
Spatially Adaptive Interpolation of Digital
Images Using Fuzzy Inference

Hou-Chun Ting and Hsueh-Ming Hang

Dept . of Electronics Engineering
National Chiao Tung University

Hsinchu, Taiwan 30010, ROC

ABSTRACT
This paper presents a novel adaptive interpolation method for digital images. This new method can reduce drarnat-

ically the blurring and jaggedness artifacts on the high-contrast edges, which are generally found in the interpolated
images using conventional methods. This high performance is achieved via two proposed operators: a fuzzy-inference
based edge preserving interpolator and an edge-shifted matching scheme. The former synthesizes the interpolated
pixel to match the image local characteristics. Hence, edge integrity can he retained. However, due to its small
footage, it does not work well on the sharply curved edges that have very sharp angles against one of the coordinates.
Therefore, the edge-shifted matching technique is developed to identify precisely the orientation of sharply curved
e(lges. By combining these two techniques, the subjective quality of the interpolated images is significantly improved,
particularly along the high-contrast edges. Both synthesized images (such as letters) and natural scenes have been
tested with very promising results.

Keywords: Image Interpolation, Fuzzy system, Nonlinear interpolator

1. INTRODUCTION
Interpolation is an important technique in multi—rate image signal processing such as pyramid coding, multi—

resolution television broadcasting, and image zooming for viewing comfort . Linear and model-based interpolation
methods are commonly used.'3 According to sampling theory, an ideal lowpass filter is needed to remove the replicated
copies of the subsampled signal spectra located at higher frequencies. Therefore, all the interpolator should behave
like a lowpass filter. It is clear that the conventional spatial invariant linear interpolator is designed to he a lowpass
filter. Model based or surface fitting methods2'3 also have lowpass nature although their processes may he nonlinear.
Typically, these methods patch pieces of continuous spline functions to match the given (known) pixels, and, thus all
the pixels in between can be synthesized by superimposing the overlapped splines.

Blurring and jaggedness are the most visible defects that appear in images using the conventional interpolation
methods. Theses artifacts are caused by the lowpass filter used to remove the unwanted highpass replica of the zoomed
images in the frequency domain. Because it is not possible to implement the ideal low pass filter in practice, non-
ideal filters such as zero-order hold (nearest neighbor) and first-order hold (bilinear) are often used to filter out the
high pass replica. These non-ideal lowpass filters suppress low frequency components and introduce high frequency
component aliasing. Low frequency suppression reduces the spatial resolution of the interpolated images (blurring)
and the undesired high frequency aliasing produces broken edges (jaggedness).

If we look into the image interpolation problem deeper, the ordinary sampling theory does not offer us the most
satisfactory solution. Although the ideal low pass filter provides the most faithful frequency spectrum of the interpo-
lated signals in theory, it does not provide the most natural interpolated pictures because the original (high resolution
image) high frequency components were eliminated in the subsampling process. In other words, a beUer looking picture
can be produced by inserting properly the missing high frequency components. This is clear when we examine the
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Figure 1: Utilization of the diagonal correlation in image interpolation.

frequency spectrum of the ideally interpolated signals. Their high freqtiency components ate set to zero because in
theory, the lost. information (high frequency components) cannot be recovered. (W cannot create something we do
not know.) However, for most typical pictures, the information contained in the subsampled image usually provides
clues about. the lost components. For example, if it is recognized as an edge, proper high frequency components can he
added into the interpolated lowpass signals to enhance the edge shape. Therefore, non-linear or spatially adaptive in-
terpolators could potentially produce better looking images because they create additional information. Our approach
in this paper is another attempt to regenerate the orzgzn.al high resolution images based on our prior knowledge of
lypical illiages. Thus, our methods contain two elements: i) decide the local image characteristics (flat regions, edges,
etc.) and ii) generate the interpolated pixels by properly weighted averaging.

