
An Implementation of an External
Pager Interface on BSD UNIX

Hsiao-Hsi Wang, Pei-Ku Lu,* and Ruei-Chuan Chang§
National Chiao Tung University, Hsinchu, Taiwan, and Academia Sinica, Naukang, Taipei, Republic of China.

We have designed and implemented an external pager
facility on the ConvexOS for Convex supercomputers
to enhance memory management capability within the
kernel. A group of generic interfaces that can be used
to construct a memory manager at user level is pro-
posed. Furthermore, a highly modularized subsystem
that provides dynamic configuration and portability is
presented.

1. INTRODUCTION

The benefits of virtual memory go without saying:
almost every high-performance computer in exis-
tence today has one. The UNIX operating system
traditionally provides a memory manager embedded
within the kernel. This manager is dedicated to
solving all virtual memory-related problems, such as
page faults, main memory shortage, and so on.

Because the clients of the memory manager in-
clude other components of the system, the manager
requires some privileges and is therefore bound
tightly within the UNIX kernel. As a result, user
programs can participate neither in the decision
making nor the paging strategy of the memory man-
ager; only a single scheme for virtual memory man-
agement is provided through the entire operating
system. However, in contemporary environments,
one usually has specific requirements for backing
storage management, consistency management, or
paging mechanisms. It is obvious that a predeter-
mined unique memory management policy within
the kernel is not powerful enough.

Address correspondence fo Ruei-Chuan Chang, Institute of Com-
puter and kformation Science, National Chiao Tung Uttiuersity,
Hsinchu, Taiwan, Republic of China.

Mach (Tevanian, 1987; Young et al., 1987) is a
multiprocessor operating system being developed at
Carnegie Mellon University. The design of the vir-
tual memory system separates the machine-indepen-
dent portion from the machine-dependent one (Forin
et al., 1989; Young et al., 1987; Young, 1989). Mach
gives the user the ability to create memory objects,
which can be managed by user-defined processes,
called external pages.

In this article, we propose an external pager facil-
ity (Rozier et al., 1990; Tevanian, 1987; Young,
1989) on BSD UNIX to enhance the functionality of
the memory manager. This facility enables users to
construct their own memory manager outside the
kernel in order to deal with user-specific require-
ments. Although the external pager feature origi-
nates from Mach, the design and implementation of
our external pager have distinct advantages, de-
scribed as follows:

l In the realization of our external pager in Con-
vexOS, which is a member of the BSD UNIX
family, we divide the whole external pager subsys-
tem into an operating system-dependent part,
which is responsible for low-level architecture-re-
lated operations, and an operating system-inde-
pendent part, which basically acts as the supervi-
sor of the external pager subsystem. This applica-
bility of the operating system-independent por-
tion to any BSD UNIX operating system, which
greatly simplifies the task of migrating the external
pager facility, is not available with Mach. The
consequence of adopting such a modularized im-
plementation strategy is that the entire subsystem
becomes highly portable and flexible.

0 The implementation of our external pager retains
the original system organization and just adds

J. SYSTEMS SOFTWARE 1995; 29:177-189
0 1995 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0164-1212/95/$9.50
SSDI 0164-1212(94)00074-W

178 J. SYSTEMS SOFTWARE H.-H. Wang, P.-K. Lu, and R.-C. Chang

.

1995; 29~177-189

some hooks for the convenience of users. The
default memory manager can still operate undis-
turbed within the kernel and cooperate with the
external pager at any time.

The similarity between our external pager facility
and the Mach operating system makes the porting
of relevant user application programs very easy.

The rest of the article is organized as follows.
Section 2 provides a sketch of the architecture of the
Convex supercomputer. Section 3 provides a de-
tailed explanation of the external pager interface. In
addition, the modularized implementation and an
application of the external pager facility are de-
scribed. Section 4 evaluates our work, and Section 5
summarizes some previous related work. Finally,
concluding remarks and suggestions for future re-
search are given in Section 6.

2. THE CONVEX MACHINE

2.1 A Close Look at the Convex Architecture

The Convex Cl and C2 machines manufactured by
the Convex Computer Corporation adopt 4.2 BSD
UNIX as their primary operating system and incor-
porate a number of enhancements on the original
BSD UNIX implementation (CONVEX 1988, 1990,
1991).

The Convex Cl00 series architecture defines 4
Gbytes of virtual address space. From the point of
view of hardware, this virtual memory is partitioned
into eight 512Mbyte segments. Logically, the 4
Gbytes of virtual address space of a processor are
divided into five partitions, called rings. Each ring
has a different level of privilege for execution and
access, so the ring structure architecture embodies
the fundamental memory protection mechanisms.
The ConvexOS maps segments to rings as follows:

l Segment 0 is always assigned to ring 0, which
contains primarily the operating system kernel in-
structions. Because a set of privileged instructions
can be executed only in this ring, the kernel has
the privilege to perform all these functions.

l Segment 1 is assigned to ring 1, which is used by
the kernel to map page tables (described below)
into virtual memory so that ConvexOS can oper-
ate on them through virtual addresses.

l Segment 2 is assigned to ring 2. To date, ring 2 has
been left unused.

l Segment 3 is assigned to ring 3. Various buffers
used to cache fickle kernel data structures are
allocated here.

l Segments 4-7 are assigned to ring 4, which has
the lowest level of privilege. This area is used for
the user context of Convex process.

