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Abstract 

It is known that there may not exist any stable matching for a given instance of the stable 
roommates problem. A stable partition is a structure that generalizes the notion of a stable 
matching; Tan (1991) proved that every instance of the stable roommates problem contains at 
least one such structure. In this paper we propose a new algorithm for finding a stable partition, 
and hence a new algorithm for finding a stable matching if one exists. Our algorithm processes 
the problem dynamically as long as certain relative preference orders are maintained. Some 
theoretical results about stable partitions are also presented. 
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1. Introduction 

The stable roommates problem has been the subject of much research in recent 
years. This problem involves matching n people into n/2 disjoint pairs to achieve 
a certain type of stability. Such a matching is called “a complete stable matching”. 
However, it is known [1,5] that there may exist no complete stable matching for 
a given instance of the stable roommates problem. Irving [3] proposed an 0(n2) 
algorithm that finds a complete stable matching or confirms that none exists. Recently 
Gusfield and Irving [2] listed over a hundred research papers related to this problem. 
Much of the recent research concerning this problem is explicitly or implicitly subject 
to one or both of the following restrictions: 
(i) The discussion assumes that there exists at least one complete stable matching. 

(ii) The preference lists are static. In other words, the entire preference lists are given 
beforehand. 
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In a recent paper [6], Tan established a necessary and sufficient condition for the 
existence of a complete stable matching. Toward that end, he defined a new structure, 
called “a stable partition”, that is a generalization of the notion of a stable matching, 
and proved that every instance of the stable roommates problem contains at least one 
such structure. 

In this paper, we treat the problem by relaxing the above two restrictions, and 
instead of finding a complete stable matching, which may not exist, we look for the 
more general structure, a stable partition. Our approach in a sense extends that of 
Itoga [4], which considers the bipartite case (the stable marriage problem), while ours 
considers the non-bipartite case (the stable roommates problem). Our approach leads 
to the following results: 

(i) Our algorithm processes the problem on line, i.e., the preference lists are allowed 
to expand dynamically as long as certain relative preference orders are main- 
tained. 

(ii) We introduce a new algorithm to find a stable partition, and hence a new 
algorithm to find a complete stable matching if one exists. 

(iii) We give a new proof of the known fact [6] that there exists at least one stable 
partition for every instance of the stable roommates problem. 

(iv) We obtain some theoretical properties of stable partitions that are interesting in 
their own right. 

2. Definitions 

In this section, we state the stable roommates problem and recall the definition of 
a stable partition introduced by Tan [6]. There is a set S of n people. Each person i has 
a preference list consisting of a subset Si of S - ( ‘> z an a rank ordering (most preferred d 
first) of the persons in Si. For person i, the subset Si includes all of the persons he is 
willing to be matched with. A preference relation R is defined to be a pair (S, T), where 
S is a set of n persons and Tis the table of preference lists of these n people. A complete 
matching M is a partition of the n persons into n/2 disjoint pairs of roommates such 
that for every pair (a, b} in M, a is on b’s list and b is on a’s list. A complete matching 
M is unstable if there are two persons who are not matched together, but each of 
whom prefers the other to his mate in the matching. A complete matching which is not 
unstable is called a stable matching. The stable roommates problem, as originally 
stated [l, 51, is to find a complete stable matching. It is known that there may exist no 
complete stable matching. A stable partition is a structure that generalizes the notion 
of a complete stable matching; Tan [6] proved that every preference relation contains 
at least one such structure. We now introduce it. 

Let T be a table of preference lists. If person b is on the preference list of person a, 
then we write (a 1 b) to denote the entry b on u’s preference list. We define r(u 1 b) = k 
to mean that person b occupies position k on u’s preference list. The expression 
r(u 1 b) < r(a 1 c) means that person a prefers b to c. 
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Let (S, T) be a preference relation, and let A be a subset of S. Denote by IAl the 
cardinality of set A. A cyclic permutation 17(A) = (a,, u2, a,, . . . , a,J of the persons in 
A, where k = \A(, is called a semi-party permutation if one of the following three 

conditions holds: 

(i) IAl 2 3, ai+i and Ui- 1 are on LX/S preference list, and r(Ui (Ui+l) < r(ail ai_ 1), 

i= 1,2,3 ,..., k (subscripts modulo k); 

(ii) (A\ = 2, and ai- i is on uts preference list, i = 1,2 (subscripts modulo 2); 
(iii) IAl = 1. 

For a specified semi-party permutation H(A) = (al, u2, . . ., uk) of the persons in A, 

the entries in the preference lists of A are classified into the following categories. 
(I) If \A( > 3, entry (Ui 1 b) is said to be 

(i) a superior entry with respect to II(A), if r(ai) b) < r(ui) ai- J; 

(ii) an inferior entry with respect to II(A), if r(ai (ai-1) d r(ai (b) (note that 
this inequality is “ d “, not “ < “); 

(iii) a party entry with respect to n(A), if b = ui+ 1 or b = ui- 1 for 
i= 1,2,3 ,..., k (subscripts modulo k). 

