the arguments of these procedure calls are 
packed into a message and sent to the server for 
processing. Several fundamental items are included 
in this message: 

A backing storage, which indicates the memory 
manager and the destination of the message. 

A process identifier, which the manager may use 
to make cache management requests to the ker- 
nel. The identifier is somewhat different from the 
well-known UNIX process identifier. 

A virtual address combined with a size in bytes, 
which specifies the range of virtual address space 
to be operated on. 

If a portion of the virtual address space is created 
to be used for the first time as the cache for a 
certain backing storage, and the backing storage is 
administered by an external manager, then the ker- 
nel makes a data_init call to the corresponding 
manager to establish a correlation between the ker- 
nel and the manager. If a backing storage is mapped 
into the address space of more than one process on 
different hosts (with independent UNIX kernels), 
then the manager receives an initialization call 
(data_init) from each kernel. 

To process a cache miss (i.e., nonresident page 
fault), the kernel issues a data-request call specify- 
ing the range (usually a single page) and the current 
access desired. The manager is expected to return at 
least the specified data, with as much access as it can 
allow. 

When a user process requests greater access to 
cached data than the memory manager has permit- 
ted (i.e., protection violation fault), the kernel issues 
a datu_unlock call. The manager is expected to 
respond by changing the locking on that data when 
it is able to do so. 

The memory manager may fix the use of cached 
data by the interface (described below) from the 
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pager to the kernel. For example, it may wish to 
change the access right of cached data or ask the 
kernel to write back the modifications in question. 
In the latter case, the kernel uses the duta__write 
call in response, just as when it initiates a cache 
replacement to squeeze main memory. In either 
case, the kernel calls lock_completed to indicate 
that it has finished the operation requested. 

Finally, a data_terminate call is used to inform 
the memory manager that the kernel has completed 
its use of the given cache data, so the manager can 
destroy the data after performing appropriate book- 
keeping. 

Alternatively, the external memory manager can 
manipulate the cached data in the kernel through 
the interface functions listed in Table 2. Some of 
these functions are organized as UNIX system calls, 
and some are library routines for improving feasibil- 
ity, but most of them are RPCs (function bodies 
residing inside the kernel). Unlike those summarized 
in Table 1, these RPCs are asynchronous calls, so 
they do not wait for a reply from the kernel. 

A memory manager is a server process that re- 
sponds to specific messages from the kernel in order 
to handle memory management functions for the 
kernel. To isolate the memory manager from the 
specifics of message formats, we provide two proce- 
dures, recu_request and memoty_seruer, to handle a 
received message. The recu -request routine accepts 
the incoming messages and records the emitter of 
the received message in the argument client for 
future use. Then the external pager calls the mem- 
ory-sewer routine, which parses the contents of the 
request, does all necessary argument handling, and 
invokes appropriate functions (Figure 3). 

On reception of a data_init call from the kernel, 
the memory manager may respond with data-ready 
when it is ready to map the associating backing 
storage to the given virtual address. 

The data_supply call is used to provide data with 
permission access right to the kernel when a page 
fault occurs. It is usually made in response to a 
data-request call made to the memory manager. 

Table 2. Summary of the External Pager Interface (from Pager to Kernel) 

recv_request (request, client) 
memo~_server (request, client) 
data-ready (client, virtual address, (size) 
data-sup& (client, virtual address, size, buffer, access right) 
data_unavaihble (client, virtual address, size) 
lock-request (client, virtual address, size, should_clean, 

should_flush, reply-to) 

Accepts paging request 
Handles the request to call one of the interface functions 
Confirms availability on completion of initial handshake 
Provides page(s) data to the cache 
Data is unavailable, kernel has to zero-fill the pages 
Cache control request, e.g., page flush 

give_right (client, virtual address, size, access right, reply-to) Grants more access permissions for the cache. 
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Figure 3. Dispatch of a kernel request. 

However, the manager can still reply with a 
data-unavailable call to inform the kernel that the 
desired data are inaccessible. 

