
An Implementation of a Simple DAVIC Server Using Orbix

Feng-Cheng Chang and Hsueh-Ming Hang

Dept. of Electronics Eng., National Chiao-Tung University
Hsinchu, Taiwan 30010, ROC

ABSTRACT
The purpose of this project is to develop a simplified DAVIC server on the Sun workstations under Unix and

x window environment. DAVIC 1.0 is a comprehensive set of standards that define various types of end-to-end
multi-media communication systems. More precisely, we implement only the high level server-client protocols and
server service elements specified in DAVIC. This system can provide browsing service, download a file or a portion
of it, and playback an MPEG sequence with VCR-like control. Limited by time, manpower and tools, not all the
DAVIC specified elements are fully implemented. However, an implementation of a simple video server based on the
DAVIC concept has been completed and demonstrated.

Keywords DAVIC server, Video server, Orbix, Multimedia communications

1. INTRODUCTION
Multi-media services over digital networks becomes the latest trend in information communication .As the number

of services grows, it becomes essential to have an unambiguous standard to develop components and systems. Many
organizations and projects attempt to specify such a standard. DAVIC is one of these attempts and it seems to
attract a lot of popularity recently. The DAVIC 1.0 Specification is released in December 1995. It is essentially a
collection of existing standards plus some glue made up by the DAVIC group to bridge the gaps.

Our goal in this study is to implement a simple multi-media server that is close to the DAVIC specification.
More precisely, our implementation focuses on the high layer protocols used in DAVIC. In the following sections, we
describe what our system is and how it works.

2. DAVIC SYSTEM OVERVIEW
2.1. DAVIC System Reference Model

The DAVIC Sjsem Reference Model (DSRM) is shown in Figure 1. There are five entities in the DSRM: a
Service Provider sysiem, a Coneni Provider Sysiem, a Service User System, and two Delivery Systems. This figure
also shows the information flows and related reference points.

2.2. The DAVIC Services and Server
The concept of a DAVIC server is simple. In the service domain, there are services which export interfaces to

the client. The interface of a service is usually composed of several abstract interfaces. In a DAVIC server, there are
several so-called Service Elements which provide interfaces to the clients.

Figure 2 shows the reference model of a DAVIC server. In addition to the network-related functions, the server
has four Core Service Elements. There are three additional ancillary service elements which are not shown in the
figure: Client Profile, File, and Download.

• Service Gateway Element The Service Gateway is usually the first element the client observes. It acts as
a broker of all the services in the server. A client uses the interface of the Service Gateway to navigate the
service domain and select the desired service.

• Stream Service Element The Stream Service Element is the repository and source for streams. Its interface
provides the functions to control the media flow, reports the stream state, and optionally places events into
the stream.

O-8194-2299-1/96/$6.QO SPIE Vol. 2898 / 73

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

Content _______ Service Service
Provider Delivery Provider Delivery User

System System System . . . System System
Principal Service

Interface- - -0- -©- - - -0- -©- —
Application Service

interfacej- 0- —0-- -© —E:J- —0-- -©-- —
Session and Transport

Service interface- .
Network Service

Interface- .
Physical Interface•F —I-I®

Figure 1: P1 Partition Level DAVIC System Reference Model'

. Application Service Element The Application Service is a general-purpose service that enables applications
to operate via the definition, manipulation, and exchange of objects over their life-cycle.

. Content Service Element The Content Service is responsible for the interface to content management.

2.3. High Layer Protocols
The high layer protocol covers the service interface, the presentation protocol, and the session protocol.

Interfaces
The Application Inierface is specific to each application while the Generic In1erface is common to all the
services. The Service Gateway provides the interface to explore the service domain. A Stream Service provides
the interface to control media streams. A File Service interface provides file access functions. The Download
Service, which is a part of Service Gateway, provides the interface to install software on the client device. To
determine what software to install, the set-top device provides a profile of the available services.

Presentation and Session Protocol
DAVIC compliant systems require an interoperable protocol stack for the presentation and session layer that
transports User-to-User primitives.

These protocols chosen by the DAVIC Specification are defined in the DSM-CC Specification and 0MG UNO
Specification for CORBA 2.0.

