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Abstract

It is known that there may not exist any stable matching for a given instance of the stable
roommates problem. A stable partition is a structure that generalizes the notion of a stable
matching; Tan (1991) proved that every instance of the stable roommates problem contains at
least one such structure. In this paper we propose a new algorithm for finding a stable partition,
and hence a new algorithm for finding a stable matching if one exists. Our algorithm processes
the problem dynamically as long as certain relative preference orders are maintained. Some
theoretical results about stable partitions are also presented.
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1. Introduction

The stable roommates problem has been the subject of much research in recent
years. This problem involves matching n people into n/2 disjoint pairs to achieve
a certain type of stability. Such a matching is called “a complete stable matching”.
However, it is known [1,5] that there may exist no complete stable matching for
a given instance of the stable roommates problem. Irving [3] proposed an O(n?)
algorithm that finds a complete stable matching or confirms that none exists. Recently
Gusfield and Irving [2] listed over a hundred research papers related to this problem.
Much of the recent research concerning this problem is explicitly or implicitly subject
to one or both of the following restrictions:

(i) The discussion assumes that there exists at least one complete stable matching.
(i1) The preference lists are static. In other words, the entire preference lists are given
beforehand.
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In a recent paper [6], Tan established a necessary and sufficient condition for the
existence of a complete stable matching. Toward that end, he defined a new structure,
called “a stable partition”, that is a generalization of the notion of a stable matching,
and proved that every instance of the stable roommates problem contains at least one
such structure.

In this paper, we treat the problem by relaxing the above two restrictions, and
instead of finding a complete stable matching, which may not exist, we look for the
more general structure, a stable partition. Qur approach in a sense extends that of
Itoga [4], which considers the bipartite case (the stable marriage problem), while ours
considers the non-bipartite case (the stable roommates problem). Our approach leads
to the following results:

(i) Our algorithm processes the problem on line, i.e., the preference lists are allowed
to expand dynamically as long as certain relative preference orders are main-
tained.

(ii) We introduce a new algorithm to find a stable partition, and hence a new
algorithm to find a complete stable matching if one exists.

(iii) We give a new proof of the known fact [6] that there exists at least one stable
partition for every instance of the stable roommates problem.

(iv) We obtain some theoretical properties of stable partitions that are interesting in
their own right.

2. Definitions

In this section, we state the stable roommates problem and recall the definition of
a stable partition introduced by Tan [6]. There is a set S of n people. Each person i has
a preference list consisting of a subset S; of S — {i} and a rank ordering (most preferred
first) of the persons in S;. For person i, the subset S; includes all of the persons he is
willing to be matched with. A preference relation R is defined to be a pair (S, 7'), where
S is a set of n persons and T'is the table of preference lists of these n people. A complete
matching M is a partition of the n persons into n/2 disjoint pairs of roommates such
that for every pair {a,b} in M, ais on b’s list and b is on a’s list. A complete matching
M is unstable if there are two persons who are not matched together, but each of
whom prefers the other to his mate in the matching. A complete matching which is not
unstable is called a stable matching. The stable roommates problem, as originally
stated [ 1, 5], is to find a complete stable matching. It is known that there may exist no
complete stable matching. A stable partition is a structure that generalizes the notion
of a complete stable matching; Tan [6] proved that every preference relation contains
at least one such structure. We now introduce it.

Let 7 be a table of preferénce lists. If person b is on the preference list of person a,
then we write (a|b) to denote the entry b on a’s preference list. We define r(a|b) = k
to mean that person b occupies position k on a’s preference list. The expression
r(a|b) < r(a|c) means that person a prefers b to c.
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Let (S, T) be a preference relation, and let 4 be a subset of S. Denote by |A| the
cardinality of set 4. A cyclic permutation IT(A) = {a,,a,,as, ..., a;» of the persons in
A, where k = |A|, is called a semi-party permutation if one of the following three
conditions holds:

(1) 14] = 3, a;+, and a;. are on g;s preference list, and r(a;|a;. ) < r(a;|a;- ),
i=1,2,3,...,k (subscripts modulo k);
(1) |4] = 2, and a;_, is on a;’s preference list, i = 1,2 (subscripts modulo 2);
(ii) |A] = 1.

For a specified semi-party permutation I1(4) = <{ay,a,, ..., a,» of the persons in A4,
the entries in the preference lists of A are classified into the following categories.