In addition, most existing interpolation methods are separable operators along two axes The separable operations
result in jaggedness on particularly diagonal edges. Figure 1 is used to illustrate th potential advantage of using
diagonal correlations. Figure 1(a) shows the interpolation result generated by a separable bilinear int€rpolation filter.
It is clear that. the interpolated pixel p(x + /2, y+ /2) = (P( y) + P(x + ,y) + P(, y+ ) + P(x + LI, y+))
does not give the desirable value, where P(x, y), Pr + y), P(x, y + ) and P(x + X, y + ) are the four given
pixels. If we consider the diagonal correlation, since 3 out of the 4 given pixels have similar intensity values, it seems
more natural to set the interpolated center pixel the same as the 3 dominated pixels a.s shown by Fig. 1(h). Again,
this more desirable result is judged based on our prior knowledge of typical pictures that high-contrast edges are often
contiguous.

Unlike the ideal case shown in Fig. 1, the captured natural images are usually interfered by camera noise: also, the
surfaces of a flat object. do not produce absolutely the same light intensity captured by the camera. Row to compute
the directional correlations of the original pixels from the sampled pixel and use them properly to generate interpolated
pixels is one of the key issues in this paper. Four directional correlation indices can he defined on the four neighboring
pixels located on the rectangular sampling grid as shown in Fig. 1. These four indices are the horizontal, the vertical,
the diagonal (upper-left to lower-right.) and the anti-diagonal (upper-right to lower4eft). Instead of defining and
calculating these four indices explicitly, a fuzzy inference method i adopted here to interpolate images without. having
to calculate these indices explicitly. This is our first contribution.

Because edges of an image convey most. essential perceptible information to the human eyes,* it is important to
preserve the edge integrity and to enhaiice edge shape to compensate for the artifacts due to the lost high frequency
components in the subsampling process. In the previous works, local edge operator is often used to extract the edges.
However, it. is observed that the h.arply curved edgest in natural images often can not be t.racted by the local edge
operator. If the sharply curved edges can not. be acculately identified, the edge jaggedness in the interpolated images
cannot. he avoided even when an edge-preserving interpolator is in use. In order to identify the orientations of the

*It is reported that4 the very first step in the human perceptual system is to convert images into nearly edge-on signals.
tThe edge orientation has a very sharp angle against eit.her the horizontal or the vertical axes.
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sharl)ly curved edges, an edge-shifted matching method is proposed in this paper. This method detects the edge
orientation I)y matching the image segments across the edge borders in the horizontal and vertical directions. A few
criteria are suggested to evaluate the matching results and to decide whether an edge exists or not . By locating the
edges (1Uite accurately, the jaggedness can be reduced significantly. This is our second contribution.

This paper is organized as follows. An edge-preserving interpolation filter based on fuzzy inference is described in
Section 2. Because it is difficult to interpolate the sharply curved edges with local edge detector only, an edge-shifted
matching method is proposed in Section 3. With the help of certain screening criteria, this method locates the sharply
curved edges quite successfully. Experimental results of the proposed methods are provided in Section 4 to demonstrate
their performance. A brief summary is presented in Section 5.

2. FUZZY-INFERENCE BASED INTERPOLATION

The simplest interpolation method is pixel replication (nearest neighbor). From the viewpoint of filtering, pixel
replication is a zero-order hold operator, which is a rather poor lowpass filter. Similar to pixel replication method,
bilinear interpolation is a low-pass filter implemented by a first-order hold operator . Bilinear interpolation introduces
less high pass error than pixel replication as their spectra indicate. More complicated linear interpolation methods
which attempt to improve the performance by including more known samples have been proposed.2 However, they all
suffer from the drawbacks we discussed in the previous section. Hence, we propose a nonlinear interpolator based on
fuzzy inference. This method preserves edges and it is almost scale invariant . Another advantage is that it is easy to
extend this method to the multi-dimensional cases without the drawback of separable operations.