To govern the large virtual address space, the
Convex architecture uses a sequence of data struc-
tures organized in a hierarchical fashion (Figure 1).
The top level of management involves a set of eight
segment descriptors. Each segment descriptor points
to the beginning of a first-level page table. When a
process is loaded for execution, the appropriate seg-
ment descriptors must be loaded into the CPU’s
segment descriptor registers (SDRs). The second
and third stages of management are accomplished
by use of a number of first- and second-level page
tables. A page table is a page that contains 4-byte
entries called page table entries @I%). Each PTE
conveys information needed to determine whether a
page is resident in physical memory or not. Figure 1
also shows a virtual-to-physical translation of a 32-bit
virtual address by consulting the hierarchical tables.

2.2 Memory Management in ConvexOS

ConvexOS is a demand-paging virtual memory oper-
ating system for supercomputers. To provide a flex-
ible and reliable virtual memory programming envi-
ronment, four basic memory management data
structures are used in ConvexOS (Figure 2):

1.

2.

3.

4.

Core map (cmap): an array of structures used to
manage main memory.
Virtual space (vspace): A top level sketch of the
virtual address space. The major component is
composed of a linked list of entries termed
vm _ region.
Virtual memory object (vm_o&ect): a single
shareable unit that can be mapped into the vir-
tual address space of one or more processes.
Examples of objects are files, swap space (backing
storage), and zero-filled pages.
Page tables: a machine-dependent memory-map
ping data structure.

All knowledge concerning the virtual address space
of a process is acquired through the use of the
corresponding vspace data structure. Most of the
information recorded in vspace is machine indepen-
dent, for example, the current access mode of a
process context, the permitted maximum resident
size, and so on.

The only machine-dependent information in
vspace is described in an array named vs_sdr. The
contents of us_& correspond to the eight SDRs
required by hardware architecture and are loaded to

An External Pager Interface

Figure
lation.

1. Virtual-to-physical address trans-

J. SYSTEMS SOFTWARE 179
1995; 29~177-189

SDR
First - Level

PTE
Second - Lwrl

PTE
PhyBiC8l

pago tram0

Segment *WI 1 mE 0tfut kwl2 PTE Offnl

Virtual ~20 number

machine SDRs each time this process is scheduled each entry (um_region> maps to a contiguous range
for execution. When the SDRs are switched, the of virtual addresses. Each urn-region contains basic
corresponding page tables are also exchanged, so the information such as the protection right specific to
system views a different virtual address space. this region, the range of the region, and so on.

From the point of view of a memory manager, the
linked list indicated by the us_regions field of vspace
is the most important data structure. This linked list
is sorted in order of ascending virtual address and

Basically, two um_ob~ects are attached to each
region by fields in the region entry, called re_object
and re_bucking. The tist (primary) object is used
for providing pages to the page fault handler when
the desired pages have not yet been paged out to
backing storage, for instance, the zero-filled pages or
the permanent text portion in execution programs.
The second (backing) object is used to transfer
swapped pages between main memory and backing
storage.

Figure 2. ConvexOS virtual memory system operating
principles.

32-biia Vifiu~l Addmu

The virtual memory subsystem of ConvexOS rep-
resents a typical form of the BSD UNIX. We use
ConvexOS as a testbed to explore the interface
required to support paging control activity outside of
the kernel.

3. AN EXTERNAL PAGER FACILITY UNDER A
BSD UNIX ENVIRONMENT

Normally, the UNIX operating system offers a mem-
ory manager embedded within the kernel. Such a

180 J. SYSTEMS SOFTWARE
1995; 29377-189

memory manager performs all activities between
backing storage and main memory (a page pool), i.e.,
main memory is used as the cache of backing stor-
age. We refer to this job as cache management. User
programs can neither see the memory manager nor
participate in its activities. However, users might
wish to write a memory manager if they have specific
requirements for one of the following:

Backing storage management (such as the source
of storage or its format, e.g., compressed or en-
crypted).

Consistency management of the backing store ver-
sus the memory cache. Examples include mapped
file support, transaction-based virtual memory, and
distributed shared memory.

Paging mechanisms. The memory manager is di-
rectly involved with the paging mechanisms for the
object it manages. It has indirect influence on
overall paging policy by its actions.

To meet these requirements, a traditional operat-
ing system such as the BSD UNIX must be modified
to provide users with the ability to write their own
memory manager in user mode. This section focuses
on the mechanism and implementation of such an
external pager facility and describes an application
that uses the external pager facility to construct
virtual shared memory on distributed systems.

3.1 The Generic Interface Design

We have developed a prototype system of the exter-
nal pager facility on ConvexOS by providing a group
of interfaces among the user, kernel, and external
pager. Because most of these interfaces are imple-
mented as remote procedure calls, we use client and
server models to explain these interfaces. The initia-
tor of the request is the client; the one satisfying the
request is the server. Application of this facility on
distributed environments makes it possible for the

H.-H. Wang, P.-K. Lu, and R.-C. Chang

user, kernel, and external pager to locate on differ-
ent sites.

To provide an external pager facility, the kernel
has to redirect the original processing flow for pag-
ing, forward the requests to the user-level manager,
and then wait for a reply. In addition, the kernel
must supply the external pager with the capability to
access the contents of the pages it needs and to
update related internal data structures, such as the
cmap, the page tables, the um_regions, and so on.

