Knowl Inf Syst (2011) 28:495-522
DOI 10.1007/s10115-010-0330-z

REGULAR PAPER

Fast and memory efficient mining of high-utility itemsets
from data streams: with and without negative item profits

Hua-Fu Li - Hsin-Yun Huang - Suh-Yin Lee

Received: 29 November 2009 / Revised: 11 May 2010 / Accepted: 9 July 2010 /
Published online: 24 July 2010
© Springer-Verlag London Limited 2010

Abstract Mining utility itemsets from data steams is one of the most interesting research
issues in data mining and knowledge discovery. In this paper, two efficient sliding win-
dow-based algorithms, MHUI-BIT (Mining High-Utility Itemsets based on BITvector) and
MHUI-TID (Mining High-Utility Itemsets based on TIDlist), are proposed for mining
high-utility itemsets from data streams. Based on the sliding window-based framework of
the proposed approaches, two effective representations of item information, Bitvector and
TIDlist, and a lexicographical tree-based summary data structure, LexTree-2HTU, are devel-
oped to improve the efficiency of discovering high-utility itemsets with positive profits from
data streams. Experimental results show that the proposed algorithms outperform than the
existing approaches for discovering high-utility itemsets from data streams over sliding win-
dows. Beside, we also propose the adapted approaches of algorithms MHUI-BIT and MHUI-
TID in order to handle the case when we are interested in mining utility itemsets with negative
item profits. Experiments show that the variants of algorithms MHUI-BIT and MHUI-TID
are efficient approaches for mining high-utility itemsets with negative item profits over stream
transaction-sensitive sliding windows.

Keywords Data mining - Data streams - Utility mining - High-utility itemsets -
Utility itemset with positive item profits - Utility itemset with negative item profits

H.-F. Li (X)
Department of Information Management, Kainan University, Taoyuan, Taiwan
e-mail: hfli@mail knu.edu.tw; lihuafu @gmail.com

H.-Y. Huang - S.-Y. Lee

Department of Computer Science, National Chiao-Tung University,
Hsinchu, Taiwan

e-mail: caroline27215@gmail.com

S.-Y. Lee
e-mail: sylee@cs.nctu.edu.tw

@ Springer

496 H.-F. Li et al.

1 Introduction

In recent years, database and knowledge discovery communities have focused on mining
frequent patterns from data streams. A data stream is an infinite sequence of data elements
continuously arrived at a rapid rate. Many real-world applications generate data streams in
real time such as online transaction flows from a large e-commence site, sensor data gener-
ated from sensor networks, call record flows from telecommunication company, Web record
and click-streams in Web applications, performance measurement in network monitoring and
traffic management, etc.

Based on the unique characteristics of data streams, methods for mining such streaming
data and for mining traditional datasets are different in following aspects [10,26]. First, data
elements of data streams continuously arrive in a rapid rate and the amount of data is huge.
That means that the first requirement of proposed algorithms for mining data streams is
real time. Second, once a data element is removed from the main memory, it is unable to
backtrack over previously arrived data elements. Hence, the second requirement of stream
mining algorithms is one-pass scan of data streams. Third, the memory requirement of storing
all streaming data is unlimited because data stream is an infinite sequence of data element.
Therefore, the proposed stream mining algorithms use limited memory usage to record the
essential information about the unbounded data streams. Accordingly, the basic requirements
of stream mining algorithms are single-pass, bounded space, and real time. Consequently,
several efficient algorithms are proposed for mining various interesting patterns from data
streams in recent years [5-8,12,14-16,19,22,23].

Mining frequent itemsets from large databases has been widely studied over the last decade
[1-3,11,13,20,21]. However, traditional frequent itemsets mining model treats all items in a
large database by only considering whether an item appeared in a transaction or not. However,
the count of an itemset may be not a sufficient indicator of interestingness. Because of the
count of an itemset only reflects the number of transactions in a large database that contains
the itemset. It does not reveal the utility of an itemset. The utility can be measured in terms
of cost, profit or other expressions of user preferences. Furthermore, frequent itemsets may
only contribute a small portion of the overall profit, whereas non-frequent itemsets may con-
tribute a large portion of profit. Consequently, a new model of frequent itemsets mining, i.e.,
utility mining model [4], is proposed to address the limitation of traditional association rule
mining. Based on the utility mining model, utility is a measure of how useful or profitable an
itemset X is. For example, in the table of Fig. 1a, each transaction is composed of items with

TID Items with quantity (i:q)
T, (c:28), (e:1)

T, (b:6), (d:1)

Ts (a:12), (d:1)

Ts (b:1), (d:7)

Ts (c:12), (e:2)

Te (a:1), (b:4), (e:1)

T, (b:10), (e:1)

Ta (a:1), (b:1), (c:1), (d:3), (e:1) a 3

Item Profit (per unit)

Ty (a:2), (b:1), (c:27), (e:2) b 10
LET (b:8), (c:2) c 1
LET) (b:3), (d:2) d 6
T2 (b:2), {(c:1) e 5
A data stream is formed by transactions arriving in series
(a) An Example Data Stream (b) An Exampie utility Table

Fig. 1 An example data stream and an example utility table

@ Springer

Efficient mining of high-utility itemsets from data streams 497

quantity, such as, 71 = {(c : 26), (e : 1)}, and the utility (profit) of each item is listed in the
table of Fig. 1b. The utility of an itemset X, i.e., u(X), is the sum of the utilities of itemset
X in all the transactions containing X. An itemset X is called a high-utility itemset if and
only if u(X) > min_utility, where min_utility is a user-defined minimum utility threshold.
Otherwise, it is a low utility itemset. For example, u(bd) = u(bd, T>) + u(bd, Ts) + u(bd,
TR) =(10x64+6x1)+(10x1+6x7)+ (10 x14+6x3) =606+ 524 28 = 146.
The 2-itemset (bd) is considered as a high-utility itemset if the minimum utility threshold
min_utility is 120. Therefore, the goal of utility mining is to find a set of high-utility itemsets
from a large transaction database.

A utility itemset may consist of some low utility items. For example, u(d) = u(d, Tz) +
uld, 3)+u(d, Ty)+u(d,Tz) = (6x 1)+ (6 x 1)+ (6 xT7)+ (6 x3) = 72 < min_utility as
shown in Fig. 1. The 1-itemset (d) is a low utility itemset. However, its superset 2-itemset (bd)
is a high-utility itemset. That means if we use level-wise based algorithms (Apriori-based
searching schema) to discover high-utility itemsets, all combinational of the items must be
generated. The number of candidate is extremely large and the cost of computation time
and memory requirement will be intolerable. The challenge of mining utility itemsets is not
only in restricting the size of the generated candidate utility itemsets but also in simplify the
computation time of calculating the utility of itemsets [8].

In this paper, we explore the issue of efficient mining of high- utility itemsets from data
streams with and without negative profits. Hence, another challenge of utility mining from
data streams is how to discover high-utility itemsets from streaming data as time advances.
Two item information representations, i.e., Bitvector and TIDlist (transaction identifier list),
are used in the proposed algorithms, MHUI-BIT (Mining High Utility Itemsets based on
BITvector) and MHUI-TID (Mining High Utility Itemsets based on TIDlist), to improve the
performance of utility mining. Both item information representations can be used to generate
utility itemsets from current sliding window without rescanning the data streams. Further-
more, an effective summary data structure LexTree-2HTU is developed for maintaining a set
2-HTU (high transaction-weighted utilization)-itemsets from current transaction-sensitive
sliding window. Based on two item information representations and LexTree-2HTU, two
algorithms, MHUI-BIT and MHUI-TID, are proposed to mine a set of high-utility itemsets
with positive item profits from data streams efficiently and effectively. Besides, a new issue
of utility mining with negative item profits is addressed and two adapted approaches of
algorithms MHUI-BIT and MHUI-TID are developed to discover high-utility itemsets with
negative item profits from data streams.

1.1 Related works

Recently, mining high-utility itemsets from a large transaction database has become an active
research problem of data mining [9,17,18,24,25]. We describe briefly as follows. A formal
definition of utility mining, a theoretical model, called MEU, and a unified framework were
proposed by Yao et al. [24,25]. In this work, the utility is defined as the combination of util-
ity information in each transaction and additional resources. Since the model cannot use the
downward closure property to reduce the number of candidate itemsets, a heuristic approach
was proposed to predict whether an itemset should be added to the candidate set or not.
However, the prediction usually overestimates, especially at the beginning stages. Moreover,
the examination of candidates is impractical, either in processing cost or in memory require-
ment. An efficient utility mining algorithm, called Two-Phase, was proposed by Liu et al.
[18]. The basic idea of Two-Phase algorithm is based on the MEU. But Two-Phase algorithm
not only can prune down the number of candidate itemsets but also can find a complete

@ Springer

498 H.-F. Li et al.

set of high-utility itemsets. In first phase of Two-Phase algorithm, a useful property, i.e.,
transaction-weighted downward closure property, is used in the Two-Phase algorithm. The
size of candidates is reduced by considering the supersets of high transaction-weighted uti-
lization itemsets. In second phase, only one extra database scan is needed to filter out the
high transaction-weighted utilization itemsets that are indeed low utility itemsets. However,
Two-Phase algorithm is a two-pass algorithm for mining high-utility itemsets. It is not suit-
able for mining data streams. Li et al. [17] proposed an isolated items discarding strategy
(IIDS), which can be applied to existing level-wise utility mining methods to reduce candi-
dates and to improve performance of utility itemset mining. Recently, Chu et al. [9] proposed
efficient approach HUINIV-Mine for mining high- utility itemsets with negative item values
from large databases.

The applications of mining high-utility itemsets are changed from mining traditional data
sets to mining transactional data streams in recent years. Chu et al. [8] proposed the first
method, called THUI-Mine, for mining temporal high-utility itemsets over data streams. The
incremental mining process of THUI-Mine is based on algorithms Two-Phase [18] and SWF
[13]. In the framework of THUI-Mine algorithm, a database is divided into a sequence of
partitions. In the first scan of database, it employs a filtering threshold in each partition to
generate a progressive transaction-weighted utilization set of itemsets. Then, it uses database
reduction method to generate a set of candidate k-itemsets, where k > 2. Finally, it needs
one more scan over the database to find a set of high-utility itemsets from these candidate
k-itemsets. There are two performance problems of THUI-Mine algorithm: more false can-
didate itemsets and more memory requirement. Therefore, in this paper, we propose fast and
memory efficient algorithms, MHUI-BIT and MHUI-TID, for mining high-utility itemsets
with positive profits over data streams. Experimental results of this work show that the pro-
posed algorithms MHUI-BIT and MHUI-TID both outperform than THUI-Mine algorithm.