To give greater access rights to cached data than 
previously granted, the manager may issue a 
give_right call to the kernel. 

Because the memory manager may be subject to 
external constraints on the consistency of its backing 
storage, the interface provides a lock-request call to 
control caching. This call allows the memory man- 
ager to make the following requests of the kernel: 
write back any cached data that have been modified 
since the last time they were provided, and remove 
any uses of the data from memory (i.e., mark the 
data as nonresident). 

A backing storage may be mapped into the ad- 
dress space of the application programs by exercis- 
ing the seg_alloc primitive and specifying the mem- 
ory manager responsible for the backing storage. 
The kernel redirects all the paging requests for 
pages in that virtual address space to the specified 
manager. However, this function call only designates 
unused pages in the bss region as cache for map- 
ping; other segments, such as text or initialized data 
regions, that have been allocated before the pro- 
gram starts its execution cannot be remapped and 
are still managed by the default memory manager 
within the kernel. 

An additional function, seg_dealloc, is proposed 
to be invoked explicitly by user programs to relin- 
quish their access to a region previously declared by 
the seg_aZloc call, so that further access to that 
memory fails. In addition, the operating system au- 
tomatically deallocates the entire virtual address 
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space of a process after quitting execution of that 
process. Table 3 lists these two virtual memory man- 
agement functions. 

Combining the primitives described above, we can 
construct an external pager to deal with the paging 
requests and administer the backing storage. Figure 
4 shows the relationship between the kernel and the 
external pager. 

3.2 Implementation of the External Pager in 
ConvexOS 

We have altered the virtual memory subsystem of 
ConvexOS, a member of the BSD UNIX family, to 
provide an external pager capability. While estab- 
lishing a set of reliable interface calls, we make full 
use of the original operating system, and no duplica- 
tion of functions within the kernel is produced. 

3.2.1 Some considerations. In developing the ex- 
ternal pager facility, we want to achieve two major 
objectives: the potential for dynamic configuration 
and portability among various BSD UNIX operating 
systems. 

Dynamic configuration removes the necessity for 
the pager to reside on the same host as the client 
process. Moreover, the relationship between the 
pager and a specific host is broken, and the pager 
can be freely reorganized without the intervention of 
the kernel or client processes. To attain this goal, 
the Berkeley socket interface (Stevens, 1990) is used 
as a basis for transactions. 

The original operating system is modified to aid 
the mechanism of the external pager. To make the 
appended portion portable, the external page (XP) 
subsystem has to be modularized. In brief, it is 
divided into two logical parts, one that uses native 
functions to deal with such problems as operating 
system-dependent virtual memory administration, 
management of hardware-related PTE%, and so on, 
and another that is independent from the original 
operating system and thus can be easily migrated to 
other BSD UNIX systems. Figure 5 shows this orga- 
nization. 

Table 3. The Interface Corn the User to Kernel 

seg-dloc (mapped size, Maps a virtual memory 
returned virtual region to the backing 
address, memory storage governed by 
manager) the memory manager 

seg-ffeufloc (virtual Deallocates a virtual 
address, size) memory region 



An External Pager Interface 

data_init 

data_request 

data-unlock 

da&ready 
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Figure 4. Interrelationship between the kernel and pager. 

3.2.2 The prototype system. The XP subsystem 
consists primarily of four modules: segment adminis- 
tration, remote procedure invocation, request man- 
agement, and cache control modules. The hierarchy 
of the system is shown in Figure 6. 

Each segment is an integrated portion of memory 
cache served by a single external pager. The seg- 
ment administrator implements the mapping be- 
tween segments and the pager. Other than mapping, 
its main responsibility is to coordinate the default 
memory manager and the XP. 

The administrator registers the server (the XP> of 
each allocated segment as a host and port number 
pair, just like the pairs used in the Berkeley socket. 
Because we currently work on an internet domain 
local area network, these pairs are quite enough to 
meet our requirements. However, for future needs, 
the registration for server should be expanded to 
include more information, such as domain family 
and protocol used. 