The operations described above can be divided
into two parts, according to whether the initiator of
the operation is the kernel or the manager. Basi-
cally, the kernel may launch the following types of
requests to the manager:

requests for data from the backing storage man-
aged by the pager when a nonresident page fault
occurs;

requests for more access permission for the data
cached in the kernel when a protection violation
fault occurs (e.g., a write fault on a page previ-
ously marked as read-only);

requests to flush modified cached data to the
associated backing storage if the amount of free
memory is less than a certain threshold.

On the other hand, an external pager may raise
the following demands for cache management while
performing consistency maintenance:

require that the kernel writes the pages in ques-
tion back to the manager;

clear the cached data in main memory and mark
the corresponding pages as nonresident;

invalidate a range of the virtual address space of a
certain process.

Based on these requests and demands, we con-
struct a sequence of interfaces to implement an
external pager. Table 1 summarizes the interface
calls made by the kernel on the external memory

Table 1. Summary of the External Pager Interface (from Kernel to Pager)

data_init (backing storage to map, virtual address, process id) Contacts the manager of a cache that is mapped for the first
time, for initial handshake

datu_terminate (backing storage, virtual address, size, process
id)

Notification of removal from cache

data-request (backing storage, faulting virtual address, desired
size, desired access, faulting process)

data_unlock (backing storage, faulting virtual address, desired
size, desired access, faulting process)

Request for a range of pages that the kernel does not have in
its cache

Requires more access permissions for a range of pages

data-write (backing storage, buffer, buffer size, offset in
backing storage, process id)

Pageout of dirty pages from main memory

lock_completed (backing storage, virtual address, size, process
id)

Completion of the requested paging operation

An External Pager Interface

manager. We implement each call as a remote pro-
cedure call (RPC). That is, the function body lies on
the external pager side. In an actual implementa-
tion, the arguments of these procedure calls are
packed into a message and sent to the server for
processing. Several fundamental items are included
in this message:

A backing storage, which indicates the memory
manager and the destination of the message.

A process identifier, which the manager may use
to make cache management requests to the ker-
nel. The identifier is somewhat different from the
well-known UNIX process identifier.

A virtual address combined with a size in bytes,
which specifies the range of virtual address space
to be operated on.

If a portion of the virtual address space is created
to be used for the first time as the cache for a
certain backing storage, and the backing storage is
administered by an external manager, then the ker-
nel makes a data_init call to the corresponding
manager to establish a correlation between the ker-
nel and the manager. If a backing storage is mapped
into the address space of more than one process on
different hosts (with independent UNIX kernels),
then the manager receives an initialization call
(data_init) from each kernel.

To process a cache miss (i.e., nonresident page
fault), the kernel issues a data-request call specify-
ing the range (usually a single page) and the current
access desired. The manager is expected to return at
least the specified data, with as much access as it can
allow.

When a user process requests greater access to
cached data than the memory manager has permit-
ted (i.e., protection violation fault), the kernel issues
a datu_unlock call. The manager is expected to
respond by changing the locking on that data when
it is able to do so.

The memory manager may fix the use of cached
data by the interface (described below) from the

J. SYSTEMS SOFTWARE 181
1995; 29~177-189

pager to the kernel. For example, it may wish to
change the access right of cached data or ask the
kernel to write back the modifications in question.
In the latter case, the kernel uses the duta__write
call in response, just as when it initiates a cache
replacement to squeeze main memory. In either
case, the kernel calls lock_completed to indicate
that it has finished the operation requested.

Finally, a data_terminate call is used to inform
the memory manager that the kernel has completed
its use of the given cache data, so the manager can
destroy the data after performing appropriate book-
keeping.

Alternatively, the external memory manager can
manipulate the cached data in the kernel through
the interface functions listed in Table 2. Some of
these functions are organized as UNIX system calls,
and some are library routines for improving feasibil-
ity, but most of them are RPCs (function bodies
residing inside the kernel). Unlike those summarized
in Table 1, these RPCs are asynchronous calls, so
they do not wait for a reply from the kernel.

A memory manager is a server process that re-
sponds to specific messages from the kernel in order
to handle memory management functions for the
kernel. To isolate the memory manager from the
specifics of message formats, we provide two proce-
dures, recu_request and memoty_seruer, to handle a
received message. The recu -request routine accepts
the incoming messages and records the emitter of
the received message in the argument client for
future use. Then the external pager calls the mem-
ory-sewer routine, which parses the contents of the
request, does all necessary argument handling, and
invokes appropriate functions (Figure 3).

On reception of a data_init call from the kernel,
the memory manager may respond with data-ready
when it is ready to map the associating backing
storage to the given virtual address.

The data_supply call is used to provide data with
permission access right to the kernel when a page
fault occurs. It is usually made in response to a
data-request call made to the memory manager.

Table 2. Summary of the External Pager Interface (from Pager to Kernel)

recv_request (request, client)
memo~_server (request, client)
data-ready (client, virtual address, (size)
data-sup& (client, virtual address, size, buffer, access right)
data_unavaihble (client, virtual address, size)
lock-request (client, virtual address, size, should_clean,

should_flush, reply-to)

Accepts paging request
Handles the request to call one of the interface functions
Confirms availability on completion of initial handshake
Provides page(s) data to the cache
Data is unavailable, kernel has to zero-fill the pages
Cache control request, e.g., page flush

give_right (client, virtual address, size, access right, reply-to) Grants more access permissions for the cache.

182 J. SYSTEMS SOFTWARE
1995: 29377-189

r \

functions

fl dispatch

memory-server

Memory
Manager

request

Figure 3. Dispatch of a kernel request.