In addition, retail business companies may sale item with negative profit for the promotion
of new products. For example, customers may buy some specific products and then receive
free items or goods with special discounts. At this scenario, free items or goods with special
discounts result in negative item profits for business earnings. However, retail or e-commerce
companies may obtain higher market profits from other products that are cross-promoted with
these free items or goods with special discounts. As aresult, the problem of mining high-utility
itemsets with negative item profits has become too important not to address immediately.
Consequently, we also propose the adapted approaches of algorithms MHUI-BIT and MHUI-
TID in order to handle the case when we are interested in mining high-utility itemsets with
negative item profits. Experiments show that both variants of MHUI-BIT and MHUI-TID
are efficient data mining algorithm for discovering utility itemsets with negative profits from
data streams over sliding windows.

1.2 Our contributions

The contributions of this work are summarized as follows.

e We proposed two efficient algorithms, MHUI-BIT (Mining High Utility Itemsets based on
BITvector) and MHUI-TID (Mining High Utility Itemsets based on TIDlist), for mining
high- utility itemsets from data streams with and without negative profits.

e Two item information representations, i.e., Bitvector and TIDlist (transaction identifier
list), are used in the proposed methods to improve the performance of utility mining.
Both item information representations can be used to generate utility itemsets from cur-
rent sliding window without rescanning the data streams.

@ Springer

Efficient mining of high-utility itemsets from data streams 499

e An effective summary data structure LexTree-2HTU is developed for maintaining a set
2-HTU (high transaction-weighted utilization)-itemsets from current transaction-sensitive
sliding window.

e New research issue of utility mining with negative item profits is addressed and two
adapted algorithms MHUI-BIT-NIP (MHUI-BIT with Negative Item Profits) and MHUI-
TID-NIP (MHUI-TID with Negative Item Profits) are developed to discover high-utility
itemsets with negative item profits over continuous stream transaction-sensitive sliding
windows.

1.3 Roadmap

The remainder of this paper is organized as follows. Problem of mining high-utility itemsets
with and without negative item profits from data streams is defined in Sect. 2. The pro-
posed utility mining algorithms, MHUI-BIT and MHUI-TID, and the variants proposed for
utility mining with negative item profits are described in Sect. 3. Section 4 discusses the
experimental results of the proposed algorithms. Finally, we conclude the work in Sect. 5.

2 Preliminary

To facilitate the presentation of this paper, some preliminaries are given in this section. Prob-
lems of mining high-utility itemsets with and without negative item profits over data stream
sliding windows are defined in Sect. 2.1. An effective downward closure property used in
our proposed algorithms is described in Sect. 2.2.

2.1 Problem definition

Let I = {iy,i,...,0i,} be a set of n distinct literals called items. An itemset is a non-
empty set of items. An itemset X = (i, i2, ..., ig) with k items is referred to as k-itemset,
and the valuek is called the length of X, and i; € [for j = 1,...,n. A transaction
T = (TID, (i1, i2,...,ix)) consists of a transaction identifier (TID) and a set of items
(i1,12,..., i), whereij € I,j =1,2,..., k. A data stream DS = {T1, I, ..., T} is an
infinite sequence of transactions, where m is the TID of latest incoming transaction. The
transaction-sensitive sliding window (7ransSW) of DS is a window that slides forward for
every transaction. The window at each slide has a fixed number, w, of transactions, and w is the
size of the TransSW. Hence, current transaction-sensitive sliding window CurTransSW (or
TransSWys1pw+1) = [Tvaibw+1, INs1Dw+2, ---» Tn], where the index (NalDw + 1) is
the window identifier of current TransSW.

Example 1 A data stream DS, as shown in Fig. 1, is composed of four consecutive Trans-
SWs, i.e.,TransSW| = [Ty, Tp, ..., Tol, TransSWy = [T, T3, ..., Tio], TransSW3 =
[T5, Ty, ..., T11] and TransSW4 = [T4, Ts, . . ., T12], when the window size, i.e., w =9, is
given.

In the typical framework of frequent itemsets mining, the quantity of item purchased of
each transaction is 1 or 0. However, in the framework of high-utility itemset mining, the quan-
tity of item purchased is an arbitrary number. The quantity is called local transaction utility
(LTU). The LTU, denoted as o(i,, Ty), represents the quantity of item 7, in the transaction
T, . For example, o(a, T3) is 12 and o(c, T1) is 26 in Fig. 1.

@ Springer

500 H.-F. Lietal.

The external utility (EU), i.e., profit, of anitem i ,, denoted as u(iy) is the value associated
with item i), in the utility table. For example, u(a) = 3, u(b) = 10 and u(c) = 1. If the
external utility of an item i, is a positive value, i.e., u(iy) > 0, the item has positive item
profit. Otherwise, the itemi, has negative item profit, if u(ip) < 0.

The utility of an item i, in transaction 7, denoted as u(ip, Ty), is defined as o(ip,
T,) x u(iy). For example, the utility of item «a in transaction 73 is 36, ie., u(a, T3) =
o(a, T3) x u(a) = 12 % 3 = 36. The utility of an itemset X in transaction 7, denoted
as u(X, Tq), is defined as ZipeX u(ip, T,), where X = (i1, iz, ..., i) is a k-itemset and
X C T,. For example, the utility of 2-itemset (ce) in transaction 7 is 31, i.e., u(ce, T) =
u(c, Ty) +u(e, T1) =26 x 1 +1 x 5 = 31, and utility of 3-itemset (abe) in transaction Tg
is 48, i.e., u(abe, Ts) = u(a, Ts) + u(b, Tg) + u(e, Tg) = 1 x3+4 x 104+ 1 x 5 =48.

The utility of an itemset X in TransSW, denoted as u(X) = ZT epnxcr, WX, Ty),
is the sum of the utilities of X in all the transactions of TransSW contalnlng X asa subset
For example, the utility of 2-itemset (bd) in TransSWj is 146, i.e., u(bd) = u(bd, T>) +
u(bd, Ty) + u(bd, Tg) = 66 + 52 + 28 = 146, when the size of TransSW; is 9.

An itemset X is called a high-utility itemset if and only if u(X) > min_utility, where
min_utility is a user-defined minimum utility threshold. For example, 2-itemset (bd) is a
high-utility itemset in TransSW since u(bd) = 146 > min_utility if min_utility is 120 in
TransSW;.

Problem Definition Given a data stream DS, the size w of a transaction-sensitive sliding
window TransSW, a user-defined minimal utility threshold min_utility, the task of this paper
is to discover high-utility itemsets with and without negative item profits by one scan over
the transaction-sensitive sliding windows.

2.2 Transaction-weighted downward closure property (TWDC-property)

In the framework of Boolean frequent itemset mining algorithms [3,5-7,11-16,19-21],
downward closure property, i.e., if an itemset is frequent then all its subsets must be
frequent, is usually used to mine all frequent itemsets from a large database. However, the
downward closure property can not be used for mining high-utility itemsets. For example, the
utility of 1-itemset (d) in TransSWy is 72, i.e., u(d) = 72, in Fig. 1. It is a low utility itemset
but its superset 2-itemset (bd) is a high-utility itemset since u(bd) = 146 > min_utility if
min_utility is 120. Therefore, we need new properties to mine high-utility itemsets.

In this section, an effective property, called Transaction-Weighted Downward Closure

Property [8,9,17,18,24,25], is modified and used in our proposed algorithms to discover
high-utility itemsets with and without negative item profits from streaming transactions over
transaction-sensitive sliding windows.
Definition 1 (Transaction utility) Transaction utility of the transaction T, denoted as
tu(Ty), is the sum of the utilities of all items in T,. For example, tu(T1) = u(c, T1) +
u(e, Ty) = 26 x 1 + 1 x 5 = 31. Transaction utility of current sliding window Trans-
SW, denoted as tu(TransSW), is the sum of transaction utilizes of all transactions of current
transaction-sensitive sliding window.

For example, the transaction utility of each transaction in the example data stream DS
of Fig. 1 is given in Fig. 3. Table of Fig. 3 is called transaction utility table (TU-table) in
this paper. In this figure, we can find that tu(TransSWy) = 456, tu(TransSW,) = 487,
tu(TransSW3) = 463 and tu(TransSW4) = 442 based on Definition 1.

Definition 2 (Transaction-weighted utilization) Transaction-weighted utilization of an
itemset X, denoted as rwu(X), is the sum of the transaction utilities of all transactions

@ Springer

Efficient mining of high-utility itemsets from data streams 501

of current transaction-sensitive sliding window containing X as a subset. For example,
in TransSW, of Fig. 1, the transaction-weighted utilization of 2-itemset (bd) is 146, i.e.,
twu(bd) = tu(T) + tu(Ty) + tu(Tg) = 66 + 52 + 28 = 146.

Definition 3 (High transaction-weighted utilization itemset) An itemset X is called a
high transaction-weighted utilization itemset (HTU-itemset) if and only if rwu(X) >
min_utility, where min_utility is a user-defined minimum utility threshold. For example, if
min_utility is 120, the 2-itemset (bd) is a high transaction-weighted utilization itemset, i.e.,
2-HTU-itemset, since twu(bd) is 146 in TransSW of Fig. 1.

Property 1 (Transaction-Weighted Downward Closure Property) Let X be a k-itemset and Y
be a (k — 1)-itemset such that Y C X. If X is a high transaction-weighted utilization itemset,
Yis also a high transaction-weighted utilization itemset.

For example, let user-defined minimum utility threshold min_utility be 120 in TransSW
of Fig. 1, since the 3-itemset (abe) is a high transaction-weighted utilization itemset, its sub-
set, i.e., {(a), (b), (e), (ab), (ae), (be)}, is also a set of high transaction-weighted utilization
itemsets.

3 Efficient mining of high-utility itemsets from data streams: algorithms MHUI-BIT
and MHUI-TID

In this section, two efficient utility mining algorithms, called MHUI-BIT (Mining High
Utility Itemsets based on BITvector) and MHUI-TID (Mining High Utility Itemsets based
on TIDlist), are proposed to discover and maintain a set of high-utility itemsets with and
without negative item profits from data streams over transaction-sensitive sliding win-
dows. Algorithms MHUI-BIT and MHUI-TID are composed of two core components:
item information (discussed in Sect. 3.1) and a lexicographical tree-based summary data
structure based on item information (discussed in Sect. 3.2). Based on stream sliding
window-based framework [5-8,15,16,26], both utility mining algorithms are composed
of three phases, i.e., window initialization phase (discussed in Sect. 3.2), window slid-
ing phase (discussed in Sect. 3.3), and high-utility itemset generation phase (discussed in
Sect. 3.4).