(I) If |4] = 3, entry (a;] b) is said to be

(1) a superior entry with respect to IT(A), if r(a;|b) < r{a;|a;_);
(ii) an inferior entry with respect to IT(A), if r(a;|a;-,) < r(a;|b) (note that
this inequality is “ < ”, not “ < ”);
(i) a party entry with respect to II(A), f b=a;.; or b=a;_ for
i=1,2,3,...,k (subscripts modulo k).
(II) If |A| = 2, ie, k =2, (a;| b) is said to be
(1) a superior entry with respect to II(A), if r(a;|b) < r(a;| a;-);
(i) an inferior entry with respect to II1(A), if r(a;|a;-() < r(a;|b) (note that
this inequality is “ < ”, not “ < 7);
(iii) a party entry with respect to IT1(A),if b = a;_, fori = 1,2 (subscripts modulo
2).
(IIT) If |A] = 1, then (a;| b) is a superior entry with respect to I1(A) for every person
b on a;’s preference list.

In the above definition, if there is no ambiguity, we will omit the phrase “with
respect to I1(A)”. For convenience, we will assume that the table of preference lists is
symmetric, i.., a is on b’s list if and only if b is on a’s.

Given a preference relation (S, T'), a stable partition IT of (S, T') consists of a partition
of theset S; S = U;"zl Ay, AinAj=0if i #j, and a specified semi-party permuta-
tion I1(A4;) for each A;, i=1,2,...,m, such that the following stable condition is
satisfied:

If (a| b) is a superior entry then (b|a) is an inferior entry.

Remark. If 7is not symmetric, then the above stable condition should be modified as
follows: If (a | b) is a superior entry then either (b | a) is an inferior entry or ais not on b’s
preference list.

In the context of the above definition, the associated semi-party permutation I1(A4;)
is called a party permutation for A;, and each A; is called a party. An odd party
(respectively, even party) is a party having odd (respectively, even) cardinality. More
precisely, these terms are defined with respect to the given stable partition I1. If there
are ambiguities, we will say that A, is a party in IT (or a II-party), (a|b) is a superior
entry in I7 (or a [I-superior entry), and so on.
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A stable partition 1T is specified by its party permutations and will be denoted by
II = {I1(A,), [1(A,), II(A3), ..., [1(A,,) }. Persons a and b are said to be a matching pair
(or matched) in I1 if {a, b} forms a 2-person party in II. A subset A of the all-person set
S is said to form a party (respectively, an odd party) if there exists a stable partition
IT such that A is a party (respectively, an odd party) in I1.

We give the following example to illustrate the above definitions.

Person Preference list

1 2 4

2 . 3. 1 .

3 Superior 4 Superior 2 Inferior
4 . 1 3.

5 Superior 6 Inferior
6 5

7 . 8 . 11 .

8 Superior 9 Superior 7 Inferior
9 10 . 8

10 1 . 9

11 7 . 10

12 Superior

This example depicts a stable partition in which there are four parties,
A; ={1,2,3,4}, A, = {5,6}, A3 ={7,8,9,10,11}, and A, = {12}, and IT = {{1,2,
3,4>,(5,6),(7,8,9,10,11), {12 }. To complete the example, we merely have to fill in
all the other entries and follow the rule that whenever (a|b) is a superior entry, then
(b|a) is inferior.

A preference relation may have more than one stable partition. We can identify at
least two other stable partitions in the above example:

I, = {<1,2),¢3,4),¢{5,65,<7,8,9,10,11),<12>}
and

I, = {<2,3),<4,1>,(5,6),{7,8,9,10,11),{12> }.

As one can see, all three of these stable partitions contain the same odd parties. Tan
[6] proved that every preference relation contains at least one stable partition, and
that any two stable partitions contain the same odd parties. Therefore the existence of
an odd party depends on the preference relation, and not on a particular stable
partition. In the following, we cite some results from [6] that are relevant here.

As stated in [6], the notion of a stable partition is a generalization of that of
a complete stable matching in the following sense.

Proposition 2.1 (Tan [6]). A complete stable matching is a stable partition in which
every party has cardinality two and vice versa.
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Proof. This follows directly from the definitions. M = {{a;,b;} |i = 1to n/2} isa com-
plete stable matching if and only if I7 = {<a;,b;>|i=1 to n/2} is a stable parti-
tion. [

We shall need the technique described in the following result later.

Proposition 2.2 (Tan [6]). A stable partition without any odd party induces a complete
stable matching.