However, the manager can still reply with a
data-unavailable call to inform the kernel that the
desired data are inaccessible.

To give greater access rights to cached data than
previously granted, the manager may issue a
give_right call to the kernel.

Because the memory manager may be subject to
external constraints on the consistency of its backing
storage, the interface provides a lock-request call to
control caching. This call allows the memory man-
ager to make the following requests of the kernel:
write back any cached data that have been modified
since the last time they were provided, and remove
any uses of the data from memory (i.e., mark the
data as nonresident).

A backing storage may be mapped into the ad-
dress space of the application programs by exercis-
ing the seg_alloc primitive and specifying the mem-
ory manager responsible for the backing storage.
The kernel redirects all the paging requests for
pages in that virtual address space to the specified
manager. However, this function call only designates
unused pages in the bss region as cache for map-
ping; other segments, such as text or initialized data
regions, that have been allocated before the pro-
gram starts its execution cannot be remapped and
are still managed by the default memory manager
within the kernel.

An additional function, seg_dealloc, is proposed
to be invoked explicitly by user programs to relin-
quish their access to a region previously declared by
the seg_aZloc call, so that further access to that
memory fails. In addition, the operating system au-
tomatically deallocates the entire virtual address

H.-H. Wang, P.-K Lu, and R.-C. Chang

space of a process after quitting execution of that
process. Table 3 lists these two virtual memory man-
agement functions.

Combining the primitives described above, we can
construct an external pager to deal with the paging
requests and administer the backing storage. Figure
4 shows the relationship between the kernel and the
external pager.

3.2 Implementation of the External Pager in
ConvexOS

We have altered the virtual memory subsystem of
ConvexOS, a member of the BSD UNIX family, to
provide an external pager capability. While estab-
lishing a set of reliable interface calls, we make full
use of the original operating system, and no duplica-
tion of functions within the kernel is produced.

3.2.1 Some considerations. In developing the ex-
ternal pager facility, we want to achieve two major
objectives: the potential for dynamic configuration
and portability among various BSD UNIX operating
systems.

Dynamic configuration removes the necessity for
the pager to reside on the same host as the client
process. Moreover, the relationship between the
pager and a specific host is broken, and the pager
can be freely reorganized without the intervention of
the kernel or client processes. To attain this goal,
the Berkeley socket interface (Stevens, 1990) is used
as a basis for transactions.

The original operating system is modified to aid
the mechanism of the external pager. To make the
appended portion portable, the external page (XP)
subsystem has to be modularized. In brief, it is
divided into two logical parts, one that uses native
functions to deal with such problems as operating
system-dependent virtual memory administration,
management of hardware-related PTE%, and so on,
and another that is independent from the original
operating system and thus can be easily migrated to
other BSD UNIX systems. Figure 5 shows this orga-
nization.

Table 3. The Interface Corn the User to Kernel

seg-dloc (mapped size, Maps a virtual memory
returned virtual region to the backing
address, memory storage governed by
manager) the memory manager

seg-ffeufloc (virtual Deallocates a virtual
address, size) memory region

An External Pager Interface

data_init

data_request

data-unlock

da&ready

data_supply /
data_unavailable

give-tight

data_write
lock_completed

lock_request

Figure 4. Interrelationship between the kernel and pager.

3.2.2 The prototype system. The XP subsystem
consists primarily of four modules: segment adminis-
tration, remote procedure invocation, request man-
agement, and cache control modules. The hierarchy
of the system is shown in Figure 6.

Each segment is an integrated portion of memory
cache served by a single external pager. The seg-
ment administrator implements the mapping be-
tween segments and the pager. Other than mapping,
its main responsibility is to coordinate the default
memory manager and the XP.

The administrator registers the server (the XP> of
each allocated segment as a host and port number
pair, just like the pairs used in the Berkeley socket.
Because we currently work on an internet domain
local area network, these pairs are quite enough to
meet our requirements. However, for future needs,
the registration for server should be expanded to
include more information, such as domain family
and protocol used.

Because the default memory manager still exists
within the kernel and is obligated for most paging
activities, there must be some way to distinguish the
page faults for the normal cache from those for
segments managed by an XP in order to send the

Export 10 User

Original
Operating System y

+ XP Module

CT, Operating System independent pan

V Operating System dependent part

Figure 5. Organization of the XP subsystem.

J. SYSTEMS SOFTWARE
1995; 29~177-189

I- User Library 7

I

KERNEL

183

Figure 6. XP subsystem hierarchy.

paging requests to the proper manager. The Convex
architecture hardware reserves four bits (bits 4-7) in
each PTE for potential use by software (Figure 7).
Two of these bits are taken up by ConvexOS: bit 4
indicates that the page data should be migrated to
backing storage on flushing (otherwise it is dis-
carded), and bit 5 denotes a page state of copy-on-
write. Here, we adjust bit 6 as a flag to designate
that the corresponding page is served by an XP. The
segment administrator examines this flag to deter-
mine whether a paging request should be redirected;
it thus coordinates the default memory manager and
the XPs.

We have modified several routines in ConvexOS
slightly to integrate them with the segment adminis-
trator. The urn-grow routine, which enlarges or
shrinks the size of a region, must be able to mark
the special status of the varied portion of the region
(by setting the flags in the relevant PTEs). Two
major routines for page fault handling in ConvexOS,
vm_zfid for paging in nonresident pages of the bss
region and re_w$zuZt for resolving protection viola-
tions, have also been modified to redirect requests
to the segment administrator when necessary.

