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ABSTRACT

This paper presents an evaluation of several block-matching motion estimation algorithms from a system-level VLSI
design viewpoint. Because a straightforward block-matching algorithm (BMA) demands a very large amount of com-
puting power, many fast algorithms have been developed. However, these fast algorithms are often designed to merely
reduce arithmetic operations without considering their overall performance in VLSI implementation. In this paper,
three criteria are used to compare various block-matching algorithms: 1) silicon area, 2) input/output requirement,
and 3) image quality. Several well-known motion estimation algorithms are analyzed under the above criteria. The
advantages/disadvantages of these algorithms are discussed. Although our analysis is limited by the preciseness of our
silicon area estimation model, it should provide valuable information in selecting a BMA for VLSI implementation.

Keywords: Block-matching, VLSI for Motion Estimation, VLSI for Block-matching

1. Introduction

In designing a VLSI chip, there are tradeoffs among various cost factors and chip performance particularly from the
entire system viewpoint.! It is thus very desirable to be able to predict the overall system performance of a certain
high-level algorithm before its circuit layout being fully deployed. The focus of this paper is to discuss the impact of
different block-matching motion estimation algorithms on VLSI design. Because of the complexity of the entire (motion
estimation) system, decisions in choosing one algorithm versus another algorithm is often empirical and intuitive. For
example, the previous motion estimator design often pay attention to only the processor complexity; however, the I/O
pin number and the on-chip buffer memory size are as important in determining the manufacturing cost.

Motion estimation is an essential element in a standard video coder such as H.261, MPEG1 and MPEG2. A
straightforward version of block-matching motion estimation algorithm requires a large amount of hardware. Many
fast block-matching algorithms have thus been devised to reduce the computational complexity and in the meanwhile
without degrading the estimation performance significantly. Examples of fast algorithms are described in Musmann et
al.2 and Hang and Chou.® Although these algorithms were devised to use fewer arithmetic operations, they may require
additional control circuits and data buffers to implement and thus may not lead lower cost in VLSI fabrication.

The hardware implementation of motion estimation algorithms can be classified into programmable VSP (video signal
processor) structures and dedicated special purpose structures. Programmable VSP structures®® allow higher degrees
of flexibility; however, they often have a lower throughput rate and generally require additional software development
effort. Using today’s fabrication technology, dedicated structures seem to be more economical. Therefore, we consider
only the dedicated structure in this paper.
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Typically, a specific motion estimation algorithm is first chosen and then a dedicated hardware architecture is.
designed for this specific algorithm. For example, several hardware implementations were dedicated to the exhaustive
search algorithm,®” and a couple of implementations to the fast algorithms.® Systolic array architectures are popular in
designing motion estimation chips because it has a regular layout and a high throughput rate and it matches the massive
computational requirement of block matching. However, it also needs extra control circuitry and a specific data I/O
management. We also use systolic array architecture as the basic building block in comparing various block-matching
algorithms.

2. Block-Matching Motion Estimation Algorithms

Block-matching motion estimation algorithms are generally considered robust and effective for video coding pur-
pose.23 The basic operation of a block-matching algorithm is picking up the best candidate image block in the reference
image frame by calculating and comparing the matching functions between the current image block and all the candidate
blocks in a confined area in the reference frame. The size of block and the confined area (so-called search area) have
a strong impact on the performance of motion estimation. Block size of 8 by 8 or 16 by 16 are generally considered
adequate by experiments and the international video standards adopt 16 by 16 block size, which is also used in this
study. To decide an adequate search area is somewhat involved. It depends on both the contents of pictures and the
coding system structure. For videophone applications, small pictures and slow motion are expected and thus the search
range is assumed to be small (around 7 pels). On the other hand, the MPEG compression schemes are expected to
be used on larger pictures and they often have a longer temporal distance between two predictive frames (P-frames).®
Hence, a much larger seatch range (say, 47 pels) is necessary. Furthermore, the picture size and frame rate also have
a strong impact on the VLSI cost. These parameters are summarized in Table 1 for CCIR-601 and CIF pictures. The
former picture format is targeting at MPEG applications and the latter, videophone applications.