Proof. Suppose that II is a stable partition without any odd party. Let 4 be an even
party in IT with party permutation <{a,,a,,4as, ..., a2, k = 2. Then by decomposing
party A4 into k matching pairs {a,,4a,), {a3,a4), ...,{a2 - 1,2y, We have a new stable
partition IT" = (II — {{a,,a,, ..., ax>}) v {{a1,a,),a3,a4), ..., {21, a2¢>}. This is
because every superior entry in I1’ is a superior entry in II, and every inferior entry in
I1, other than the party entries, is an inferior entry in I1’. By continuing to decompose
any even party having cardinality 4 or more, we eventually obtain a stable partition in
which every party has cardinality two. O

Proposition 2.3 (Tan [6]). Given an instance of the stable roommates problem, there
exists a complete stable matching if and only if there exists no odd party.

3. Proposal-rejection alternating sequence

Let R=(S,T) be a preference relation, and let aeS. We define the deletion of
person a from R, denoted by R — a, to be the preference relation (S’, T'), where
S' =8 — {a}, and T is the table of preference lists obtained from T by deleting the
preference list of person a and the entries (x| a), for every x €S'. Suppose that b is
a new person, i.e., b ¢ S. The addition of b into R, denoted by R + b, is defined to be
the reverse operation of deletion. More specifically, each person in S inserts person
b into his preference list without changing the relative order of his original list. These
enlarged lists together with the preference list of b toward the other persons constitute
the table of preference lists of R + b.

Let us consider the following situation. Suppose that we have already found a stable
partition IT for preference relation R = (S, T) (note that for |S| =1 or 2 a stable
partition is immediately at hand), and one additional person a is then added to
the relation. The question then arises whether there is a stable partition for the
enlarged preference relation R + a. If the answer is yes, another natural question
is how to find this partition. Is it necessary to start all over again, or is there a way
of augmenting the current stable partition to incorporate the new person? Tan [6]
proved that every preference relation contains at least one stable partition. There-
fore, the answer to the first question is affirmative. However, the proof in [6] is
quite long and complicated. In this paper we propose a new algorithm and a
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Fig. 1.

new proof that resolve both questions. The basic idea behind our algorithm is that
of “adding one person at a time”. For ease of exposition, let us define the following
terms.

Let R = (S, T') be a preference relation and let a, € S. Given a stable partition I1, of
R — ap, a sequence of persons o, f1, %y, B2, %2, ..., Br, %, k = 0, is called a proposal-
rejection alternating sequence starting from aq (or simply an alternating sequence), if
there is a sequence of stable partitions IT;, i =0,1,2,...,k, for preference relation
R — «; (see Fig. 1) such that

(1) (a;] Bi+ 1) is the first entry on a;’s list (starting from the most preferred person) such
that (f;+,|a;) is a IT;-superior entry;
(i) {Pi+1,2;+1p is a two-person party in IT;;
(i) Iy =(I1; — {<ﬂi+1,“i+ 1)}) v {<aiaﬂi+1>}-

The motivation for this definition is as follows. Consider person a, and stable
partition II, for R — ; (see Fig. 1). One may think of o, as being out of the relation
initially. To incorporate this person into a stable partition, let «;, propose to others
successively in the order of his preference list, until either there is someone x who finds
that (x| o, ) is IT,-superior and accepts &, or everyone rejects o,. There are three cases,
as follows.

(1) o is rejected by every person on his list, i.e., (x| o) is I1;-inferior for every x on
ay’s list. Then «, by himself forms an odd party, and 1, U {2, )} is a stable partition
for R.

In case (i1) and (iii), there is someone who accepts o,. Let x be the first one on a;’s list
who finds that (x| o) is IT,-superior.

(i) If x is currently in a II,-odd party, say {ay,a,,...,d;mX), then this odd
party is decomposed and IT,;, = (I, — {{a;,as, ..., @zm, x)}) U {ay,a2),{as,as), ...,
{A2m-1,8mp, {X, 4>} is a stable partition for R.

(iii) Suppose that x is currently in a II,-even party. In view of Proposition 2.2, we
may assume that x is currently in a ITj-even party of size 2, say {x, y>. (In fact, we may
assume from the beginning that all the even parties encountered have size exactly 2.)
Let fy+1 = x and o4+ = y. Then Iy = (IT, — {{Pis Lok} {0, Brs i >} is
a stable partition for R — oy 41, and ag, f1, &y, ..., Br, %k, Br+ 1, %+ 1 is a longer alternat-
ing sequence. One may then repeat the process for person o . .
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Example.

Person Preference list

oW N =
—_h W N
W N =

Given the preference table shown above, if person 5 is deleted from the table,
Ho = {£1,2)(3,4)} is a stable partition for the remaining persons. Then the follow-
ing diagram is an alternating sequence starting from person 5.

