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We study interface erosion processes: catalytic erosions. We present two cases. (1) The erosion of a
completely occupied lattice by one single moving particle starting from somewhere inside the lattice,
considering deterministic as well as probabilistic erosion rules. In the latter case, the eroded regions ap-
pear to have interfaces with continuously tunable fractal dimensions. (2) The kinetic roughening of an
initially flat surface, where ballistic or diffusion-limited particles, which remain intact themselves, erode
the surface coming from the outside, using the same erosion rules as in (1). Many features resembling
realistic interfaces, for example, islands and inlets, are generated. The dependence of the surface width
on the system size is due to both the erosion mechanism and the way particles move before reaching the

surface.

PACS number(s): 82.20.Wt, 05.40.+j

I. INTRODUCTION

Surface growth and erosion have been modeled by
diffusion-limited processes [1], since diffusion-limited ag-
gregation was first proposed as a model for dendrite
growth in solidification [2]. In all of these processes, the
incoming particle moves as a random walker until it
reaches the surface. For the case of aggregation, the par-
ticle sticks to the aggregate and becomes a part of it. For
the case of diffusion-limited erosion, as first discussed by
Krug and Meakin, the moving particle annihilates with
the surface particle it encounters and the surface site is
eroded [3]. In a three-dimensional model, Nagatani [4]
studied numerically the pitting corrosion of metal sur-
faces by diffusion-limited motion of particles causing
depassivation and corrosion of the surface. The scaling
behavior of the pit-size distribution of the corrosion pat-
terns was obtained. In all diffusion-limited cases, the
moving velocity of the surface is proportional to the gra-
dient of a Laplacian field [S]. The relaxation of surface
fluctuations can thus be treated by a linear analysis based
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on the Laplacian field [6]. In a more complicated model,
Meakin, Jgssang and Feder [7] simulated pitting corro-
sion in a two-dimensional model where the corrosion is
controlled by the diffusion of moving corrosive sites as
well as by the passivation and depassivation of surface
sites. The pit growth and the scaling behavior of the cor-
rosion current were given. Although these corrosion
models have similarities with those considered in this pa-
per, the problem they address and the results they yield
are quite different. This seems to be related to the more
chemical nature of the corrosion problem as compared to
the more physical nature of the erosion problem con-
sidered here, so that models with different features are
employed for the two problems.

In this paper, we study an alternative mechanism of
surface erosion—catalytic erosion, where unlike the sur-
face erosion in the previous models, the eroding particle
moves through the solid over potentially extended dis-
tances, until it reemerges and is eliminated. Consider a
square lattice with each lattice site assigned not only a
permanent (probabilistic or deterministic) scattering rule,
but also an “erodable property,” which is removed (erod-
ed) by the visit of a moving (eroding) particle. The trajec-
tory of the particle is exclusively determined by the
scattering rule at each lattice site independent of whether
the site is or has been visited (eroded) or not. Thus, the
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sites can be classified into two kinds: not visited or occu-
pied and visited or empty. Occupied and empty sites are
separated spatially into two phases with an interface in
between, which we call solid and liquid phases, respec-
tively, for convenience. The erosion process is taking
place by a ‘“‘catalytic particle” starting in the liquid re-
gion; when the particle hits an occupied site in the solid
region, this site becomes empty, i.e., part of the liquid. In
other words, the liquid region grows at the expense of the
solid region. We use this to model the erosion at the in-
terface between two physically or chemically different
phases. The eroding particles are called catalytic because
they mediate the erosion of the solid while remaining in-
tact themselves and behave, therefore, like catalysts till
they return to the liquid. Alternatively, one can consider
this a model for the damage done by a moving particle to
a surface. A possible example of an “erodable” property
is the occupation of a lattice site by a particle, which is
eliminated when the moving particle hits the lattice site,
i.e., creates an empty site.

