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Abstract 

This paper presents a new method for cognitive-map-based decision analysis based on negative-positive-neutral 
(NPN) logics, where an efficient algorithm is proposed for performing interval-based inexact reasoning automatically. 
The algorithm performs inexact reasoning via constructing a sprouting tree. The time complexity of the proposed 
algorithm is O(nm), where n is the number of cognitive units in the cognitive map, m is the length of a closure path, and 
max(m) = 2n. 
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1. Introduction 

Zhang et al. [15, 18-20] presented the ideas of negative-positive-neutral (NPN) logics and N P N  
relations. NP N logics and relations assume logic values in the interval [ - 1, + 1] instead of values in 
[0, + 1]. Zhang et al. [18] presented a system called Pool2 for cognitive maps [1, 14, 16, 17, 19, 20-] 
development and decision analysis based on N P N  logics and N P N  relations, where cognitive maps are 
represented by N P N  fuzzy relations. They used a heuristic transitive closure algorithm (HTC) to compute the 
transitive closure of an N P N  fuzzy relation, and a heuristic path searching algorithm (HP) is used to find the 
positive maximum effect paths and the negative maximum effect paths between any two cognitive units of 
a cognitive map. The time complexities of the algorithms HTC and HP presented in [18] are O(n3), 
respectively, where n is the number of cognitive units in a cognitive map. The system Pool2 is time efficient for 
applications with small- or medium-sized cognitive maps [18]. However, when the size of the cognitive map 
is very large, the system Pool2 becomes very inefficient due to the fact that to calculate the heuristic transitive 
closure of a very large N P N  fuzzy relation is a very tedious work. Another drawback of Pool2 is that when 
the cognitive map is changed, the corresponding N P N  fuzzy relation will be changed, and the transitive 
closure of the N P N  fuzzy relation must be recalculated again. According to [18], if R is the heuristic 
transitive closure of a N P N  fuzzy relation R and the [s , j ] th  element of/~ is [f, 9], then it indicates that the 
negative and the positive maximum effects of the cognitive unit Cj caused by the cognitive unit Cs a r e f an d  #, 
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respectively, where - 1 ~<j~< 9 ~< + 1. In this case, Cs and Cj are called the starting cognitive unit and the 
goal cognitive unit, respectively. In [18], the system Pool2 assumed that the truth value of the starting 
cognitive unit in a cognitive map is absolutely true (i.e., with truth value + 1). However, if we can allow the 
truth value of the starting cognitive unit to be an interval [a, hi, where - 1 ~< a ~< b + 1, then there is a room 
for more flexibility, where - 1 represents absolutely false, + 1 represents absolutely true, 0 represents 
neutral, the values between 0 and + 1 represent partially true, and the values between - 1 and 0 represent 
partially false. 

In this paper, we propose a new method for cognitive-map-based decision analysis. Our approach allows 
the truth value of the starting cognitive unit of a cognitive map to be an interval [a,b],  where 
- 1 ~ a ~< b ~< + 1. Furthermore, our approach can overcome the drawbacks of Pool2 mentioned above. 

We will present an inexact reasoning algorithm to evaluate the positive and the negative maximum effects of 
the goal cognitive unit C~ caused by the starting cognitive unit Cs in a cognitive map. Furthermore, the 
positive and the negative maximum effect paths can also be found by the proposed algorithm. The time 
complexity of the proposed algorithm is O(nm), where n is the number of cognitive units in a cognitive map, 
m is the length of a closure path, and max(m) = 2n. Our method for cognitive-map-based decision analysis 
has the advantages of low time complexity and more flexibility. 

2. Cognitive maps and N P N  logics 

Zhang et al. [18] have pointed out that cognitive maps can be used to represent the relationships among 
the attributes and/or concepts of a given environment, where the relationships are numerically characterized 
and may be positive, negative, or neutral, where the numerical values associated with the edges between the 
concepts can be used to indicate the degree of strength with which one concept affects another. A cognitive 
map (CM) can be defined by 4-tuple, 

CM -- (C, E, :¢, [~), 

where 
(1) C is a finite set of cognitive units (i.e., concepts), C = {C1, C2 . . . . .  C,}; 
(2) E is a finite set of directed edges between cognitive units, E = {el, e2 . . . . .  e,,}; 
(3) c~ is a mapping function from cognitive units to an interval [a, b], where - 1 ~< a ~< b 4 + 1; 
(4) fl: E --* [ - 1, + 1] is a mapping function from directed edges to real values between - 1 and + 1. 