531425

4 2 5 3 1

Let us discuss some properties of the alternating sequence.

Proposition 3.1. Let R = (S, T) be a preference relation, and let ay, B1,%, ..., By, % be

an alternating sequence with associated stable partitions Iy, 114, ..., I, k = 0. Then

(i) each a; has a worse partner in Il than he has in I1; _{ i.e., r(a;| B) < r(a;| Biv 1),
Vi=12,...,k—1;

(ii) each B; has a better partner in II; than he has in IT;_ |, ie., r(B;|o;_1) < r(B;|a)),
Vi=1,2,...,k

Proof. By the definition of an alternating sequence, (ii) is trivial; this is because j; is
matched with «; in IT;_ | and (f;|a;- 1) is II;,_ -superior. To prove part (i), we observe
that if r(a;| x) < r(;| B;), then (o;| x) is IT;  y~superior. So (x| a;) is IT; _ ;-inferior and it is
still IT-inferior, since IT; = (IT;-; — {{o;, f:>}) v {{oi -1, B;>}. Considering the stable
partition II; for preference relation R — «;, when a; proposes to the other persons in
the order of his list, anyone before §; in «;’s list will not accept his proposal. Therefore
the first person who accepts «;’s proposal, f; ; 1, must be behind g;. This proves (i). O

The above result (i} implies that anyone who is rejected by another person can
participate in the proposing process by continuing down his list of choices.

Proposition 3.2. Let ay, 1,04, ..., By, 0 be an alternating sequence. If B; # «; for i < j,
then B; # o; for all i and j.
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Proof. Suppose not. Take j, and i, such that j, <io, B;, = oy, B; # B, for all
jo <Jj < iy, and o; # o, for all j, < i < ip. By the definition of an alternating sequence,
we know that j, # io, ®;,—( and f;, are matched together in II; , and they are still
together in IT;,_ . However, B; ( = ;) is left unmatched in IT;,. So f;, = o;, —{, which
is a contradiction, and the result follows. [J

Given an alternating sequence ag, iy, oy, .., B, 0k, if B; # a; for all i < j, then by
Propositions 3.1 and 3.2, each «; gets an increasingly worse partner as the alternating
sequence continues, while each B; gets an increasingly better partner. Each person has
at most n — 1 entries in his list. Therefore within O(n?) steps, one of the following three
cases occurs.

(i) a, proposes to the others but no one accepts his proposal.

(i) There is a person who accepts «,’s proposal, and the first such person is currently
in a IT;-odd party.

(iii) The first person who accepts a,’s proposal, say f; 4, is in a IT;-even party and
Bri1=o;forsome 0<i<k— 1

As discussed before, in cases (i) and (ii), the alternating sequence terminates and

a stable partition for preference relation R = (S, T') has been found. Before discussing

case (iit), we need some further definitions.

Definition. Let o, B4, 1, ..., By, %, Bx+1, %+ 1 be an alternating sequence. If §, .+, = o;
for some 0 < i < k — 1, then we say that the alternating sequence has a return at f . ;.
Let i, be the largest index, 0 < io < k — 1, such that §,+, = a;,. Then we say the
sequence at f ., returns to iy (or returns to w;,, if there is no ambiguity). The
subsequence %, Bio+ 1> Xig+ 15 -+ » Brs %> Pr+1 18 said to be the return sequence corres-
ponding to B+, or simply a return sequence.

When considering the subsequence starting from o;,, we may assume that the first
return sequence is that starting from o.

Definition. Let ag, f,ay, ..., Br, o, Br+1 be a return sequence. The length of this
return sequence is defined to be 2k + 1.

Now let us return to case (iii), in which the alternating sequence has a return at f§; ; ;.
Following the method of extending the alternating sequence described before, we have
the following result.

Theorem 3.3. Let ay, By,04, ..., B, be an alternating sequence. Suppose that there is
areturn at B . ;; then the alternating sequence can be extended so that at a certain step,
say at Buim+1, it returns to ay. Moreover, the corresponding return sequence has the
Jollowing two properties:

(1) s Prt 1% +1s -5 Bt ms O+ m are 2m + 1 distinct persons.
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(1) A= {4 mBrtm %tm=1Bitm—15-+0>0%+1,Pr+ 1,8 forms an odd party. (This is
the reverse order of the return sequence.) More precisely, (I1, — {{B, o> |i=k + 1

to k + m})u {A} is a stable partition for the whole preference relation R.