Another important factor that affects the block-matching hardware complexity is the matching criterion. To reduce
the computational complexity, the mean absolute difference (MAD) criterion is adopted by almost all the VLSI designs
in the market and in the literature. It (MAD) provides a nearly comparable motion estimation performance to the
other complicated matching criteria such as mean square error.2® However, some block-matching algorithms calculate
the frame differences only on the decimated pels (described in the following subsections), a subsampling pattern inside
a block. Hence, we define two terms: SAD (sum of absolute difference) is referred to the ordinary MAD performed
on every pel inside a block, and SDAD (sum of decimated absolute difference) is the MAD that performs only on the
decimated pels. That is,

N-1N-1
SAD(u,v) = z [f(z,y,t) = f(z —u,y—v,t — At)], —w<uyv<w-1, 1)
z=0 y=0
SDAD(U,'U) = E |f(:c,y,t)—f(z—u,y—v,t—At)l,—wSu,vSw—l, (2)
(=,9)€ subsampling pattern

where f(z,y,t) and f(z — u,y — v,t — At) are the pel values in the current block and in the reference (frame) block,
respectively, (z,y) is the pel coordinate relative to the current block location, (u,v) is the (backward) motion vector,
and At is the time difference (temporal distance) between the current and the reference frames. The final motion vector
is the one minimizes the MAD criterion:

Tivn{SAD(u, v)}, or min{SDAD(u,v)} ~—w<uy,v<w-1 3)
In general, we need N? subtractions, N2 absolute operations, and N x (N — 1) additions to compute one point of

SAD(u,v). For SDAD, all the above operations are reduced nearly by a factor of four.

2.1. Exhaustive Search

The most straightforward searching algorithm is the exhaustive search (full search), which evaluates all the possible
displacements (motion vector candidates) inside the search area. In each block time interval, (2w + 1)2 SAD search
points and (2w + 1)? two-term comparisons must be calculated to find the best match.

SPIE Vol. 2727 1 995

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/01/2014 Terms of Use: http://spiedl.or g/terms



2.2. Three Step Search

This popular fast search algorithm is proposed by Koga.l? It starts with a step size equal to or slightly larger than
half of the search range. In the first step, the algorithm compares and selects the minimum SAD from the nine candidate
locations located on the corners and the mid-points of the square borders one step size away from the center. In the
second step, the step size is halved and a new minimum SAD location is obtained by comparing the SAD values of the
new eight locations centered at the minimum point in the previous step. The above procedure is repeated until the
step size becomes one-half and the final motion vector is thus found. In total, there are logy(w + 1) search steps and
1+ 8logy(w + 1) SAD search points for each image block.

2.3. Modified Log Search

This fast search algorithm is proposed by by Kappagantula and Rao.!! Each search step is broken into two sub-steps.
In the first sub-step, five search points are evaluated. They consist of the central point of a diamond-shape region and
the 4 search points located one step size away along the four directions of the horizontal and vertical axes. If the
minimum-error position is the central point, the step size is halved and the above process is repeated again. Otherwise,
one of the corner points is the minimum point and the second sub-step starts. Two additional search points located one
step size away from the minimum point are evaluated. These two new search points are located vertically if the first
sub-step minimum point is on the horizontal axis. Otherwise, horizontal search points are used. The minimum among
these 3 search points becomes the center of the new diamond-shape region with a step size equal to half of the previous
step size. Then, the next search step starts. The above procedure continues until the step size becomes one-half. The
number of calculations in this algorithm varies depending upon the location of final motion vector. However, we need to
consider the worst case situation in VLSI design and thus there are (6 logy(w + 1) + 1) SAD operations for each block.

2.4. Alternate Pel Decimation (APD) Search

This algorithm is proposed by Liu and Zaccarin.'? It differs from the previous fast algorithms in that it tries to
reduce the calculations involved in each SAD operation but maintains the overall motion estimation performance at a
comparable level. The basic concept is subsampling the pels inside a block and compute the differences only on the
decimated pels. This algorithm can be explained by using Figs. 1 and 2. Figure 1 shows a block of 8 x 8 pels with pels
labeled a, b, c, and d in a regular pattern. The subsampling pattern A is made of all a pels. Patterns B, C, and D
are similarly defined. Figure 2 shows the pels in (a portion of) the search region. They are labeled 1, 2, 3, and 4. For
example, when a 1 pel is a motion vector candidate, pattern A is used as the subsampling pattern to pick up the pels
in calculating SDAD. Similarly, pattern B, C, and D are subsampling patterns for candidates located at pels 2, 3, and
4, respectively. For each of the subsampling patterns, the minimum SDAD candidate is retained. Then, the full SAD
is computed using all the block pels for these four candidates and the best one becomes the final motion vector.