The dynamic rules we use for catalytic particles to
move are either those of a biased random walk or a deter-
ministic rule, to be specified below. We first discuss the
biased random walk. In that case, in each step, the prob-
ability for the particle to move from its present site to an
occupied neighbor is smaller than the probability of mov-
ing to an empty neighbor. Thus, we introduce a bias be-
tween motion to occupied or empty neighbors from the
current position of the particle. As the simplest case, we
start one single particle from a chosen position in a com-
pletely occupied lattice, i.e., a solid. Then a wide variety
of interfaces between the eroded and not (yet) eroded part
of the lattice can be generated by tuning the bias, so that
a tunable fractal dimension of the surface of the eroded
region, i.e., of the liquid, can be obtained. We applied
this same rule also to study the erosion of an initially flat
surface, where the particles are launched one by one from
a large distance above it.

The two dynamical rules both imply that when the par-
ticle coming from the liquid hits the solid, it feels a resis-
tance of the solid and can only penetrate into it within a
certain depth. Thus, the catalytic particle will eventually
move back to the liquid, leaving a number of solid sites
eroded. We eliminate the particle after it returns to the
liquid and start another one and so on. In the 1+1 flat
surface case that we will consider in this paper, it is found
that the surface eroded in this way is qualitatively
different from that in Krug and Meakin. Many islands
and inlets formed along the surface and the surface ap-
pears to be rougher than that of Krug and Meakin for
small system sizes as discussed below. Furthermore, as
we increase the initial surface length, the surface rough-
ness approaches a finite saturation value, in contrast to
the case of Krug and Meakin where the surface fluctua-
tions diverge as the square root of the logarithm of the
system size. As in Krug and Meakin, our catalytic parti-
cle moves like an unbiased random walker before it hits
the surface, so that the present phenomenon is due to the
dynamics of the erosion process, rather than to the way
the particles approach the surface.

In order to study the effect on the erosion process of
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the way the particles approach the surface, we also con-
sider ballistic erosion processes, where an incoming parti-
cle moves in a straight line with a random direction be-
fore hitting the first occupied lattice site. After that, the
particle moves as a biased random walker and erodes the
sites along its path just like in the diffusion-limited pro-
cesses described above. We can vary the range of the
random angles of the straight line along which the parti-
cle moves. As expected, the appearances of the surfaces
generated by various ranges are quite different from one
another. For very wide ranges, when the particle can hit
the solid with almost any angle, the surfaces look like the
ones obtained in the diffusion-limited process. For nar-
row ranges where the particles come in almost parallel to
each other, the surfaces generated have sharp
stalagmite-like spikes, which are absent in all other mod-
els considered here. However, interestingly, even for the
wide range angle cases where the surface appears to be
similar to the ones obtained in diffusion-limited process-
es, the surface width has a different asymptotic behavior
than that in diffusion-limited processes when the system
size goes to infinity. Thus, it becomes clear that the na-
ture of the eroded surfaces are determined by both the
erosion mechanism and the way the particles move before
reaching the surfaces.

In Sec. II, we present our results for the erosion done
by a single particle starting inside a completely occupied
lattice. Next, in Sec. III, we discuss the roughening of a
flat one dimensional interface by particles from the out-
side moving according to a biased random walk. We con-
sider in particular the dependence of the surface height
fluctuations on time and system size and also compare
the results of a probabilistic erosion rule with those of a
deterministic rule. In Sec. IV, we consider the same ero-
sion problem as in Sec. III, if the particles approach the
surface ballistically rather than in a random walk. Final-
ly, in Sec. V, we discuss some possible reasons for the
various erosion results found in the preceding sections.
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FIG. 1. The growth of the eroded region by one single erod-
ing particle inside a solid can be described by two exponents a
and 3, defined by 4 ~1% and B ~t?, where A4 and B are the size
of the area and boundary of the region, respectively. The p
dependence of a and 8 on the bias p is shown here. For all p,
these two exponents obey a scaling law 2a—[=1 as predicted
in Ref. [8].
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FIG. 2. The p dependence of the asymptotic behavior of the
area A (t) is illustrated by plotting A4 against ¢ in log-log scales
for various p’s. Different slopes for different p’s are clearly seen.
When p goes from 0 to 1, the slope a goes from % to 1. The

data points have been shifted to avoid overlap. For ¢ > 1000 the
error bars (not shown) are within the data symbols.

Depending on the context, the terms “surface” and “in-
terface” will be used interchangeably.