(II) If IAl = 2, i.e., k = 2, (ai1 b) is said to be 
(i) a superior entry with respect to 17(A), if r(ai 1 b) < r(ui 1 ai_ 1); 

(ii) an inferior entry with respect to L’(A), if r(ai 1 ai-1) < r(ail b) (note that 
this inequality is “ < “, not “ d “); 

(iii) a party entry with respect to II(A), if b = ui- 1 for i = 1,2 (subscripts modulo 

2). 
(III) If (A( = 1, then (Ui ) b) is a superior entry with respect to L’(A) for every person 

b on u:s preference list. 
In the above definition, if there is no ambiguity, we will omit the phrase “with 

respect to II(A)“. For convenience, we will assume that the table of preference lists is 
symmetric, i.e., a is on b’s list if and only if b is on u’s. 

Given a preference relation (S, T), a stable partition ZZ of (S, T) consists of a partition 
of the set S; S = u!” 1 Ai, Ai n Aj = 0 if i #j, and a specified semi-party permuta- 

tion IZ(Ai) for each Ai, i = 1,2, . . . . m, such that the following stable condition is 
satisfied: 

If (a ( b) is a superior entry then (b ( a) is an inferior entry. 

Remark. If Tis not symmetric, then the above stable condition should be modified as 
follows: If (a 1 b) is a superior entry then either (b 1 a) is an inferior entry or a is not on b’s 

preference list. 

In the context of the above definition, the associated semi-party permutation II 

is called a party permutation for Ai, and each Ai is called a party. An odd party 

(respectively, even party) is a party having odd (respectively, even) cardinality. More 
precisely, these terms are defined with respect to the given stable partition Il. If there 
are ambiguities, we will say that Ai is a party in II (or a n-party), (a ) b) is a superior 
entry in II (or a n-superior entry), and so on. 
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A stable partition n is specified by its party permutations and will be denoted by 

n = {~(~,M&),~(~,), .**, Z7(A,)}. Persons a and b are said to be a matching pair 
(or matched) in D if {a, b) forms a 2-person party in ZI. A subset A of the all-person set 
S is said to form a party (respectively, an odd party) if there exists a stable partition 
n such that A is a party (respectively, an odd party) in Ii’. 

We give the following example to illustrate the above definitions. 

Person 

1 . 

2 . 

3 Superior 
4 . 

5 Superior 
6 
I . 

8 Superior 
9 . 

10 . 

11 . 

12 

Preference list 

8 
9 

10 
11 
7 

4 . 

1 . 

Superior 2 Inferior 
3 . 

6 Inferior 
5 

11 . 

Superior 7 Inferior 
8 . 

9 . 

10 . 

Superior 

This example depicts a stable partition in which there are four parties, 
Ai = {1,2,3,4}, AZ = {5,6}, A3 = {7,8,9,10,11}, and A4 = (121, and iI = {(1,2, 

3,4), (5,6), (7,& 9,109 1 l>, (12) >. T o complete the example, we merely have to fill in 
all the other entries and follow the rule that whenever (a ) b) is a superior entry, then 
(b 1 a) is inferior. 

A preference relation may have more than one stable partition. We can identify at 
least two other stable partitions in the above example: 

n, = ((1,2), (3,4), (5,6), (7,8,9,10,11>, (12)) 

and 

n, = {(2,3), (4,1>, <5,6), (7,g,9,10,11>, (12)). 

As one can see, all three of these stable partitions contain the same odd parties. Tan 
[6] proved that every preference relation contains at least one stable partition, and 
that any two stable partitions contain the same odd parties. Therefore the existence of 
an odd party depends on the preference relation, and not on a particular stable 
partition. In the following, we cite some results from [6] that are relevant here. 

As stated in [6], the notion of a stable partition is a generalization of that of 
a complete stable matching in the following sense. 

Proposition 2.1 (Tan [S]). A complete stable matching is a stable partition in which 
every party has curdinulity two and vice versa. 
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Proof. This follows directly from the definitions. M = { {ai, bi} 1 i = 1 to n/2) is a com- 
plete stable matching if and only if n = ((ai,bi) 1 i = 1 to n/2) is a stable parti- 
tion. 0 

We shall need the technique described in the following result later. 

Proposition 2.2 (Tan [6]). A stable partition without any odd party induces a complete 

stable matching. 

Proof. Suppose that ZI is a stable partition without any odd party. Let A be an even 
party in n with party permutation (at, a2, u3, . . . , azk), k 2 2. Then by decomposing 
party A into k matching pairs (u1,a2), (a3, a,), . . . , (azk _ 1, azk). we have a new stable 
partition n’ = (n - ((ai, az, . . . , &}) u {(al, az), (u3, a,), . . ., (azk- 1, a&}. This is 
because every superior entry in II’ is a superior entry in n, and every inferior entry in 
n, other than the party entries, is an inferior entry in n’. By continuing to decompose 
any even party having cardinality 4 or more, we eventually obtain a stable partition in 
which every party has cardinality two. 0 

Proposition 2.3 (Tan [6]). Given an instance of the stable roommates problem, there 

exists a complete stable matching if and only if there exists no odd party. 