In the above procedure, (2w + 1)2 DSAD operations are needed for each block. In addition, four SAD operations
are calculated for the final motion vector selection. However, when the search range becomes large, the four SAD
operations become negligible. Essentially, the computational complexity of this algorithm is roughly a quarter of that
of the exhaustive search.

3. VLSI Implementation and Complexity Analysis

There are several important factors that have to be considered in choosing an algorithm for VLSI implementation, for
example, 1) chip area, ii) I/O bandwidth, and iii) image quality. We will discuss the first two issues in this section and the
third issue will be discussed in Sec. 5. In implementing block-matching algorithms, the chip area can be approximated
by

Atotat = Acp + Apuy + Acui, 4)

where Acp is the area for the computation kernel, Apus is for the on-chip data buffer, and A.u is for the system
controller. In this case, the system controller is essentially a data flow controller, which contains an address generator
and a data mapper. A specific data flow controller is needed because the systolic array structure used to compute
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SAD requires specific ordering of data. Due to the very massive data used in computing motion vectors, it becomes
impractical for the processing array to access image data directly from external memory because it results in a very high
bus bandwidth requirement. In addition, the search regions of nearby blocks are largely overlapped; hence, an internal
buffer is introduced to relieve of the external memory access. The block diagram of a motion estimation system with
internal buffer is shown in Fig. 3. The memory controller reads the current and the reference image blocks from external
DRAM. These data are stored in the current-block buffer and reference-frame buffer, respectively. The external memory
bandwidth depends on the size of internal buffer and this topic will be elaborated in the next section.

3.1. Mapping Algorithms to Architectures

Systolic architectures are good candidates for VLSI realization of block-matching algorithms with regular search
procedure.’® A typical systolic array consists of local connections only and thus does not require significant control
circuitry overhead. In this paper, a basic systolic architecture is adopted for estimating the silicon areas of various
block-matching algorithms. Its general structure is displayed in Fig. 4. The processor array contains 16 x 16 or 8 x 8
processor elements (PEs) depending on whether the alternate pel decimation (APD) technique is in use. If the number
of PEs (Npg) is less than 16, then the system is reduced to one-column architecture as shown in Fig. 5. Four types of
computing nodes are used in this structure. The subtraction, absolute, and partial addition in SAD or SDAD operations
are performed by the ‘PE’ node. The summation operations are done in the ‘ADD’ nodes. The ‘CMP’ nodes compare
the candidates in the searching area and select the minimum one. The ‘AP’ node which combines the operations of
summation and comparator is used when the speed requirement is not critical.

In the 2-D array structure, the current block data, c(k,l), k,1=0,...,15, are first loaded into each ‘PE’ node. Then,
the reference block data, r(i+k, ), slide in from the left. The calculation for a reference block starts from the upper-left
corner of the processor array. During the first clock cycle, the ¢(0,0) node computes the difference between r(i,0) and
¢(0,0). Then the result is passed to the PE node below. During the second clock cycle, the ¢(1,0) node computes the
absolute difference between r(i + 1,0) and ¢(1,0) and adds its result to the partial sum propagated from above. In
the meanwhile, node ¢(0,0) computes the absolute difference between r(i,1) and ¢(0,0), and node ¢(0, 1) computes the
absolute difference between r(z,0) and ¢(0,1). After 16 clock cycles, the first partial sum, E},‘r’:o |r(i + k,0) — c(k,0)| is
completed and placed into the left-most ADD node. In the following clock cycle, this partial sum is passed to the next
right ADD node and added together with the second partial sum, lecio |r(i+k, 1)—c(k, 1)|. The total sum for the motion
vector candidate (4,0) is completed and propagated to CMP in the following 14 clock cycles. This SAD is compared
against the stored SAD resulted from the previous comparison, and then the smaller one is kept in CMP for further
comparison. The computation procedure for the one-column array is similar. It is clear that an address generator is
needed to generate the proper addresses to retrieve processing data, and then these data have to be distributed properly
by a data mapper to the processor array at right timing. The efficiency (EFF) of an array architecture is defined to be
the ratio of the effective operating time (of all PEs) to the total operating time (of all PEs) including the idling time
for data loading.