In brief, the segment administrator acts somewhat
like a switching box or a filter, accepting requests
coming either from the underlying operating system
(i.e., for page faults) or from the user-level pager
(i.e., for cache control), inspecting these requests
and performing necessary bookkeeping, and then
invoking proper routines for processing. It is the
superior of the whole XP subsystem.

All the page faults are ultimately resolved by
remote procedure calls to XI’. Once the segment
administrator completes the analysis of a paging
request, the RPC module converts the procedure
call to a full-rigged message and sends it to the

184 J. SYSTEMS SOFTWARE
1995; 29~177-189

H.-H. Wang, P.-K Lu, and R.-C. Chang

31 30 12 11 987 43 2 10

Figure 7. FTE format.

designated pager. Because a number of remote pro-
cedures may be called by the segment administrator,
the procedure name is encoded in the outgoing
message, and a user level dispatcher is introduced
through the library to decode the received message.

The Berkeley socket interface is used as the basis
of communication. However, the original socket in-
terface is implemented as a system call and can only
be used from the user level by a trap instruction. To
use the interface from kernel mode, we have added
a converter to reorganize the parameters for the
socket and simulate the trap environment.

Another task carried out by the RPC module is
process management. Because the faulting process
and the XP are both user processes, the faulting
process must be suspended after a request is sent;
otherwise, the XP can never be scheduled for execu-
tion. The result is that the whole operating system is
blocked in the kernel mode, and the faulting process
is blocked continuously because it is waiting for a
reply from the XP. The system is deadlocked. To
prevent such a deadlock from occurring, the RPC
stub exploits the socket interface to execute a con-
text switch at an appropriate time.

The request manager handles the preprocessing
of cache-controlling requests, which involves modify-
ing page tables of the client process or accessing the
cached data in the address space of the client pro-
cess for the XP. These requests are always asyn-
chronous to the execution of the client process.
There exist two approaches to satisfy these requests.
In the first approach, because the address space of
each process is different and private, the XP has to
map the page tables of the client process or the
desired cache pages (which are in the context of
another process) into an unused region in the ad-
dress space of the XP in order to operate on them.
This task is arduous because it requires extra locks
to harmonize the XP with the client process. In the
second approach, the request manager simply queues
the request and sends a software interrupt to the
client that requests the service; then the pager can
immediately resume its execution. Once the client
process is scheduled to run and it traps into kernel
mode, the original request is then dequeued for
examination, and the relevant routine is called to
control the desired cache. This scheme reduces the
complexity of the implementation through the elimi-

nation of verbose mapping. Therefore, we adopt the
latter approach.

The cache control module provides all necessary
low-level cache-controlling functions. It is the pri-
mary part of the XP subsystem. It is bound to the
underlying operating system and machine hardware
and thus must be entirely written when migrating
the XP subsystem to other BSD UNIX operating
systems.

From the viewpoint of the XP subsystem, the
cache control module can be considered to be a set
of functions provided by the original operating sys-
tem. For ConvexOS, we define three functions: one
to mark a range of virtual addresses as nonresident
(i.e., for flush requests), one to copy the contents of
physical page frames associated with particular PTRs
into the buffer (i.e., for write-back requests), and the
last to invalidate a range of virtual addresses (i.e.,
for segment deallocation requests).

Generally, these cache-controlling routines in-
volve the modification of page tables. In ConvexOS,
the level 1 and 2 page tables of currently running
processes are mapped to the virtual address of seg-
ment 1, so the kernel can access the page table
entries directly through the virtual address. We use
this characteristic to efficiently program the cache-
controlling routines.

After introducing interface calls and implementa-
tion details, we use an example to explain how these
interfaces locate in the XP subsystem and the paging
transaction flow. For example, if a client process
wants to map a specific backing object into its ad-
dress space, it first uses socket interfaces to contact
the XP to get an identifier (generally a UNIX socket
port) and then pass this identifier as a memory
manager to the kernel through the seg_alZoc call.
When page faults occur, vm_$od or urn_wtfault is
involved. These routines redirect faulting requests to
the segment administrator. The segment administra-
tor determines which manager (default pager or XP)
will manage the request and then forwards paging
requests to this manager (if this manager is an XP,
then the interface from the kernel to the pager is
applied through the remote procedure invocation
module). Alternatively, the manager may also use
the interface from the pager to the kernel to emit
some cache-controlling requests through the request
management module to the segment administrator,

An External Pager Interface J. SYSTEMS SOFTWARE 185
1995; 29177-189

and the cache control module satisfies these re-
quests. In the termination phase, the client process
sends a seg_de&c call to the kernel, then the
kernel uses the data-terminate interface to inform
the memory manager. Figure 8 illustrates this trans-
action flow.

3.3 An Application of the XP Facility

A distributed shared-memory (DSM) system pro-
vides the abstraction of shared address space among
the computers connected by a network. This abstrac-
tion simplifies the sharing of complex data structures
and the effort of writing parallel programs for these
computers. However, the performance of a DSM
system is highly dependent on how to make the
shared memory consistent (Li and Hudak, 1989) and
how to reduce the high cost of moving data through
networks.

For ordinary shared data, we can exploit the inter-
face between the XP and the kernel to support
virtual shared memory and consistency management
on distributed systems. Each time a page fault oc-
curs, the kernel can catch this trap and use inter-
faces supported by the XP to send requests to the
XP of this page. The XP can then guarantee consis-
tency among various hosts.