3. Proposal-rejection alternating sequence 

Let R = (S, T) be a preference relation, and let a ES. We define the deletion of 
person a from R, denoted by R - a, to be the preference relation (S’, r’), where 
S’ = S - {a}, and T’ is the table of preference lists obtained from T by deleting the 
preference list of person a and the entries (x 1 a), for every x ES’. Suppose that b is 
a new person, i.e., b $ S. The addition of b into R, denoted by R + b, is defined to be 
the reverse operation of deletion. More specifically, each person in S inserts person 
b into his preference list without changing the relative order of his original list. These 
enlarged lists together with the preference list of b toward the other persons constitute 
the table of preference lists of R + b. 

Let us consider the following situation. Suppose that we have already found a stable 
partition 17 for preference relation R = (S, T) (note that for JS( = 1 or 2 a stable 
partition is immediately at hand), and one additional person a is then added to 
the relation. The question then arises whether there is a stable partition for the 
enlarged preference relation R + a. If the answer is yes, another natural question 
is how to find this partition. Is it necessary to start all over again, or is there a way 
of augmenting the current stable partition to incorporate the new person? Tan [6] 
proved that every preference relation contains at least one stable partition. There- 
fore, the answer to the first question is affirmative. However, the proof in [6] is 
quite long and complicated. In this paper we propose a new algorithm and a 
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Fig. 1. 

new proof that resolve both questions. The basic idea behind our algorithm is that 
of “adding one person at a time”. For ease of exposition, let us define the following 
terms. 

Let R = (S, 7’) be a preference relation and let a0 ES. Given a stable partition no of 
R - zo, a sequence of persons txo,/?r, car, b2, CI~, . . . . /&, ak, k 2 0, is called a proposal- 

rejection alternating sequence starting from cIo (or simply an alternating sequence), if 
there is a sequence of stable partitions flit i = 0, 1,2, . . ., k, for preference relation 
R - Cli (see Fig. 1) such that 

(i) (ai 1 pi+ J is the first entry on Cli’s list (starting from the most preferred person) such 
that (Bi+ 1 ( ai) is a fli-superior entry; 

(ii) (Pi+~,&+l > is a two-person party in ZZi; 

(iii) ni+l =Wi- ((Pi+17ai+l>})u {<xi3Pi+l>}. 

The motivation for this definition is as follows. Consider person uk and stable 
partition nk for R - @& (see Fig. 1). One may think of c(k as being out of the relation 
initially. To incorporate this person into a stable partition, let tlk propose to others 
successively in the order of his preference list, until either there is someone x who finds 
that (x ( elk) is flk-superior and accepts &, or everyone rejects &. There are three cases, 
as follows. 

(i) ak is rejected by every person on his list, i.e., (x ) ak) is nk-inferior for every x on 
c(k’s ht. Then ak by himself forms an odd party, and nk u {(cl,&)} is a stable partition 
for R. 

In case (ii) and (iii), there is someone who accepts c(k. Let x be the first one on &‘s list 
who finds that (x I&) is nk-superior. 

(ii) If x is currently in a flk-Odd party, say (al, a2, . .., a2,,,, x), then this odd 
party is decomposed and nk+ 1 = (l7, - ((al, a2,. .., a2,,x)}) u {(al, a2), (a3, ad), . . . , 

<a2m-l,a2m ), (x,&} is a stable partition for R. 
(iii) Suppose that x is currently in a nk-even party. In view of Proposition 2.2, we 

may assume that x is currently in a nk-even party of size 2, say (x, y). (In fact, we may 
assume from the beginning that all the even parties encountered have size exactly 2.) 

Let Pk+l =x and @k+l =Y. Then flk+l =(flk- {(Bk+l,Clk+l)})U{<tlk,Bk+l)} iS 

astablepartitionforR-cck+,,andtlo,/I1,al,..., Pk, c(k, fik+ 1, ak + 1 is a longer alternat- 
ing sequence. One may then repeat the process for person &+ i. 
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Example. 

93 

Person Preference list 

1 2 5 
2 3 1 
3 4 2 
4 5 3 
5 1 4 

Given the preference table shown above, if person 5 is deleted from the table, 

170 = ((172) (374)) . IS a stable partition for the remaining persons. Then the follow- 
ing diagram is an alternating sequence starting from person 5. 

531425 

. . . 

4 2 5 3 1 

Let us discuss some properties of the alternating sequence. 