The silicon area of the computation kernel used in this architecture can be approximated by

Acp = Npg X Apg + Napp X Aapp + Nemp X Acump, (%)

where Npg, Napp, and Ncayp are the numbers of ‘PE’, ‘ADD’ and ‘CMP’ nodes, respectively; and Apg, Aspp, and
Acmp are the silicon areas of ‘PE’, ‘ADD’ and ‘CMP’ nodes, respectively. The number of PEs is decided by clock rate
and picture size. To increase the utilization efficiency (EFF) of PE, if one-column array is sufficient to process the data
in time, it will be chosen. Otherwise, the 2-D array is forced to be used.

Search areas of adjacent blocks overlap quite significantly. This overlapped area data can be stored inside the internal
(on-chip) buffer to reduce external memory accesses (bandwidth). Three types of internal buffers are under evaluation:
i) type ‘A’ buffer whose size equals to the search area, (N + 2w) x (N + 2w) bytes; ii) type ‘B’ buffer that has the size of
one slice of search area; that is, the height of block (or sub-block) times the width of search area, ’—v-'gﬂ X % bytes; and
iil) type ‘C’ buffer that has the size of a block or a sub-block, % X % bytes. Note that the parameter D in the above
expressions equals to 1 or 2 depending on whether pel decimation technique is used.
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An picture frame contains % picture slices, and there are %“ blocks in each slice. In order to derive the I/O
bandwidth requirement, we first calculate the new data size loaded from the external memory to the on-chip butter
for each block. Tentatively, let us ignore the initial condition and the blocks near the picture boundary. As shown in
Fig. 6(a), the new loading data size for type ‘A’ buffer is N x (N + 2w) bytes when the next block is on the same picture
slice. For processing one picture slice, we need to load the complete buffer at the beginning of a slice; thus, the total
external data access is approximately [(N + 2w)?+ (£ — 1) x N x (2w + N)] bytes if boundary block cases are neglected.
Then, for the entire picture, the total external data access is approximately f,. x %’- x [(N +2w)? +(%‘~ —1)x Nx(2w+N)]
bytes. Similar analysis can be carried over to the cases of type ‘B’ and ‘C’ buffers as shown in Fig. 6(b)(c). The exact
sizes of type ‘B’ and‘C’ buffer depend on the search algorithms and will be discussed in the next sub-section.

3.2. Implementation Complexity

3.2.1. Exhaustive search In this algorithm, the computation kernel has to perform (2w + 1)? or more SAD opera-
tions in each block time. If we use only one PE, the clock rate has to be higher than 93.57 GHz for encoding a CCIR-601
4:2:2 resolution picture with a search range of 47 pels. This is impractical. Generally, the maximum clock speed is
upper bounded by the fabricating technology and I/O limitation. To make our analysis more general, we assume an
X-MHz clock being employed. The efficiency of systolic architecture for the exhaustive search approaches 100% because
the input data flow is regular and can be arranged in advance. In this case, the number of PE operations is

OPryr = Nsap x N2 x B= (20 +1)?2x N? x B, (6)

where Nsap is the number of SAD operations in each block, and B is the number of blocks per second (in Table 1).
Thus, the number of PE nodes required in this structure under the maximum system clock constraint becomes

_OPpyr _ Bx (2w+1)2 x N2

e X ™

Npg

For type ‘B’ buffer, each search area contains 2w + 1 horizontal lines and the new loading data size for the next
candidate line is (2w + N) bytes. Therefore, the total input data for one block is (N + 2w)? bytes. For type ‘C’ buffer,
there are (2w + 1) candidate positions on the same line and in this situation, the new data size for the next position on
the same line is N bytes. Thus, the total input data size for one block is (2w + 1) x [N x (2w + N)] x B bytes. The
various parameters under different configurations are listed in Table 2.