Because the default memory manager still exists 
within the kernel and is obligated for most paging 
activities, there must be some way to distinguish the 
page faults for the normal cache from those for 
segments managed by an XP in order to send the 

Export 10 User 

Original 
Operating System y 

+ XP Module 

CT, Operating System independent pan 

V Operating System dependent part 

Figure 5. Organization of the XP subsystem. 
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Figure 6. XP subsystem hierarchy. 

paging requests to the proper manager. The Convex 
architecture hardware reserves four bits (bits 4-7) in 
each PTE for potential use by software (Figure 7). 
Two of these bits are taken up by ConvexOS: bit 4 
indicates that the page data should be migrated to 
backing storage on flushing (otherwise it is dis- 
carded), and bit 5 denotes a page state of copy-on- 
write. Here, we adjust bit 6 as a flag to designate 
that the corresponding page is served by an XP. The 
segment administrator examines this flag to deter- 
mine whether a paging request should be redirected; 
it thus coordinates the default memory manager and 
the XPs. 

We have modified several routines in ConvexOS 
slightly to integrate them with the segment adminis- 
trator. The urn-grow routine, which enlarges or 
shrinks the size of a region, must be able to mark 
the special status of the varied portion of the region 
(by setting the flags in the relevant PTEs). Two 
major routines for page fault handling in ConvexOS, 
vm_zfid for paging in nonresident pages of the bss 
region and re_w$zuZt for resolving protection viola- 
tions, have also been modified to redirect requests 
to the segment administrator when necessary. 

In brief, the segment administrator acts somewhat 
like a switching box or a filter, accepting requests 
coming either from the underlying operating system 
(i.e., for page faults) or from the user-level pager 
(i.e., for cache control), inspecting these requests 
and performing necessary bookkeeping, and then 
invoking proper routines for processing. It is the 
superior of the whole XP subsystem. 

All the page faults are ultimately resolved by 
remote procedure calls to XI’. Once the segment 
administrator completes the analysis of a paging 
request, the RPC module converts the procedure 
call to a full-rigged message and sends it to the 
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31 30 12 11 987 43 2 10 

Figure 7. FTE format. 

designated pager. Because a number of remote pro- 
cedures may be called by the segment administrator, 
the procedure name is encoded in the outgoing 
message, and a user level dispatcher is introduced 
through the library to decode the received message. 

The Berkeley socket interface is used as the basis 
of communication. However, the original socket in- 
terface is implemented as a system call and can only 
be used from the user level by a trap instruction. To 
use the interface from kernel mode, we have added 
a converter to reorganize the parameters for the 
socket and simulate the trap environment. 

Another task carried out by the RPC module is 
process management. Because the faulting process 
and the XP are both user processes, the faulting 
process must be suspended after a request is sent; 
otherwise, the XP can never be scheduled for execu- 
tion. The result is that the whole operating system is 
blocked in the kernel mode, and the faulting process 
is blocked continuously because it is waiting for a 
reply from the XP. The system is deadlocked. To 
prevent such a deadlock from occurring, the RPC 
stub exploits the socket interface to execute a con- 
text switch at an appropriate time. 

The request manager handles the preprocessing 
of cache-controlling requests, which involves modify- 
ing page tables of the client process or accessing the 
cached data in the address space of the client pro- 
cess for the XP. These requests are always asyn- 
chronous to the execution of the client process. 
There exist two approaches to satisfy these requests. 
In the first approach, because the address space of 
each process is different and private, the XP has to 
map the page tables of the client process or the 
desired cache pages (which are in the context of 
another process) into an unused region in the ad- 
dress space of the XP in order to operate on them. 
This task is arduous because it requires extra locks 
to harmonize the XP with the client process. In the 
second approach, the request manager simply queues 
the request and sends a software interrupt to the 
client that requests the service; then the pager can 
immediately resume its execution. Once the client 
process is scheduled to run and it traps into kernel 
mode, the original request is then dequeued for 
examination, and the relevant routine is called to 
control the desired cache. This scheme reduces the 
complexity of the implementation through the elimi- 

nation of verbose mapping. Therefore, we adopt the 
latter approach. 