Proposition 3.1. Let R = (S, T) be a preference relation, and let mo, PI, CI~, . . . , /lk, ak be 
an alternating sequence with associated stable partitions lIo, III, . . . , Ilk, k >, 0. Then 
(i) each ai has a worse partner in Iii+ 1 than he has in II_ 1 i.e., r(ai ( pi) < r(ai ( pi+ 1), 

Vi= 1,2,...,k- 1; 
(ii) each pi has u better partner in I7i than he has in II,_1, i.e., r(/?iIai_1) < r(flil ai), 

Vi=12 k. 3 3 ..*, 

Proof. By the definition of an alternating sequence, (ii) is trivial; this is because bi is 
matched with ai in II;_ 1 and (pi ) ai- 1) is ni _ r-superior. TO prove part (i), we observe 
that if r(ai 1 X) < r(Mi ) pi), then (ai ( X) is ITi_ l-superior. SO (X ( ai) is I7i_ r-inferior and it is 
still IZi-inferior, since ZIi = (IZi_ 1 - {(ai,fii)}) u {(ai_ r,bi)}. Considering the stable 
partition ZZi for preference relation R - ai, when ai proposes to the other persons in 
the order of his list, anyone before Bi in a;s list will not accept his proposal. Therefore 
the first person who accepts ails proposal, pi + 1, must be behind Bi. This proves (i). 0 

The above result (i) implies that anyone who is rejected by another person can 
participate in the proposing process by continuing down his list of choices. 

Proposition 3.2. Let ao, PI, a1, . . . , /?k, ak be an alternating SeqUefKX?. If fij # c(i for i < j, 

then Bj # ai for all i and j. 
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Proof. Suppose not. Take j, and io such that j, < io, Bj,, = LX~~, Bj # pj, for all 
jo<jdio,andcri#cci,forallj,di<i 0. By the definition of an alternating sequence, 
we know that j, # iO, aj,_ r and pi, are matched together in Z7j0, and they are still 
together in n,_ 1. However, Bj, ( = Glio) is left unmatched in II,. SO pi0 = t4i, _ 1, which 
is a contradiction, and the result follows. 0 

Given an alternating sequence ao,pI, ccr, . . ../lk. &., if Bj # ai for all i < j, then by 
Propositions 3.1 and 3.2, each ai gets an increasingly worse partner as the alternating 
sequence continues, while each pj gets an increasingly better partner. Each person has 
at most n - 1 entries in his list. Therefore within 0(n2) steps, one of the following three 
cases occurs. 

(i) ak proposes to the others but no one accepts his proposal. 
(ii) There is a person who accepts ak)s proposal, and the first such person is currently 

in a nk-odd party. 
(iii) The first person who accepts ak’s proposal, say Bk + r, is in a flk-even party and 

P k+l = ai for some 0 < i < k - 1. 
As discussed before, in cases (i) and (ii), the alternating sequence terminates and 
a stable partition for preference relation R = (S, T) has been found. Before discussing 
case (iii), we need some further definitions. 

Definition. Let ao, PI, al, . . ., j$, ak, /$ + 1, ak + 1 be an alternating sequence. If /$ + 1 = C& 

for some 0 6 i < k - 1, then we say that the alternating sequence has a return at Pk+ r. 
Let i. be the largest index, 0 < i. < k - 1, such that Bk + 1 = aio. Then we say the 
sequence at &+ 1 returns to i. (or returns to ai,,, if there is no ambiguity). The 

subsequence ai,,, pi,,+ 1, ai,,+ 1, . . . , Ijk,akr/$+l is said to be the return sequence corres- 
ponding to /&+ 1, or simply a return sequence. 

When considering the subsequence starting from tlior we may assume that the first 
return sequence is that starting from ao. 

Definition. Let ao, PI, aI, . .., Pk, ak, Bk+ 1 be a return sequence. The length of this 
return sequence is defined to be 2k + 1. 

Now let us return to case (iii), in which the alternating sequence has a return at fik + r. 
Following the method of extending the alternating sequence described before, we have 
the following result. 

Theorem 3.3. Let ao, PI, al, . . . , Bk, ak be an alternating sequence. Suppose that there is 
a return at /$+ 1; then the alternating sequence can be extended so that at a certain step, 
say at &+,,,+ 1, it returns to ak. Moreover, the corresponding return sequence has the 
following two properties: 

(i) ak~~k+l~~k+1~ . . . . pk+,,,, ak+,,, are 2m + 1 distinct persons. 
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(ii) A = (a k+m,Bk+m,ak+m-l,Pk+m-l,..., at+ t, &+ Ir ak) forms an odd party. (This is 
the reuerse order of the return sequence.) More precisely, (II, - {(pi, ai) 1 i = k + 1 

to k+m})u(A} is a stable partition for the whole preference relation R. 

We shall prove the above theorem in the next section. In the remainder of this 
section, we investigate some properties of return sequences and give a new proof of the 
fact that there exists a stable partition for every preference relation. 