3.2.2. Threestep search We still use the basic systolic structure described in the previous sub-section to implement
this algorithm. There are [8 x log,(w + 1) + 1] SAD operations to be performed for each block. If we choose the one-
column architecture, (Npg + 2) data have to be loaded before execution in each search step because we do not know
which data to be processed until the completion of the current step. Thus, the efficiency of the one-column structure is

approximately

Nact_ck X Nsap
Nact_ek X Nsap + Nicad_ck X Nstep

_ 7= x (8logy(w +1) +1) ®
T« (8logy(w + 1) + 1) + (Npe + 2) x logy(w + 1)’

Npe

EFFrss =

where Ngct_ck, Nioadck, and Nyiep are the numbers of active operations (in clock cycle), data loading (in clock cycle),
and search steps. Therefore, the total number of PE operations per second is

OPrss = B x (8logy(w + 1)+ 1) x N? x (EF Frss)™", 9)
and thus the number of PEs becomes
OPrss z' —+/((z')? — 4logy(w + 1) x [8logy(w + 1) + 1] x N2 x B?
NPE = = ) (10)
X 2 x B x logy(w + 1)
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where '’ = X —2log,(w + 1) x B. The value of Npg is smaller than 256 for CCIR-601 and CIF format pictures. Hence,
the column architecture can be used, which saves chip area. However, the data flow controller in this architecture is
more complicated and costs more chip area to implement.

For type ‘B’ buffer,

at the i*? search step, we need to load (w+1) x 2% bytes new data. Thus, the total input data per block are roughly
(N + 2w)? bytes. For type ‘C’ buffer, (8log(w + 1) + 1) blocks of reference data are needed for computing one current
block. All the above parameters are listed in Table 2.

Similar analysis can be applied to the other search architectures. However, due to limited space, we cannot give
detailed explanation here; but place the final expressions on Table 2.

4. Chip Area and I/O Requirement
4.1. Chip Area Estimation

In order to obtain the more exact estimate of chip area, we have done two levels of simulations and analysis. One
is the behavioral level and the other is the structure level. At the behavioral level, these algorithms are implemented by
C-programs to verify their functionalities. At the structure level, the architectures of key components in each algorithm
are implemented using the Verilog hardware description language (HDL) and then we extract the area information from
Synopsys design tool. Synopsys tool produces an optimized gate-level description under the constraint of a 0.6 um single
poly double metal (SPDM) standard cell library.

As discussed earlier, the search range depends on coding system structure and applications (picture size and content).
In a typical MPEG?2 encoder, the search range can be empirically decided by (15 + 16 x (d — 1)),'* where ‘d’ represents
the distance between the target and the reference pictures. Hence, in our first set-up for encoding CCIR-601 pictures,
the search range is chosen to be 47 (distance d = 3). The chip area estimates for the computation kernels in various
cases are listed in Table 3. In this table, the meaning of No. of PE operation, No. of PE node and Architecture Efficiency
are defined in Sec. 3.2. s OP, Npg, and EFF. Item Chosen Npg comes from rounding the number Npg up to the
nearest integer number that can fit into the chosen array architecture. The speed requirement of PE node is obtained
by diving the number of PE computations (OP) by the Chosen PE entry. The areas of ‘PE’, ‘ADD’, and ‘CMP’ are
provided by the Synopsys tool under the clock rate given in the Speed entry.

In this design, we choose a two-port internal buffer to increase the PE utilization efficiency. The buffer size and access
time requirement are determined by the chosen system architecture. However, memory modules are not supported by
our ASIC library. Therefore, an area estimation model of two-port memory proposed by Chang!® is used to generate
the parameters in Table 4. When the chosen Npg is bigger than the block size, the 2-D systolic structure (Fig. 4) is
then used. In the 2-D structure, the current block data can be pre-loaded into each PE; therefore, the internal current
buffer can be omitted. It cannot be omitted for the 1-D structure. But in both cases, we always need the reference
block buffer, which is often much bigger.