We shall prove the above theorem in the next section. In the remainder of this
section, we investigate some properties of return sequences and give a new proof of the
fact that there exists a stable partition for every preference relation.

Proposition 3.4. Let oy, B1,%1, ..., Prs %, Bi+ 1, %+ 1 be an alternating sequence. Suppose
that at B+ the first return occurs and it returns to oy. Then the following hold.
(i) Pxs1 =00, and B; #a; forall 1 <j<kand 0 i<k,

(i) oev1 = By;

(i) consider stable partition I, ., for preference relation R — oy, ; when oy 4, pro-
poses to others successively in the order of his list, there must be someone who
accepts him, and the first such person is one of the us, i.e., fi+2 = o; for some
1 < i<k Moreover, r(o+ 1| Br+2) < r(0s1]0%y)

Proof. (i) This follows directly from the definition and Proposition 3.2.

(i) Since a, and 8, are matched together in IT,, they remain together in I7;, but not
in M.y, 80 o4y = By

(iii) Observe that a, ., (= f,) and o, are matched together in IT,. x,; gets an
increasingly worse partner from I, to I1, ;. When o, ( = f,) makes a proposal, o,
certainly takes o, , ; as a IT, . ,-superior entry. So, in & 4 s list, there must be someone
before a4 (or equal to a) who accepts o ;. Let the first person who accepts o, ,’s
proposal be x; thus (x| o 4 1) is IT; 4 -superior. If x s ay, then r{og 1 | x) < rog 1 | o)
So (o + 1 | x) is I15-superior, and (x |y + {) is Il 5-inferior. Person x takes oy + ; as inferior
in IT,, but as superior in IT, ; ;, therefore x has a worse partner in IT, , ; than he has in
I1,. By Propositions 3.1 and 3.2, x = «; for some 1 < i< k, and this completes the
proof. O

Proposition 3.5. Let g, 1,04, ..., Bx, 0 ... be an alternating sequence. If there is
a return at By, then there is another return at P, .,. Furthermore, suppose that the
return sequence corresponding to B+, (respectively, B, . ) starts from i, (respectively,
i,); then i, > i;. (So the length of the return sequence corresponding to By, is less than
or equal to that of the return sequence corresponding to By +1.)

Proof. By Proposition 3.4(iii), the result is true if at B, the sequence has its first
return. Then, by the characteristics of the alternating sequence starting from «;, and
a simple induction, the result follows. O

Corollary 3.6. Let aq, 8,1, ..., Bk, %, ... be an alternating sequence. If there is a return
at B+ 1 then the sequence can be extended infinitely. Moreover, there is a return at every
B forjzk+ 1.
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With the above definitions and discussion, we are able to give a new proof of the
fact that every preference relation contains at least one stable partition and to explore
some new properties of the stable partition. The proof is inductive and will lead to an
algorithm for finding a stable partition, but we shall not worry about the efficiency of
the algorithm until later.

Let R = (S, T) be a preference relation. Suppose that we have already found a stable
partition I1, for preference relation R — a,. Starting from «,, an alternating sequence
is generated. As discussed before, if the sequence ag, 4,9y, ..., B, o terminates at
some point a, either because that there is no one to accept o, or because the first
person who accepts o is in a IT,-odd party, then a stable partition for preference
relation R is found. Suppose that the sequence extends infinitely; by the finiteness of
the problem, eventually o, = oy, and I, = I1,, for some k; < k,. Then the sequence
cycles, and so does the associated sequence of stable partitions. Without loss of
generality, we may assume that oy = o, and Il = I1,,.

Theorem 3.7. Let oo, 1,0y, ..., Bm, %y be an alternating sequence with associated se-

quence of stable partitions Iy, 11, ..., II,,. Suppose that ag = o, and 14 = II,,. Then

() there is an element B, 1, 1 <k + 1 < m, returning to ay; and

@) oo, Br, oy, Bt are 2k + 1 distinct persons, A= {0, B, %1, Pr—15--5
ay, B1, %) forms an odd party, and Il = (I, — { o, B> |i=1 to k})u {A} is
a stable partition for preference relation R.

Proof. (i) It is obvious that the alternating sequence cycles with pattern
0o, B1, %1, ..., Bms %m = 0o, and that the sequence must have a return at some point, say
at f8;. Suppose that the return sequence corresponding to f; starts at element «;. Then
we claim that the return sequence corresponding to the next element f;, ; starts at
o;+1. For otherwise, the length of the return sequence strictly decreases, contradicting
the fact that the alternating sequence cycles. Since the sequence cycles, every «; is the
starting point of a return sequence. So (i) follows.