II. INSIDE EROSION BY ONE SINGLE PARTICLE

A. Introduction

As a simple model for the catalytic erosion process, we
define a biased random walk as follows. Consider a parti-
cle on a square lattice moving at every time step from its
present site to one of its nearest neighbors. As discussed
in the Introduction, the lattice sites are classified into two
kinds: occupied and empty. We assign a probability p for
the particle to move to a nearest occupied neighbor site.
Then, assuming that there are n occupied neighbors
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around the current position of the particle, the probabili-
ty for the particle to move to any of the other 4—n empty
neighbors is (1—np)/(4—n), so that the total probability
to move is one. After the particle moves, the site at the
new particle position is considered as empty or eroded no
matter whether it was empty or occupied before the
move. Then the particle makes the next move with a
probability based on the nature of its new neighbors and
so on. We choose p always smaller than %, so that the
particle is more likely to move to an empty site than to an
occupied site. The difference between 1 and p measures
the bias. When p =, we have an unbiased random walk.
This biased random walk can be interpreted directly as
an erosion process if we identify the transformation of oc-
cupied sites to empty sites as the process through which
matter (occupied sites) becomes eroded (empty sites) by
the particle.

B. Erosion from the inside

Here, we consider the case that the particle starts from
somewhere inside a perfectly occupied lattice. Then
empty sites are defined as those sites that have been visit-
ed by the particle in its walk through the lattice. For
each p, we measure the time step ¢ dependence of the area
A and boundary B of the eroded (empty) region, where A
is defined as the number of eroded sites, and B as the
number of sites on the interface, i.e., the sites in A4 that
have at least one occupied nearest neighbor. In general,
we found

A(t)~14P) B (1)~tBP) | (1)

where a(p) and B(p) are the asymptotic critical ex-
ponents. Interestingly, there appears to be a continuous,
i.e., tunable p dependence of a and B. Moreover, a and 8
are related for all p by the equation 2a—pB=1, which is

FIG. 3. Typical single parti-
cle trajectories for various p’s
- are shown; as p decreases, they
become more and more compact
and the fractal dimension of the
boundary of the trajectories ap-
proaches 1 when p approaches 0.
All the trajectories have 2'* time
steps.
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exactly the same scaling relation derived before for the
growth of the liquid region in the deterministic Lorentz
lattice gas [8] described below, which can also be con-
sidered as an erosion process. However, in the biased
random walk, the fractal dimension of the boundary can
be tuned by adjusting p, while there is no such adjustable
parameter in the Lorentz lattice model. We plot a(p)
and B(p) as well as 2a—f in Fig. 1. Note that the dimen-
sion of the surface is 28/a, since B~ (V' 4 )?8/¢_ 1t is in
general larger than one, i.e., fractal. To illustrate the
dependence of the asymptotic behavior of 4 (¢) on ¢, we
plot both on a log-log scale in Fig. 2. The behavior of
B (t) looks similar to that of 4 (¢). A continuous varia-
tion of the slopes can clearly be seen. Six typical trajec-
tories of the particle in the solid for different p are shown
in Fig. 3. As expected, the trajectory becomes more and
more compact as p is reduced from 1. In the extreme
cases, the trajectory is like a circular disk for p <0.05, or
has a loose random-walk-like shape for p >0.20. Equa-
tion (1) differs from the usual result that the asymptotic
exponents have a set of discrete values and do not change
continuously. Here, by varying a single parameter p, we
can generate eroded regions with extremely diversified
fractal properties, at least for the up to a million time
steps we considered. This suggests that many more real-
istic and complicated erosion processes, deterministic or
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stochastic, can be approximated and simulated by this
model with an effective p. For example, the deterministic
Lorentz lattice gas model studied before [8] corresponds
effectively to p =~0.125. This is due to the fact that the
motion of the eroding particle will be determined by the
current configuration of occupied and empty sites in its
neighborhood. The response of the particle motion to the
various configurations can then be summarized, on aver-
age, by an effective resistance exercised by the occupied
side of the interface on the particle, which can be ex-
pressed by a particular value of the parameter p.

