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An ART-Based Fuzzy Adaptive
Learning Control Network
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Abstract—This paper addresses the structure and an associated into a functional system provides a new direction toward the
on-line learning algorithm of a feedforward multilayered connec-  realization of intelligent systems for various applications.
tionist network for realizing the basic elements and functions of In this paper, we are extending our previous work on neural

a traditional fuzzy logic controller. The proposed fuzzy adaptive . .
learning control network (FALCON) can be contrasted with the network-based fuzzy logic control systems [19] to the on-line

traditional fuzzy logic control systems in their network structure ~ Supervised learning problems. The proposed fuzzy adaptive
and learning ability. An on-line structure/parameter learning learning control network (FALCON) can be constructed au-
algorithm called FALCON-ART is proposed for constructing the  tomatically by learning from training examples. It can be
FALCON dynamically. It combines the backpropagation leaming -, hrasted with the traditional fuzzy logic control systems in
scheme for parameter learning and the fuzzy ART algorithm . . > .
for structure learning. The FALCON-ART has some important their network structure and learning ability. The FALCON is a
features. First of all, it partitions the input state space and five-layer structure, as shown in Fig. 1. Nodes at layer one are
output control space using irregular fuzzy hyperboxes according input nodes (linguistic nodes), which represent input linguistic
to thel ?'St“buuoq Olf trautnmg dt"ﬂa-_'” Tan):j exuftmtg fuzzy or  yariables. Layer five is the output layer. We have two linguistic
e ity Conil ST, U1 DU OUAL SBRCES S s forcach outputvariabe. One i ortraining cata (desired
variables increases, the number of partitioned grids will grow ©Output) to feed into this net and the other is for decision signal
combinatorially. To avoid the problem of combinatorial growing  (actual output) to be pumped out of the net. Nodes at layers two
of partitioned grids in some complex systems, the FALCON-ART and four are term nodes, which act as membership functions to
partitions the input/output spaces in a flexible way based on represent the terms of the respective linguistic variable. Each

the distribution of training data. Second, the FALCON-ART can . .
create and train the FAECON in a highly autonomous way. In node at layer three is a rule node which represents one fuzzy

its initial form, there is no membership function, fuzzy partition,  logic rule. Thus, all layer-three nodes form a fuzzy rule base.
and fuzzy logic rule. They are created and begin to grow as the Layer-three links define the preconditions of the rule nodes

first training pattern arrives. Thus, the users need not give itany and layer-four links define the consequents of the rule nodes.

a priori knowledge or even any initial information on these. More The links at lavers two and five are fully connected between
notably, the FALCON-ART can c_)n-line_ partition the input/o_utput linauistic nodeZ and their correspondin yterm nodes

spaces, tune membership functions, fln_d proper fuzzy Ic_>g_|c rules, 9 i ) p g . e

and annihilate redundant rules dynamically upon receiving on-  Associated with the FALCON is an on-line learning algo-

line incoming training data. Computer simulations have been rithm called FALCON-ART. We shall call a FALCON with
conducted to illustrate the performance and applicability of the  thjs on-line learning algorithm the FALCON-ART model. The
proposed system. FALCON-ART has some important properties, as described
Index Terms—Adaptive vector quantization, fuzzy ART, fuzzy below. In many existing fuzzy or neural fuzzy control systems,
clustering, fuzzy hyperbox, rule annihilation, time-series predic- the input and output spaces are partitioned into “grids.” Each
tion. grid defines a fuzzy region and the overlapping region between
the grids provides a smooth and continuous membership output
I. INTRODUCTION surface. For example, consider a fuzzy logic controller with

RINGING the learning abilities of neural networks Vo |n‘[‘)ut var,!a:bles._ I e?ch of“them”contams three fuzzy te_rms
small,” “medium,” and “large”), then the corresponding

automate and realize the design of fuzzy logic contré?'g"

systems has recently become a very active research d tspape partition is as shovyn in Fig. 2(a). Although duringl
[1]-[18]. This integration brings the low-level learning an € learning process, the position and shape of membership

computation power of neural networks into fuzzy logic sy _yncnons will be changed, they are still grid-type partitions

tems and provides the high-level human-like thinking arigherently. The grid-type space parti_tioning of ?”PUt and
reasoning of fuzzy logic systems into neural networks. Su@ytput spaces has been widely used in many existing fuzzy

synergism of integrating neural networks and fuzzy logiySteéms. It certainly makes both the fuzzy logic controller
software emulation and fuzzy chip implementation convenient.

However, as the number of input/output variables increases,
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Fig. 1. Proposed FALCON.