The cache control module provides all necessary 
low-level cache-controlling functions. It is the pri- 
mary part of the XP subsystem. It is bound to the 
underlying operating system and machine hardware 
and thus must be entirely written when migrating 
the XP subsystem to other BSD UNIX operating 
systems. 

From the viewpoint of the XP subsystem, the 
cache control module can be considered to be a set 
of functions provided by the original operating sys- 
tem. For ConvexOS, we define three functions: one 
to mark a range of virtual addresses as nonresident 
(i.e., for flush requests), one to copy the contents of 
physical page frames associated with particular PTRs 
into the buffer (i.e., for write-back requests), and the 
last to invalidate a range of virtual addresses (i.e., 
for segment deallocation requests). 

Generally, these cache-controlling routines in- 
volve the modification of page tables. In ConvexOS, 
the level 1 and 2 page tables of currently running 
processes are mapped to the virtual address of seg- 
ment 1, so the kernel can access the page table 
entries directly through the virtual address. We use 
this characteristic to efficiently program the cache- 
controlling routines. 

After introducing interface calls and implementa- 
tion details, we use an example to explain how these 
interfaces locate in the XP subsystem and the paging 
transaction flow. For example, if a client process 
wants to map a specific backing object into its ad- 
dress space, it first uses socket interfaces to contact 
the XP to get an identifier (generally a UNIX socket 
port) and then pass this identifier as a memory 
manager to the kernel through the seg_alZoc call. 
When page faults occur, vm_$od or urn_wtfault is 
involved. These routines redirect faulting requests to 
the segment administrator. The segment administra- 
tor determines which manager (default pager or XP) 
will manage the request and then forwards paging 
requests to this manager (if this manager is an XP, 
then the interface from the kernel to the pager is 
applied through the remote procedure invocation 
module). Alternatively, the manager may also use 
the interface from the pager to the kernel to emit 
some cache-controlling requests through the request 
management module to the segment administrator, 
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and the cache control module satisfies these re- 
quests. In the termination phase, the client process 
sends a seg_de&c call to the kernel, then the 
kernel uses the data-terminate interface to inform 
the memory manager. Figure 8 illustrates this trans- 
action flow. 

3.3 An Application of the XP Facility 

A distributed shared-memory (DSM) system pro- 
vides the abstraction of shared address space among 
the computers connected by a network. This abstrac- 
tion simplifies the sharing of complex data structures 
and the effort of writing parallel programs for these 
computers. However, the performance of a DSM 
system is highly dependent on how to make the 
shared memory consistent (Li and Hudak, 1989) and 
how to reduce the high cost of moving data through 
networks. 

For ordinary shared data, we can exploit the inter- 
face between the XP and the kernel to support 
virtual shared memory and consistency management 
on distributed systems. Each time a page fault oc- 
curs, the kernel can catch this trap and use inter- 
faces supported by the XP to send requests to the 
XP of this page. The XP can then guarantee consis- 
tency among various hosts. 

Synchronization objects sometime result in heavy 
network traffic if we treat them as ordinary shared 
data. A set of library routines can be provided in a 
DSM system. These may include mutex_lock( 1, 
mut~_unZock( ), and barrier_._wait( 1. We believe 
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Figure 8. Interaction among the client, kernel, and external 
pager. 

that implementing them by use of a synchronization 
server can prevent frequent movement and wasteful 
space of shared memory. 

4. DISCUSSION 

4.1 Portability 

After enhancing ConvexOS by adding the XP facil- 
ity, the amount of code for the kernel increases by 
16 Kbytes, 12 of which belong to the text region; the 
other 4 Kbytes belong to the data region. These 
sizes are negligible, especially when compared with 
the original ConvexOS, which exceeds 1.5 Mbytes of 
code. In fact, these 16 Kbytes of code need to be 
rewritten when porting the XP subsystem on a typi- 
cal BSD UNIX operating system. 