III. OUTSIDE ROUGHENING
BY DIFFUSION-LIMITED EROSION

A. Introduction and definition of model

Now we turn to the surface erosion of an initially flat
one dimensional interface by particles hitting the surface
from the outside and then carrying out the biased ran-
dom walk described above. We use the same strip
geometry as Krug and Meakin [3] [cf. Fig. 4(a)]. Let L be
the horizontal size of the system, i.e., the initial length of
the interface. At first, beneath the surface all sites are oc-
cupied (solid) and above the surface all sites are empty
(liquid). A particle is launched from a point in the liquid
far above the surface and moves in the liquid as a (nor-

: Definition 1 , : Definition 2
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FIG. 4. (a) The initial arrangement of the lattice in the case of flat surface roughening. Below the initially flat interface all the sites
are occupied (solid), above the interface empty (liquid). The horizontal size of the lattice is L, while the lattice extends to infinity in
the vertical directions. The eroding particles are launched far above the interface one by one. When hitting the wall, an incoming
eroding particle reenters from the opposite wall, a periodic boundary condition, as indicated in the figure. (b) Two definitions of sur-
face sites are illustrated. Black squares are the top of each column (definition 1). Gray squares are the sites that have at least one
empty neighbor (definition 2). Note that many overhangs are present in the catalytic erosion surfaces. The grid in the liquid region is

omitted for clarity.
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FIG. 5. Behavior of the surface width
&(L,T) as a function of reduced time T /L for a
fixed L. Starting from zero, £ saturates quickly
at T/L~=1 and begins to fluctuate around a
certain value, £(L). This particular example is
for a biased random walk with p =0.125,
L =1024. The saturation value 3.799 is indi-
cated by the dashed horizontal line.

e i
d i it | 1l ﬂ:
v mirta Ik “‘ “""l‘ [ IR I il 11 l R
A AT A S e

3.5 | i IR " '

3 F T Dependence of Surface Width for L=1024 -

Horizontal Dotted Line Indicates the Saturation Value
2'5 1 1 ] 1 1

0 0.5 1 1.5 2 2.5 3

T/L

mal) random walker on a square lattice according to the
biased probability rule. However, after the particle hits
the surface and erodes along its path, it feels the effective
repulsion caused by the bias coming from the solid (occu-
pied) neighbor sites. As a consequence, the particle can-
not penetrate into the solid indefinitely, since the proba-
bility to go into the solid is smaller than to come back to
the liquid. So, eventually the particle will leave the solid
and return to the liquid, where it is then eliminated and a
new particle is launched randomly from another remote
point above the liquid-solid interface. We impose period-
ic side boundary conditions to reduce boundary effects
near the end points of the interface as much as possible.
So the particle reenters through the left-hand-side wall of
the strip if it exits through the right-hand-side wall of the
strip, and vice versa.

B. Surface height fluctuation

The surface height fluctuation is, in general, character-
ized by its width &, which is defined as the root mean
square deviation of the heights of the surface sites from
their average. We consider two kinds of definitions of the
surface sites, which we call 1 and 2. For 1, surface sites
are the highest occupied sites in each column. For 2, a
surface site is an occupied site that has at least one empty
nearest neighbor [Fig. 4(b)]. Let h; be the height of the
ith surface site, then £ is expressed by

3 k(D) —h (D)2 |7

&L, D)= =1 ,

(2)