To avoid the problem of combinatorial growing of parti-The FALCON-ART can, thus, on-line partition the input/output
tioned grids in complex systems, more flexible and irregulapaces, tune membership functions, and find proper fuzzy logic
space partitioning methods must be developed. Fig. 2(b) showkes dynamically in the fly. More notably, in this learning
a proposed partitioning method in the FALCON-ART. Thenethod, only the training data need to be provided from
problem of space partitioning from numerical training datthe outside world. The users need not give the initial fuzzy
is basically a clustering problem. The proposed FALCONsartitions, membership functions, and fuzzy logic rules. Hence,
ART applies the fuzzy adaptive resonance theory (fuzzy ART)ere is no input/output term nodes and no rule nodes in
proposed by Carpenteat al. [22], [23] to do fuzzy cluster- the beginning of learning. They are created dynamically as
ing in the input/output spaces and find proper fuzzy logiearning proceeds upon receiving on-line incoming training
rules dynamically by associating input clusters and outpdata.
clusters. The backpropagation learning scheme is then used@his paper is organized as follows. Section Il describes
for tuning input/output membership functions. Hence, ththe structure of the FALCON-ART model. The on-line
FALCON-ART combines the backpropagation algorithm fostructure/parameter learning algorithm FALCON-ART, which
parameter learning and the fuzzy ART for structure learningombines fuzzy ART with backpropagation, is presented
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all the Layer-3 nodes form a fuzzy rule base. Links between
Layers 3 and 4 function as @nnectionist inference engine
Layer-3 links define the preconditions of the rule nodes
and Layer-4 links define the consequents of the rule nodes.
Therefore, each rule node has at most one link to some
term node of a linguistic node, and may have no such
links. This is true both for precondition links (links in Layer
3) and consequent links (links in Layer 4). The links in
Layers 2 and 5 are fully connected between linguistic nodes
and their corresponding term nodes. The arrows indicate the
normal signal flow directions when the network is in operation
(after it has been built and trained). We shall later indicate
the signal propagation layer-by-layer, according to the arrow
direction.

The FALCON uses the technique afomplement cod-
ing from fuzzy ART [22] to normalize the input/output
training vectors. Complement coding is a normalization
process that rescales andimensional vector ink", x =
(1, z2, -+, ), tO its Zn-dimensional complement coding
form in [0, 1]**, x/, such that

X/ E(517 f(iv f27 f;v T fnv EZ)
:(flv1_5175271_527"'757171_571) (1)
where (%1, T2, -+, Tn) = X = x/||x||, and z§ is the
complement ofz, i.e., z{ = 1 — Z;. As mentioned in

[22], complement coding helps avoid the problem of category
proliferation when using fuzzy ART for fuzzy clustering.

(b) It also preserves training vector-amplitude information. In
Fig. 2. (a) Grid-type fuzzy partitioning. (b) Flexible hyperbox fuzzy parti-"a‘pplylln,g the Complement,COdmg technique to the _FALCON’
tioning. all training vectors (either input state vectors or desired output
vectors) are transformed to their complement coded forms in
the preprocessing process and the transformed vectors are then
fised for training.

learning processes: input fuzzy clustering process, outputy typical neural network consists of nodes with some finite
fuzzy clustering process, and mapping process. Sectionﬁ%ﬂ}e

q ibes th 4 rul iilati hod qi mber of fan-in connections from other nodes represented
escribes the proposed rule annihilation methods used in weight values and fan-out connections to other nodes.

Ieargmg %roce_ss. r:n Sec':!on V,C}he FA_‘LCON'ART mg?"e' Eﬂ\ssociated with the fan-in of a node is an integration function
used to identify the noniinéar dynamic system, predict e, hich combines information, activation, or evidence from
Mackey—Glass chaotic time-series, control the truck back ther nodes, and provides the net input, i.e

upper, and control the ball and beam system to demonstrate its
on-line learning capability. Section VI describes the features

in Section Ill. The structure learning consists of thre

of the proposed FALCON-ART model. Conclusions are net-inputk N N N
summarized in the last section. = f, 2 2{; w, W w] (2)
II. THE STRUCTURE OF THEFALCON-ART MODEL where z§k> is the ith input to a node in layek and w§k> is

In this section, we shall describe the structure and functioHEe weight of the associated link. The superscript in the above

of the proposed FALCON-ART model. The FALCON (se equatlodn_lnc::ca;te”s the layer number. ths (rjlotaltlon will also
Fig. 1) has five layers with node and link numbering defimj&E use In the following eq_uatlons. Eac  node aiso outputs an
by the brackets on the right-hand side of the figure. Layeeilfzt'vatlon value as a function of its net-input

1 nodes are input nodegput-linguistic nodeg representing

input-linguistic variables. Layer-5 nodes are output nodes output= a[f(-)] 3)
(output-linguistic nodégsrepresenting output linguistic vari-

ables. Layer-2 and Layer-4 nodes #&eem nodeshat act as where a(-) denotes the activation function. Next, we shall
membership functions representing the terms of the respectilascribe the functions of the nodes in each of the five layers of
input- and output-linguistic variables. Each Layer-3 node isthe FALCON. Assume that the dimension of the input space
rule node representing one fuzzy logic rule. Thus, togethé,»n and that of the output space iis.
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Layer 1. Each node in this layer is called an input-linguistic 1
node and corresponds to one input-linguistic variable. Layer-
1 nodes just transmit input signals to the next layer directly.