We divide the expanded code for the XP facility 
into two parts. The operating system-independent 
part occupies almost 50% of the code (Figure 9); 
most of this code is used for bookkeeping tasks. This 
part has no relationship to any operating systein and 
can be migrated to other systems without modifica- 
tion. The operating system-dependent part can be 
further partitioned into two portions. One portion is 
related to the operating system but is common to all 
BSD UNIX systems. Examples of these codes in- 
clude the socket interface converter in the RPC 
stub, the system call handler, and so on. When 
migrating the XP subsystem to other systems, these 
codes require little or no change. The other portion 
is the ConvexOS-specific portion, which uses individ- 
ual features of ConvexOS, such as page table manip- 
ulation, and therefore has to be rewritten com- 
pletely. The code in this portion accounts for only 
one fifth of the entire XP subsystem. 

In summary, 80% of the expanded code is inde- 
pendent of the underlying operating system. This 
fact, in addition to the modularized implementation 
of the XP subsystem, makes porting the XP func- 
tions to the BSD UNIX family a simple task. 

IXJ O.S. Independent 
Li3 Common to BSD 

q ConvexOS Specific 

49% 

Figure 9. Relative portions of the XP subsystem code. 
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4.2 Dynamic Configuration 

In implementing an XP interface, applicability for 
distributed environments is a major consideration. 
We have used the Berkeley socket as the basis for 
communication in our XP subsystem in order to 
extend the service scope of the XP to the entire 
network. Two of the sets of the proposed interface, 
the kernel to pager and pager to kernel interfaces, 
are implemented as RPCs if possible. The details 
about the cost of some operations are shown in 
Table 4. Although some overhead (an average of 
N 2.2 msec per page fault, which is comparable to 
4.5 msec per null remote procedure call) is intro- 
duced by the native socket interface because of the 
complex assembly and disassembly processing of the 
network packet, it is still worthwhile. First, the XP 
provides a typical base for users to build their own 
memory managers. Second, the potential for dy- 
namic configuration improves the feasibility of the 
XP interface for a distributed system. In fact, when 
compared with the network propagation delay, the 
overhead involved in using a Berkeley socket is 
negligible. 

To further evaluate performance of the XP sub- , 
system, we have implemented an external pager to 
mimic a default pager for managing paging behavior. 
A number of application programs, which include 
successive overrelaxation (SOR), Liver-more loops, 
and n-body problem, are run under both default 
pagers and XPs. 

The SOR problem is one of the most important 
computations arising in engineering and scientific 
applications, e.g., digital signal processing. The prob- 
lem can be described as follows. Given a grid area 
represented by a matrix, each matrix element corre- 
sponds to a grid point. During each iteration, each 
matrix element is updated to average four neighbor 
points, which can be formulated as follows: 

for (k = 1; k = interutions; k + + ) 

for (i = 2; i * size - 1, i + + ) 

for (j = 2; j = size - 1; j + + ) 

A[i][j] = w * A[i][ j] + (1 - w)* f * Sum of (4 
neighbors) 

where size is the size of matrix A, iteration is the 
number of iterations, and w is a constant. 

We now turn to the problem of Livermore loops, 
which contain an initialization loop, loop 1, and loop 
7. The initialization loop, which initializes matrix U, 
has only one nested DO-loop. The other two loops 
have two nested DO-loops, which have the following 
form: 

for (i = 0; i < size; i + + ) 

for (j = 0; j < &e/2, j + + > 

UKN jl = fidU[U jl, UDl[ jl, UDl[ jD 
where size is the size of matrix U and fine is a 
numeric function. 

The last problem considered is the n-body prob- 
lem, which is one of the most famous problem in 
celestial mechanics. Suppose there are n homoge- 
neous bodies in spherical layers; then they will at- 
tract each other as though their masses were at their 
centers. Let m,, m2,. . . , m, represent their masses. 
Let the coordinates of mi referred to a hxed system 
of axes be xi, yi, zi (i = 1,2,. . . , n). Let ri,i repre- 
sent the distance between m, and mj. Let k2 repre- 
sent a constant depending on the units used. Then 
the components of force on m, parallel to the x axis 
are 

k’m,m, (x, -x,1 k2m1m, (x1 -x,1 - 
2 . ,..., - 

r1,2 r1,2 r:,n r1.n 

and the total force is their sum. Then the compo- 
nents of force on m, parallel to the y axis and z 
axis can be computed similarly. 