where 4, is the arithmetic mean of /,’s and the sums are
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140 .
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FIG. 6. Typical surfaces after
saturation of &(L,T) for the
Lorentz gas, biased random-
walk model and Krug-Meakin
model are shown. Many islands
and inlets are seen in the first
two cases, while they are absent
in the third. However, the func-
tion £(L) has a different asymp-
totic behavior even for the first
two models (see text).
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carried out over all surface sites either according to
definition 1 or definition 2. It is convenient [1] to replace
the actual “running” time ¢ of the erosion process by
another quantity 7, the decrease of A due to erosion since
the beginning of the process. For large ¢,T is roughly
proportional to the total number of the particles
launched so far. Obviously, £ is a function of L and 7. It
is found numerically that for both surface definitions and
for all L, &(L,T) approaches a saturation value, around
which it fluctuates, as T /L >>1. The fluctuations around
the saturation value are smaller for larger L, since £ is a
summation over all the surface sites and the statistical er-
ror reduces as the number of surface sites increases. One
typical behavior of the approach of £ to its saturation
value is plotted in Fig. 5. In the following, we will use
E(L) to denote V/ (&AL, 1)), =V ([h(0)—h,*),,
where the average is carried out over many T'’s, i.e., over
many interfaces, after saturation has been reached. 4 (0)
simply means the height of the column at position O,
which in view of the periodic boundary conditions, could
be any position from O to L. In Fig. 6, we show a typical
saturated surface generated by this process, together with
that for the Krug-Meakin’s process [3], where the incom-
ing particles erode only the very first solid sites they hit,
as well as that for the Lorentz gas model discussed below.
It is seen that many new features show up in the surface
properties when compared with those obtained by Krug
and Meakin. For example, there are many ‘“islands” and
“inlets,” not present before, caused by the eating away of
the solid by the particle. In fact, it seems that the present
erosion mechanism is able to generate many features that
also exist in real systems. The effect of the occurrence of
islands and inlets on £(L, T) can be studied by comparing
the &(L,T) obtained from the two different surface
definitions. In general, 1 gives a smaller §(L,T) than 2
does. This is so because 1 only takes into account the
effective surface when one looks from above down onto
the surface, so that all the vacancies below the highest
site in each column are blocked and the underlying sur-
face structure is ignored. However, 2 properly takes into
account all the solid sites that are exposed to the liquid
and thus includes all the islands and inlets. We note that
the order of magnitude for these two definitions in the
Krug-Meakin model as compared to ours is simply the
reverse. This is so because in the Krug-Meakin model
there are almost no vacancies below the highest sites in
each column and 2 only adds sites that are between adja-
cent highest sites when the height difference is more than
one (see Fig. 4).

C. Surface correlation functions

Now we discuss the properties of the surfaces quantita-
tively. Before doing this, we point out that, instead of
finite surfaces with periodic boundary conditions, the sys-
tems we really want to study are infinite surfaces free
from the unnatural constraints coming from the bound-
ary conditions. In light of this, we will first define a set of
correlation functions suitable for an ensemble of infinite
surfaces, which characterize the fluctuation properties of
the surfaces as a function of the erosion processes. Then
we will discuss how we approximate the correlation func-
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FIG. 7. The general behavior of £(L) for the biased random-
walk model with p not too close to 0 or % is found to be
&L)=C—D/V'L, where C and D depend on p. C—&(L) for
p =0.125 is shown here in log-log scale with C =4.02. A line

with slope — 1 is also shown.

tions of the infinite surfaces by computations on finite
surfaces with various system sizes L’s. It turns out that
for the infinite system the correlation functions are not
independent of each other, and only one of them is need-
ed to be determined in order to obtain all the others.

It is natural to consider three correlation functions,
E°(L), C*(r), and F*(r,L), to characterize the proper-
ties of the height fluctuations for an ensemble of infinite
surfaces. They are defined as follows:

(= (D) P=([h(O)—h, ")y,
C(r=([h0)—h (), (3)
F=(r,L)={[h(0)—h J[h(r~h 1) -

Here, ( ) means an average over many realizations
(many T’s in practice) of the surface after saturation is
reached. The subscript [L] indicates that the average is
over a segment of finite size L of the infinite surface and
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FIG. 8. The behavior of £(L) for the Lorentz gas model is
found to be £&(L)=CV log,o(L /a), where C and a are certain
constants. [£(L)]? is shown here for two definitions of the sur-
face sites. In definition 1 only the top of each column is includ-
ed, so that inlets are ignored. In definition 2 all the sites ex-
posed to the liquid are included so that a larger £(L) results.
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h; is the mean height of the columns in the segments.
We use the superscript o to emphasize that the
definitions refer to infinite surfaces, in contrast to the sur-
face width function £(L) defined for an ensemble of finite
surfaces with periodic boundary conditions. The argu-
ment of h refers to the horizontal position of the surface
sites. £*(L) and V' C*(r) are two different ways to
represent the magnitude of the vertical excursions of the
surface heights within the horizontal displacement of L,
while F*(r,L) measure the height correlation between
two points separated by a distance r = L within a segment
of size L of the infinite surface. [£*(L)]* and C*(r) are
expected to be monotonically increasing functions of L
and r, respectively, while F “(r,L) is a monotonically de-
creasing function of r. As stated before, all we need is
[£*(L)1% since the other two functions can be derived
from it in a simple way. First, it is easy to see that
C*(r)={2[E*(L)]*—F*(r,L)}. Note that the explicit L
dependence on the right-hand side of the above equation
is canceled, so C *(r) is a function of r only. Integrating
both sides of the equation and noting that
f0LF°°(r,L)dr =0, we have fgC“’(r)dr=2L[§°°(L)]2.
The integration is short hand for a discrete sum over the
interface. However, we do assume that all the functions
are sufficiently smooth, since they are ensemble averages,
that they can be differentiated. Thus, C*(L) and
F*(r,L) can be expressed in terms of [£°(L)]? through