Proposition3.4. Let a&fll,al, ..a,flk,C(k,&+l,ak+l be an alternating sequence. Suppose 
that at bk+ 1 the first return occurs and it returns to ao. Then the following hold: 

(i) fl,++I=aO,andpj#aiforalll<j<kand~<i<k; 

(ii) a k+l - - PI; 
(iii) consider stable partition IZ k+ 1 for preference relation R - ak+ t ; when ak+ 1 pro- 

poses to others successively in the order of his list, there must be someone who 
accepts him, and the first such person is one of the at’s, i.e., fik+2 = ai for some 

1 < id k. Moreover, r(ak+l I/L+J < r(mk+l [al). 

Proof. (i) This follows directly from the definition and Proposition 3.2. 
(ii) Since a0 and fil are matched together in II,, they remain together in nk, but not 

in flk+l, So ak+l =bl. 

(iii) Observe that &+ 1 ( = PI) and a1 are matched together in ZI,. al gets an 
increasingly worse partner from Ho to nk + i. When c(k+ 1 ( = PI) makes a proposal, aI 

certainly takes c(k + 1 as a II k + 1-superior entry. So, in ak + i’s list, there must be someone 
before al (or equal to at) who accepts a k + 1. Let the first person who accepts tlk+ i’s 
proposal be x; thus (x 1 tlk+ 1) is flk+ i-superior. If x # aI, then r(&+ i 1 x) < r(ak+ 1 I aI). 

so (ak + 1 ) x) is no-superior, and (X ) a k + 1) iS no-inferior. Person X takes tlk + i as inferior 
in II,, but as superior in 171, + i, therefore x has a worse partner in nk+ 1 than he has in 
II,. By Propositions 3.1 and 3.2, x = ai for some 1 < i < k, and this completes the 
proof. 0 

Proposition 3.5. Let ao, PI, aI, . . ., j&, ah, . . . be an alternating sequence. Zf there is 

a return at &+t, then there is another return at fi k+2, Furthermore, suppose that the 

return sequence corresponding to b k + 1 (respectively, flk + 2) starts from iI (respectively, 
i2); then i, > iI. (So the length of the return sequence corresponding to fik+Z is less than 
or equal to that of the return sequence corresponding to fik+ 1.) 

Proof. By Proposition 3.4(iii), the result is true if at flk+l the sequence has its first 
return. Then, by the characteristics of the alternating sequence starting from ai, and 
a simple induction, the result follows. 0 

Corollary3.6. Letao,flI,aI ,..., /&,ak ,... be an alternating sequence. Zf there is a return 

at /&+ 1 then the sequence can be extended infinitely. Moreover, there is a return at every 

fib for j > k + 1. 
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With the above definitions and discussion, we are able to give a new proof of the 
fact that every preference relation contains at least one stable partition and to explore 
some new properties of the stable partition. The proof is inductive and will lead to an 
algorithm for finding a stable partition, but we shall not worry about the efficiency of 
the algorithm until later. 

Let R = (S, T) be a preference relation. Suppose that we have already found a stable 
partition II, for preference relation R - q,. Starting from ao, an alternating sequence 
is generated. As discussed before, if the sequence cco,fil, al, . . . . fik,ak terminates at 
some point ak, either because that there is no one to accept ak, or because the first 
person who accepts ak is in a ZI,-odd party, then a stable partition for preference 
relation R is found. Suppose that the sequence extends infinitely; by the finiteness of 
the problem, eVentUally &, = c& and flk, = flkz for some kI < kZ. Then the sequence 
cycles, and so does the associated sequence of stable partitions. Without loss of 
generality, we may assume that CI~ = a, and Ii’, = Il,. 

Theorem 3.7. Let ao,Dl, al, . . . . /3,,,, a, be an alternating sequence with associated se- 

quence of stable partitions Z7,, II,, . . . , Il,. Suppose that a0 = CI, and I7, = Ii,. Then 

(i) there is an element Bk+l, 1 < k + 1 < m, returning to cro; and 

(ii) ~09hr~l?~~~r~krCk are 2k + 1 distinct persons, A = (ffk,Bk,ak_1,Bk_1,._., 

c~~,J?~,~~) forms an odd party, and Zl = (II, - ((ori,&) (i = 1 to k>)u (A) is 

a stable partition for preference relation R. 

Proof. (i) It is obvious that the alternating sequence cycles with pattern 

~o,Pr,%, . . ../&I. m c1 = ao, and that the sequence must have a return at some point, say 
at pi. Suppose that the return sequence corresponding to bj starts at element Cli. Then 
we claim that the return sequence corresponding to the next element Bj+ 1 starts at 
Cli+ r. For otherwise, the length of the return sequence strictly decreases, contradicting 
the fact that the alternating sequence cycles. Since the sequence cycles, every Cli is the 
starting point of a return sequence. So (i) follows. 