A list of areas of the critical elements in various block-matching algorithms is shown in Table 4. The area of
computation kernel is derived from Table 3 got with (5). At the end of this table, the total chip area, A;ora; specified
by (4), is the combination of the computation kernel, the internal buffer, and the data mapper. However, we need to
choose one of the buffer types in calculating A;,q;. Here, we simply choose type A buffer in all cases (the shadowed
row), since it simplifies the array address generator and reduces the I/O bandwidth. From Table 4, we find that the
chip area of the full search algorithm is approximately 10 times larger than that of the other algorithms for CCIR-601
pictures. If we consider only the chip area, the three-step search and modified-log search have about the same chip area
and seem to be the preferred choices.

The above analysis can to applied to the other sizes of pictures. In the application of video conferencing, we assume
that the picture size is CIF running at 10 frames per second, and the maximum search range is 7 pels since slow motion
is expected most of the time. The hardware costs of all algorithms are comparable for this particular case; however, due
to limited space, we cannot display the results here.
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4.2. Chip I/O Configurations

The number of I/O pads is one major factor in chip fabrication cost. The I/O pin counts, PAD,y, in block-matching

case can be approximated by
PADqy = PADyEM + PADcontrot + PADpower: (11)

where PADyEM is the bus width connected to the external memory, PAD ontrot and PADp,y.,r are the pads for
control signal and power supply. Among them, PAD ontrot and PADpower are nearly constant. It was reported® that
they are around 28. There are two approaches in calculating the I/O bandwidth requirement. We could assume a
minimum external memory access time (decided by the available DRAM, say) and then calculate the minimum bus
width, PADpEM. Or, we first assume the PADprgar value, and then calculate the maximum allowable memory access
time. In Table 5, the latter approach is taken. We first assume that PADarpar equals to W, then list the maximum
allowable memory access time on the table. The larger access time implies an easier situation that either we could find
a slower speed DRAM to meet our requirement or we could reduce the memory bus width (smaller W). As one may
expect, type A buffer is preferred at the cost of larger internal buffer.

5. Picture Quality

Since different block-matching algorithms are used, their image quality may not be identical. Although PSNR may
not be a good measure for the subjective image quality, it may still be a reasonable indicator for quality comparison.
The PSNR is defined to be the peak signal power (2552) to the mean square motion estimation errors. Several sequences
have been tested. Limited by space, only two of them are reported here. Figure 7 shows the motion estimation errors
for the CCIR-601 image sequence Football using a search range of 15, since the distance between two P-pictures is 1.
Figure 8 shows the results of a CIF image sequence Table Tennis with a search range of 7. It is clear that the full search
algorithm outperforms all the other algorithms. The three-step search and modified log search are lower by roughly 1
dB in PSNR. The subsampling technique has a better performance on slowly moving pictures (such as Table Tennis)
but has a lower performance on fast moving pictures (such as Football). Although there exist a couple of dB differences
in estimation errors, they are close to each other in coding performance (bit rate and image quality). Hence, they all
seem to be adequate for motion estimation.

6. Conclusions

The purpose of this study is not to propose a VLSI architecture for implementing a specific block-matching algorithm
(BMA) but to evaluate various block-matching algorithms from both the VLSI viewpoint and the image coding viewpoint.
A procedure is suggested to assist VLSI designers to choose a good block-matching algorithm adequate for their particular
applications. Our assessment in this paper is based on silicon area, I/O requirement and image quality. A universal
systolic arrays structure is used to realize all the BMA candidates. A distinct feature in our study is to look into the
effect of different sizes of the on-chip memory. Although we did not complete the layout of each realization, the key
elements in the hardware have been implemented using Verilog language and their silicon areas are extracted with the
help of Synopsys tool based on a 0.6um SPDM standard cell library.