Co(L)=2[E>(L)P+L{[E™()]*})),
4)
F>(r,L)=[£°(L)P—[E°(N—r{[E>(N]*}’,

where the primes mean differentiations with respect to
the indicated arguments. Note that the correlation be-
tween the heights of the surface sites 7 lattice spaces apart
are measured by the correlation function C*(7). The
smaller C*(r) is for a given r, the more the heights are
correlated. The asymptotic behavior of C *(r) character-

izes, therefore, the long-range height correlations of the
surface. In this paper, we will give only the results for
&(L), which is an approximation to £*(L). One can easi-
ly see from Eq. (4) that C® and £? share the same
asymptotic behavior.

Needless to say, we are not able to compute the corre-
lation functions of the infinite surfaces. Therefore, we
proceed by making the crucial assumption that £*(L) is
well approximated by &(L), as computed from an ensem-
ble of surfaces of size L with periodic boundary condi-
tions. This assumption is justified since £*(L) measures
the mean deviation of surface heights of all columns from
0 to L, so that the effect of the boundary conditions
should concentrate for sufficiently large L near O and L
and have a small influence on £(L). Thus, while C*(r)
and F “(r,L) can be rigorously obtained only from £*(L)
by Eq. (4), they can be obtained approximately from &(L)
which can be actually determined in practice.

In the following, we will therefore only study the
behavior of £(L). For a biased random walk it is found
that £(L) itself approaches a constant value as L goes to
infinity, where the difference with that constant decreases
as L~ !/2 (see Fig. 7). So the surface is asymptotically
very smooth. Only the results for p =0.125 are shown
here, but we found that as long as p is not too close to
0.25 or O, there are no qualitative differences. Even
though the surface width £ depends on the system size L
in a nontrivial way, the fractal dimension of the surface,
as measured by the standard € method [9], remains one
for all T. In other words, the eroded surface is not frac-
tal. This holds, in fact, for all the cases considered in this

paper.
D. Lorentz lattice gas model

Finally, for a comparison, we also consider a more
complicated deterministic mechanism of erosion than
that considered by Krug and Meakin: the Lorentz lattice
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FIG. 9. A snapshot of the
surface of a ballistic erosion pro-
cess with perfectly parallel in-
coming particles (w=0) at some
T. The surface width &(T,L)
will eventually diverge with T
because of the lack of correla-
tions between remote columns.
Large peaks are seen in this case
only.
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1750 Random Ballistic Process with L=256
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FIG. 10. Typical surfaces
after saturation of &(L) for a
random ballistic process with
various ranges w of the angles of
the incoming particles. The sur-
4 faces become smoother with in-

w=02r creasing .