2.1. Spatially adaptive interpolation based on local gradieiits
To evaluate the perfornance of different iiiterpolation niethods, we a.ssuie that the original signal f(r) is contin—

00115. Let f(.r + n.) be the given samples ail i be the sami)ling interval.
By Taylor series expansion, -

f(x+ 2 f(x) + f'(.r) +f"(x) + R1, (1)

where R1 represents all the remaining higher order terms (similar definitions for R2 and R3 in the following equations).
Siinilarly, we have

f(x -) — f(x) -f'() + f"(.c) + R2. (2)

Substituting x for £ + .\ in (2), we have

f(.r + ) = f(x + ) - f'k + + f"(x + + R3. (3)

Averaging (1) and (3), we obtain

f(x + ) _ [f(x) + f(x + ) + f'(x) — f'(.r + f" +
ç(x

+ )2 R1 + R3] . (4)

It is ready to see that bilinear interpolation can be deduced from (4) by assuming that the first-order differential
of f(x) is constant and the higher order terms are negligible for all x. Though only the middle point is expressed in
( 4), expressions for all the point between the given samples can he derived similarly. If the second-order differential
becomes significant and is assumed to he constant, cubic spline interpolation with parameter (1 = —0.5 is thus deduced
as described in Parker et al.2 In this cubic spline interpolation, the first-order differential is approximated by (f(x+)—
f(x))/ and the second-order differential by (f'(x + ) — f'(x))/z. As we can expect heuristically the interpolation
error is reduced if the second-order differential, i.e., the slope variation, is taken into account. From signal processing
viewpoint, we are designing a higher order filter to approximate the ideal lowpass filter.

It seems that including more higher order terms into our interpolator would improve the interpolation performance.
However, this direction has its limit because we are given only the samples on discrete grids. Approximating differentials
using differences at the known samples has a. limited accuracy; the approximation error increases as the differentiation
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order grows. Similar problem occurs when extending the above approach to the two-dimensional (2-D) cases. It gets
eveii worse in 2-D because the cross terms the second-order differentials with respect to the horizontal and the
vertical axes sinmitaneously are not well-defined if only the discrete sarriples are available. In addition, although
in theory, a higher order filter can approximate the ideal lowpass filter better, in reality, images characteristicsvary
from one local region to the other; therefore, high order filters may not produce a superior subjective image quality.
Hence, instead of exploring the higher order dilThrences further, we propose a nonlinear interpolation method based
on the first order differences.

The basic concept of our method is as follows. We know that the interpolited sample at he middle point can he
expressed by (4). Assume that the differentials with order higher than three are insignificant and the second-order
differential is a fixed constant. First we try to find the relationship between the to-be-ihterpolated sample and the
local gradients at the given sample points. If f'(x)I> If'(x + L)I, we have

either f'(x) > If'(x + z)I 2 0 or f'(x) < — f'(x + z)I � 0. (5)

Consider the first case, we have f'(x) — f'(x + ) > 0. Since f"(x) equals to f"(x + ) (our assumption) and assume
f"(x) can he approximated by (f'(x + ) — f'(x))/, we obtain

f(x+ ) = [f(x)+f(a.+)+ f/()- '()] . (6)

Because f'(x) — f'(x + ) > U we conclude from (6) that

f(x+)> [f()+f(x+)]. (7)

Note that f(x) < f(.r + i) because f'(x) > 0. Equation (7) shows that the middle interpolated sample should have a
value closer to f(c + ) the sample with a lower gradient. Similar statement can he concluded for the second case in
(5).

2.2. Edge preserving interpolation based on fuzzy iiifereiice

Conventional interpolation methods often blur (smooth) the edges (step functions) in the interpolated images
(signals) because lowpass-like operators are used to remove the unwanted highpass replica. As a result, no information
above half of the Nyquist frequency of the original signals is available in the interpolated signals. This effect results in
blurred edge in the interpolated images. Suggested by the observation in the previous sub-section, wepropose an edge
preserving interpolation method based on fuzzy inference to overcome partially the above problem. We synthesize
the interpolated sample using

f(x + ) = u'(Jf'(x)I) . f(s) + w(Jf'( + )I) f(+), (8)

in which

w(ff'(xH) + w( If'(x + L\)) = 1 (9)
with w(If'(x)I), w(Jf'(a + -)I) 2 0. Based on the reasoning in the previous paragraph, w(.) should he a non-increasing
function; that is, the value of 'w(a)is smaller when a gets larger. Here we adopt fuzzy logic to implement (8) instead
of defining the weighting function w(.) explicitly.