3.1 Two effective item-information representations: bitvector and TIDlist

The first component of proposed algorithms is item-information, i.e., effective representa-
tions of items. Two effective representations of item information, i.e., Bitvector and TIDlist,
are developed and used in the proposed methods MHUI-BIT and MHUI-TID, respectively,
to restrict the number of candidates and to reduce the processing time and memory usage
needed. Item-information Bitvector and TIDlist are defined as follows.

Definition 4 (Bitvector) For each item x in the current transaction-sensitive sliding win-
dow TransSW, a bit-sequence with w bits, denoted as Bitvector(x), is constructed. The
construction process of Bitvector is described as follows. If the item x is in the i-th transac-
tion of current TransSW, the i-th bit of Bitvector(x) is set to be 1; Otherwise, the i-th bit of
Bitvector(x) is set to be 0.

Definition 5 (7TIDlist) For each item x in the current transaction-sensitive sliding window
TransSW, a sorted list with at least w values, denoted as TIDlist(x), is constructed. The con-

@ Springer

502 H.-F. Lietal.

Items | Bitvectors of TransSWi Bitvectors of TransSW»
a <001001011> <010010110>
b <010101111> <101011111>
c <100010011> <000100111>
d <011100010> <111000100>
e <100011111> <000111110>
(a) Bitvector representations of Items
Items | TIDlists of TransSW TIDlists of TransSW,
a {3,6,8,9}) {3,6,8,9}
b {2,4,6,7,8,9) {2,4,6,7,8,9, 10}
c {1,5,8,9} {5,8,9, 10}
d {2,3,4,8) {2,3,4,8}
e {1,5,6,7,8,9} {5,6,7,8,9}

(b) TIDlist representations of Items

Fig. 2 Item representations of Bitvectors and TIDlists in TransSWy and TransSW»

struction process of TIDlist is described as follows. If the item x is in the i-th transaction of
current TransSW, the value i is stored in the TIDlist(x).

For example, the representations of Bitvector and TIDlist of each item in TransSW; and
TransSW> are given in Fig. 2, respectively. From this figure, we can find that item (a) appears
in transactions 73, Tg, Tg, and Ty of TransSW;. Hence, the Bitvector of item (a), i.c.,
Bitvector(a), and the TIDlist of item (a), i.e., TIDlist(a), are <001001011> and {3, 6, 8,
9} in TransSW1, respectively. Furthermore, Bitvector(a) and TIDlist(a) within TransSW,
are <010010110> and {2, 5, 7, 8}, respectively. Note that the construction processes of
bitvector and TIDlist for each item of current transaction-sensitive sliding window are called
BITvector-Build and TIDlist-Build based on Definitions 4 and 5 and used in the proposed
algorithms MHUI-BIT and MHUI-TID, respectively.

Proposed algorithms are sliding window-based stream utility mining approaches. Hence,
they are composed of three phases: window initialization phase, window sliding phase, and
high -utility itemset generation phase, and described in following sections.

3.2 Window initialization phase of high-utility itemset mining of data streams

Based on the framework of sliding window-based pattern mining, first phase of the proposed
algorithms is window initialization phase. The phase is activated while the number of transac-
tions generated so far from data streams is less than or equal to a user-defined sliding window
size w. In this phase, item-information, i.e., Bitvector and TIDlist, and the proposed data struc-
ture, called LexTree-2HTU (Lexicographical Tree with 2-HTU-itemsets), are constructed
for high-utility itemset mining of data streams. LexTree-2HTU consists of two components:
item-information and a set of trees with prefixes p;, where item-information is bitvectors for
MHUI-BIT algorithm or TIDlists for MHUI-TID algorithm, prefix p; is an entry contained
in item-information. Building algorithm of LexTree-2HTU using item information Bitvector
structure, called LexTree-2HTU-Build-byBitvector, in window initialization phase is given
in Fig. 4. Furthermore, another building method of LexTree-2HTU using TIDlist structure,
called LexTree-2HTU-Build-byTIDlist, in window initialization phase is shown in Fig. 5.

@ Springer

Efficient mining of high-utility itemsets from data streams 503

TID Transaction Utility TID Transaction Utility
T, 31 T7 105
T, 66 Ts 37
T3 42 Ty 53
T4 52 To 62
Ts 22 T 42
Ts 48 T2 21

Fig. 3 TU-table (transaction utility table) contains transaction utilities of each transaction of the example
data streams as shown in Figure 1

Algorithm LexTree-2HTU-Build-byBitvector

Input: A user-defined minimum utility threshold min_utility and a transaction-sensitive sliding
window TransSWi;

Output: A generated LexTree-2HTU of TransSWi;

Method:

Begin

1. foreach transaction T; of TransSW do

2 perform BlTvector-Build on items of T; to construct Bitvectors of items;

3 perform TU-table-Build on T; to construct TU-table of TransSWha;

4. endfor

5. Hi = a list of 1-HTU-itemsets <hj, hy, ..., > generated by Bitvectors and TU-table;
6 foreach entry h; of H1 do

7 C2 = a set of candidate 2-itemsets with prefix ; generated from Hjy;

8 foreach entry ¢; of C2 do

9 Bitvector(c) = Bitvector (/) @ Bitvector(q); /* @ : bitwise AND operation */

10. calculate twu(ci) by accumulating transaction utilities of Bitvector(c;) with TU-table;
11. if twu(ci) > min_utility then

12. insert ¢; into LexTree-2HTU as a node with root I1;

13. else drop c; from Cy;

14. endif

15. endfor

16. endfor

End

Fig. 4 Algorithm LexTree-2HTU-Build-byBitVector of window initialization phase

While first transaction-sensitive sliding window TransSW; 1is full, the proposed
lexicographical tree-based summary data structure, called LexTree-2HTU (Lexicographical
Tree with 2-HTU-itemsets), based on discovered item information, Bitvectors of MHUI-BIT
and TIDlists of MHUI-TID, is constructed as follows. First, a set of high transaction-weighted
utilization 1-itemsets, i.e., 1-HTU-itemsets, of TransSW; is generated using item informa-
tion, Bitvecotor for MHUI-BIT algorithm but TIDlist for MHUI-TID algorithm, and the
transaction utility table (in Step 5). Then, a set of candidate 2-itemsets, i.e., C;, are gener-
ated by combining the set of 1-HTU-itemsets (in Step 7). As each candidate is generated,
its corresponding transaction-weighted utility is determined immediately using item-infor-
mation and the transaction utility table. If the computed transaction-weighted utilities of
candidate 2-itemsets are greater than or equal to the user-defined minimum utilitymin_util-
ity, these 2-HTU-itemsets are inserted into LexTree-2HTU as nodes (in Steps 8—15). Note
that in MHUI-TID algorithm, the TIDlist of a candidate k-itemset is generated by joining the
TIDlists of the two (k — 1)-itemsets, where k > 2 and the set of two (k — 1)-itemsets is a
subset of this k-itemset, whereas in MHUI-BIT algorithm, the Bitvector of the two (k — 1)-
itemsets is generated by performing bitwise AND operation on the Bitvectors of the two
(k — 1)-itemsets.

@ Springer

504 H.-F. Li et al.

Algorithm LexTree-2HTU-Build-byTIDlist

Input: A user-defined minimum utility threshold min_utility and a transaction-sensitive sliding
window TransSWi;

Output: A generated LexTree-2HTU of TransSWi;

Method:

Begin

1. foreach transaction T; of TransSW do

2 perform TIDlist-Build on items of T; to construct TIDlists of items;

3 perform TU-table-Build on T; to construct TU-table of TransSWha;

4. endfor

5. Hi = alist of 1-HTU-itemsets <hj, hy, ..., > generated by TIDlists and TU-table;

6 foreach entry h; of H1 do

7 C2 = a set of candidate 2-itemsets with prefix h; generated from Hy;

8 foreach entry ¢; of C2 do

9 TIDlist(c;) = Bitvector(l) ® Bitvector(g); /* ® : item intersecting operation */

10. calculate twu(ci) by accumulating transaction utilities of TIDlist(c;) with TU-table;
11. if twu(ci) > min_utility then

12. insert ¢; into LexTree-2HTU as a node with root ;;

13. else drop ¢i from Cy;

14. endif

15. endfor

16. endfor

End

Fig. 5 Algorithm LexTree-2HTU-Build-byTIDlist of window initialization phase

For example, the representations of Bitvector and TIDlist of Example 1 are given in Fig. 2,
and the table of transaction utility for each transaction within two transaction-sensitive slid-
ing windows, TransSW, and TransSW5, is shown in Fig. 3. Based on item information and
transaction utility table of Example 1, five 1-HTU-itemsets a, b, ¢, d and e in TransSW
are generated by the proposed methods when min_utility is 120. Afterward, four candidate
2-HTU-itemsets {ab, ac, ad, ae} with prefix (a) are generated from 1-HTU-item-
set a. In the bitvector framework of MHUI-BIT algorithm, the Bitvector(ab) in
TransSW1 is <000001011> and generated by performing bitwise-AND operation on Bit-
vector(a)=<001001011> and Bitvector(b)=<010101111>. In the TIDIist framework of
MHUI-TID algorithm, the TIDlist(ab) in TransSW; is {6, 8, 9} which is generated by
intersecting TIDlist(a)={3, 6, 8, 9} and TIDlist(b)={2, 4, 6, 7, 8, 9}. Next, the trans-
action-weighted utility of candidate 2-HTU-itemset ab, i.e., twu(ab), can be obtained by
summarizing the corresponding transaction utilities. Note that twu(ab)=tu(Ts) + tu(Tg)
+ tu(T9)=48 + 37 + 53 = 138 as given in the transaction utility table of Fig. 3.
Other three 2-candidates {ac, ad, ae} with prefix a are verified in the same way, where
twu(ac) = tu(Ty) + tu(Ty) = 90 < min_utility, twu(ad) = tu(T3) + tw(ly) = 79 <
min_utility and twu(ae) = tu(Te) + tu(Tg) + tu(To) = 138. Therefore, only two 2-HTU-
itemsets, (ab) and (ae), are maintained in the LexTree-2HTU with prefix a as shown in
Fig. 6. From this figure, we can see that two gray rectangles, (ac) and (ad), after util-
ity computing by proposed algorithms are not high transaction-weighted utility itemsets
and not maintained in the LexTree-2HTU. LexTree-2HTU with prefixes b, ¢, and d are
constructed using the same procedure is given in Fig. 7. Note that item e is the last
entry of item information. Therefore, no candidate 2-itemsets with prefix e are gener-
ated and tested in our proposed algorithms. As a result, in window initialization phase,
LexTree-2HTU of TransSW; for MHUI-BIT and MHUI-TID, respectively, is shown in
Fig. 8.