(ii) Consider the alternating sequence ao, /?r,ccl, . . . ,Bkr ak, Bk+ 1, ak+ 1, . . . . The first 
return occurs at &+ r, and it returns to ao. Then, as proved in part (i), at each pkij it 
returns to aj-1, so Pk+j = @j-l for all j 2 1. By Proposition 3.4, we know that 
c(k+j = Bj (See Fig. 2). 

81 82 pk Pk+l pk+2 ... b2k fiZk+l 

(~0) (ad ... (ak- 1) @k) 

Fig. 2. 
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Note that a0 # ai and @o # pi for 1 < i < k. Therefore, by the definition of a return 
sequence and by the fact that the sequence cycles, it is easy to verify the following facts: 
(A) ctO,j!il,al, . . . . )(jk,ctk are 2k + 1 distinct persons; 
(B) (fli,Cri) is a two-person party in Ho, for i = 1 to k; 
(C) (C(i_ 1,bi) is a two-person party in LIk for i = 1 to k; 
(D) when restricted to persons in S - {c(~,P~, oli, . . ../$. ak}, all the ni’S are the same, 

for i > 0; 

(E) A = (C(k,Bk,C(k-l,Bk-l,..., ccl, PI, cco) forms a semi-party permutation. 
We now need to show that A is an odd party in ZZ, when n = (no - {( fii, CYJ 1 i = 

1 to k}) u {A}. To do this, we only have to show that II is stable. Suppose not. Since 
ZIo is stable, then any instability must involve some Cli or /3) Because the alternating 
sequence cycles, without loss of generality, we may assume that person a0 causes 
instability. So there is a person x such that both (a0 1 x) and (x 1 ao) are H-superior. 
Note that (a0 1 x) is n-superior if and only if r(ao 1 x) < r(cto 1 PI). In light of the stable 
partitions ZZ, and Lr, and the definition of an alternating sequence, x can only be 
some Mi or pi, for some i = 1 to k. We claim that x cannot be any of the PUS, nor any of 
the CLi’s, and this will give a contradiction. First we consider the stable partition n1 in 
which rxo is matched with /I1 and each Bi is matched with C(i for i = 2 to k. If (a0 I pi) is 
H-superior, i.e., n,-superior, then (/Ii I cto) is ZI,-inferior, i.e., n-inferior. So x # fii for 
i = 2 to k, and obviously x # pi. Second, let us consider the stable partition Lrk: txo is 
matched with /?r, and each cli is matched with pi+ 1, for i = 1 to k - 1. If (~0 I Cli) is 
n-superior, i.e., I7,-superior, then (ai 1 ao) is ZI,-inferior, i.e. U-inferior. Thus x # Cli, for 
i = 1 to k - 1, and clearly x # c(~. This shows that Lr is stable and the theorem 

follows. 0 

From the previous discussion and Theorem 3.7, by adding one person at a time and 
by a simple induction, we establish the following fact, first proved in [6]. 

Corollary 3.8. There exists a stable partition for every preference relation. 

We also have the following new observation. 

Corollary 3.9. Given a preference relation, adding a new person into the relation results 
in the number of odd parties either increasing by 1 or decreasing by 1. Furthermore, 
(i) when the number of odd parties increases by 1, all the original odd parties remain in 

the new relation, while a new odd party is formed; 

(ii) when it decreases by 1, one of the existing odd parties is eliminated, and all the rest 
remain in the new relation. 

It can be shown that deleting one person from the relation has the same effect on the 
number of odd parties. An immediate consequence of these results is the following 
theorem, first proved in [6]. 
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Theorem 3.10. For a given preference relation, any two stable partitions have the same 

number of odd parties. 

Proof. Suppose not. Let IZ, and ZZ, be two stable partitions having ml and m2 odd 
parties, respectively, where ml < m 2. Deleting one person from each odd party in ZI, 

results in a stable partition Il; without any odd party. Deleting the same set of 
persons from IZ, results in a stable partition I7; with at least m2 - ml odd parties; this 
is because deleting one person reduces the number of odd parties by at most 1. So, 
without loss of generality, we may assume that m, = 0 and mz > 0. By Proposition 
2.2, we may also assume that each even party in IZ, has cardinality two. Hence IZr is 
a complete stable matching. 

Let S be the set of persons whose partners in ZI, are superior entries in lZ2, and let 
I be the set of persons whose partners in IT, are inferior entries in Z12. For the stability 
of U2, every person in S has a III-partner in I. So ISI < 111. Consider a party A in 
stable partition II,, and let (aI, az, . . . . ak) be the associated party permutation of A. 

For the stability of II,, no two consecutive persons ai and ai+ 1 (subscripts modulo k) 
can be in I, otherwise ai and ai+ 1 block the matching II,. 

Therefore, if A is an odd party in 112, then 

IAnSj >IAnll. 

And if A is an even party in 112, then 

IAnSI > [AnIl. 