3. THE COMMON OBJECT REQUEST BROKER ARCHITECTURE*
3.1. The Object System

An objeci sysiem is a collection of objects. In our context, objects provide the requesters (clients) one or more
services. Each object has a well-defined interface which encapsulates its data representations and executable code.
Hence, an object can isolate the implementation details from the requesters. The inierface of an object is a description

Material in this section is drawn mostly from.2

74 / SPIE Vol. 2898

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

Principi1 Service _______________ ________________
. . I 1 Delivery Scvicc User

Service Provider System Cf
System System_____ 'C'!

1

Ctmtcnt Service
Element Application Service

________ (' ——-— (.);—I 1

Applicotion Service
Element Session andTranspo Service

Jic:Hø NwcekService

I1
Servicc Gateway

Element
Network Interfacel

Interface

Function

Figure 2: Server Reference Model'

of a set of operations that a client can ask the object to do. Interfaces is specified in Inierface Definition Language
(IDL).2 A new interface can inherit from several existing interfaces and form a composed one.

In the classical object model, a client sends a message to an object, which then interprets the message to determine
what service to perform. Thus there must be a method-selecting process before the object actually performs the
desired operation. The selection of method can be performed by the mechanisms such as the Objeci Requesi Broker
(ORB) described later. If something goes wrong during the handling of a request, an ezcep1ion is returned to the
client. An operalion is an identifiable entity denoting a service that can be requested.

3.2. CORBA

The Common Objeci Request Broker Archiecftzre (CORBA) is an Objeci Requesi Broker (ORB) technology
defined by the Object Management Group (0MG) . It provides mechanisms to make requests and receive responses
between clients and servers. Using ORB, an application can communicate with different implementations of object
systems on different types of machines in heterogeneous distributed environments. Based on the ORB technology,
CORBA is structured to allow integration of a wide variety of object systems.

3.3. The Structure of ORB

Figure 3 shows the ORB structure. The interfaces are shown by striped boxes. The arrow indicates whether it
is a call to ORB or a call from the interface. To make a request, the client either talks to the Dynamic Invocation
interface, or talks to the IDL 5mb interface. The client can also call the ORB interface for ORB-related functions.
The Object Implementation receives a request from the IDL Skeleion. The Object Implementation may call the
Object Adapter or ORB interfaces whenever needed. There is an Implementation Repository service which is specific
to an ORB and contains information allowing the ORB to locate and activate implementation objects. The ORB
Core is the part of ORB that provides the basic representation of objects and communication of requests. It uses
the system-dependent elements to carry the representations.

3.4. The Integration of Foreign Object Systems
CORBA is designed to support different object mechanisms. When integrating a foreign object system into the

ORB, three ways can be used. They are shown in Figure 4. When there exists an object adapter suitable for the

SPIE Vol. 2898 I 75

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

Figure 3: The Structure of ORB Interfaces2

object implementation, we simply hook the object to the adapter. If the object implementation requires special
functionalities and there is no suitable adapter, we can design a new object adapter and use it to integrate the object
implementation into the ORB. When integrating object systems with different object representations, we can use a
gateway to alter the object representations between the two systems.

4. A SIMPLE DAVIC SERVER
4.1. System Overview

A fully DAVIC-compliant server is fairly complex. Under limited time and resources, we could only implement a
portion of it. Before we jump into the details of programming, we first define what we mean a simple DA VIC server.

1 1 I .0b$ect Sy*tas.
I ObJect Syate as an Xmp1ementation

Basic obJ.ct dapte ith a Spscialpurpoae
L tL0n j L

object •Adapter.

Basic Object Adapter peciaI-purpose.Adapte3

ORB Core

Figure 4: Different Ways to Integrate Foreign Object Systems2

76 / SPIE Vol. 2898

Interf ace identical for all ORB implementations

There may be multiple object adapters

There are sti.ibs and a skeleton for each object type

0 ORB-dependent Interface

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

In our laboratory, workstations are connected with Ethernet using the popular TCP/IP or UDP/IP protocol. It
is convenient to build a simple DAVIC system on this well-constructed network environment. A client can connect
to a server, browse up and down the service directories, choose the service it requests, and finally receive the service
offered by the server. Here the word "client" means the end-user; hence, we only consider the relationship between
the Service Provider and the Service Consumer. The intermediate Delivery Systems behave like the network routine
functions to the Service Provider and Consumer. Since we focus on the Si and 52 DAVIC data flow and let the existing
computer operating system to handle communication problem, we do not need to implement a Delivery System. The
following seëtions provide a more concrete viewpoint of the simple DAVIC system by means of interaction-diagrams.