@ Springer

Efficient mining of high-utility itemsets from data streams 505

BITvectors of MHUI-BIT twu(ab) = 138 > min_utility

Items | Bitvectors of TransSW,
a 001001011 twulac) =90 < min_utility
b et twulad) = 79 < min_utility
c 100010011
d 011100010 tuwu(ae) = 138 > min_utility
e 100011111

LexTree-2HTU with prefix a of MHUI-BIT
min_utility = 120

| Candidate 2-itemsets of prefixa: <®: bitwise AND operation> [

Bitvector(ab) = Bitvector(s) © Bitvector(b) = 001001011 & 010101111 = 000001011 |

twn(ab) = tu(Te)+ tu(Ty)+u(T,) = 138 > min_utility ¥ (ab) is a node of LexTree-2HTU |

Bitvector(ac) = Bitvector{a) & Bitvector(c) = 000000011
twu(ac) = tu(Tg)+tu(T,) = 90 < min_utility ¥ (ac) is mot a node of LexTree-2HTU

|
| Bitvector(ad) = Bitvector(a) @ Bitvector(d) = 001000010 |
twulab) = tu(T,)+ 1e(T,) = 79 < min_utility ¥ (ad) is not a node of LexTree-2HTU :
Bitvector(ae) = Bitvector(a) @ Bitvector{e) = 000001011 [
twu(ab) = tu(T)+tu(T,)+tu(T,) = 138 > min_utility ¥ (ab) is a node of LexTree-2HTU '

Fig. 6 LexTree-2HTU of MHUI-BIT after inserting candidate 2-itemsets with prefix a

BITvectors of MHUI-BIT

Items | Bitvectors of TransSW, tene(be) =90 < min_utility

@ 001001011
b | 010101111 twu(bd) = 155 = min_utility
€ 100010011
d 011100010 twn(be) = 243 = min_utility
e 100011111

min_ntility = 120

Items | Bitvectors of TransSW, twned) = 37 < min_utility

a 001001011
b 010101111 twn(ce) =143 > min_utility
< 100010011
d 011100010 tun(de) = 37 < min_utility
e 100011111

LexTree-2HTU with prefives ¢ and d of MHUI-BIT

Fig.7 LexTree-2HTU of MHUI-BIT algorithm for inserting candidate 2-itemsets with prefixes b, ¢, and d

3.3 Window sliding phase of mining high-utility itemsets from data streams

The second phase, i.e., window sliding phase, of mining high- utility itemsets from data
streams is activated while the window is full and a new transaction arrives. In this phase, two
operations are performed to update the proposed LexTree-2HTU. The first operation is to
update item-information, Bitvectors and TIDlists, and the transaction utility table (TU-table)
while window sliding (discussed in Sect. 3.3.1) and the second operation is to update the
trees of LexTree-2HTU (discussed in Sect. 3.3.2).

Furthermore, for updating the proposed data structure LexTree-2HTU efficiently,
1-itemsets that recorded in the dropped transaction and new incoming transaction while
window sliding are classified into three updated item types: Delete-Item, Insert-Item and
Intersec-Item, using Item-Type-Classify algorithm. Algorithm ltem-Type-Classify is shown
in Fig. 9 and described as follows. If an item is recorded in the dropped transaction, it is
a Delete-Item (in Steps 1-3). If an item is maintained in a new incoming transaction while

@ Springer

506

H.-F. Li et al.

BITvectors of MHUI-BIT

Items | Bitvectors of TransSW,

a 001001011

m twu(ab) = 138 > min_utility
ae | twu(ae) =138 > min_utility

010101111

100010011

011100010

twu(ce) =143 > min_utility

LN VR R e

100011111

twu(bd) = 155 > min_utility
be | twulbe) = 243 > min_utility

min_utility = 120
TIDlists of MHUI-TID

LexTree-2HTU of MHUI-BIT in TransSW,

Items | TIDlists of TransSW,

3,6,8,9

m TIDlist(ab) = {6, 8, 9]
Aﬂ TIDlist(ae) = {6, 8, 9}

2,4,6,7,8,9

f1,5,8,9

23,48

AU IESVR I B R o I

{1,5,6,7,8,9)

m TIDlist(bd) = {2, 4, 8}
\. be | TIDlist(e) = 16,7, 8, 9}

TIDlist(ce) = {1, 5, 8, 9}

LexTree-2HTU of MHUI-TID in TransSW,

Fig.8 LexTree-2HTUs of algorithms MHUI-BIT and MHUI-TID, respectively, after inserting all candidate

2-itemsets of TransSWy

Algorithm Item-Type-Classify

Input: A transaction-sensitive sliding window TransSW; = (T}, Tj+,..., Tj+w-1} with w transactions,

and a new incoming transaction Tj+x;

Output: Three sets of item types: Delete-Item-Set, Insert-Item-Set and Interesc-Item-Set of

TransSWiw1 = {Tj+1, Tjsa,..., Tiww);
Method:

Begin

1. foreach item /; of T; do

2. add item h; into Delete-Item-Set;

3. endfor

4. foreach item h; of Tj+y do

5. if hij € Delete-Item-Set then

6. delete item h; from Delete-Item-Set;
7. add item h; into Intersec-Item-Set;
8. else add item h; into Insert-Item-Set;
9. endif

10. endfor

End
Fig. 9 Algorithm Item-Type-Classify used in window sliding phase

window sliding, it is an Insert-Item (in Step 8). If an item is not only in the dropped trans-
action but also in the new incoming transaction, the item is an Intersec-Item (in Step 7). For
example, item e is a Delete-Item, item b is an Insert-Item, and item c is an Intersec-Item in
Example 1 while sliding transaction-sensitive sliding window from TransSWj to TransSW,.

3.3.1 Update item information of LexTree-2HTU and TU-table while window sliding

In the TIDlist framework of MHUI-TID algorithm, an effective TIDlist update approach,
called TIDlist-Slide, is proposed to slide all TIDlist structures of 1-itemsets appeared in the
dropped transactions for maintaining correct utility information within current transaction-
sensitive sliding window. First, the transaction identifier of dropped transaction is deleted

@ Springer

Efficient mining of high-utility itemsets from data streams 507

from TIDlist of Delete-Items and Intersec-Items. After sliding, new transactions are inserted
into current transaction-sensitive sliding window. Consequently, the transaction identifier of
new incoming transaction is inserted into the TIDlists of Insert-Items and Intersec-Items.
Furthermore, the transaction utility of new incoming transaction is computed and inserted
into the transaction utility table (TU-table) for high-utility itemset mining.

For example, in Example 1, when window slides from TransSW; to TransSW5, the first
transaction, 7 = {(c: 26), (e: 1)}, is deleted from and new incoming transaction, 719 = {(b: 6),
(c: 2)}, is added into current transaction-sensitive sliding window. At this time, transaction
utility of Tyq is computed, i.e., tu(T1) = 62, and inserted into TU-table as shown in Fig. 3, and
the TIDlists of items are updated as follows. First, the TID of dropped transaction is deleted
from TIDlists of Delete-Item e and Intersec-Item c. Hence, TIDlist(e) is updated from {1, 5,
6,7,8,9} to {5,6,7, 8,9} and TIDlist(c) is modified from {1, 5, 8,9} to {5, 8, 9}. Then, the
TID of new incoming transaction is inserted into TIDlists of Insert-Item b and Intersec-Item
c. Therefore, TIDlists of items b and c are updated from {2, 4, 6,7, 8,9} to {2,4,6,7, 8,9,
10} and from {5, 8, 9} to {5, 8, 9, 10} for inserting T}¢ from current transaction-sensitive
sliding window. TIDlists of MHUI-TID algorithm after sliding TransSW to TransSW, using
TIDlist-Slide is given in Fig. 2.

In the bitvector framework of MHUI-BIT algorithm, all Bitvectors of 1-itemsets are
updated by performing leftmost bit shifting operation for window sliding. Then, all
bitvectors of items maintained in the new incoming transaction are updated as follows. If an
item A; is recorded in the new transaction, the rightmost bit of bitvector(/;) is set to one. The
method is called Bitvector-LMB-Shifting (LeftMost-Bit-Shifting of Bitvector). For example,
when window slides from TransSW; to TransSW5, the oldest transaction 77 is deleted and
new incoming transaction 77¢ is added in the transaction-sensitive sliding window. At this
time, the Bitvectors of all items from 7; to Ty are updated. For instance, the Bitvector(b)
and Bitvector(e) are updated from <010101111> to <101011111> and from <100011111>
to <000111110> by performing leftmost bit shifting operation on Bitvector(b) and
Bitvector(e), respectively.

3.3.2 Update tree nodes of LexTree-2HTU while window sliding

Based on three updated item type, the tree node updating process of LexTree-2HTU discussed
in this section is composed of three situations as follows.

(a) Item is a Delete-Item (in Steps 5-11 of Fig. 12): If an item /; is maintained in the
dropped transaction of transaction-sensitive sliding window TransSW, the transaction-
weighted utilities of its child nodes are less than or equal to that of previous window
TransSW;_y. It means that child nodes of Delete-Item may be 2-HTU-itemsets in pre-
vious transaction-sensitive sliding window but may be not 2-HTU-itemsets in current
sliding window. In this case, we check transaction-weighted utilities of child nodes of
the Delete-Item h; with its item-information, Bitvector or TIDlist, based on the proposed
algorithms and prune those child nodes with low transaction-weighted utilities based
on a user-specified minimum utility constraint min_utility (in Steps 8—10 of Fig. 12).

For example, a dropped transaction T of TransSW; contains two items, ¢ and e, and a new
incoming transaction 7o also contains two items, b and c¢. From this case, we can find that
item e is a Delete-Item but item c is an Interesc-Item. Since there are no potential candidate
2-itemsets generated from the Delete-Item e in previous sliding window TransSW{, no tree
nodes with prefix e have to be checked in current LexTree-2HTU after window sliding to
TransSW>. Note that item e is a last entry of LexTree-2HTU in this example.