For example, Fig. l(a) displays a cognitive map for a public health study and Fig. l(b) displays a fuzzy 
version (FCM). Both of them are adapted from [19]. 

Definition 2.1. Let Ci, C j, and CR be any three cognitive units in a cognitive map. If Ci ~ Ck, where 
/~ ~ [ - 1, + 1], then Ck is called immediate reachable from Ci. If Ck is immediately reachable from Ci and Cj 
is immediately reachable from Ck, then Cj is called reachable from Ci. The reachability relationship is the 
reflexive transitive closure of the immediately reachable relationship. 

Definition 2.2. The set of cognitive units which is immediately reachable from a cognitive unit Ci is called the 
immediate reachability set of Ci and is denoted by IRS(Ci). 

Definition 2.3. The set of cognitive units which is reachable from a cognitive unit Ci is called the reachability 
set of Ci and is denoted by RS(Ci). 
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Fig. 1. (a) A crisp cognitive map for public health study. (b) A fuzzy version of the cognitive map in (a). 

For example, the immediate reachability set IRS(C5) and the reachability set RS(Cs) for cognitive unit C5 
shown in Fig. 1 are {C6, C7} and {C1, C2, C3, C4, C5, C6, C7}, respectively. 

Let Vii denote the value associated with the edge between cognitive units Ci and Cj in a cognitive map. If 
V u = (x, x), then it indicates that the value associated with the edge between the cognitive units Ci and C~ is 
x, where x e [ - 1, + 1]. For example, the value V35 associated with the edges between cognitive units C3 
and Cs shown in Fig. l(b) is ( + 0.9, + 0.9). 

In the following, we briefly review the concepts of N P N  logics from [18]. In NPN crisp logic, we have three 
singleton values - 1 (negative), + 1 (positive), 0 (neutral), and three compound values ( - 1, 0) (negative or 
neutral), (0, + l) (neutral or positive), and ( - 1, + 1) (negative or positive or neutral). It is obvious that 
(x, x) = x, where x ~ [ - 1, + 1]. The compound logical values are pairs ordered (by ~< ) in { - 1, 0, + 1}. 
The truth tables of N P N  crisp logic are shown in Fig. 2 which is adapted from [18]. 

Zhang et al. [18] also presented the ideas of N P N  fuzzy logic, where real values between - 1 and + 1 are 
used for characterizing the strength of a link between two cognitive units. Both N P N  crisp logic and N P N  
fuzzy logic can be described by the following three logic equations: 

NEG(x, y) = (NEG(y), NEG(x)), (1) 

(x, y)*(u, v) = (Min(x*u, x , v ,  y , u ,  y ,v ) ,  Max(x,u ,  x , v ,  y , u ,  y ,v)) ,  (2) 

(x, y) + (u, v) = (Min(x, u), Max(y, v)), (3) 
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Fig. 2. N P N  crisp logic truth table. 

where  the operator  + s h o w n  in (3) is the O R  operator; the operator  • s h o w n  in (2) m a y  be any  T - n o r m  (such 
a s . ,  A and A)  ex tended  from the interval  [0,  + 1] to [ - 1, + 1]. This  ex tens ion  is m a d e  as fol lows:  

x .  y = Sign(x)  S ign(y ) ( ]x ] ,  LY[), (4) 

where  the funct ion  Sign(x)  in (4) takes  the sign of  x, the  funct ion  Sign(y)  takes  the s ign of  y, x ~ [ - 1, + 1], 
and y ~ [  - 1, + 1]. The  T - n o r m s  • and A are wel l  k n o w n ,  i.e., 

a .  b = Sign(a) Sign(b)(lal Ibl), 

a A b = Sign (a) Sign(b) Min(la[, Ib[), 

and A is def ined as aAb = Sign(a) S ign(b )Max(0 ,  [al + Ib[ - 1), where  a,b e [  - 1, + 1]. For  example ,  if 
a = 0.8 and b = - 0.3, then we can see that 

a.b = Sign(0.8)  Sign(  - 0.3)(10.81[ - 0.31) = - 0.24, 

a A b = Sign(0.8)  Sign(  - 0.3) Min(10.81, h - 0.31) = - 0.3, 

aAb = Sign(0.8)  Sign(  - 0.3) Max(0,  10.81 + I - 0.31 - 1) = - 0.1. 
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Table 1 
Some identit ies 

Laws • (T-norm) + (OR) 