In its general form, there are four basic components in a fuzzy logic system: fuzzy rule base, fuzzifier, fuzzy inference
engine and defuzzifier. A fuzzy rule base is a collection of IF-THEN rules that have the following structure:

Ruie(k) : IF r1 is Fi and .. and r,1 is Fk, TI-JEN z is Gk (10)

where F1 and G are fuzzy sets defined on U C B and V C R, respectively, and v = (r1, . ., e Ui x . . . x
and V are input and output. linguistic variables. To convert (8) into a fuzzy logic system simple fuzzy rule base
with 2 rules is constructed as follows:

Rule(1) : IF r1 is near x THEN 1(n) is f(x)
(11)Rnle(2) : IF r1 is near x + THEN f(ni) is f(x + )
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Figure 2: Fuzzy inference structure for interpolation.

At first glance, equation (1 1 ) does not seem to bear any further information. However, it should be noted that the
meaning of "near in these two rules may he different froni each other and this becomes our focus; that is, how to
define a proper membership function for this fuzzy word. Indeed, determining the shape of membership functions is
quite subjective and depends on applications. Here we choose Gaussian function for fuzzy sets of the antecedent part
in(11): -1t1kz 2

/LFk(1i) = akiexp{—( ) I, (12)
7ki

where ak, rkj and cTk are adjustable parameters. In our use, 1ki is set to 1 for all k and i, and is x and i21
is x + L, respectively. Note that i = 1 for 1-D input signal. According to the observations we have at the end of
the previous sub-section, we make oi depending on the absolute value of the "gradient" (first-order difference). We
assume a simple relation between 0R i an(1 the gradient D(.):

= a D(k1)+ 8, (13)

where a and /3 are fixed parameters. D(k1) is the normalized first-order difference,

D(.1) If'(ki)I
(14)

rn ar

where fax is the absolute value of the maximum possible first-order difference. It' is determined by the allowable
range of f(), for example, far is 255 for 8-hit gray level images.

A fuzzy inference engine is an operator that maps the input fuzzy sets in U= U1 x . . . x U to the output fuzzy
sets in V according to the IF-THEN rules in the rule base. Let Ahe the input fuzzy set in U and Bk be the output
fuzzy set inferred by Rule(k) in (10). The output membership function is described by

1tBk() = sup[FklX...XFk_Gkft,z)*pAft)}. (15)
EU

The fuzzy implication Fkl x ... x — can he defined in several different ways. Here we adopt the product-
operation rule8; that is,

PFklx'xFkGkft, z) = flPFk . p(z). (16)
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Figure 3: Step response comparison of different interpolation methods.

Also, the * is chosen to he the algebraic product operator which is one type of the operators in a class of t-norin
intersection operations8

As described earlier, the input of a fuzzy logic system should be a fuzzy set. In the case of interpolation, the input
is a data location, a crisp point. We have to map this crisp input to a fuzzy set. For simplicity, singleton fuzzifier
is used. At the end of this inference process, a defuzzifier maps the output fuzzy set to a crisp point which is an
interpolated pixel in our case. In this paper, we choose a center averaging defuzzifier which is defined by

= >i: (PBk(k)) (17)
A=1(1'Bk (k))

where represents the point at which the fuzzy membership function 1Bk achieves its maximum value. Note that the
structure of (17) matches the requirement of (8) and (9). Figure 2 shows the inference process for the one-dimensional
case. The fuzzy sets in the consequent part are set to he singleton fuzzy sets in this case. We compare the step
response of this method with those of the conventional interpolation methods in Fig. 3. This figure shows an example
of interpolation by a zooming factor of 8. It is found that for fuzzy interpolation, a better result is obtained by
iterating the middle point interpolation three times to produce the 7 interpolated points instead of producing these 7
interpolated points directly. It can he seen that the high-contrast jump is preserved by the fuzzy inference method.
We notice that the parameters a and 3 in ( 13) control the shapes of the Gaussian membership functions and thus
have an impact on the final results. Furthermore, the pair, (o,,8), should he chosen to keep > 0.