Examples of applications at CIF and CCIR-601 picture resolutions are examined. We found that the relative
performance in chip area and I/O bandwidth between various algorithms is strongly picture size (and application)
dependent. For small pictures (CIF) and slow motion (small search range), all the BMAs under consideration are on a
par. However, for larger picture sizes (CCIR-601) and fast motion, certain fast search algorithms have the advantage of
smaller chip area. For a specific algorithm, one may tune the hardware structure to achieve a more economical design.
However, our study here should be able to provide a guideline and a methodology in choosing a high-level algorithm
from system and application viewpoints.
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Table 1: Motion estimation parameters for CCIR-601 and CIF pictures

Parameter Specified value
Parameters Symbol CCIR-601 CIF
picture size P, x Py 720 x 480 352 x 288
picture rate fr 30 10
block size N xN 16 x 16 16 X 16
maximum search range w 47 7
number of block per second B 40500 3050
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Table 2: Implementation Complexity

Items Algorithm Exhaustive-search Three-step-search
Internal Type A (N + 2w)?
buffer size frx%“x[(N+2w)i+L%—l)xNx(2w+N)]x%L
(bytes) Type B (N+2w)x N
Input (2w + N)>’x B x & I (N+2w) X (N+4w) X BX 3
data rate Type C N2
(bits/sec) (2v+1)x [Nx 2w+ N)]x Bx & N?x [8xlog(w+1)+1]x Bx 3
Estimation add N x(N-1) x (2w+1)?> x B N x (N-1)x[8xlogy(w+1)+1] x B
algorithm sub N? x (2w+1)?2x B N? x [8 xlogy(w+1)+1] x B
complexity abs N2 x (2w+1)®>x B N2 x [8xlogy(w+1)+1]x B
compare (2w+1)?*x B [8 xlogy(w+1)+1] x B
T el e e R P i
X'=X - 2logy(w+1)x B
Items Algorithm Modified-log-search Alternate-pixel-decimation-search
Internal Type A (N + 2w)?
buffer size frx B x[(N+2w)2+ (B -1)xNx 2w+ N)] x &
(bytes) Type B (N+2w)x N Nide X
Input (N +2w) x (N+7w) x BX 5% i-x[(N+2w)2+151ﬁlex£
data rate Type C N2 )
(bits/sec) N2 x[6 xlog(w+1)+1]Xx B X % [N(N +2w) x 2 4 433N B x &
Estimation add Nx(N-1)x[1+6xlog(w+1)]x B T x (X -1)x(2w+1)2+33N(N-1)]x B
algorithm sub N2 x [8 xlogy(w+1)+1] x B (3)? x (2w+1)2+33N?]x B
complexity abs N2 x [8xlogy(w+1)+1]x B (£)2 x(2w+1)2+33N?]xB
compare [1+ 6 x log(w+1)] x B (2w+1)*+33N?%| x B
Number of PE (X'—/(X")*-8 lfi’fgiﬁ?;ff ;c;z;:@ﬂ)mma’ 32X’ —\/1024(X")? —11361(2w+1)2+151N’B°
X'=X —4logy(w+1)x B X'=(X-10B)
Note: Memory type 2,3: the External memory can
data arrangement - be access by pixel
decimation technique

Table 3: Estimated areas of computation kernel for CCIR-601 pictures

1002 / SPIE Vol. 2727

Algorithm | Exhaustive | Three-step | Modified-log | **APD
items search search search search
No. of PE operation
*10°) (OP) 93.57 4,74 0.36 234
No. of PE node
N 9357 48 3.67 2356
PE
Chosen Npg 1024 8 8 256
Architecture Efficiency 00% 95.4% 90.8% 99%
(EFF) 1 . .
PE Speed requi t
pect fequirement | 1094 1673 1696 | 10.86
(@0s)
Area of PE node
(Gate counts) 439 419 419 439
Area of ADD node
260 252
(Gate counts) 252 260
Area of CMP node
627* 257
(Gate counts) 257 627+

* : multiple input comparator

*#*: Alternate-Pixel-Decimation technique

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/01/2014 Terms of Use: http://spiedl.org/terms