Ident i ty  law l(x, y) = (x, y) 
Null  law 0(x, y) = 0 
Idempoten t  law Undef ined 
C o m m u t a t i v e  law (x, y)(u, v) = (u, v)(x, y) 
Associative law ((x, y)(u, v))(w, z) = (x, y)((u, v)(w, z)) 
Dis t r ibuted  law Undef ined 

Undef ined  
( -1 ,  + 1)+(x ,y)=(-  1, +1) 
(x, y) + (x, y) = (x, y) 
(x, y) + (u, v) = (u, v) + (x, y) 
((x, y) + (u, v)) + (w, z) = (x, y) + ((u, v) + (w, z)) 
(x, y)((u, v) + (w, z)) = (x, y)(u, v) + (x, y)(w, z) 

Selection of T-norms is in a domain-dependent manner [18]. Zhang et al. [18] also pointed out that for the 
NPN logic equations (1)-(3) the identities in Table 1 hold. 

3. An algorithm for cognitive-map-based decision analysis 

In the following, we propose an interval-based inexact reasoning algorithm for cognitive-map-based 
decision analysis. Given the interval truth value [a, b] of the starting cognitive unit C,, the algorithm can 
perform interval-based inexact reasoning to evaluate the positive and the negative maximum effects of the 
goal cognitive unit Cj caused by the starting cognitive unit C~, where C~ 4: Cj and - 1 ~< a ~< b ~< + 1. 
Furthermore, the positive and the negative maximum effect paths can also be found by the proposed 
algorithm. The algorithm performs inexact reasoning via constructing a sprouting tree [1, 2]. Each node in 
the tree is denoted by a triple (Ck, IRS(Ck), (Ykl, Yk2)), where Ck is a cognitive unit, IRS(Ck) is the immediate 
reachability set of Ck, and (Ykx, Yk2) denotes that the truth value of the cognitive unit Ck is an interval 
[Yk l ,Yk2] ,  where - 1  ~< Ykl ~ Yk2 ~ + 1. Let V~j denote the value associated with the edge between 
cognitive units Ci and Cj in a cognitive map. The algorithm is now presented as follows. 

Step 1: 

Step 2: 

Select one of the following T-norms for performing inexact reasoning: 
(i) 

(ii) /~ 
(iii) A. 
Initially, the root node (Cs, IRS(Cs), (a, b)) is a nonterminal node, where Cs is the starting cognitive 
unit; IRS(C~) is the immediate reachability set of Cs; (a, b) indicates that the truth value of the starting 
cognitive unit Cs entered by the user is an interval [a, b], where - 1 ~< a ~< b ~< + 1. 
Select one nonterminal node (Ci, IRS(Ci), (Yil, Yi2)). 
If the goal cognitive unit CjCRS(Ci), then mark the node as a terminal node. 
If the goal cognitive unit Cj e IRS(Ci) and Vii = (#, p), where p e [ - 1, + 1], then create a new node 

(C j, IRS(Cj), (Yjx, Yj2)) in the tree, and an arc, labeled (p, p), is directed from the node (Ci, IRS(C3, 
(Y,, Y~2)) to the node (Cj, IRS(Cj), (Yjl, Yjz)); 

if the selected T-norm is -, then 
Yjx = Sign(y.)Sign(p)(lY.I Ipl) 
yj2 = Sign(y~2) Sign(p)(lyi2[ Ipl); 

if the selected T-norm is A,  then 
Y~I = Sign(y.) Sign(p) Min(ly. I, Ipl) 
Y j2 = Sign(yi2) Sign(p) Min(lYi2[, IPl); 
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if the selected T-norm is A, then 
Ysl = Sign(yil) Sign(#) Max(0, lY~al + [Vl - 1) 
Yj2 = Sign(y~z) Sign(g) Max(0, lyi21 + Ivl - 1). 

If the cognitive unit Cj does not appear on the path from the root node (Cs, IRS(Cs), (a, b)) to the 
selected node (C~, IRS(C~), (Y~I, Y~2)), then the created node (C j, IRS(Cs), (y jl, Ys2)) is called a success 
node 
else if there is a success node (C j, IRS(Cs), (y j*, Y*2)) appearing on the path from the root node 

(C,, IRS(C,), (a, b)) to the selected node (C~, IRS(C3, (y~, Y~2)), where - 1 ~< y*~ < Y*2 ~< + 1, 
then the created node (C j, IRS(Cj), (Y jl, Ys2)) is called a duplicate node. 