2.3. Digital image interpolation
Extending the one-dimensional (1-D) interpolation method described in the previous section to the two-dimensional

case, a fuzzy-inference based interpolation method for digital images is thus devised, Our fuzzy image interpolation
method consists of two steps: 1) use smoothed gradient (Prewitt) or Sobel gradient operators1° to compute the spatially
varying gradient of images; 2) adjust the parameters Oj of the fuzzy membership functions according to the calculated
gradient and then the interpolated pixels are synthesized accordingly. The rule base consists of 4 rules as follows:

Ruie( 1) : IF r1 is near £ and r2 is near y THEN p(r1, r2) is P(x, y)
R'ule(2) : IF r1 is near x + A and r2 is near y THEN p(r1, r2) is P(x + A

18Ruie(3) : IF r1 is near x and V9 is near y + A THEN P(ri, r2) is P(x y + A)
Rnie(4) : IF r1 is near x + A and r2 is near y + A THEN p(r, r2) is P(± + A, y +A).

SPIEVo!. 2727/ 1211
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Figure 4: Two dimensional Gaussian shape membership functions.

A fuzzy inference engine similar to that in Fig. 2 can thus be constructed. To determine 0kj of the membership
functions for the two antecedent parts, instead of setting them separately, we have

= D(i, Tk2) + 3, (19)

where D(ikl, rk2) is the average magnitude of the two directional gradients at P(ikl, rk2) along the horizontal and the
vertical axes. Similar to the 1-D case, the productoperation rule is adopted in the fuzzy implication. An example of
the 2-D fuzzy membership functions is shown in Fig. 4.

Based on the choices we have made earlier, the interpolated pixel p(x+.r, y+y) is computed by the defuzzification
process

p(x+6,y+6) = =o w(x + ., y+)
0< (20)

where P(x + mi., y + nz) is the given pixel on the sampling grid before interpolation. The function w7(x, y) is the
2-D membership function as described below.

(x — m)2 + (y — n/)2w(x,y)=exp(— ) rn,n=0,1; x,yEZ,
72

(21)

where P00 = Plo = 02, Poi 3 and Pu 4 k 5 the parameter derived from (19) and Z is the 2-D coordinates
of the given pixels.

3. EDGE-SHIFTED MATCHING METHOD FOR IDENTIFYING SHARPLY
CURVED EDGES

Though the proposed interpolation method based on fuzzy inference preserves edges in the interpolated images, it
is only locally effective. Since only 4 neighboring pixels are used in computing the interpolated pixels (as shown in
(20)) and a square region of 4x4 pixels are involved in computing the four gradients (when a 3x3 gradient operator is in
use), it does not have sufficient information to interpolate the sharply curved edges well for lack of their orientations.
For the same reason, the ordinary small size edge detectors such as the 3x3 Sobel operators also fail to identify
their correct orientations. Examining the characteristics of the sharply curved edges in natural images, we develop
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Figure 5: Edge shadowing effect caused by low pass filtering.

a matching algorithm in spatial domain to identify the edge orientation. After the edge orientation being identified,
the interpolated pixels can then he synthesized along its orIentation. Combining this technique together with fuzzy-
inference based interpolation, sharply curved edges can be recreated without noticeable artifacts.

3.1. Edge shadowing effect caused by lowpass filtering
Because of the bandwidth limitation, it is impossible to precisely transmit or store an analog image with continuous

2-D coordlinates. To reduce the transmission bandwidth or storage capacity, sampling is essential to generate the digital
images. An anti-aliasing lowpass filter is usually applied to images before sampling to avoid aliasing. As a resUlt, the
original high—contrast edges (with discontinuous intensity) are blurred by lowpass filters.