(ii) Consider the alternating sequence og, 1,81, .-, Bus %, Pr+ 1, %+ 15 --- . The first
return occurs at ;. 5, and it returns to a. Then, as proved in part (i), at each f; 5 ; it
returns to o;_q, SO By+; = a;_, for all j > 1. By Proposition 3.4, we know that
o+ = B; (see Fig. 2).

B) (B .. (B (o)

%o Oy O3 % %1 Ly -.. O Lok +1

B B Be Bis1 Brva oo B Bak+1
(@)  (ay) cer (o—1) (o)

Fig. 2.
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Note that o # o; and oy # f; for 1 < i < k. Therefore, by the definition of a return
sequence and by the fact that the sequence cycles, it is easy to verify the following facts:
(A) oo, B1 4, ..., B,y are 2k + 1 distinct persons;

(B) {B;,a;> is a two-person party in I, for i = 1 to k;

(C) <o;_4, By is a two-person party in IT, for i =1 to k;

(D) when restricted to persons in S — {ag, B1, %1, ..., Bi, %}, all the II;’s are the same,
fori=0;

(E) A = {ay, Br,%—1,Pr—1,---»%1, B1, 0% forms a semi-party permutation.

We now need to show that A4 is an odd party in IT, when IT = (ITy — {{B;, 2> |i =
1 to k})u {A}. To do this, we only have to show that IT is stable. Suppose not. Since
I1, is stable, then any instability must involve some «; or f§;. Because the alternating
sequence cycles, without loss of generality, we may assume that person «, causes
instability. So there is a person x such that both (a|x) and (x| o) are II-superior.
Note that (o | x) is IT-superior if and only if r(og | x) < (2o | f1)- In light of the stable
partitions IT, and IT, and the definition of an alternating sequence, x can only be
some &; or f;, for some i = 1 to k. We claim that x cannot be any of the s, nor any of
the «;’s, and this will give a contradiction. First we consider the stable partition I7 in
which o is matched with B; and each B; is matched with o; for i = 2 to k. If (ao | B;) is
I-superior, i.e., I1,-superior, then (f;| ao) is I1-inferior, i.e., [I-inferior. So x # B; for
i =2 to k, and obviously x # B,. Second, let us consider the stable partition I1,: «, is
matched with B,, and each «; is matched with f;,,, fori=1to k — 1. If (x| ;) is
M-superior, i.e., IT-superior, then («; | %) is IT,-inferior, i.e. [T-inferior. Thus x # «;, for
i=1to k—1, and clearly x # a,. This shows that IT is stable and the theorem
follows. O

From the previous discussion and Theorem 3.7, by adding one person at a time and
by a simple induction, we establish the following fact, first proved in [6].

Corollary 3.8. There exists a stable partition for every preference relation.
We also have the following new observation.

Corollary 3.9. Given a preference relation, adding a new person into the relation results

in the number of odd parties either increasing by 1 or decreasing by 1. Furthermore,

(i) when the number of odd parties increases by 1, all the original odd parties remain in
the new relation, while a new odd party is formed,

(ii) when it decreases by 1, one of the existing odd parties is eliminated, and all the rest
remain in the new relation.

It can be shown that deleting one person from the relation has the same effect on the
number of odd parties. An immediate consequence of these results is the following
theorem, first proved in [6].
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Theorem 3.10. For a given preference relation, any two stable partitions have the same
number of odd parties.

Proof. Suppose not. Let IT; and IT, be two stable partitions having m, and m, odd
parties, respectively, where m; < m,. Deleting one person from each odd party in I,
results in a stable partition IT| without any odd party. Deleting the same set of
persons from [T, results in a stable partition IT, with at least m, — m, odd parties; this
is because deleting one person reduces the number of odd parties by at most 1. So,
without loss of generality, we may assume that m, = 0 and m, > 0. By Proposition
2.2, we may also assume that each even party in I, has cardinality two. Hence I1, is
a complete stable matching.

Let S be the set of persons whose partners in IT, are superior entries in IT,, and let
I be the set of persons whose partners in I1, are inferior entries in I7,. For the stability
of I1,, every person in S has a IT,-partner in I. So |S| < |I}. Consider a party 4 in
stable partition IT,, and let {a,,a,, ..., a,> be the associated party permutation of A.
For the stability of T, no two consecutive persons g; and ;. ; (subscripts modulo k)
can be in I, otherwise a; and a;, ; block the matching I7,.