@ Springer

508 H.-F. Lietal.

BITvectors of MHUL-BIT m 10~ {®:6) (:2))
Items | Bitvectors of TransSW, m
a 010010110)
b 101011111 m Bitvector(bc) = <000000111>
¢ 000100111 m twu(bc) = 152 > min_utility
d 111000100
e 000111110
LexTree-2HTU of MHUI-BIT in TransSW,
min_utility = 120
TIDlists of MHUI-TID m
Items | TIDlists of TransSW, m
a 3,6,8,9 ' -
b 2.4,6,7,8,9,10) m TIthst(lb;Z)— {s,. 9, 10:
p; ©,8,9,10) m twu(bc) = > min_utility
a 2.3,4,9)
e 5,6,7,8,9}

LexTree-2HTU of MHUI-TID in TransSW,

Fig. 10 Updated LexTree-2HTU after processing Delete-Item e and Insert-Item b

(b) Item is an Insert-Item (in Steps 12-18 of Fig. 12): If an item 4; is only contained
in a new incoming transaction of current transaction-sensitive sliding window, it is an
Insert-Item. If an item h; is an Insert-Item, the transaction-weighted utilities of its child
nodes with prefix h; of LexTree-2HTU are greater than or equal to that of previous
transaction-sensitive sliding window. In this case, the child nodes of an Insert-Item
may be not 2-HTU-itemsets in previous transaction-sensitive sliding window7rans-
SW;_1 but may be 2-HTU-itemsets in current window TransSW ;. Hence, new candidate
2-itemsets are generated from this new incoming transaction and the transaction-
weighted utilities of these candidate 2-itemsets are verified. If these new 2-itemsets
are high transaction-weighted utilization itemsets, these 2-HTU-itemsets are inserted
into the LexTree-2HTU as tree nodes with prefix 4; (in Steps 15-17 of Fig. 12).

As shown in Example 1, we can find that item b is an Insert-Item, and only one candidate
2-itemset (bc) is generated with prefix b from the new incoming transaction 779 = {(b: 6),
(c: 2)}. After computing the transaction-weighted utility of candidate 2-itemset (bc), i.e.,
twu(bc) =tu(Tg) +tu(To) + tu(T19) =152, it is a high transaction-weighted utility itemset and
inserted into the LexTree-2HTU as a branch with a prefix b as shown in Fig. 10. Moreover,
two existing 2-HTU-itemsets, (bd) and (be), with prefix b are maintained in LexTree-2HTU
without any transaction-weighted utility updating, because the transaction-weighted utilities
of two existing nodes (bd) and (be) with prefix b in LexTree-2HTU are equal to that of
previous transaction-sensitive sliding window.

(c) Item is an Intersec-Item (in Steps 19-29 of Fig. 12): If an item A; is an Intersec-
Item, original 2-HTU-itemsets with prefix /; in previous transaction-sensitive sliding
window may be not 2-HTU-itemsets in current sliding window and vice versa. In this
case, we check transaction-weighted utilities of existing nodes appeared in the new
incoming transaction to decide whether or not they need to be deleted from LexTree-
2HTU. Furthermore, in order to decide whether or not new candidate 2-itemsets are
2-HTU-itemsets, the transaction-weighted utilities of these new candidates generated

@ Springer

Efficient mining of high-utility itemsets from data streams 509

BITvectors of MHUI-BIT
Items | Bitvectors of TransSW,
a 010010110
b 101011111
c 000100111
0001 twuice) = 112 < min_utility
d m el ' Bitvector(ce) = <0000100110>
e 000111110 _
LexTree-2HTU of MHUI-BIT in TransSW,
min_utility = 120
TIDlists of MHUI-TID
Items | TIDlists of TransSW,
a {3. 6, 8,9}
b 2,4,6,7,8,9,10}
c . 8, 9,10 . o
b) twuce) = 112 < min_utility
d 2. 3,4, 8}
Z 5,6,7,8,9 TIDlist(ce) = {5, 8, 9)

LexTree-2HTU of MHUI-TID in TransSW,

Fig.11 Updated LexTree-2HTU after processing Delete-Items, Insert-Items and Intersec-Items while sliding
windows

from the new transaction are checked. If they are new 2-HTU-itemsets, they are inserted
into LexTree-2HTU as tree nodes with prefix 4; (in Steps 26-28 of Fig. 12).

For example, item c is an Intersec-Item of Example 1 since it appears in transactions 7 =
{(c:26), (e: 1)} and T10= {(b: 6), (c: 2)}. In this case, only one existing node, (ce), have to be
checked and no new generated candidate 2-itemsets with prefix ¢ need to be checked. After
deleting the transaction 77 from current transaction-sensitive sliding window, the transac-
tion-weighted utility of 2-HTU-itemset (ce), i.e., twu(ce), is modified from 143 to 112. New
value of transaction-weighted utility of 2-itemset (ce) is less than the user-defined minimum
utility min_utility. Consequently, the tree node (ce) with prefix ¢ is deleted from current
LexTree-2HTU. The result is given in Fig. 11. As a result, complete maintenance procedures
of LexTree-2HTU in window sliding phase is given in Fig. 12.

3.4 Pattern generation phase of mining high-utility itemsets from data streams

High-utility itemset (HUI) generation phase is performed when it is needed. HUI genera-
tion phase is composed of two steps: longer HTU-itemset generation and HUI-verification.
In large HTU-itemset generation step, both algorithms, MHUI-BIT and MHUI-TID, use
level-wise-based approaches to generate a set of candidate k-HTU-itemsets, Cy, by combin-
ing previous generated (k —1)-HTU-itemsets, where k 2. Nota that (k—1)-HTU-itemsets used
to generate the candidate k-HTU-itemset are subsets of the candidate k-HTU-itemset. After
that, we can immediately compute the rwu (transaction-weighted utilization) values of can-
didate k--HTU-itemsets using the item-information. In the proposed MHUI-BIT algorithm,
it performs bitwise AND operation on corresponding bitvectors of (k — 1)-HTU-itemsets
whereas MHUI-TID algorithm uses TIDlist joining, as discussed in Sect. 3.3, to count the
corresponding rwu values of (k — 1)-HTU-itemsets. Next, these k-HTU-itemsets, whose twu
values are greater than or equal to the user-defined minimum utility threshold min_utility,
are inserted into LexTree-2HTU as tree nodes. Process longer HTU-itemset generation stops
when no candidates with longer size are generated.

@ Springer

510 H.-F. Lietal.

Algorithm LexTree-2HTU-Update-byltemInformation (Bitvector, TIDlist)

Input: A user-defined minimum utility threshold min_utility, a transaction utility table TU-table,
a transaction-sensitive sliding window TransSW = {T}, Tj+,..., Tj+wa} with w transactions, and a
new incoming transaction Tj+u;

Output: An updated LexTree-2HTU of TransSWis = {Tj+1, Tjsa, ..., Tivw);

Method:

Begin

/* Line 1 is only used for MHUI-BIT algorithm */

1. perform Bitvector-LMB-Shifting on each Bitvector(h;) of current TransSW;

ine 2 is only used for -TID algorithm
* Line 2 is only used for MHUI-TID algorithm*
2. perform TIDlist-Slide on TIDlists of items within Tjand Tj+u;

3. compute tu(Tj+w) of Tj+w and insert it into TU-table;
/* tu: transaction utility */
4. perform Item-Type-Classify to find three item types, Delete-Item-Set, Insert-Item-Set and
Intersec-Item-Set, from dropped transaction Tj and new incoming transaction Tj+w;
5. foreach entry h; of Delete-Item-Set do /* Case (a): if item is a Delete-Item */
6. delete the transaction utility of Tj, tu(T}), from twu(h:);
7. delete tu(Tj) from twu(child nodes with prefix h);
/* twu: transaction-weighted utilization */
8. if twu(child node p; with prefix hi) < min_utility then

9. delete node p; with prefix h; from LexTree-2HTU;

10. endif

11. endfor

12. foreach entry h; of Insert-Item-Set do /* Case (b): if item is an Insert-Item */

13. generate a set of new candidate 2-itemsets with prefix /i;

14. compute twu values of these candidate 2-itemsets;

15. if fwu(candidate 2-itemsets) > min_utility then

16. insert these 2-HTU-itemsets into LexTree-2HTU as tree nodes with prefix h;
17. endif

18. endfor

19. foreach entry I of Intersec-Item-Set do /* Case (c): if item is an Intersec-Item */
20. delete value of tu(Tj) from twu values of all existing child nodes with prefix h;
21. if twu(child nodes with prefix /) < min_utility then

22. delete these child nodes from LexTree-2HTU;

23. endif

24. generate a set of new candidate 2-itemsets with with prefix h;

25. compute twu values of these candidate 2-itemsets;

26. if twu(candidate 2-itemsets) > min_utility then

27. insert these 2-HTU-itemsets into LexTree-2HTU as tree nodes with prefix h;
28. endif

29. endfor

End

Fig. 12 Maintenance Algorithms of LexTree-2HTU in the window sliding phase

For example, an itemset X is a high-utility itemset in Example 1 if and only if u(X) >
min_utility, where min_utility is 120. In TransSWi, five 2-HTU-itemsets, {(ab), (ae), (bd),
(be), (ce)}, as shown in Fig. 8, are generated by the proposed algorithms MHUI-BIT and
MHUI-TID. But only one candidate 3-HTU-itemset (abe) is generated by combining three
2-HTU-itemsets, i.e., (ab), (ae) and (be), based on transaction-weighted downward clo-
sure property. After that, in MHUI-TID algorithm, TIDlist(abe) is {6, 7, 8} by joining
TIDlist(ab) and TIDlist(ae). Note that TIDlist(ab)={6, 8, 9} and TIDlist(ae)={6, 8,
9} as shown in Fig. 8. Therefore, twu(abe)=tu(Ts) + tu(T7) + tu(Ty) =138 min_utility.

@ Springer

Efficient mining of high-utility itemsets from data streams 511

Utility Pattern Types TransSW1 TransSW;
High Transaction-weighted Utilization a, b, c d e a b cde
(HTU) Itemsets generated after performing ab, ae, bd, be, ce ab, ae, b, bd, be
longer HTU-itemset generation abe abe
High Utility Itemsets (HUI) generated after b, bd, be b, bd, be
performing HUI-verification

Fig. 13 High-Utility Itemsets generated after performing longer HTU-itemset generation and HUI-
verification in TransSWj and TransSW,, respectively

Consequently, candidate 3-HTU-itemset (abe) is a 3-HTU-itemset generated using MHUI-
TID algorithm. In addition, in MHUI-BIT algorithm, the bitvector of candidate 3-HTU-
itemset (abe), i.e., Bitvector(abe), is <000001011> by performing bitwise AND operation
on Bitvector(ab) and Bitvector(ae), where Bitvector(ab) is <00000101 1> and Bitvector(ae)
is <00001011>. Because no more new candidates with longer size are generated in this case,
the first step of high-utility itemset generation phase of proposed algorithms stop.