0 50 100 150

gas with flipping rotators of two types [8]. In this case,
the particle moves inside a lattice whose sites scatter the
particle according to a deterministic scattering rule: that
of right or left rotators, which rotate, after collision, the
velocity of the moving eroding particle either to the right
or to the left, respectively. After a scattering, the type of
a rotator flips to the other one, i.e., left to right and right
to left. As shown in the previous paper [8], the particle
can then destroy an initially periodic array of right and
left rotators (a solid) and make it into a completely ran-
dom distribution of right and left rotators (a liquid).
Moreover, the particle motion in such a self-generated
random configuration of rotators is very similar to a ran-
dom walk. So we can replace the liquid by a random dis-
tribution of right and left rotators and the solid by a
periodic array of rotators initially. In practice, we use
the array composed of a 3 X3 basic cell, which has four
right rotators in the upper left 2 X2 block and five left ro-
tators in the rest of the cell. However, our result does not
depend on the choice of the initial array for the solid, as
long as the array can be completely randomized by the
moving particle (cf. [8]). Independent of its rotator orien-
tation, each site can be either occupied or empty. Similar
to the case of the biased random walk considered above,
initially we assign all the sites in the solid phase to be oc-
cupied and in the liquid phase to be empty. Then, we
launch the particle in the liquid region far above the in-
terface and let it move deterministically. After reaching
the liquid-solid interface, the particle erodes all the occu-
pied sites along its path, i.e., makes them empty and flips
the orientations of the rotators associated with them. It
was shown before [8] that the particle cannot penetrate
into the solid too deeply. So, like the biased random
walk, the particle will eventually return to the liquid after
eroding several solid sites. Then, we eliminate it and
start another particle from a remote point in the liquid.
The surface generated this way is shown in Fig. 6. It

200 250

looks rather similar to the one generated by the biased
random walk. However, it turns out that the surface
fluctuations have a different asymptotic behavior. For
the (deterministic) flipping rotator model, £(L) is propor-
tional to V/logo(L/a) just like in the (deterministic)
Krug-Meakin process [3], where a is a characteristic
short-range cutoff length of the order of the lattice con-
stant (see Fig. 8), while for the biased random walk &£(L)
approached a constant.

IV. OUTSIDE EROSION BY BALLISTIC EROSION

A. Introduction and definition of model

Let us now turn to the case of the biased random-walk
erosion process, when particles hit the surface ballistical-

E(L)-33

slope = 1/2

0.1 ! !
10 100 1000 10000
L

FIG. 11. The general behavior of the surface width £(L) for a
random ballistic process is & L)=C +DV'L, where C,D depend
on p. For p=0.125, §(L)—C is plotted against L on a log-log
scale for o=, for which C=3.3. A line with slope % is also
shown.
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TABLE 1. Here we list the behavior of all the models «f surface roughening considered in this paper.
&(L) is the surface width, after saturation has been reachied. C,D, and a are constants whose values de-
pend on the specific models. In the case of random ballistic erosion with «=0, £(L) cannot be defined
because (L, T) diverges with T. One can see clearly that both the erosion mechanism (biased random
walk, Lorentz lattice gas or Krug-Meakin) and the way the particles approach the surface (diffusion
limited or ballistic) are important to determine the behavior of the surface width.

Model

Behavior of &(L)

Diffusion limited, biased random walk
Diffusion limited, Lorentz lattice gas
Krug-Meakin

Ballistic, biased random walk with ©>0
Ballistic, biased random walk with =0

C—DL™1'?
C[IOElo(L/a)]l/z
Cllog,o(L /a)]'”?
C+DL”2__
EL,T)~VT as T—

ly. As stated before, the incoming particles move then
from far above a flat liquid-solid interface along straight
lines with random directions towards the surface. We
consider the cases where the angles of the directions are
uniformly distributed in an interval from —7/2+w/2 to
—m/2—w/2. Here, we choose the axes such that the in-
terface is initially along the horizontal x axis and the sites
with y <0 are occupied while those with y >0 are not.
Therefore, —m /2 is in the direction of the erosion pro-
cess and w measures the range of the random directions.
As before, we launch the particles from uniformly distri-
buted random horizontal positions. We shall first consid-
er two extreme cases ® =0 and 7.

B. =0

In the first case =0, the particles all drop down verti-
cally. We find broad based, vertically thinning, stalag-
mitelike peaks, which differ from the thinner peaks and
elevations of the previous models (see Fig. 9), where they
would have been hit most and, consequently, eroded
away in the diffusion-limited process. Moreover, it is
found that the surface width £(L,T) does not saturate at
a finite value when T goes to infinity, as in all the cases
discussed before; instead, £&(L, T)~V'T as T— oo.