4.2. Services in the Server
We have mentioned that there are four core services in a DAVIC server. The Content Service is used to manage

contents. It is not possible for an ordinary client to use such a service. The Stream Service transports the media
stream using non-Ethernet protocol, and it is difficult to implement this service in our laboratory environment. We
thus design a new service to replace the Stream Service. Though it works differently from the Stream Service, it is
easy to implement on Ethernet and it achieves the functions of a Stream Service by additional control mechanism
on the user-side. The DAVIC specification adopts the DSM-CC definitions into its system. The Service Gateway
related interface definitions can be found in the DSM-CC specification. In DSM-CC, a service called File Service is
important. It provides the very basic file operations, and we implement this service as an application service. In
summary, the services in our "simple DAVIC server" are:

Naming Context The service which allows the user to list, browse directories and resolve a new service.

Bindinglterator When the directory list is too long, the user may get impatient waiting for the whole list to be
transferred. A Bindinglterator cooperates with a Naming Context to provide to the client a way to retrieve
the trailing parts of a list.

Directory A special type of Naming Context, with additional functions to resolve multiple objects at once and
get/put a whole directory tree from/to the server.

Service Gateway A special type of Directory service, with some network resource control functions.

File Read/write a segment of file starting from a specific offset.

MPEGFi1e This is the service to replace the Stream Service. It is a file system based interface, and it is a
modification to the VDOBASE library which is described in section 5.4.i.

4.3. Functionalities of the Client
The client browser is used to interact with the server. One of the most important requirements of a browser is to

present the service in a user-friendly way. The trend of user interface is graphical user interface (GUI) .Most popular
operating systems are companied with one or more windowing environments and libraries to help developers building
GUI applications. In the simple DAVIC system we developed on our workstations, we build the presentation part of
our client program using X window system. The client program is able to achieve the following targets:

• Connect to a specific server

• Display a service list on the screen

• Allow the user to select a specific service

• Update the service list automatically when needed

• Display a File Service GUI when invoking File Service

• Display a VCR-like control panel on the screen when invoking MPEGFi1e Service

• Display an image playback window on the screen when playing an MPEG video

• Allow multiple parallel tasking, e.g., we can down-load a file while playing an MPEG video

The client portion is developed to examine the operations of the server. Therefore, we use a simple and straight-
forward design based on the available tools (described in the next section). The client architecture does not follow
the DAVIC specifications.

SP!E Vol. 2898 / 77

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

4.4. Interactions between Server and Client

We will use interaction diagrams to illustrate typical interactions between a server and a client . Figure 5 shows
how a client connects to a server. The client uses the given host name to issue a connection to the specific server
and obtains an object reference from the server. The client then uses the handle to request the top level service
directory and display the service list on the screen. Figure 6 shows that the interactions to invoke a service. The
server receives a request from the client. it tries to resolve a new object reference and returns it to the client. After
the client receives the reference, it issues a request for a list and in the mean while it shows the newly created service
on the screen.

5. IMPLEMENTATION
5.1. Tools

The implementation of our system consists two major parts of work. One is the CORBA mechanism, and the
other is the representations of the interfaces on the client side. In this section, we will give a brief description of
several programming tools involved in our implementation.

5.1.1. Orbix In order to build a DAVIC system, we need to implement CORBA. Orbix, produced by IONA
Technologies, is a programming environment for building and integrating CORBA applications. One of its important
features is that the components of these applications can run on different hardware nodes in a distributed system.3
Orbix implements CORBA on Ethernet using TCP/IP and XDR. Since TCP/IP and XDR are ready-to-use protocols,
Orbix implements ORB mechanism by providing libraries on both client and server side. There is a daemon process
on a server node. It accepts all the incoming requests, and routes them to the desired object. If the object has not
been activated, the daemon searches the implementation repository to find the registered service code of the interface
and activates it.

When an object is constructed on the server side, Orbix creates a proxy (shadow) of the object on the client side.
The client program operates the remote object through the proxy as illustrated in Figure 7. The proxy has exactly
the same interface as the object at server, so the programmer can write the application as if the object was located
in the local address space. This approach dramatically simplifies the distributed programming task comparing to
the traditional RPC (Remote Procedure Call) approach. The traditional RPC approach is procedure-oriented, and
it becomes harder to maintain the application when the service domain gets more and more complex. The concept
of proxy makes the programmers free from worrying about where the objects are and thus reduces the efforts to port
a normal program to a distributed one. When integrating objects on local and remote machines, the proxies enable
programmers to write client codes with unified interfaces. However, if the programmers decide to use the traditional
approach, they must distinguish between the conventional and the remote procedure calls. We will give an example
of how to write codes on both sides in section 5.2.