After all HTU-itemsets are generated and inserted into LexTree-2HTU by the proposed
algorithms, the second step of high-utility itemset generation phase, HUI-verification, is per-
formed for these generated HTU-itemsets. In the HUI-verification step of MHUI-BIT algo-
rithm, true utility value of HTU-itemsets generated from longer HTU-itemset generation step
is computed by one pass over a partial transaction-sensitive sliding windowpTransSW. The
range of pTransSW of MHUI-BIT is determined by performing bitwise OR operation on the
bitvectors of generated HTU-itemsets. In worse case, the size of pTransSW is equal to that of
current TransSW. However, in the HUI-verification step of MHUI-TID algorithm, true utility
value of HTU-itemsets is computed by one pass over pTransSW. Based on TIDlist structures,
the range of pTransSW of MHUI-TID is determined by performing the union operation on
TIDlists of HTU-itemsets generated from previous longer HTU-itemset generation step.
In Examplel, after performing longer HTU-itemset generation and HUI-verification, a set of
high-utility itemsets generated from current transaction-sensitive sliding window is shown
in Fig. 13.

3.5 Mining high-utility itemsets from data streams with negative item profits

In this section, our proposed algorithms, MHUI-BIT and MHUI-TID, are extended to dis-
cover high-utility itemsets with negative item profits from data streams over transaction-
sensitive sliding windows. A simple but effective principle, called AIINIP (All Negative
Item Profits)—drop principle, used in both algorithms is that at least one item of any gen-
erated candidate should have positive profits. Otherwise, the generated candidate should be
dropped in advance for LexTree-2HTU construction in window initialization phase, window
sliding phase and pattern generation phase.

In the window initialization phase of mining high-utility itemsets from data streams
with negative item profits, an extended LexTree-2HTU building procedure, called LexTree-
2HTU-Build-byBitvector-NIP (Negative Item Profits), used in MHUI-BIT algorithm is
proposed and given in Fig. 14. There are two modifications in LexTree-2HTU-Build-by-
Bitvector-NIP. First, in Step 5 of algorithm LexTree-2HTU-Build-byBitvector-withNIP of
Fig. 14, H; is composed of a list of utility 1-itemsets < uy, ua, ..., ux > generated by
Bitvectors and TU-table, not composed of a list of 1-HTU-itemsets as shown in Fig. 4. Sec-
ond, in Steps 9 to 10, if a candidate 2-itemset ¢; is composed of two items with negative
item profits, it is dropped from C; based on AIINIP-drop principle. Note that C; is a set of
candidate 2-itemsets with prefix &; generated from H,. Besides, in MHUI-TID algorithm, a

@ Springer

512 H.-F. Li et al.

Algorithm LexTree-2HTU-Build-byBitvector-NIP (Negative Item Profits)

Input: A user-defined minimum utility threshold min_utility and a transaction-sensitive sliding
window TransSWi;

Output: A generated LexTree-2HTU of TransSWi;

Method:

Begin

1. foreach transaction T; of TransSWi do

2. perform BlTvector-Build on items of T; to construct Bitvectors of items;
3. perform TU-table-Build on T; to construct TU-table of TransSWs;

4, endfor

5. Hi = a list of utility 1-itemsets <u1, uy, ..., ux> generated by Bitvectors and TU-table;
6. foreach entry h; of H1 do

7. Cz = a set of candidate 2-itemsets with prefix /; generated from H;

8. foreach entry ¢; of C2 do

9. if ¢; is composed of all items with negative item profits then

10. delete ¢; from Cy;

11. else

12. Bitvector(ci) = Bitvector(h) @ Bitvector(q); /* @ : bitwise AND operation */

13. calculate twu(ci) by accumulating transaction utilities of Bitvector(c;) with TU-
table;

14. if twu(ci) > min_utility then

15. insert ¢; into LexTree-2HTU as a node with root I;

16. else drop ¢; from Cy;

17. endif

18. endif

19. endfor

20. endfor

End

Fig. 14 Algorithm LexTree-2HTU-Build-byBitVector-NIP of window initialization phase

modified LexTree-2HTU building procedure, called LexTree-2HTU-Build-byTIDlist-NIP, is
also developed based on ALLNIP-drop principle and shown in Fig. 15.

In the window sliding phase, LexTree-2HTU updating procedure of proposed algorithms,
called LexTree-2HTU-Update-byltemInformation-NIP, is proposed based on item informa-
tion Bitvector or TIDlist and is given in Fig. 16. In LexTree-2HTU-Update-byltemInforma-
tion-NIP, items of current transaction-sensitive sliding window are classified into three types,
Delete-Item, Insert-Item and Interesc-Item, after performing item-Type-Classify. Based on the
AIINIP-drop principle, the existing 1-itemsets of LexTree-2HTU extracted from the dropped
transaction 7; and the new incoming transaction Ty, i.e., items in Insert-Item-Set and
Intersec-Item-Set in Steps 13 and 24, have to be processed for LexTree-2HTU maintenance.
In both cases, only candidate 2-itemsets with positive itemset profits are generated for ver-
ifying their transaction-weighted utilization values. Note that if a utility itemset consists of
at least one item with positive item profit, it is an itemset with positive itemset profit. If the
transaction-weighted utilization value of a candidate 2-itemset with positive itemset profit is
greater than or equal to a user-defined minimum utility constraint min_utility, the 2-itemset
is a 2-HTU-itemset and inserted into LexTree-2HTU as tree nodes.

In the high-utility itemset (HUI) generation phase, steps longer HTU-itemset generation
and HUI-verification are modified for mining high-utility itemsets from data streams with
negative item profits as follows. In large HTU-itemset generation step, both algorithms,
MHUI-BIT and MHUI-TID, use level-wise based methods to generate a set of candidate
k-HTU-itemsets by combining previous generated (k — 1)-HTU-itemsets based on AIINIP-
drop principle. After that, the twu (transaction-weighted utilization) values of candidate

@ Springer

Efficient mining of high-utility itemsets from data streams 513

Algorithm LexTree-2HTU-Build-byTIDlist-NIP (Negative Item Profits)

Input: A user-defined minimum utility threshold min_utility and a transaction-sensitive sliding
window TransSWa;
Output: A generated LexTree-2HTU of TransSWi;

Method:

Begin

1. foreach transaction T; of TransSWi do

2. perform TIDlist-Build on items of T; to construct TIDlists of items;

3. perform TU-table-Build on T; to construct TU-table of TransSWha;

4. endfor

5. Hi = a list of utility 1-itemsets <ui, uy, ..., ux> generated by TIDlists and TU-table;
6. foreach entry h; of H1 do

7. Ca = a set of candidate 2-itemsets with prefix ; generated from Hjy;

8. foreach entry c; of C2 do

9. if ¢i is composed of all items with negative item profits then

10. delete ¢; from Cy;

11. else

12. TIDlist(ci) = Bitvector(h) ® Bitvector(q); /* ® : item intersecting operation */
13. calculate twu(ci) by accumulating transaction utilities of TIDlist(c;) with TU-table;
14. if twu(ci) > min_utility then

15. insert ¢; into LexTree-2HTU as a node with root /;

16. else drop ci from Cy;

17. endif

18. endif

19. endfor

20. endfor

End

Fig. 15 Algorithm LexTree-2HTU-Build-byTIDlist-NIP of window initialization phase

k-HTU-itemsets can be computed using the item-information. In MHUI-BIT algorithm,
bitwise AND operation is performed on corresponding bitvectors of (k — 1)-HTU-item-
sets whereas TIDlist joining is performed in TIDlists of previous generated HTU-itemsets
in MHUI-TID algorithm. These generated k-HTU-itemsets, whose twu values are greater
than or equal to the user-defined minimum utility constraint min_utility, are inserted into
LexTree-2HTU as nodes. If no more new candidates with longer size are generated, the mod-
ified first step of high-utility itemset generation phase of proposed algorithms stop. After all
HTU-itemsets are generated and inserted into LexTree-2HTU by the proposed algorithms,
the second step of high- utility itemset generation phase, HUI-verification, is performed for
these generated HTU-itemsets. The methods used in step HUI-verification of both algorithms
are equal to that of mining high-utility itemsets without negative item profits as discussed in
Sect. 3.4.

4 Experimental evaluation

In this section, several experiments are evaluated to compare our proposed algorithms, MHUI-
TID and MHUI-BIT, with an existing approach THUI-Mine [8]. Based on our knowledge,
THUI-Mine algorithm is the first method to mine a set of temporal high-utility itemsets from
data streams without negative item profits. All the programs are implemented in C++ STL
and compiled with Visual C++.NET compiler. All the programs are performed on AMD
Athlon(tm) 64 Processor 3,000+1.8 GHz with 1 GB memory and running on Windows XP

@ Springer

514 H.-F. Li et al.

Algorithm LexTree-2HTU-Update-byltemInformation-NIP (Negative Item Profits)

Input: A user-defined minimum utility threshold min_utility, a transaction utility table TU-table,
a transaction-sensitive sliding window TransSW; = {T}, Tj+,..., Tj+w1} with w transactions, and a
new incoming transaction Tj+u;

Output: An updated LexTree-2HTU of TransSWin = {Tjx1, Tj+2,..., Tj+a);

Method:

Begin

/* Line 1 is only used for MHUI-BIT algorithm */

1. perform Bitvector-LMB-Shifting on each Bitvector(/;) of current TransSW;

/* Line 2 is only used for MHUI-TID algorithm*/

2. perform TIDlist-Slide on TIDlists of items within Tjand Tj+u;

3. compute tu(Tjww) of Ti+w and insert it into TU-table;
/* tu: transaction utility */
4. perform Item-Type-Classify to find three item types, Delete-Item-Set, Insert-Item-Set and
Intersec-Item-Set, from dropped transaction Tjand new incoming transaction Tj+x;
5. foreach entry h; of Delete-Item-Set do /* Case (a): if item is a Delete-Item */
6. delete the transaction utility of Tj, tu(T}), from twu(h:);
7. delete fu(Tj) from twu(child nodes with prefix h);
/* twu: transaction-weighted utilization */
8. if twu(child node p; with prefix hi) < min_utility then

9. delete node p; with prefix h; from LexTree-2HTU;

10. endif

11. endfor

12. foreach entry h; of Insert-Item-Set do /* Case (b): if item is an Insert-Item */

13. generate a set of new candidate 2-itemsets with prefix h; and positive itemset profits;
14. compute twu values of these candidate 2-itemsets;

15. if twu(candidate 2-itemsets) > min_utility then

16. insert these 2-HTU-itemsets into LexTree-2HTU as tree nodes with prefix h;
17. endif

18. endfor

19. foreach entry h; of Intersec-Item-Set do /* Case (c): if item is an Intersec-Item */
20. delete value of tu(T;) from twu values of all existing child nodes with prefix h;
21. if twu(child nodes with prefix hj) < min_utility then

22. delete these child nodes from LexTree-2HTU;

23. endif

24. generate a set of new candidate 2-itemsets with with prefix h; and positive itemset profits;
25. compute twu values of these candidate 2-itemsets;

26. if twu(candidate 2-itemsets) > min_utility then

27. insert these 2-HTU-itemsets into LexTree-2HTU as tree nodes with prefix h;;
28. endif

29. endfor

End

Fig. 16 Algorithm LexTree-2HTU-Update-byltemInformation-NIP in window sliding phase

system. All testing data were generated by the synthetic data generator provided by Agrawal
et al. in [1,3]. However, the IBM synthetic data generator only generates the quantity of O
or 1 for each item in a transaction. In order to adapt the databases into the scenario of utility
mining, the quantity of each item and the utility of each item are randomly generated. The
symbols used in these experiments are shown in Table 1.