Synchronization objects sometime result in heavy
network traffic if we treat them as ordinary shared
data. A set of library routines can be provided in a
DSM system. These may include mutex_lock(1,
mut~_unZock(), and barrier_._wait(1. We believe

I
USER

\
f@ 01

KERNEL 1
Request ’

Management

* 0
Segment Administration

t

\
Cache Controlling 1

I .L

@Client uses socket interfaces to contact with pager to get port.
@The interface from the client to kernel.

8-i-h
3 The interface from the pager to kernel.
4 e interface from the kernel to pager.

Figure 8. Interaction among the client, kernel, and external
pager.

that implementing them by use of a synchronization
server can prevent frequent movement and wasteful
space of shared memory.

4. DISCUSSION

4.1 Portability

After enhancing ConvexOS by adding the XP facil-
ity, the amount of code for the kernel increases by
16 Kbytes, 12 of which belong to the text region; the
other 4 Kbytes belong to the data region. These
sizes are negligible, especially when compared with
the original ConvexOS, which exceeds 1.5 Mbytes of
code. In fact, these 16 Kbytes of code need to be
rewritten when porting the XP subsystem on a typi-
cal BSD UNIX operating system.

We divide the expanded code for the XP facility
into two parts. The operating system-independent
part occupies almost 50% of the code (Figure 9);
most of this code is used for bookkeeping tasks. This
part has no relationship to any operating systein and
can be migrated to other systems without modifica-
tion. The operating system-dependent part can be
further partitioned into two portions. One portion is
related to the operating system but is common to all
BSD UNIX systems. Examples of these codes in-
clude the socket interface converter in the RPC
stub, the system call handler, and so on. When
migrating the XP subsystem to other systems, these
codes require little or no change. The other portion
is the ConvexOS-specific portion, which uses individ-
ual features of ConvexOS, such as page table manip-
ulation, and therefore has to be rewritten com-
pletely. The code in this portion accounts for only
one fifth of the entire XP subsystem.

In summary, 80% of the expanded code is inde-
pendent of the underlying operating system. This
fact, in addition to the modularized implementation
of the XP subsystem, makes porting the XP func-
tions to the BSD UNIX family a simple task.

IXJ O.S. Independent
Li3 Common to BSD

q ConvexOS Specific

49%

Figure 9. Relative portions of the XP subsystem code.

186 J. SYSTEMS SOFTWARE
1995; 29:177-1&X9

H.-H. Wang, P.-K Lu, and R.-C. Chang

4.2 Dynamic Configuration

In implementing an XP interface, applicability for
distributed environments is a major consideration.
We have used the Berkeley socket as the basis for
communication in our XP subsystem in order to
extend the service scope of the XP to the entire
network. Two of the sets of the proposed interface,
the kernel to pager and pager to kernel interfaces,
are implemented as RPCs if possible. The details
about the cost of some operations are shown in
Table 4. Although some overhead (an average of
N 2.2 msec per page fault, which is comparable to
4.5 msec per null remote procedure call) is intro-
duced by the native socket interface because of the
complex assembly and disassembly processing of the
network packet, it is still worthwhile. First, the XP
provides a typical base for users to build their own
memory managers. Second, the potential for dy-
namic configuration improves the feasibility of the
XP interface for a distributed system. In fact, when
compared with the network propagation delay, the
overhead involved in using a Berkeley socket is
negligible.

To further evaluate performance of the XP sub- ,
system, we have implemented an external pager to
mimic a default pager for managing paging behavior.
A number of application programs, which include
successive overrelaxation (SOR), Liver-more loops,
and n-body problem, are run under both default
pagers and XPs.

The SOR problem is one of the most important
computations arising in engineering and scientific
applications, e.g., digital signal processing. The prob-
lem can be described as follows. Given a grid area
represented by a matrix, each matrix element corre-
sponds to a grid point. During each iteration, each
matrix element is updated to average four neighbor
points, which can be formulated as follows:

for (k = 1; k = interutions; k + +)

for (i = 2; i * size - 1, i + +)

for (j = 2; j = size - 1; j + +)

A[i][j] = w * A[i][j] + (1 - w)* f * Sum of (4
neighbors)

where size is the size of matrix A, iteration is the
number of iterations, and w is a constant.

We now turn to the problem of Livermore loops,
which contain an initialization loop, loop 1, and loop
7. The initialization loop, which initializes matrix U,
has only one nested DO-loop. The other two loops
have two nested DO-loops, which have the following
form:

for (i = 0; i < size; i + +)

for (j = 0; j < &e/2, j + + >

UKN jl = fidU[U jl, UDl[jl, UDl[jD
where size is the size of matrix U and fine is a
numeric function.

The last problem considered is the n-body prob-
lem, which is one of the most famous problem in
celestial mechanics. Suppose there are n homoge-
neous bodies in spherical layers; then they will at-
tract each other as though their masses were at their
centers. Let m,, m2,. . . , m, represent their masses.
Let the coordinates of mi referred to a hxed system
of axes be xi, yi, zi (i = 1,2,. . . , n). Let ri,i repre-
sent the distance between m, and mj. Let k2 repre-
sent a constant depending on the units used. Then
the components of force on m, parallel to the x axis
are

k’m,m, (x, -x,1 k2m1m, (x1 -x,1 -
2 . ,..., -

r1,2 r1,2 r:,n r1.n

and the total force is their sum. Then the compo-
nents of force on m, parallel to the y axis and z
axis can be computed similarly.