Therefore, if A is an odd party in II,, then

[AnS| >|AnI]|.
And if 4 is an even party in IT,, then
[AnS| =z |ANnI|.

Since stable partition IT, contains at least one odd party, we have

ISl= Y |4nSI> Y |A4nll=|]].
Aj; is a party A; is a party
inf, in 1,

This is a contradiction, and the theorem follows. [

The above result also indicates that, using the alternating sequence approach, no
matter which of the stable partitions for a given preference relation is used as the
starting point, introducing a new person always leads to the same outcome, either the
introduction of a new odd party or the elimination of an existing one. By Corollary 3.8
and Theorem 3.10, we may conclude the known fact [6] that there exists a complete
stable matching if and only if there does not exist any odd party. One application of
Corollary 3.9 is as follows. Suppose we know that a given preference relation does not
contain a complete stable matching, and we wish to know the minimum number of
persons that must be added to (deleted from) the relation so that the resulting instance
contains a complete stable matching. By Corollary 3.9, this minimum number is the
number of odd parties. This is because adding (deleting) one person into (from) the
relation reduces the number of odd parties by at most 1, and no complete stable
matching exists as long as there are odd parties. On the other hand, suppose the
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number of odd parties is m. It is then a simple matter to add (delete) m persons into
(from) the relation so as to decompose all the odd parties.

4. Locating an odd party

Theorem 3.7 in the previous section does not provide us with an efficient way to
locate the odd party it describes. In this section, we will discuss how to identify the odd
party algorithmically and examine the time complexity of the algorithm involved. As
a result, we will establish Theorem 3.3. Below we provide some more definitions and
describe further properties of return sequences.

Let S: ag, By, %4, ..., Br, o, Bi+1 be a return sequence, and let x be a person involved
in this sequence, i.e., x = a; or f§; for some i. During the course of this sequence starting
from o, and ending at f,. ,, sometimes person x has a matched partner and some-
times he does not. We define Worstg(x) to be the worst person in x’s list with whom
x has been matched during the course of sequence S.

Proposition 4.1. Let S: 0g,B1,0, .-, Bi, %, Bx+1 be a return sequence and let
Iy, 1,,....,, I, be the corresponding stable partitions. Then
(i) in stable partition II, ., each a; is matched with Worstg(), i = 1 to k;
(ii) ag is matched with Worstg(o) in stable partition I (;
(iil) in stable partition I1,, each B, is matched with Worstg(f;), i = 1 to k.

Proof. By Propositions 3.1 and 3.2, each «; receives an increasingly worse partner,
while each B; receives an increasingly better partner in the process of S, i = 1 to k. So
(i) and (iii) follow. For part (ii), since S is a return sequence with £, , | = o, % has only
been matched with B, and «, in IT, and I, ,, respectively, and r(xo | %) < r(%o | B1).
So Worstg(ag) = ;. O

Consider an altering sequence &g, B1,®1, ..., By, %, - .. . Suppose that there is a return
at B+ ;. By Proposition 3.4, there is another return at ;. ,. The return at f , is said
to be the next return (subsequent to the return at g, ), and the corresponding return
sequence is called the next return sequence.

Proposition 4.2. Let «g, B1, %1, ..., Br, %, Bi+1 be a return sequence S, and let S, be the

next return sequence. Then

(i) the set of persons involved in the next return sequence S, is contained in the set of
persons involved in S,;

(i) Worsts,(x) is no worse than Worsts (x), for every person x in S, ie., r(x|
Worstg, (x)) < r(x| Worstg, (x)).

Proof. (i) By Proposition 3.4, a; . = f; and B, = «; for some 1 < i < k, hence the
result is trivial.
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(i) Let I1y, 1, ..., 1,11, , ; be the corresponding stable partitions. Then the next
return sequence S, starts from o;, for some 1 <i<k SO o, Bit1,%+15--»Prs
% B+ 1- %+ 1, P+ 2 1S the next return sequence with corresponding stable partitions
i, iy s oo Iy, iy o, Where g = By and By = o

The only stable partition that appears in S, but not in S, is IT,,,, and the only
difference between I, ., and II,., is the changes in the matching status among
+1 (= P1), Br+z2 (=), and a4 (= fi+1). Person oy, is out of the relation in
Il ,, and is not matched with anyone. By Proposition 3.1, person f8; ., has a better
partner in II,, than he has in II,. ;. So the result holds for x = ¢, ,, and for
X = fi+,. Person oy | ( = ;) is matched with o; (respectively, o) in IT , , (respective-
ly, in I1). By Proposition 3.4, roy | o;) < r(og, ] a,), so the result also holds for
X =0gsp.