In these experiments, the quantity of each item in each transaction, Qjsen, is generated
randomly, ranging from 1 to 10. The utility of each item, Uj;.p, stored in the utility table
is synthetically created by assigning a utility value to each item randomly, ranging from 1
to 1,000. Observed from real-world databases that most items are in the low profit range,

@ Springer

Efficient mining of high-utility itemsets from data streams 515

Table 1 Meanings of symbols

used in the experiments Symbols Meaning

|w| Window size (30K)

|P| Partition size used in THUI-Mine (10K)

min_utility Minimum utility threshold (0.2% x
tu(curTransSW) to 1% x
tu(curTransSW))

Qitem Quantity of each item in each transaction (1-5)

Uitem Utility of each item (1-1K)

Item-freq Frequency of item, i.e., the average

number of TIDlist of all items.
Item-freq is the average number of
transactions each item contained.

Utility Value Distribution

Number of Items

50

0 ¢~ L M L X
0 200 400 600 800 1000

External Utility (Profit)

Fig. 17 Profit value distribution with distinct 1,000 items

Table 2 Name and parameter of

cach data set with D100K Synthetic Average items per Average length of Number

data sets transaction maximal utility of items
pattern

T514 5 4 1,000

T1016 10 6 1,000

T15110 15 10 1,000

T20115 20 15 1,000

T30120 30 20 1,000

the utility value generated using a log normal distribution, as is similar to the model used
in [8,18]. Figure 17 gives the utility table value distribution of 1,000 distinct items. Names
and parameter settings of each dataset used in these experiments are given in Table 2. In
all experiments, the transactions of each dataset are looked up in sequence to simulate an
environment of data streams.

4.1 Evaluation of execution time
In this section, two experiments of execution time are evaluated. In first experiment, we

compare the execution time of our proposed algorithms, MHUI-BIT and MHUI-TID, with
an existing algorithm THUI-Mine under various minimum utility thresholds. Figure 18 show

@ Springer

516 H.-F. Lietal.

—4— MHUI-BIT —#— MHUI-TID THUI-Mine

f

Execution time (sec.)

*\.\‘\‘\‘\0

0 L L L L L L L
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Minimum utility threshold (%)

W
o

Fig. 18 Execution time for MHUI-BIT, MHUI-TID and THUI-Mine under various minimum utility thresh-
olds on T10I6D100K (Jw| = 30K, | P| = 10K)

the execution time for algorithms MHUI-BIT, MHUI-TID and THUI-Mine as the minimum
utility threshold min_utility is increased from 0.2% x tu(curTransSW) to 1% x tu(curT-
ransSW). From this figure, we can find that the performance of proposed algorithm MHUI-
TID is better than that of THUI-Mine, especially when the minimum utility threshold
min_utility is small. Although the execution time of MHUI-BIT algorithm is greater than
that of THUI-Mine when the utility threshold is greater than 0.5% x tu(curTransSW), the
proposed MHUI-BIT algorithm runs significantly faster than that of THUI-Mine when the
utility threshold is smaller than 0.5% x tu(curTransSW). From this experiment, the less
number of generated candidates of THUI-Mine is the reason that the execution time of
THUI-Mine is less than that of MHUI-BIT while minimum utility thresholds are greater than
0.5%. Maintenance performance of item information representation used in both algorithms
MHUI-BIT and MHUI-TID is the major reason that MHUI-TID algorithm always performs
MHUI-BIT algorithm. Note that execution time used in these experiments is composed of
building time of proposed data structure in window initialization phase, updating time of
proposed data structure in window sliding phase and generation time of high-utility itemsets
from proposed data structure in pattern generation phase.

In second experiment, we investigate the effects of varying dataset characteristics on the
execution time of algorithms MHUI-BIT, MHUI-TID and THUI-Mine. Figure 19 shows the
experimental results of algorithms MHUI-BIT, MHUI-TID and THUI-Mine under various
datasets, T15I10D100K, T20I115D100K and T30I120D100K. In this experiment, the window
size |w| is fixed to 30,000, the partition size | P| is fixed to 10,000 [8], and the user-defined
minimum utility threshold min_utility is fixed to 1% x tu(curTransSW). From this figure,
we can see that the existing algorithm THUI-Mine only runs successfully in the dataset
T15110D100K. The execution time of THUI-Mine can not be drawn in this figure since it
needs much more execution time. Therefore, we can find that the relation of execution time
requested is “MHUI-TID « MHUI-BIT « THUI-Mine” from this experiment. Although
the proposed MHUI-BIT algorithm does not completely outperform the existing algorithm
THUI-Mine in dataset T10I6D 100K as shown in Fig. 18, it outperforms THUI-Mine in large
datasets, such as T15110D100K, T20I15D100 and T30I120D100K in Fig. 18. Consequently,
MHUI-BIT maybe runs a little slower than that of THUI-Mine in small datasets, it runs
significantly faster than that of THUI-Mine in large datasets. Furthermore, the proposed
algorithm MHUI-TID outperforms THUI-Mine in all datasets T15110D 100K, T20115D100
and T30120D100K.

@ Springer

Efficient mining of high-utility itemsets from data streams 517

’ O tHUI-Mine [l MHUL-BIT [] MHUI—TID‘

120

100

80

60 |

40}

Execution time (sec.)

20

[

T15110D100K T20115D100K T30120D100K
Datasets

Fig. 19 Execution time of algorithms MHUI-BIT, MHUI-TID, and THUI-Mine under various datasets:
T15110D110K, T20I15D100K and T30120D 100K

Table 3 [tem-freq in each dataset

Dataset Item-freq
T15110D100K 480
T20I15D100K 550
T30120D100K 750

Table 3 shows the average number of transactions containing each item, i.e., Item-freq.,
where window size |w| is 30 K. From this table, we can observe that Item-freq increases a
little as the dataset become a larger one. The ratio of Item-freq towindow size is changed from
1.6% (480/30,000) to 2.5% (750/30,000) in T15110D100K to T30I120D 100K, respectively.
Since the ratio is apparently small, we can obtain that the performance of algorithm MHUI-
TID is better than that of algorithm MHUI-BIT. Moreover, Figs. 18 and 19 also provide the
performance conclusion.

Based on the experiments evaluated in Sect. 4.1, the proposed MHUI-TID algorithm is
chosen to compare with THUI-Mine algorithm in following experiments, because the per-
formance of MHUI-TID is better than that of MHUI-BIT.

4.2 Evaluation of different minimum utility thresholds

In this section, we compare the performance of the proposed algorithm MHUI-TID with an
existing algorithm THUI-Mine using the dataset T5I14D 100K under various minimum utility
thresholds. The number of item types is fixed to 1,000, the size of sliding window w is fixed
to 5,000 transactions and the partition size is fixed to one transaction. The execution time,
memory requirement and the number of generated candidate utility itemsets of algorithms
MHUI-TID and THUI-Mine are evaluated under different minimum utility thresholds where
min_utility is increased from 1% x tu(curTransSW) to 6% x tu(curTransSW). The execution
time comparison of algorithms MHUI-TID and THUI-Mine under various minimum utility
thresholds is given in Fig. 20. From this figure, we can see that MHUI-TID runs faster than
THUI-Mine under various minimum utility thresholds from 1% x tu(curTransSW) to 6% x
tu(curTransSW). Hence, our proposed algorithm is more suitable for mining high-utility
itemsets from data streams.

Figure 21 gives the result of memory usage comparison between MHUI-TID and THUI-
Mine. From this figure, we can find that the memory requirement used in MHUI-TID algo-
rithm is almost the same and small usage. It is obvious from that the number of candidate

@ Springer

518 H.-F. Lietal.

—— THUI-Mine —%— MHUI-TID

15000

12000

9000

6000

Execution time (sec.)

3000

Minimum utility threshold (%)

Fig.20 Execution time comparison of MHUI-TID and THUI-Mine under various minimum utility thresholds
(T5I4D100K, |w| = 5K, |P| = 1)

—— THUI-Mine —#— MHUI-TID

Memory usage (KB)

Minimum utility threshold (%)

Fig.21 Memory usage comparison of MHUI-TID and THUI-Mine under different minimum utility thresh-
olds (T5I14D100K, |w| = 5K, |P| = 1)

itemsets generated increases smoothly under different minimum utility thresholds. But, the
memory requirement of THUI-Mine algorithm increases dramatically as the minimum utility
threshold decreases. This is because that, in our proposed algorithms, utility value of each
candidate is computed by its item information, TIDlist or Bitvector, before it is inserted into
the proposed data structure LexTree-2HTU. But the number of candidates of the THUI-Mine
is generated and inserted into its data structure before THUI-Mine counts its support. There-
fore, the proposed algorithm MHUI-TID uses less memory than that of THUI-Mine algorithm
in an environment of data streams. Consequently, our proposed algorithm MHUI-TID runs
significant faster and consumes less memory usage than that of THUI-Mine algorithm.