In our experiments, the problem sizes are 128 X

128 for SOR, 4096 X 4 for Livermore loops, and
2,048 bodies for the n-body problem, respectively.
Detailed execution times and performance differ-
ences of all application programs are shown in Table
5. In summary, our experiments have shown that
managing paging activities with an XP requires little
overhead. The average performance degradation of
these applications is 0.11, 0.73, and 0.40%, respec-
tively. Most of these degradations come from the
overhead of RPC interfaces between the kernel and

Table 5. Run Time of Applications with Default

Table 4. The Cost of Some Operations Pager and XP

Operation

System call tgetpid(1)

Elapsed Time
(msec)

0.1232

Application With Default
Programs Pager With XP Difference

(size) (seconds) (seconds) Seconds Percent

Ikll remote procedure call 4.5365
Page fault (default pager) 3.3122
Page fault (external pager) 5.5180

SOR(128 128) x 31.378245 31.415488 0.037243 0.11
Liiermore (4096) 229.551529 230.457477 0.905948 0.40
N-body (2048) 117.858674 118.713899 0.855225 0.73

An External Pager Interface

the XP. When compared with total run time, this
overhead is negligible.

4.3 Overhead

To assess the extra cost introduced by the XP sub-
system into the original operating system, we devel-
oped a program that allocates memory in the bss
region and accesses data for each page. The running
times of this program on the original ConvexOS and
the enhanced ConvexOS were then compared. Fig-
ure 10 summarizes the results of our experiment.

The measurements show that the overhead due to
the XP subsystem is nearly zero. Only in the case of
a very large program with up to 64 Mbytes of virtual
space was there a slight difference in the elapsed
time needed to run the programs in the two systems
(1% overhead, 0.038 seconds). This difference is
vanishingly small when compared with the total run
time, however, and such large programs are rarely
used.

5. RELATED WORK

To application programmers, perhaps the most at-
tractive feature of an XP interface is that it supports
backing storage management (Loepere and Black,
1992) and, in particular, enables the behavior of
kernel page in/page out activities to be controlled.
Extracting the memory manager from the kernel has
been the focus of much research in recent years.

Mach (Rashid et al. 1987; Tevanian, 1987) pro-
vides a relatively rich set of virtual memory manage-
ment functions compared with systems such as 4.3

4 -

3.5 -

3 -

2.5 -

2 -

1.5 -

l-

Ed Original ConvexOS

Ill Enhanced ConvexOS

.I A

1 2 4 6 16 32 64

Figure 10. Memory allocation overhead for modified ConvexOS.

J. SYSTEMS SOFTWARE 187
1995; 29:177-189

bsd UNIX or System V. Mach further complements
these functions with its inter-process communication
capabilities (Young et al., 1987) to efficiently trans-
fer large regions of virtual memory in memory be-
tween protected address space for different pro-
cesses.

The Mach XP (Young, 1989) interface consists of
two parts. System calls are provided that allow user
code to control the contents of the physical memory
cache that contains the pages used by the client
address space. The user also supplies a set of rou-
tines that are called by the kernel via an RPC-like
interface, i.e., the MIG-generated interface, to han-
dle such items as page faults and memory protection
violations. Applications can freely use these virtual
memory management interfaces to construct their
own memory managers at user level and thus even
define new paging rules, such as how to maintain
consistency between the page images held by the
kernel in its physical memory cache and the page
images a manager might hold. An example of work
on the Mach pager interface is DSM (Chang, 1991;
Forin et al., 1989).

The Chorus/MIX operating system (Rozier et al.,
19901, a formal research project on distributed sys-
tems at INRIA, demonstrates the feasibility of a
UNIX implementation with a minimal kernel. Like
the Mach design, Chorus provides a cluster of inter-
faces, called the generic memory management inter-
face (GMI; Abrossimov 1989a, 1989b).

Through the mechanisms GM1 supports, a mem-
ory manager (a segment mapper in Chorus) can
reside completely outside of the kernel and simulta-
neously maintain memory segment consistency if the

188 J. SYSTEMS SOFTWARE
1995; 29:177-189

segment is shared among different sites. In particu-
lar, this interface provides abstractions for the sup-
port of a single consistent cache for both mapped
objects and explicit I/O and the control of data
caching in virtual memory. Data management poli-
cies are delegated to external managers.

The externality of the memory managers in Mach
and Chorus is due to the nature of their kemeliza-
tion. For the sake of a modularized minimal kernel,
it is essential to separate each subsystem of a tradi-
tional monolithic operating system and clearly de-
fine the interfaces and negotiation protocols among
each subsystem. In most cases, the internal imple-
mentation of structure is considerably modified to
expedite this goal. For example, the Mach virtual
memory subsystem is modified to make fulluse of its
JPC module to improve overall performance.

In contrast, the implementation of our XP retains
the original system organization and just adds some
hooks ,for the convenience of users. The default
memory manager can still operate undisturbed within
the kernel and cooperate with the XP at any time.
Moreover, we divide the whole XP subsystem into
two parts: an operating system-dependent and an
operating system-independent portion. This applica-
bility of the operating system-independent portion
to any BSD UNIX operating system, which greatly
simplifies the task of migrating the XP, is not avail-
able with Mach or Chorus. Finally, the similarities
between our XP facility and the other two systems
make the porting of relevant user application pro-
grams very easy.