Since stable partition Z7, contains at least one odd party, we have 

ISJ= C IAinSI > C IAinZl=(ZI. 
Ai is a party Ai is a party 

in II, in II, 

This is a contradiction, and the theorem follows. 0 

The above result also indicates that, using the alternating sequence approach, no 
matter which of the stable partitions for a given preference relation is used as the 
starting point, introducing a new person always leads to the same outcome, either the 
introduction of a new odd party or the elimination of an existing one. By Corollary 3.8 
and Theorem 3.10, we may conclude the known fact [6] that there exists a complete 
stable matching if and only if there does not exist any odd party. One application of 
Corollary 3.9 is as follows. Suppose we know that a given preference relation does not 
contain a complete stable matching, and we wish to know the minimum number of 
persons that must be added to (deleted from) the relation so that the resulting instance 
contains a complete stable matching. By Corollary 3.9, this minimum number is the 
number of odd parties. This is because adding (deleting) one person into (from) the 
relation reduces the number of odd parties by at most 1, and no complete stable 
matching exists as long as there are odd parties. On the other hand, suppose the 
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number of odd parties is m. It is then a simple matter to add (delete) m persons into 
(from) the relation so as to decompose all the odd parties. 

4. Locating an odd party 

Theorem 3.7 in the previous section does not provide us with an efficient way to 
locate the odd party it describes. In this section, we will discuss how to identify the odd 
party algorithmically and examine the time complexity of the algorithm involved. As 
a result, we will establish Theorem 3.3. Below we provide some more definitions and 
describe further properties of return sequences. 

LetS:Clg,/jl,CI1,...,Bk,ak,Pk+lb e a return sequence, and let x be a person involved 
in this sequence, i.e., x = Cli or pi for some i. During the course of this sequence starting 
from a0 and ending at /Ik + r, sometimes person x has a matched partner and some- 
times he does not. We define Worsts(x) to be the worst person in x’s list with whom 
x has been matched during the course of sequence S. 

Proposition 4.1. Let S: u~,~~,,cI~, . . ..Bk. CQ, bk+ 1 be a return sequence and let 

no,n,, . . . . IIlk, Ilk+ 1 be the corresponding stable partitions. Then 
(i) in stable partition lTk+I, each tit is matched with Worsts(Gli), i = 1 to k; 

(ii) cc0 is matched with Worsts(ao) in stable partition IL,; 

(iii) in stable partition ZZ,, each fll is matched with Worsts(/IJ, i = 1 to k. 

Proof. By Propositions 3.1 and 3.2, each Cli receives an increasingly worse partner, 
while each pi receives an increasingly better partner in the process of S, i = 1 to k. So 
(i) and (iii) follow. For part (ii), since S is a return sequence with jIk + 1 = cto, a0 has only 
been matched with pi and LYE in no and Uk + i, respectively, and r(ao 1 ak) < r(ozO 1 /Ii). 
So Worsts(cco) = bl. 0 

Consider an altering sequence tlo, pi, c(~, . . ., /$, elk, . . . . Suppose that there is a return 
at flk+ i. By Proposition 3.4, there is another return at flkfZ. The return at fik+ 2 is said 
to be the next return (subsequent to the return at Pk + i), and the corresponding return 
sequence is called the next return sequence. 

Proposition 4.2. Let ao, fil, fxl, . . . , /Ilk, tlk, /$ + 1 be a return sequence S1, and let S2 be the 

next return sequence. Then 
(i) the set of persons involved in the next return sequence S2 is contained in the set of 

persons involved in S1 ; 
(ii) Worsts,(x) is no worse than WorstSl(x), for every person x in Sz, i.e., r(x I 

Worst,,(x)) G r(x 1 Worst,,(x)). 

Proof. (i) By Proposition 3.4, ak+ 1 = PI and /I k+ 2 = C(i for some 1 < i < k, hence the 

result is trivial. 
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(ii) Let n,,ZZ,, . . . . nk, ZZk + 1 be the corresponding stable partitions. Then the next 
return sequence Sz starts from Cli, for some 1 < i < k. So C(~, bi+I,ai+ I, . . ..flk. 

@k, Bk + t, C?$+ t, Bk + 2 is the next return sequence with corresponding stable partitions 

ni,fli+l,***,flk+l, nk+2, where &+i = /I1 and bk+2 = ai. 
The only stable partition that appears in Sz but not in Si is nk+2, and the only 

difference between nk+Z and nk+ 1 is the changes in the matching status among 
uk+ 1 ( = PI), /&+ 2 ( = c(i), and &+ 2 ( = pi+ 1). Person & + 2 is out of the relation in 
nk+ 2 and is not matched with anyone. By Proposition 3.1, person /&+ z has a better 
partner in nk+ 2 than he has in nk+ i. So the result holds for x = Mk+ 2 and for 

x = /Ik + 2. Person & + 1 ( = PI) is matched with cli (respectively, CIJ in flk + 2 (respective- 
ly, in n,). By Proposition 3.4, r(c( k + 1 ( cli) d r(uk+ 1 1 aI), SO the result also holds for 
x = &+I. 0 

Consider an alternating sequence. Suppose that a return occurs; by Corollary 3.6, 
the alternating sequence can be extended infinitely. Nevertheless, we have the follow- 
ing properties. 