Figure 5 shows the smoothing effect due to low pass filtering on high-contrast edges with different orientations.
In the figure on the right-hand side, we also demonstrate an orientation identification method for sharply curved
edges. Edges are divided into two classes according to their orientations: the horizontally dominant and the vertically
dominant classes. For example, as shown in the left. figure in Fig. 5, the angle of the lower right edge is less than 45
degrees and thus this edge is classified to the horizontally dominant . It is shown that two horizontal line segments
5 pixels apart horizontally have matched intensity profiles. The orientation of the intensity profile in this case is
approximately ahgne(l with the edge orientation when the edge angle is very sharp. Another example is the upper left
edge, whose angle is greater than 45 degrees and thus it is a vertically dominant edge. The third edge in the middle is
a diagonal edge with a nearly 45-degree angle and thus can he classified as either horizontally or vertically dominant
but in either case it would he irrelevant to the operations described in the next. sub-section.

3.2. Line mask shift matching

Most edge preserving interpolation methods consist of two step: i) edge detection and tracing, and ii) interpolation
along the ortl1ogonal direction to the estimated edge line with a contrast enhancement scheme.357 At the first.
step, sharply curved edges are usually difficult to detect using only local edge detectors. Though an operator With
a larger window size can he used: however, the number of pixels involved increases significantly and the detection
algorithm becomes very complicated. We thus propose a simple but effective edge orientation identification method
for, particularly, the sharply curved edges.

First, we must determine whether an edge exists or not and then identify the dominant orientation if an edge
indeed exists. Local operators such as smoothed gradient (Prewit.t) or Sohel gradient operators can be used to
detect edges. Note that. this edge detection operation is already a part of the fuzzy-inference interpolation. For
example, the calculated gradient vector is 7(x, y) = (gh(x, y), gt,(x, y)), x, y Z. An edge is detected if the gradient
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Figure 6: Edge-shifted rnatching method.

magnitude IU( y)f > T9, where T is a pie-selected threshold value. We then determine the edge orientation. If
Yh(J, )I > g(x, y)I, then the edge is vertically dominant; otherwise, it is horizontally dominant. Now, we start to
identify the e(lge orientation by shifting two line-masks around the detected edge and compare their profiles.

If an edge is horizontally dominant, we create two line-niasks: L1 = {P(r + (k1 — M)z, y), P(x + (k1 — Al +
1)L,y), . . .,P(x+(ki+i'ti),y)}, and L9 = {P(x+(—k2—M),y+),P(x+(—k2 —AI+ l),y+z),. ,P(x+
(—k2 + M), y + z)}, in which k1 and k2 indicate the relative locations of these two segments and their initial value
decides the search range (=(k1 + k2) and It/I determines the mask size, 2M + 1. Similarly, vertical line-masks can he
created as shown in Fig. 6, if the edge is decided to he vertically dominant. Let L1 represents the jth components in
the line-mask L. \Te first compute the line difference d = L11

— L2, and its variance

2I+1
'k(k,+k2 ) >ii: (d — ti)2 (22)

j=1

where U 15 the mean of{d,j = 1, ..., 21tI+ 1}. If k=k1+k2 < T,,, we add the index k = (k1 + k2) to the candidate set
Q. Threshold T, controls the matching criterion. Repeat the above process by shifting the line-mask 1 pixel inward
alternately in opposite direction; that is, one of k1 or k2 is decreased by 1 at one iteration.