5.1.2. Fresco Fresco is a joint development project under the auspices of the X consortium. Fresco supports
graphical embedding, which binds structural graphics and application embedding together.4 In order to achieve the
goal of embedding, Fresco objects follow the CORBA standard object model, and as a consequence, integrating
application objects distributed in a system is possible. Please refer to4 for more detailed information about Fresco.

5.1.3. XForms The XForms Forms Library for X, or simply Forms Library, is a library of C-routines that allows
a programmer to build up interaction forms (windows) with buttons, sliders, input fields, dials, etc. in a very simple
way

5.2. File Service
In this section, we will describe the implementing details and coding styles of using Orbix.

5.2.1. Using Orbix Before implementing the applications, we need to use the Orbix IDL compiler to generate
a set of C++ files. Then we write an implementation C++ class of File; here, we call it "FileS'. Orbix provides two
approaches of writing iniplementation classes:

78/SPIE Vol. 2898

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

Client Display Client Server

get remote host name

connect to the Service Gateway

prepare Service Gateway

eturn object reference of Service Gatewa

request for a list

prepare list

send list

extract the list

show the list

Figure 5: Interactions of Connecting to a Server

Client Display Client Server

select a service from list

request to resolve

try to resolve

return the object reference

request to listshow the service

prepare the list

reutrn the list

extract the list

show the list

Figure 6: Interactions of Invoking a Service

SP!E Vol. 2898 / 79

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

Nodel ,— Node2

function call server
function forwarded by

the:roxy

call return
return

Figure 7: An Operation Call on a Proxy3

(1) TIE Approach is suitable to wrap an existing C++ class up into an interface-compatible IDL class.

(2) BOAImpI Approach is that the implementation class is derived from the IDL C++ class.

5.2.2. Writing a Server Program After implementing a server class, we need to write a program to inform
the Orbix daemon the procedure of activating the server object. This program must have the following instructions
in order:

(1) Create a new implementation object.
(2) Use CORBA::Orbix.implis_ready() to inform the daemon that the object is ready.

(3) Release the object.

5.2.3. Writing a Client Program The following piece of code illustrates how a client program contacts the
host to get the File service:

DSN: :File *± = DSM: :File: :..bind(":DSM_File", host);

f->Read(offset, length, reliable, rData);

f—>_release();

To contact to a specific service, use the specific .bindQ operation. The "::" modifier identifies the domain of the
service. After all the operations done, the client program should release the object reference.

5.3 NamingContext and Service Gateway

One of the most important services a server should provide is the browsing function. In DAVIC, the browsing-
related service is the NamingContext service, which is defined by 0MG and adopted by DSM-CC. A NamingContext
represents a node in the service domain. All the services, including NamingContext, are arranged in a tree structure.
The NamingContext interface allows an administrator to insert new services into the tree, and allows an user to get
a list of the available services or to resolve an object reference for the user.

5.3.1. The Service Directory The Implementation Repository (IR) in Orbix may be tree-structured, similar to
the directories in a file system. Therefore, the full server name of an object consists of the path in the Implementation
Repository and the interface name. How to implement the whole service tree on a Sun workstation is one of the
main problems of building the server. There are two approaches to arrange the service data: (1) Database approach,
and (2) File system approach. The first approach is more flexible than the second. The second is a low-cost

80 / SPIE Vol. 2898

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

TIEFi1e(file_i)

wraer
file i

LTIE Approachj
Figure 8: Relationships among IDL and related classes Figure 9: Relationships among Repository,

Service Directory, and Data

approach when we build a simple service directory and do not care for the efficiency problem. However, we do not
have a professional database management system on our workstations. Although the dbm library installed on our
workstations is capable of performing relational database operations, its performance is bounded by the file system
because it builds database upon the file system. Therefore, we simply choose the file system approach.

Mapping between IR and service names is easy since they have the same structure. The remaining problem is
how to relate the service and the data. Because file system approach is taken to arrange our data, identical tree
structures are posed on the data, the services, and the IR as shown in Figure 9. Since we do not use database to
keep track of the relations among trees, the name of the service in every tree, which is identical in three trees, is
responsible for that task.