4.3 Performance evaluation of high-utility itemsets with negative item profits

In this section, several experiments are evaluated to compare the performance of our pro-
posed algorithms MHUI-BIT, MHUI-TID, MHUI-BIT-NIP (MHUI-BIT with Negative
Item Profits) and MHUI-TID-NIP (MHUI-TID with Negative Item Profits). In these experi-
ments, we randomly generate the quantity of each item in each transaction of streaming data,
ranging from 1 to 10, and generate the utility value of each item maintained in the utility table,
ranging from —100 to 1,000. Furthermore, we generate the utility values using a log normal
distribution, as used in [8, 18], for simulating the low profit range and low negative item

@ Springer

Efficient mining of high-utility itemsets from data streams 519

Utility Value Distribution

250

200 |

150 +

100 +

Number of Items

50 +

0 Il Il Il Il Il Il Il Il Il Il Il
-100 250 400 600 800 1000

External Utility (Profit)

Fig. 22 Profit value distribution with distinct 1,000 items with negative item profits

—— MHUI-BIT —=— MHUI-TID
MHUI-BIT-NIP MHUI-TID-NIP

=]
>

W & U & I
I — T — I —
T T T T T

|

Execution time (sec.)

—
=)
T

Il Il Il Il
0.3 04 0.5 0.6 0.7 0.8 0.9 1
Minimum utility thresholds (%)

=]

S
1S

Fig. 23 Execution time for MHUI-BIT, MHUI-TID, MHUI-BIT-NIP and MHUI-TID-NIP under various
minimum utility thresholds on T10I6D100K (Jw| = 30K, |P| = 10K)

profits of utility values in real-world databases. Figure 22 shows the profit value distribution
of 1,000 items with negative item profits.

Figure 23 gives the experimental result of execution time comparison of algorithm
MHUI-BIT, MHUI-TID, MHUI-BIT-NIP and MHUI-TID-NIP under various minimum util-
ity threshold min_utility from 0.2% X tu(curTransSW) to 1% x tu(curTransSW) on dataset
T10I6D100K. From this figure, we can find that the performance of proposed algorithm
MHUI-TID-NIP is better than that of MHUI-TID and the execution time of MHUI-BIT-NIP
is less than that of MHUI-BIT. Consequently, the experimental result shows that the AIINIP-
drop principle discussed in Sect. 3.5 is suitable for mining high-utility itemsets from data
streams with negative item profits. Note that execution time used in these experiments is com-
posed of building time of proposed data structure in window initialization phase, updating
time of proposed data structure in window sliding phase and generation time of high-utility
itemsets from proposed data structure in pattern generation phase.

5 Conclusions

In this paper, we addressed the problem of mining high-utility itemsets from data streams.
Under the streaming environment, limited memory usage and real-time processing are major

@ Springer

520 H.-F. Lietal.

challenges for mining utility itemsets from data streams. Two efficient algorithms MHUI-
TID and MHUI-BIT are proposed for discovering high-utility itemsets from streaming data
without negative profits. Two item information representations, Bitvector and TIDlist, are
used in the proposed algorithms to improve the performance of utility mining. Both item
information representations can be used to generate utility itemsets from current sliding
window without rescanning the data streams. Moreover, a summary data structure LexTree-
2HTU is developed for maintaining a set 2-HTU-itemsets from current transaction-sensitive
stream sliding window effectively. Besides, a new issue of utility mining with negative item
profits is addressed and two adapted approaches of algorithms MHUI-BIT and MHUI-TID
are developed to discover high-utility itemsets with negative item profits from data streams.
The experimental results show that our approaches can find the high-utility itemsets with
higher performance by generating less candidate itemsets and reducing computation time of
utility value. Furthermore, the experimental results also show that our algorithms outperform
the existing algorithm THUI-Mine under different experimental conditions and are scalable
with large datasets. For future work, we would extend the concepts developed in this work
to discover high-utility itemsets from data streams over time-sensitive sliding windows with
and without negative item profits, mining utility itemsets from data steams with millions of
objects, and mining utility itemsets from data streams with a landmark window model.

References

1. Agrawal R, Imielinski T, Swami A (1993) Mining associations rules between sets of items in large
Databases. In: Proceedings of ACM SIGMOD international conference on management of data, pp 207—
216
2. Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI (1996) Fast discovery of associations rules,
advances in knowledge discovery and data mining. AAAI/MIT Press, Cambridge, pp 307-328
3. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large database. In: Proceed-
ings of the 20th international conference on very large databases (VLDB), pp 487499
4. ChanR, Yang Q, Shen YD (2003) Mining high utility itemsets. In: Proceedings of the 3rd IEEE interna-
tional conference on data mining (ICDM)
5. Chang JH, Lee WS (2003) Finding recent frequent itemsets adaptively over online data streams.
In: Proceedings of the international conference on knowledge discovery and data mining (SIGKDD),
pp 487-492
6. ChangJ, Lee W (2004) A sliding window method for finding recently frequent itemsets over online data
streams. J Inf Sci Eng (JISE) 20(4):753-762
7. Chi Y, Wang H, Yu PS, Muntz R (2004) Moment: maintaining closed frequent itemsets over a stream
sliding window. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp. 59-66
8. Chu CJ, Tseng VS, Liang T (2008) An efficient algorithm for mining temporal high utility itemsets from
data streams. J Syst Softw 81(7):1105-1117
9. Chu CJ, Tseng VS, Liang T (2009) An efficient algorithm for mining high utility itemsets with negative
item values in large databases. Appl Math Comput 215(2):767-778
10. Golab L, Ozsu MT (2003) Issues in data stream management. ACM SIGMOD Rec 32(2):5-14
11. HanJ, Peil, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of the
ACM SIGMOD international conference on management of data, pp 1-12
12. Jin C, Qian W, Sha C, Yu J, Zhou A (2003) Dynamically maintaining frequent items over a data stream.
In: Proceedings of the ACM 12th international conference on information and knowledge management
(CIKM), pp 287-294
13. Lee CH, Lin CR, Chen MS (2001) Sliding-window filtering: an efficient algorithm for incremental mining.
In: Proceedings of the ACM 10th international conference on information and knowledge management
(CIKM), pp 263-270
14. Li H-F, Lee S-Y, Shan M-K (2008) DSM-FI: an efficient algorithm for mining frequent itemsets in data
streams. Knowl Inf Syst Int J (KAIS) 17(1):79-97
15. Li H-F, Lee S-Y (2009) Mining frequent itemsets over data streams using efficient window sliding tech-
niques. Expert Syst Appl (ESWA) 36(2, Part 1):1466-1477

@ Springer

Efficient mining of high-utility itemsets from data streams 521

20.

21.

22.

23.

24.

25.

26.

Li H-F, Ho C-C, Lee S-Y (2009) Incremental updates of closed frequent itemsets over continuous data
streams. Expert Syst Appl (ESWA) 36(2, Part 1):2451-2458

Li Y-C, YehJ-S, Chang C-C (2008) Isolated items discarding strategy for discovering high utility itemsets.
Data Knowl Eng (DKE) 64(1):198-217

Liu Y, Liao W, Choudhary A (2005) A fast high utility itemsets mining algorithm. In: Proceedings of the
ACM international conference on utility-based data mining workshop (UBDM)

. Manku G, Motwani R (2002) Approximate frequency counts over data streams. In: Proceedings of the

28th International Conference on very large databases (VLDB), pp 346-357

Park JS, Chen MS, Yu PS (1997) Using a hash-based method with transaction trimming for mining
association rules. IEEE Trans Knowl Data Eng (TKDE) 9(5):813-825

Savasere A, Omiecinski E, Navathe S (1995) An efficient algorithm for mining association rules in
large database. In: Proceedings of the 21th international conference on very large databases (VLDB),
pp 432444

Sun S, Huang Z, Zhong H, Dai D, Liu H, Li J (2009) Efficient monitoring of skyline queries over
distributed data streams. Knowl Inf Syst Int J (KAIS). doi:10.1007/s10115-009-0269-0

Yang B, Huang H (2010) TOPSIL-Miner: an efficient algorithm for mining top-K significant itemsets
over data streams. Knowl Inf Syst Int J (KAIS) 23(2):225-242

Yao H, Hamilton HJ, Butz CJ (2004) A foundational approach to mining itemset utilities from databases.
In: Proceedings of 4th SIAM international conference on data mining (SDM)

Yao H, Hamilton H, Geng L (2006) A unified framework for utility-based measures for mining itemsets.
In: Proceedings of the ACM international conference on utility-based data mining workshop (UBDM),
pp 28-37

Zhu Y, Shasha D (2002) StatStream: statistical monitoring of thousands of data stream in real time.
In: Proceedings of the 28th international conference on very large databases (VLDB), pp 358-369

Hua-Fu Li received the Ph.D. degree in Computer Science from
National Chiao-Tung University of Taiwan in 2006. He also received
his B.S. and the M.S. degrees in Computer Science and Engineer-
ing from Tatung Institute of Technology, and in Computer Science
from National Chengchi University, in 1999 and 2001, respectively.
He is currently an assistant professor at Kainan University in Taiwan.
His research interests include stream data mining, web data mining,
multimedia data mining, and multimedia systems.

- By .

Hsin-Yun Huang received her B.S. and the M.S. degrees in Com-
puter Science from National Chiao-Tung University, Taiwan, in 2005
and 2007, respectively. Her research interests include database systems,
data mining and utility pattern mining.

@ Springer

http://dx.doi.org/10.1007/s10115-009-0269-0

522

H.-F. Li et al.

@ Springer

Suh-Yin Lee received the B.S. degree in electrical engineering from
National Chiao-Tung University, Taiwan, in 1972, and the M.S. degree
in computer science from University of Washington, U.S.A., in 1975,
and the Ph.D. degree in computer science form Institute of Elec-
tronics, National Chiao-Tung University. She has been a professor
in the Department of Computer Science and Information Engineer-
ing at National Chiao-Tung University since 1991 and was the chair
of that department in 1991-1993. Her research interests include con-
tent-based indexing and retrieval, distributed multimedia information
system, mobile computing, and data mining.

	Fast and memory efficient mining of high-utility itemsets from data streams: with and without negative item profits
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Our contributions
	1.3 Roadmap

	2 Preliminary
	2.1 Problem definition
	2.2 Transaction-weighted downward closure property (TWDC-property)

	3 Efficient mining of high-utility itemsets from data streams: algorithms MHUI-BIT and MHUI-TID
	3.1 Two effective item-information representations: bitvector and TIDlist
	3.2 Window initialization phase of high-utility itemset mining of data streams
	3.3 Window sliding phase of mining high-utility itemsets from data streams
	3.3.1 Update item information of LexTree-2HTU and TU-table while window sliding
	3.3.2 Update tree nodes of LexTree-2HTU while window sliding

	3.4 Pattern generation phase of mining high-utility itemsets from data streams
	3.5 Mining high-utility itemsets from data streams with negative item profits

	4 Experimental evaluation
	4.1 Evaluation of execution time
	4.2 Evaluation of different minimum utility thresholds
	4.3 Performance evaluation of high-utility itemsets with negative item profits

	5 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