To determine the correct edge orientation, we check all the items in the candidate set Q. If Q is an empty set,
it means that no significant edge orientation presents. Otherwise, for a. horizontally dominant edge, we create an
orientation vector 5k(.r, y) = (k, 1) for each element in Q. Similarly, vector 5k(x, y) (1, k) is created for a vertically
dominant edge. Ideally, the orientation vector should he perpendicular to the gradient vector at an edge; that is. their
inner product. should be zero. However, this criterion is too strict and thus is not suitable for natural images. Instead
we choose the orientation vector that. achieves the minimum inner product as shown below:

I 5A(xy) ?(x,y)s(:, y) = argmin . . (23)
kEQ I. Iok(,c, y)I g(x, )I

Based on this expression, the search range can be narrowed down to reduce computation hy estimating an initial
orientation vector that has inner product near zero.
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Figure 8: 'Chinese Character 4x interpolated. (a) hilinear; (h) cuhic spline; (c) adaptive fuzzy inference

3.3. Sharply curved edge interpolation
After determining the orientation vector for a detected edge, we then synthesize the interpolated pixels along

the orientation vector to replace the ones generated hy the fuzzy-inference method. Here, we simply use hilinear
interpolation to modify the interpolated pixels around a given pixel P(r, y). Because the gradient along the edge
orientation is small, hilinear interpolation does not introduce noticeable hlurring. For a horizontally dominant edge,
according to (23) its orientation vector is (s(r, q). 1). The interpolated pixels are then modified to

A 1 s(r,y) s(x,q)
p(x.y+ -i = [p(x+ 2

A,y)+p(x— 2 A,y+zX)]; (24)

A 1 .s(x y)+l ________
p(x+--.y+ --)= [p(x-f- 2 A,y)+p(x— Ay+A)J, (25)

where p(x, y) on the right-hand side of the ahove equations represents the interpolated pixels using the fuzzy inference
interpolation. Figure 7 illustrates the pixel locations' used in (24) and(25) for a zooming factor of 2. The upper portion
is an example that s(x, y) is even, and the lower portion is odd. Similar process is used for a vertically dominant edge.
This interpolation process can he extended to higher zooming factors.
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Figure 9: Lena", 4x interpolated. (a') bilinear; (b) cubic spline; (c) adaptive fuzzy inference

4. EXPERIMENTAL RESULTS
Several types of images have been tested using the proposed spatially adaptive fuzzy interpolator combined with

the edge—shifted matching techni(jue. Digital images can roughly be clivi(led into two categories: i) images synthesized
by computers, and 2) natural images captured by camera. For computer synthesized images. the edge intensity can be
discontinuous and free from edge shadowing effect. On the other hand, edges in most natural images have shadowing
effect.

The interpolated (Ihinese Character' (originally bi-level ) Lena and 'aliased Pepper (subsampled without
pre-filtermg) images with a 4x zooming factors using (a) bilinear interpolation; (b) cubic spline interpolation with
a — —0.5; and (c) adaptive fuzzy method (c — —0.16, d = 0.2) combined with edge—shifteci matching technique
(M = 2, : 5 T9 :: 4Q, _ 5000) are shown in Figs. 8—10. It can he observed that jaggedness and blurring on the
sharp e(Iges are clearly visible in the cases of bilinear and cubic spline interpolation. These subjective artifacts are
greatly reduced in the fuzzy-interpolated images.

5. CONCLUSIONS
The ordinary image interpolators often try to preserve faithfully the frequency spectrum of the subsampled images.

Hence, the interpolated images lack high frequency components and appear blurred. In addition, their interpolation
process is often broken into two independent sub-processes: one along horizontal axis and the other vertical axis. The
resultant off-axis edges are thus jagged. There are two major contributions in this paper. The first one is the fuzzy-
inference based method that includes image diagonal correlation and matches image local characteristics. Therefore, it
can preserve the high-contrast edges. However, like most small-size local edge detectors which fail to correctly identify
the orientation of sharply curved edges, the fuzzy-inference interpolation does not work well 011 the sharply curved
edges. Our second contribution is to develop an edge-shifted matching technique that identifies the correct orientation
of sharply curved edges and performs interpolation along these edges properly. Combining these two techniques, we
can improve the interpolated image subjective quality dramatically because the most evident improvement comes from
the high-contrast edges that are most sensitive to our eyes.
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Figure 10: "Aliased Pepper" , 4x interpolated. (a) bilinear; (b) cubic spline; (c) adaptive fuzzy inference
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