5.3.2. Resolving Objects We have discussed how to get an object reference directly from the server. In this
section, we will discuss another case of getting an object reference from the other services. Most of the object
references are obtained through the resolve() operation of NamingContext or Service Gateway.

Orbix assumes that the object type has been known to the user, and the user get the reference by using .bind()
in a certain domain, e.g., DSM::Fi1e::..bind. The resolve() operation returns a general type of object reference, not
a reference in a specific domain. This implies that the client program should narrow down the object reference to
the type it needs. In order to let the client know which type the object is, we choose to record the interface type as
a part of service name (this is not needed if we use database approach).

Because there are two domains in our server, CosNaming and DSM module, the resolving process has two steps:
we first check the domain and then perform the resolving process in the specific domain. All services, except for
Service Gateway and Directory Service, in DSM module can be resolved via DSM::Base::_bindQ, because all of them
are inherited from DSM::Base.

5.4. MPEGFi1e Service
The MPEGFi1e interface is used to extract data from an MPEG file, and it offers operations capable of co-

operating with VCR commands.

5.4.1. The VDOBASE Library To be able to execute VCR-like control commands, we need to find a method
for accessing the random access points in an MPEG file. We develop the VDOBASE library to accomplish this goal.

SPIE Vol. 2898 / 81

File (IDL interface)

DL Compiler File (IDL C++ class)
base class

derived class

implement

derived class

File_i

Implementation Service
Repository Directory

test.File test.File

Data

File.dat

[BOAImP1 ApproaJ

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

Table 1: State Transition Table of a VCR

I Next

Statee[:riF *J! LPI
k$: —j;--- —i— —i;-- Pp

'
Pp

1fi

S

S

FF

FB

S

Pp

FF

FB

S

FFp

FF

FB

S

FBp

FF

FB

S

P

FFp

FBp

S

FF

FFp

FBp

S

FB

FFp

FBp

States:
S—Stop, P—Play
FF-Fast Forward, FB-Fast Backward
Pp—Play with Pause
FFp—Fast Forward with Pause
FBp—Fast Backward with Pause
Commands: if—fast forward, bf—fast back-
ward

As described in,6 we know that the random access points are the starting points of every group of pictures in an
MPEG file.

From experiments, we know that the program mpeg2play, developed by Stefan Eckart, can play MPEG files
with any combinations of frames starting with intra-frame picture header, the GOP header or the sequence header.
Because there is no mechanism for a VCR to specify a particular time point in a video for playback, we assume that
the time stamp for a normal VCR-control is not essential.

The VDOBASE contains two elements, one is an MPEG index file generator and the other is a library providing
access functions. The index file generator parses an MPEG file, records all the random access points, the lengths
between consecutive points, and the independent decodable lengths starting from every random access points. The
random access points are defined as follows:

. Normally the random access points are the locations of intra-frame picture start code.

. If the intra-frame is the first intra-frame in a GOP, the access point moves to the location of the GOP start
code.

. If this GOP is the first GOP in a sequence, the access point moves to the location of the sequence start code.

The independently decodable length is defined to be the length between the random access point and the end of the
first intra-frame.

The library we developed provides functions to manipulate an MPEG file in an indexed manner. Function
"seqLength" returns the length between two consecutive points. Function "ISizeO" returns the independently
decodable length. The read(b, 1, offset) operation reads in 1 bytes of data located at offset bytes relative to the
current random access point and puts them into buffer b.

5.4.2. Using VDOBASE together with VCR Commands A VCR is viewed as a state machine, and the
state transitions are the results of executing VCR commands. In each state, different VDOBASE operations should
be used. These states are briefly explained below, Table 1 shows the various valid state transitions.

Stop, Fast Forward with Pause, and Fast Backward with Pause: No operation.
Play: Use seqLength() to get data length 1; after extracting I bytes, move to the next index and repeat this step

until hitting the end of file.

Fast Forward: Use ISize() to get data length 1; after extracting 1 bytes, move to the next index and repeat this
step until hitting the end of file.

Fast Backward: Use ISize() to get data length /; after extracting 1 bytes, move to the previous index and repeat
this step until hitting the beginning of the file.