There exists much literature exploring the ex-
tended interfaces of the XP facility. For example,
PREMO (McNamee and Armstrong, 1990) supports
user level page replacement policies; Subramanian
(1991) describes a Mach XP to manage discardable
pages; Harty and Cheriton
page-cache management to
control of physical memory.

6. CONCLUSION

(1992) -use external
provide applications

In a distributed computing environment, the diverse
requirements of different types of applications high-
light the inadequacy of uniform memory manage-
ment policy inside the kernel. This article proposes a
set of generic interfaces that allow users to design
their own paging policy for memory managL vent. A
modularized implementation structure is also pre-
sented to minimize the dependence of the XP on the
underlying operating system, thus making the whole
function portable.

H.-H. Wang, P.-K. Lu, and R.-C. Chang

By providing such a highly portable XP, we have
shown that moving part of the task of memory
management, especially backing storage administra-
tion, outside the BSD UNIX kernel is not only
possible, but also beneficial. This is a significant
departure not only from specific operating systems
such as ConvexOS, but also from traditional UNIX
operating systems, in which paging activities have
been an integral part of the kernel.

A number of experiments on our XP have been
made or are now in progress. An XP applying Li and
Hudak’s (1989) algorithm to maintain consistency
between the memory cache and backing storage is
currently running on a Convex supercomputer; im-
plementations of mathematical applications such as
matrix multiplication and inner product are also in
progress, and their paging behaviors are being exam-
ined.

There are considerable opportunities for future
work in this area. Moreover, our work provides a
foundation on which related research can be based.
Here we list a few suggestions for future research:

The transaction between the kernel and the XP is
now based on the Berkeley socket interface.
Though this interface provides convenience in im-
plementing an XP, it also introduces communica-
tion overhead. An optimization process is needed
for minimizing overhead.

To provide a sufficiently generic and flexible inter-
face for XPs, application programs should be ana-
lyzed to investigate paging behavior.

Currently, only part of the task of memory man-
agement can be transferred to the user level pager.
Exploration of the minimum set of interfaces (or
privileges) necessary to move the entire memory
manager out of the kernel of a traditional UNIX
operating system is an interesting topic.

ACKNOWLEDGMENTS

This research was partially supported by the National Sci-
ence Council of the Republic of China under grant No.
NSC81-0408-E009-18 and by’ the Convex Computer Corpora-
tion.

REFERENCES

Abrossimov, V., Rozier, M., and Shapiro, M., Generic
virtual memory management for operating system ker-
nels, in Proceedings of 12th ACM Symposium on Operat-
ing Systems Principles, 1989a, pp. 123-136.

Abrossimov, V., Rozier, M., and Gien, M., Virtual mem-
o’y management in CHORUS, in Proceedings of Progress
in Distributed Operating Systems and Distributed Systems
Management, Springer-Verlag, Berlin, 1989b.

An External Pager Interface J. SYSTEMS SOFTWARE 189
1995; 29~177-189

Chang, S. G., The Design and Implementation of Dis-
tributed Virtual Shared Memory, Master’s Thesis, Na-
tional Chiao Tung University, Taiwan, R.O.C., 1991.

CONVEX, COMX Processor Operation Guide, CON-
VEX Computer Cooperation, 1988.

CONVEX, CONVEX Architecture Reference, CONVEX
Computer Cooperation, 1990.

CONVEX, Managing ConuexOS: Configuration, CONVEX
Computer Cooperation, 1991.

Forin, A., Barrera, J., Young, M., and Rashid, R., Design,
implementation, and performance evaluation of a dis-
tributed shared memory server for Mach, in Proceedings
of 1988 Water USENIX Conference, 1989, pp, 228-243.

Harty, K., and Cheriton, D. R., Application-controlled
physical memory used external page-cache manage-
ment, in Proceedings of the 5th International Conference
on Architectural Support for Programming Languages and
Operating Systems, 1992, pp. 187-197.

Li, K., and Hudak, P., Memory Coherence in Shared
Virtual Memory Systems, ACM Trans. Comp. Syst. 7,
320-359 (1989).

Loepere, K., and Black, D. L., Mach 3 Setver Writer’s
Guide, Open Software Foundation and Carnegie-Mellon
University, 1992.

McNamee, D., and Armstrong, K., Extending the Mach
External Pager Interface to Allow User-Level Page Re-
placement Policies, Technical Report 90-09-05, Univer-
sity of Washington, 1990.

Rashid, R., et al., Machine-independent virtual memory
management for paged uniprocessor and multiprocessor
architectures, in Proceedings of the 2nd International
Conference on Architectural Support for Programming
Languages and Operating Systems, 1987, pp. 31-39.

Rozier, M., et al., Overview of the CHORUS Distributed
Operating Systems, Chorus System Technical Report
CS/TR-90-25, Chorus systems, 1990.

Stevens, W. R., UNIXNetwork Programming, Prentice-Hall,
1990.

Subramanian, I., Managing discardable pages with an ex-
ternal pager, in Proceedings of the Second USENIX
Mach Symposium, 1991.

Tevanian, A., Architecture-Independent Virtual Memory
Management for Parallel and Distributed Environ-
ments, Ph.D. Thesis, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
1987.

Young, M., Exporting a User Interface to Memory Man-
agement from a Communication-Oriented Operating
System, Ph.D. Thesis, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
1989.

Young, M., et al., The duality of memory and communica-
tion in the implementation of a multiprocessor operat-
ing system, in Proceedings of the 11th ACM Symposium
on Operating Systems Principles, 1987, pp. 63-76.