This can be understood as follows. When »=0, the
horizontal positions where the particles touch the surface
for the first time, are independent of the current shape of
the surface because the x coordinates of the incoming
particles remain the same before hitting the surface. If
we further simplify the process so that the particles erode
only the first site they hit, then the variation of the
heights of the columns become independent of each oth-
er. Since we launch the particles with random x coordi-
nates initially, the heights eroded for all the columns
should then form a binomial distribution, with a mean
equal to T. It is clear then that in this simplified example
the mean deviation is proportional to V' T, characteristic
for binomial distributions. The fact that the same V'T
behavior is also observed in the biased random walk with
.©=0 means that the coupling among the columns due to
the horizontal motion of the particles after hitting the
surface is not strong enough to establish long-range
correlations between the surface heights to keep &(L,T)
bounded for all 7.

C. o=

For the second extreme case w =1, the particles move
in straight lines with arbitrary directions before hitting
the surface. We found that the surface eroded in this way
is very similar to those obtained in the diffusion-limited
processes (see Fig. 10), when the particles move as ran-
dom walkers before hitting the surface. In both cases, a
sharp or outstanding portion of the surface is not likely
to last long, since it will be hit most often and erode away
soon. So the resulting surface is relatively smooth com-
pared with the ® =0 case.

D. O<o<mw

We can vary the appearance of the surfaces continu-
ously between these two extremes by changing o from 7
to 0. Larger and larger ‘“stalagmites” emerge when we
decrease w. Interestingly, however, we found that &(L, T)
always approaches a finite saturation value (L) as long
as w is not strictly zero. In other words, the long-range
correlations among the heights of the columns remain as
long as the horizontal positions where the particles hit
depend on the current shape of the surface, which is
clearly true for all @ > 0. This is crucial since the mecha-
nism to eliminate sharp portions of the surface is present
for all o > 0, however weak it might be. Furthermore, for
all >0, the surface width &£(L) exhibits the same
behavior: &(L)=C+DV'L. Here C,D are constants
that depend on w (see Fig. 11). Thus, §(L) in the random
ballistic model grows faster than in all the diffusion limit-
ed models considered before. In other words, the random
ballistic trajectories do not eliminate the sharpness of the
surface as effectively as the random walks.

V. SUMMARY AND DISCUSSION

From the above observations, we found that the sur-
face appearance and the asymptotic behavior of its width,
which are summarized in Table I, are two independent
properties of interface erosion processes. Unlike the La-
placian field cases, the erosion mechanism discussed here
is in principle difficult to treat analytically. This is main-
ly because the particles move around the surface eroding
sites, after they reach the surface. Thus, the velocity with
which the surface moves is not simply determined by the
gradient of the Laplacian field, which gives the probabili-
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ty to hit a surface position for the first time only. The
fact that the surface height fluctuations generated by the
diffusion-limited biased random-walk approach a con-
stant means that there is a strong correlation among the
heights of remote columns. We associate this long-range
correlation with two mechanisms. First, the particles
have the tendency to wander horizontally along the sur-
face since the motion in the vertical direction is confined
by the resistance from the solid. Thus, the positions of
the sites that will be eroded are not very dependent on
where the eroding particle first touches the surface and
different portions of the surface move with more uniform
probabilities, as in the Eden model [1]. Second, for a
biased random walk, the particle can penetrate deeper
when it hits a tip than when it hits a valley, again because
the valley is surrounded by denser solid sites than the tip
is. Thus, tips are going down faster than valleys. This
has the effect of shrinking the surface fluctuations. We
have confirmed this difference in the penetration depth
numerically. Although these two effects certainly con-
tribute to the strong height correlations found in an erod-
ed interface, one should note that the same arguments
can be made in the case of the flipping rotator model,
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which exhibits a logarithmically divergent surface fluc-
tuation. In addition, also in the ballistic erosion process
the eroding particles move as biased random walkers
after they touch the surface for the first time and feel,
therefore, the solid resistance, yet different asymptotic
behaviors of the surface widths for the Lorentz gas and
the ballistic models result. This shows that the interplay
of the dynamics of the particle motion before reaching
the surface and the erosion mechanism at the surface it-
self are both important in the determination of the sur-
face properties. We have not yet been able to disentangle
fully this complicated interplay between the erosion
effects of the particle motions above and at the surface.
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