Consider an alternating sequence. Suppose that a return occurs; by Corollary 3.6,
the alternating sequence can be extended infinitely. Nevertheless, we have the follow-
ing properties.

Proposition 4.3. Let oo, 1, ..., By, %, Be+ 1 be the first return subsequence S,. As the

alternating sequence extends infinitely, the following hold:

(1) the worst possible partner that a person x can have, throughout the whole process of
the alternating sequence, is Worstg, (x);

(ii) no two f; and B; can be matched together in any step of the process, for 1 < i <k,
I<j<kandi+#]j.

Proof. (i) The result follows from Proposition 3.5 and from inductively applying
Proposition 4.2(ii).

(i) By the definition of a return sequence and by Proposition 3.2, we have
Bi+1 = ooand B; # o; forall 0 < i < k, 1 < j < k. In the initial stable partition IT,, it is
obvious that a “f” person is matched with an “«” person. Now suppose, to the
contrary, that for acertainiand j,1 < i< k,1 <j< kandi #j, §;and §; are matched
together in a certain step of the alternating sequence. By Proposition 4.1, each f; is
matched with Worstg(f;) in IT,. Then both B; and §; would prefer each other to their

partner in the initial stable partition IT,, which is a contradiction. [

Proof of Theorem 3.3. Let «y, 8, a4, ..., B, % be an alternating sequence with a return
at Bi+1. Then «, must be the starting point of a return sequence as the alternating
sequence goes on.

Suppose not. Without loss of generality, we may assume that a, is the starting point
of the return at §,,,. Then at B, ,, the sequence returns to «;, for some 1 < i< k.
As the alternating sequence goes on, let m be the largest index, with m < k, such that
a, 1s the starting point of a return sequence. Therefore, at a certain step Ba+1. the
alternating sequence o, 8,0, ..., B, Om, ... rEturns to o,,, and at B4+ 2, it returns to
one of a4y, %42, ...,%,. Note that «,,; is matched with Bs+2 in I1,.,. However,
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(by) (b2) .. (ao)
ap a; 4 A Am+1 Qpm+2 ---\T<n+1
1 bZ bm bm+1 bm+2 s b2m+1
(ag)  (a)) ... (an)
Fig. 3.

by Proposition 3.4 we know that o,y = By and iz €{ots1, 042, .02, < {B1,
B3, ---, Bm}. This contradicts that fact that no two §; and ;, 1 < i<k, 1 <j<k, can
be matched together in any step of the process. So o, must be the starting point of
a return sequence.

Consider an alternating sequence g, 1,0y, --., Bi, %, .... Suppose that a return
occurs, and the first return occurs at ;.. Then &, must be the starting point of
a return sequence, say o, fi+ 1, %+ 1> > Br+ms G+ ms Br+m+1 { = ). So the sequence
can be extended infinitely, there is a return at every f;, j > k + 1, and every a; is the
starting point of a return, i > k. If o . ; is replaced by a; and f; +; by b;, i = 0, it is clear
that the alternating sequence cycles with the pattern S shown in Fig. 3.

Furthermore, Ty = I1,,,+ ;. By Theorem 3.7(ii), {@p;bm, -1, b1, ---,1,01,00)
forms an odd party, and Theorem 3.3 follows. O

Remark. In the context of the last paragraph, it is not difficult to give an example in
which any return sequence starting from an element before o, does not constitute an
odd party.

Given a preference relation R and given a stable partition of R, to add a new
participant o into R and find a new stable partition incorporating this new person, we
generate an alternating sequence starting from oo. Within O(n?) steps, either the
alternating sequence terminates with a larger stable partition for R + oo, or a return
occurs. Suppose that the first return occurs at f; , . Then by extending the alternating
sequence from o, we will locate a new odd party within at most O(n?) steps as stated
in Theorem 3.3, and obtain a stable partition for R + o.

5. Conclusions

In this paper, we propose a new algorithm for finding a stable partition for a given
instance of the stable roommates problem, and therefore a new algorithm for finding
a stable matching if one exists. Our algorithm processes the problem dynamically, by
allowing new participants to join the relation. In its present form, the algorithm
considers the addition of only one person at a time, but we believe that the idea on
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which the algorithm is based can be extended to handle the case of inserting a set of
persons at a time. The new participants would be processed in batch form, which
might enhance the efficiency of the algorithm. This is an issue worthy of further study.
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