Proposition 4.3. Let uo, PI, txl, . . . , Bk, ak, /$+ 1 be thejirst return subsequence St. As the 

alternating sequence extends injnitely, the following hold: 

(i) the worst possible partner that a person x can have, throughout the whole process of 

the alternating sequence, is Worsts,(x); 
(ii) no two pi and pj can be matched together in any step of the process, for 1 < i < k, 

ldj<kandi#j. 

Proof. (i) The result follows from Proposition 3.5 and from inductively applying 
Proposition 4.2(ii). 

(ii) By the definition of a return sequence and by Proposition 3.2, we have 
fik+ 1 = cl0 and Bj # C(i for all 0 d i 6 k, 1 < j d k. In the initial stable partition no, it is 
obvious that a “p’ person is matched with an “c? person. Now suppose, to the 
contrary, that for a certain i and j, 1 6 i 6 k, 1 < j < k and i # j, Bi and Bj are matched 
together in a certain step of the alternating sequence. By Proposition 4.1, each /Ii is 
matched with Worsts(&) in no. Then both pi and Bj would prefer each other to their 
partner in the initial stable partition no, which is a contradiction. q 

Proof of Theorem 3.3. Let 01~, pi, al , . . . , j$, ctk be an alternating sequence with a return 
at /$+i. Then c(k must be the starting point of a return sequence as the alternating 
sequence goes on. 

Suppose not. Without loss of generality, we may assume that a0 is the starting point 
of the return at /$+ r. Then at fi k+ 2, the sequence returns to Mi, for some 1 d i < k. 
As the alternating sequence goes on, let m be the largest index, with m < k, such that 
u, is the starting point of a return sequence. Therefore, at a certain step /j4+i, the 
alternating sequence rxo,/I1, al, . . . . pm, c1,, . . . returns to c(,, and at /?4+2, it returns to 
one of ~k+l,c(k+z,...,xq. Note that clq+l is matched with /?,+z in ZZ4+2. However, 
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(bd V-4 -.. (~0) 

yq,(& *..m ::;st”” 

bl b2 bm bm+l bm+2 . . . b,,,, 

(a01 (al) ... hl) 

Fig. 3 

byProposition3.4weknowthatcc,+, =/?,,,+i and84+2E{Clk+l,C(k+2,...,C(q}C{P1, 

B 2,. . . , fim}. This contradicts that fact that no two Bi and bj, 1 < i < k, 1 Q j < k, can 
be matched together in any step of the process. So LX~ must be the starting point of 
a return sequence. 

Consider an alternating sequence ao,/I1, c(~, . . . . Bk, c(~, . . . . Suppose that a return 
occurs, and the first return occurs at /I k+ 1. Then ak must be the starting point of 

a return sequence, say Clk,Pk+l,Clk+l,...,Pk+n,ak+m,Bk+m+l (= a&. So the sequence 
can be extended infinitely, there is a return at every pj, j 2 k + 1, and every ai is the 
starting point of a return, i 2 k. If & + i is replaced by Ui and bk + i by bi, i 2 0, it is clear 
that the alternating sequence cycles with the pattern S shown in Fig. 3. 

Furthermore, no = LIZ,,,+ 1. By Theorem 3.7(ii), (a,, b,, a,- 1, b,- 1, . . . . al, bl, ao) 

forms an odd party, and Theorem 3.3 follows. 0 

Remark. In the context of the last paragraph, it is not difficult to give an example in 
which any return sequence starting from an element before ak does not constitute an 
odd party. 

Given a preference relation R and given a stable partition of R, to add a new 
participant a0 into R and find a new stable partition incorporating this new person, we 
generate an alternating sequence starting from ao. Within 0(n2) steps, either the 
alternating sequence terminates with a larger stable partition for R + ao, or a return 
occurs. Suppose that the first return occurs at /I k + 1. Then by extending the alternating 

sequence from ak, we will locate a new odd party within at most O(n’) steps as stated 
in Theorem 3.3, and obtain a stable partition for R + go. 

5. Conclusions 

In this paper, we propose a new algorithm for finding a stable partition for a given 
instance of the stable roommates problem, and therefore a new algorithm for finding 
a stable matching if one exists. Our algorithm processes the problem dynamically, by 
allowing new participants to join the relation. In its present form, the algorithm 
considers the addition of only one person at a time, but we believe that the idea on 



102 J.J.M. Tan, Y.-C. Hsueh 1 Discrete Applied Mathematics 59 (1995) 87- 102 

which the algorithm is based can be extended to handle the case of inserting a set of 
persons at a time. The new participants would be processed in batch form, which 
might enhance the efficiency of the algorithm. This is an issue worthy of further study. 
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