In our experiments, the problem sizes are 128 X 

128 for SOR, 4096 X 4 for Livermore loops, and 
2,048 bodies for the n-body problem, respectively. 
Detailed execution times and performance differ- 
ences of all application programs are shown in Table 
5. In summary, our experiments have shown that 
managing paging activities with an XP requires little 
overhead. The average performance degradation of 
these applications is 0.11, 0.73, and 0.40%, respec- 
tively. Most of these degradations come from the 
overhead of RPC interfaces between the kernel and 

Table 5. Run Time of Applications with Default 

Table 4. The Cost of Some Operations Pager and XP 

Operation 

System call tgetpid( 1) 

Elapsed Time 
(msec) 

0.1232 

Application With Default 
Programs Pager With XP Difference 

(size) (seconds) (seconds) Seconds Percent 

Ikll remote procedure call 4.5365 
Page fault (default pager) 3.3122 
Page fault (external pager) 5.5180 

SOR(128 128) x 31.378245 31.415488 0.037243 0.11 
Liiermore (4096) 229.551529 230.457477 0.905948 0.40 
N-body (2048) 117.858674 118.713899 0.855225 0.73 
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the XP. When compared with total run time, this 
overhead is negligible. 

4.3 Overhead 

To assess the extra cost introduced by the XP sub- 
system into the original operating system, we devel- 
oped a program that allocates memory in the bss 
region and accesses data for each page. The running 
times of this program on the original ConvexOS and 
the enhanced ConvexOS were then compared. Fig- 
ure 10 summarizes the results of our experiment. 

The measurements show that the overhead due to 
the XP subsystem is nearly zero. Only in the case of 
a very large program with up to 64 Mbytes of virtual 
space was there a slight difference in the elapsed 
time needed to run the programs in the two systems 
(1% overhead, 0.038 seconds). This difference is 
vanishingly small when compared with the total run 
time, however, and such large programs are rarely 
used. 

5. RELATED WORK 

To application programmers, perhaps the most at- 
tractive feature of an XP interface is that it supports 
backing storage management (Loepere and Black, 
1992) and, in particular, enables the behavior of 
kernel page in/page out activities to be controlled. 
Extracting the memory manager from the kernel has 
been the focus of much research in recent years. 

Mach (Rashid et al. 1987; Tevanian, 1987) pro- 
vides a relatively rich set of virtual memory manage- 
ment functions compared with systems such as 4.3 
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Figure 10. Memory allocation overhead for modified ConvexOS. 
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bsd UNIX or System V. Mach further complements 
these functions with its inter-process communication 
capabilities (Young et al., 1987) to efficiently trans- 
fer large regions of virtual memory in memory be- 
tween protected address space for different pro- 
cesses. 

The Mach XP (Young, 1989) interface consists of 
two parts. System calls are provided that allow user 
code to control the contents of the physical memory 
cache that contains the pages used by the client 
address space. The user also supplies a set of rou- 
tines that are called by the kernel via an RPC-like 
interface, i.e., the MIG-generated interface, to han- 
dle such items as page faults and memory protection 
violations. Applications can freely use these virtual 
memory management interfaces to construct their 
own memory managers at user level and thus even 
define new paging rules, such as how to maintain 
consistency between the page images held by the 
kernel in its physical memory cache and the page 
images a manager might hold. An example of work 
on the Mach pager interface is DSM (Chang, 1991; 
Forin et al., 1989). 

The Chorus/MIX operating system (Rozier et al., 
19901, a formal research project on distributed sys- 
tems at INRIA, demonstrates the feasibility of a 
UNIX implementation with a minimal kernel. Like 
the Mach design, Chorus provides a cluster of inter- 
faces, called the generic memory management inter- 
face (GMI; Abrossimov 1989a, 1989b). 