If the goal cognitive unit CsClRS(Ci) and C s e RS(C~), then for each cognitive unit CR ~ IRS(C~), 
if V~k = (V, V), where V e [ -- 1, + 1], then create a new node (Ck, IRS(Ck), (YkI, Yk2)) in the tree, 

and an arc, labeled (#, V), is directed from the node (Ci, IRS(Ci), (Y~I, Yi2)) to the created node 
(Ck, IRS(Ck), (Ykl, Yk2)); 
if the selected T-norm is. ,  then 

Ykl = Sign(y~) Sign(#)(lyill IVl) 
Yk2 = Sign(yi2)Sign(v)([yi21 IVl); 

if the selected T-norm is A,  then 
Ykl = Sign(yil)Sign(v) Min(lyill, [Vl) 
Yk2 = Sign(y~2) Sign(v) Min(ly~21, IVl); 

if the selected T-norm is A, then 
Ykl = Sign(yil) Sign(v) Max(0, l y . I  + Ivl - 1) 
Yk2 ---- Sign(YiE) Sign(v) Max(0, [YiEI + IVl -- 1). 

If there is a node (Ck, IRS(Ck), (Y~'I, Y~'2)) appearing on the path from the root node (Cs, IRS(C~), (a, b)) 
to the selected node (Ci, IRS(CI), (Yil, YI2)), where 

Sign(ykl) = Sign(y'l), 
Sign(Yk2) ---- Sign(y*2), 
lYR~I ~< lY~'I[, and [Yk2[ ~< lY*zl, 

then the created node (Ck, IRS(Ck), (Yk~, Yk2)) is called a terminal node. Otherwise, the created node 
(Ck, IRS(Ck), (Ykl, Yg2)) is called a nonterminal node. 

Step 3: If no nonterminal nodes exist, then go to Step 4. Otherwise, go to Step 2. 
Step 4: If there are no success nodes or duplicate nodes, then stop 

else let Q be a set formed by success nodes and duplicate nodes. 
Q = {(Cj, IRS(Cj), (Sl 1, s12)), (Cj, IRS(Cs), (s21, $22)) . . . . .  (Cj, IRS(Cs), (s~l, Sin2))} 
where sit E l -  1, + 1], 1 <~i~<m, and 1 ~<j~<2. 
Set f =  Min(s11, s21, ... ,sin1). 
Set g = Max(s12, s22, ... ,s~2). 
The negative and the positive maximum effects of the goal cognitive unit Cj caused by the 
starting cognitive unit Cs are f and g, respectively, where - 1 ~<f~< 0 ~< + 1. In this case, 
the node (C j, IRS(Cs), ( f , - ) )  in the tree is marked as the negative maximum effect node, 
and the node (C j, IRS(Cj), (-,g)) in the tree is marked as the positive maximum effect 
node, where the symbol - denotes "do not care". The ordered sequence of the cognitive 
units appearing on the path from the root node (C~, IRS(C~), (a, b)) to the positive maximum 
effect node (C j, IRS(Cj), ( , g)) forms a positive maximum effect path; the ordered sequence 
of the cognitive units appearing on the path from the root node (C~, IRS(C~), (a,b)) 
to the negative maximum effect node (Cj, IRS(Cj), ( f , - ))  forms a negative maximum 
effect path. Display each positive maximum effect path and each negative maximum effect 
path. 

In the following, we use an example to illustrate the inexact reasoning process. 
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Fig. 3. Sprouting tree of Example 3.1. 

Example  3.1. Assume  that the truth value of  the starting cognit ive  unit C3 of  the cognit ive  map s h o w n  in 
Fig. l(b) is an interval [ + 0.8, + 0.9], and the user wants  to k n o w  the posit ive and the negative m a x i m u m  
effects of  the goal  cognit ive  unit C6 caused by the starting cognit ive  unit C3. Further assume that the T-norm 
selected by the user i s . ,  then by applying the inexact reasoning algorithm, the tree sprouts  as s h o w n  in Fig. 3. 