Table 4: Estimated areas of the entire chip for CCIR-601

pictures
Table 5: The external memory access time requirement*
Algorithm | Exhaustive | Threesiep | Modifiedlog |Aliernate-pixel Algorithm Full Three step | Modified log | apd**
Tiems Search Search Search decimation M type search search search search
Ga
Computat boomt | ssesk | 3ok 39K 1213 Al 1ssiw | 1ssiw | 1ssiw | 1ssiw
core Area(mm?) 259.1 22 22 673 CCIR
i format| B | 0255W | 0.138W | 0.08W 0.7TW
A
Rl . &7 c| ooisw| 0263w | 0349w | 0.141W
Internal Size 895632 444932 2052¢32 A
buffer | TYreB 63.25W 63.25W | 63.25W 63.25W
Area(mmd) 7.4 5.7 57 1.2 CIF
TypeC Size ---- 64*32 64%32 298#32 format] B | 35.073W | 23.91W 16.19W 26.64W
Aream) | -- - Lo 10 os c| 438aw| 493w | 649w 6.92W
Address Gate count 104K 6.1K 59K 6.1K
mapper _ Area(mm?) 5.8 3.4 33 3.4 *. the unit is ns/bit,
Total Area(mm?) 305.2 443 442 109.4 **. alternate pixel decimation

* : Type I internal buffer size has been considered in total area. W: the bus width for external memory

**: Alternate-Pixel-Decimation

a|lbja|bja|b|a|b
c|d|c |d|c |d|c|d
a|bla|bla|b]|a]b oo :
cld|c|d|c|d]c]|d : ;
' Predictive block on-core ‘
albla|b|a|bla]|b : Bufter Compuat '
c|d]|c|d|c |d]|c |d : :
al|bla|b|a|b| a|b ; i
H Address-Generator '
cl|d]|c|d|c |d|c |d ' and Reference-Frame H
' Data-Mapper Buffer H
: and :
Figure 1: Decimated patterns for computing SDAD : Local Controller !
' Motion-Estimation architecture !
4 1 4 l ............................................. I ...........................................
3 2 3 2 External
DRAM
4 1 4 1
Figure 3: Block diagram of a general motion estimation

chip
Figure 2: Alternating schedule of pels in search region for
alternate pel decimation search
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0 o 0
reference l L l
data in
. . . e s . . PE PE PE
17 ,16, 15 2, 1 0) —= s ==
L17)  1G,16) r(3,15) r(,2) i) r(i0) c(0,0) «0.1) «0,15
. ) ) . . PE | J PE| ____ PE
1,16 .15, ,14] W1 0, -
1(i+1,16) r(|+ll ) r(i+1,14) 1(i+1,1) r(i+1,0) o(l0) oL «L15
""" : 1 ] []
L} 1 1 1
L} 1 1 )
: ] ] .
. . . — o PE PE | .. .__ PE
r(i+15,2) r(i+15,1) r(i+15,0) «(15,0) «15,1 k(15,15
0 —= ADD|— ADD| ----- ADD[— CMP|

Figure 4: Block diagram of a 2-D Npg systolic architecture for block-matching

reference 0 current
data in l data in
,16)  G,l5)  ---- fi2) Gl f60) PE F—  ¢(00) c(0,1) ¢(02) --=- ¢(0.15) ¢(0,0) ¢(©.1)
ni+1,15) ni+1,14) =----  fi+l,1) ni+1,0) PE c(1,0) c(1,1) === ¢(1,14) c(1,15) c(1,0)
i+1,14)  ri+2,13) ----  ni+2,1) PE c(2,1) = === ¢(2,13) c(2,14) ¢(2,15)
: : :
: ' 1
1 ' )
' ! H
(i+15,1) r(i+15,0) PE c(150) c(15,1) c(152)
ADD [~ C:Pj-‘ vector

Figure 5: Block diagram of the systolic architecture for small Npg

one picture size one search area

one search area

the same line of
candidate point

: type ‘B’ buffer size

m ' adlacent block
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type ‘C’ buffer size

slice -block : new loading data at
L next candidate line B : new loading at next
] :type ‘A’ buffer size candidate point
(b) for type ‘B’ buffer size (c) for type ‘C’ buffer

new loading data for
(a) for type ‘A’ buffer

Figure 6: The block diagrams of overlapped area for three types of buffers
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C ison of PSNR perfo at CCIR “ootbai" sequence
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2ar ~ full search BN
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~..mod log
ar .:a_P_D search ]
20 B L s N L
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Frame number

Figure 7: PSNR performance of motion estimation algorithms on the CCIR Football sequence

[ ison of PSNR perk at “table tennis” sequence

T T N

PSNR(dB)

N
o

Frame number

Figure 8: PSNR performance of motion estimation algorithms on the CIF Table Tennis sequence
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