Through the mechanisms GM1 supports, a mem- 
ory manager (a segment mapper in Chorus) can 
reside completely outside of the kernel and simulta- 
neously maintain memory segment consistency if the 
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segment is shared among different sites. In particu- 
lar, this interface provides abstractions for the sup- 
port of a single consistent cache for both mapped 
objects and explicit I/O and the control of data 
caching in virtual memory. Data management poli- 
cies are delegated to external managers. 

The externality of the memory managers in Mach 
and Chorus is due to the nature of their kemeliza- 
tion. For the sake of a modularized minimal kernel, 
it is essential to separate each subsystem of a tradi- 
tional monolithic operating system and clearly de- 
fine the interfaces and negotiation protocols among 
each subsystem. In most cases, the internal imple- 
mentation of structure is considerably modified to 
expedite this goal. For example, the Mach virtual 
memory subsystem is modified to make fulluse of its 
JPC module to improve overall performance. 

In contrast, the implementation of our XP retains 
the original system organization and just adds some 
hooks ,for the convenience of users. The default 
memory manager can still operate undisturbed within 
the kernel and cooperate with the XP at any time. 
Moreover, we divide the whole XP subsystem into 
two parts: an operating system-dependent and an 
operating system-independent portion. This applica- 
bility of the operating system-independent portion 
to any BSD UNIX operating system, which greatly 
simplifies the task of migrating the XP, is not avail- 
able with Mach or Chorus. Finally, the similarities 
between our XP facility and the other two systems 
make the porting of relevant user application pro- 
grams very easy. 

There exists much literature exploring the ex- 
tended interfaces of the XP facility. For example, 
PREMO (McNamee and Armstrong, 1990) supports 
user level page replacement policies; Subramanian 
(1991) describes a Mach XP to manage discardable 
pages; Harty and Cheriton 
page-cache management to 
control of physical memory. 

6. CONCLUSION 

(1992) -use external 
provide applications 

In a distributed computing environment, the diverse 
requirements of different types of applications high- 
light the inadequacy of uniform memory manage- 
ment policy inside the kernel. This article proposes a 
set of generic interfaces that allow users to design 
their own paging policy for memory managL vent. A 
modularized implementation structure is also pre- 
sented to minimize the dependence of the XP on the 
underlying operating system, thus making the whole 
function portable. 

H.-H. Wang, P.-K. Lu, and R.-C. Chang 

By providing such a highly portable XP, we have 
shown that moving part of the task of memory 
management, especially backing storage administra- 
tion, outside the BSD UNIX kernel is not only 
possible, but also beneficial. This is a significant 
departure not only from specific operating systems 
such as ConvexOS, but also from traditional UNIX 
operating systems, in which paging activities have 
been an integral part of the kernel. 

A number of experiments on our XP have been 
made or are now in progress. An XP applying Li and 
Hudak’s (1989) algorithm to maintain consistency 
between the memory cache and backing storage is 
currently running on a Convex supercomputer; im- 
plementations of mathematical applications such as 
matrix multiplication and inner product are also in 
progress, and their paging behaviors are being exam- 
ined. 

There are considerable opportunities for future 
work in this area. Moreover, our work provides a 
foundation on which related research can be based. 
Here we list a few suggestions for future research: 

The transaction between the kernel and the XP is 
now based on the Berkeley socket interface. 
Though this interface provides convenience in im- 
plementing an XP, it also introduces communica- 
tion overhead. An optimization process is needed 
for minimizing overhead. 

To provide a sufficiently generic and flexible inter- 
face for XPs, application programs should be ana- 
lyzed to investigate paging behavior. 

Currently, only part of the task of memory man- 
agement can be transferred to the user level pager. 
Exploration of the minimum set of interfaces (or 
privileges) necessary to move the entire memory 
manager out of the kernel of a traditional UNIX 
operating system is an interesting topic. 
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