F r o m  Fig. 3, we can see that there are three success nodes  and four duplicate nodes  in the tree. Thus,  we 
can obtain the fo l lowing results: 

Q = {(C6, {Ca}, ( + 0.0363, + 0.0408)), (C6, {C1}, ( - 0.648, - 0.729)), 

( C 6 ,  { C 1 }  , ( - 0.5184, - 0 . 5 8 3 2 ) ) ,  ( C 6 ,  { C 1 }  , ( -[- 0 . 0 0 5 3 ,  + 0 . 0 0 5 9 ) ) ,  

(C6, {Ca}, ( - 0.0070, - 0.0079)), (C6, {Ca}, ( + 0.126, + 0.1417)), 

(C6, {Ca}, ( - 0 . 1 0 0 8 ,  - 0.1134))}, 

f =  Min(  + 0.0363, - 0.648, - 0.5184, + 0.0053, - 0.0070, + 0.126, - 0.1008) 

= - 0.648, 

g = Max(  + 0.0408, - 0.729, - 0.5832, + 0.0059, - 0.0079, + 0.1417, - 0.1134) 

= + 0.1417. 

Thus,  we can see that the posit ive and the negative m a x i m u m  effects of  the goal  cognit ive  unit C6 caused by 
the starting cognit ive  unit C3 are + 0.1417 and - 0.648, respectively. In this case, the node  (C6, {Cz},  
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( + 0.126, + 0.1417)) is marked as the positive maximum effect node; the node (C6, {C~}, ( - 0.648, - 0.729)) 
is marked as the negative maximum effect node. Therefore, the positive maximum effect path can be obtained 
as follows: 

C3 ~ C5 ~ C6-~ C1 ~ C4 ~ C7 ~ C6. 

The negative maximum effect path can be obtained as follows: 

C 3 --~ C 5 ~ C 6. 

From the above results, we know that the negative effect is much larger than the positive one, so a decision 
can be reached. 

4. Analysis of finiteness problems 

A very important property of the proposed algorithm to construct a sprouting tree is that it is finite. The 
proof of this property requires the following lemma. 

Lemma 4.1. In any infinite directed tree in which each node has only a finite number of direct successors, there is 
an infinite path leading from the root. 

ProoL See [10, p. 97]. [] 

Theorem 4.1. The sprouting tree constructed by the proposed algorithm is finite. 

Proof. The proof is by contradiction. Assume that there exists an infinite sprouting tree. Because the number 
of direct successors for each node in the tree is limited by n - l, were n is the number of cognitive units in 
a cognitive map, by Lemma 4.1 there is an infinite path (Cs, IRS(C~), (a, b)), (C1, IRS(Cx), (Yll, Y12)), 
(C2, IRS(C2), (Y21, Y22)) . . . .  from the root node (C~, IRS(Cs), (a, b)), where (a, b) denotes that the truth value of 
the starting cognitive unit C~ entered by the user is an interval I-a, b], - 1 ~< a -%< b ~< + 1. But in a sprouting 
tree, the path length from the root node (Cs, IRS(C,), (a, b)) to either success node or duplicate node is limited 
by 2n based on [18], where n is the number of cognitive units in a cognitive map. This is a contradiction. 
Proving that an infinite sprouting tree existed was incorrect. [] 

Theorem 4.2. The time complexity of the proposed algorithm is O(nm), where n is the number of cognitive units, 
m is the length of a closure path, and max(m) = 2n. 

Proof. Let m denote the length of a closure path. Based on [18], we know that the maximum length of 
a single branch of a sprouting tree is 2n (i.e., max(m) = 2n), where n is the number of cognitive units; given 
a pair of starting cognitive unit and goal cognitive unit, the algorithm constructs a sprouting with many 
branches, and the number of direct successors for each node in the tree is limited by n - 1. Thus, we know 
that the time complexity of the proposed algorithm is O(nm). [] 

5. Conclusions 

We have presented a new method for cognitive-map-based decision analysis based on N P N  logics. An 
efficient algorithm has been introduced for performing inexact reasoning automatically, where the truth 
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values of the cognitive units in a cognitive map are represented by an interval [a, b], where 
- 1 -%< a -%< b -%< + 1. The proposed interval-based inexact reasoning scheme can provide an useful way for 

cognitive-map-based decision analysis. The time complexity of the proposed algorithm is O(nm), where n is 
the number of cognitive units in a cognitive map, m is the length of a closure path, and max(m) = 2n. We have 
implemented a generic decision analysis system [18] based on the proposed algorithm on a PC/AT by using 
Turbo Pascal version 5.5. Our method is more flexible than the one presented in [18] due to the facts that it 
allows the truth value of the starting cognitive unit to be an interval [a, b] rather than a crisp value + 1, 
where - 1 -%< a -%< b ~< + 1, and it does not need to recalculate the transitive closure of the N P N  fuzzy 
relation when the cognitive map is changed. A direct consequence of our method for cognitive-map-based 
decision analysis is low time complexity and more flexibility. 
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