82 1 SPIE Vol. 2898

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

Figure 10: NamingContext Representation

5.5. Client Side Programs
After finishing describing all the service objects, we explain the client program in this subsection. As defined in

the DAVIC specifications, the Service Gateway is the first service a client interacts. The client programfirst binds

to ":ServiceGateway" on a host, then it browses the service directory, and requests the NamingContext to resolve
new objects if further requests are issued. The task needs to be done ishow to represent the services on the screen.
One of our goals is that each service can run independently. To be independent of the other services, weneed to use

a mechanism to separate each service representation. We choose to separateeach service representation by different
run-time process. Though it may result in high system load, it is easy to implement our system on the SunOS.

5.5.1. Naming Context Browsing among directories requires a program to list all the available directories. The

list varies every time we browse into another directory. We use Fresco to implement the browser, because it can

dynamically change the attributes of a graphical object. Both Fresco and Orbix use CORBA, but some of their
internal definitions conflict due to different implementation philosophy. To avoid conflicts, we split the graphical
part and Orbix part into two separate processes, and these two parts communicate with each other using pipes and

signals. Figure 10 shows the NamingContext representation on the screen. The user interface displays ten entries

each time, and allows the user to cycle through pages to select the desired service.

5.5.2. File Service The File Service should display a form to let the user input necessary parameters. Figure11

shows the X window interface.

5.5.3. MPEGFi1e Service The graphical interface of MPEGFi1e Service has a display window for playback
and a control panel for VCR commands. Our playback program is modified from mpeg2play (developed by Stefan
Eckart), because the original mpeg2play cannot read data continuously from a pipe. If the file pointer has reached
the end of the MPEG file, the main program informs the control panel to enter the "stop" state. We use a signal
passing from the main program to the VCR panel to indicate this situation. Figure 12 shows an active MPEGFi1e

interface on- the screen.

5.5.4. The Relationships among Various Processes Figure 13 shows the relationships among the processes
on the client side. The rectangular boxes in Figure 13 represent processes which interact with an user. The oval
boxes stand for the programs which contain the IDL C++ calls, and they are used for network communications to
the server. The solid lines and the accompanying arrows between an oval and a rectangular boxes are pipes which
are used for inter-process communications. The arrow lines between two ovalboxes are the parent-child relationship.
In our system, the main program of NamingContext is the parent process for all the other processes.

SP!E Vol. 2898 / 83

Figure 11: File Service Representation

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

6. CONCLUSIONS
In this study, we start from the DAVIC specification. In order to understand the high layer protocols in DAVIC,

we study the user-to-user interfaces in DSM-CC, the CORBA architecture, and the network programming techniques.
Then, we build a simple DAVIC system to demonstrate a portion of the functionalities of a DAVIC-compliant system.
Throughout the implementation of our system, several programming tools are used. In summary, this system is able
to offer the functions of browsing service directories, down-loading a segment of a file, and playing an MPEG video
stream with VCR-like control. A simple client program is also constructed to demonstrate the high layer protocol
between the server and the client. Paricularly, through the use of the VDOBASE library, MPEGFi1e service is
capable of performing VCR-like operations.

ACKNOWLEDGMENT

The authors would like to express their gratitude to Mr. Sun-Fan Yang for his help in building VDOBASE. This
work was supported in part by a grant from Computer and Communication Laboratories, Industrial Technology
Research Institute (Hsinchu, Taiwan, ROC).

7. REFERENCES
[1] Digital Audio Visual Council, DAVIC 1.0 Specifications revision 4.0, December 1995.

[2] Object Management Group, The Common Objeci Requesi Broker: Archileciure and Specificalion. Revision 1.2,
December 1993.

[3] IONA Technologies Ltd., Orbix Programmer's Guide. Release 1.3, July 1995.

[4] Silicon Graphics, Inc. and Fujitsu, Ltd., Fresco Reference Manual, July 13, 1995.

[5] T.C. Zhao and M. Overmars, Forms Library, A Graphical User Inierface Toolkil for X, 1995.

[6] ISO/IEC JTC1/SC2/WG11, Coding of Moving Piciures and Associaied Audio for Digiial Siorage Media ai Up
io about 1.5 Mbiis/s, Nov. 20, 1991.

84 / SP!E Vo!. 2898

Figure 12: Playing an MPEG file

data

Figure 13: Relationships among Processes

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/30/2014 Terms of Use: http://spiedl.org/terms