That is 0.8- ]
f(@i, 7)) = (@i, T7) o T
=(T;, 1 - T) Sosl
and %o.s
alf()] = £(-)- @ £oal
From the above equation, the link weight in Layer[m.gl)] Eo.:s—

is unity. Notice that due to the complement coding process, |
for each input node there are two output values; and ’

¢ = 1— 7 0.1}
Layer 2: Nodes in this layer are called input-term nodes )
and each represents a term of an input-linguistic variable and © 0.2 0.4 » 1
acts as a one-dimensional (1-D) membership function. The i
following trapezoidal membership function [24] is used: @
fE = {1 = g2 = o, A = glu?) = =, 1) 1 , e
o] i
and o8 AR
i
alfO) = 0) ®  Lon i
i / )
where uz@ and vg) are, respectively, the left-flat and right- £0¢ ,/Illl;/llﬂl;z“%"‘%\\\{\‘&m&\&\
flat points of the trapezoidal membership function of jitle = A ,///[/II;IIN"“Q‘\\\\\\‘\‘\\\‘“\\ “\\\
in(p)ut—term node of théth input-linguistic node [see Fig. 3(a)], //” il T \“\“\\‘\
2 i i 'b i - y >4 Il ‘ ’
gt e (o —mn e TR w
L szfy,> 1 WM“ o
? ? 3 0.4
9(3, 'Y) = { 57, if 0 S 57 S 17 (6) X2 0 0o 02
0, ifsy<o. x

(b)

The parametet is the sensitivity parameter that regulates the ) ) ) ] )
fuzziness of the trapezoidal membership function. A layge 5\',8(')_%}mé":‘])siSn”;"(jz"_‘?;”tsrg’gsz'O%Z'i'?)mgmzzrgﬁglfmig‘obn?rsmp function. (b)
means a more crisp fuzzy set, and a smallemakes the

fuzzy set less crisp. A set af input-term nodes (one for each o

input-linguistic node) is connected to a rule node in Layer 3 Layer 3: Nodes in this layer are called rule nodes and each
where its outputs are combined. This definesiaimensional '€Presents one fuzzy logic rule. Each Layer-3 node has
membership function in the input space with each dimensidiput-term nodes fed into it, one for eac_h input-linguistic node.
specified by one input-term node in the set. Hence, each inptlnce, there are as many rule nodes in the FALCON as there
linguistic node has the same number of term nodes. That3£€ t€rm nodes of an input-linguistic node (i.e., the number

each input-linguistic variable has the same number of terfi§ 'Ules equals the number of terms of an input-linguistic

in the FALCON. This is also true for output-linguistic nodes’arable). Notice that each input-linguistic variable has the

A Layer-2 link connects an input-linguistic node to one of@me number of terms in the FALCON, as mentioned in the

its term nodes. There are two weights on each Layer-2 liff20Ve: The links in Layer 3 are used to perform precondition
We denote the two weights on the link from input node matching of fuzzy nglc rules. Hence, the rule nodes perform
(corresponding to the input-linguistic variahle) to its jth e Product operation

term node amg) and vg) (see Fig 1). These two weights
define the membership function in (5). The two Weighi%)
andvi(f) correspond, respectively, to the two inp@tsandz; and
from the input-linguistic nodé. More preciselyz; andzs, the alf()] = f() @)
two inputs to the input-term nodg will be used during the

fuzzy-ART clustering process in FALCON'’s structure-learningihere »(* is the ith input to a node in Layer 3 and the
step to decideug) and vg), respectively. In FALCON's product is over the inputs of this node. The link weight in
parameter-learning step and normal operating, ahlis used Layer 3w *] is then unity. Note that the product operation
in the forward reasoning process [i.ei(;) =7, in (5)]. We in the above equation is equivalent to defining a multidi-
detail the FALCON learning scheme in Section IIl. mensional ¢-dimensional) membership function, which is the

01 =11+
=1
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product of the trapezoid functions in (5) overThis forms a wherey; is the ith element of the normalized desired output
multidimensional trapezoidal membership function called thesctor. Notice that complement coding is also performed on
hyperbox membership functid@4] since it is defined on a the desired output vectors. Thus, as mentioned above, there
hyperbox in the input space. The corners of the hyperbaxe two weights on each of the up—down transmission links in
are decided by the Layer-2 weightéf) and vg) for all Layer5(theu§j?) andvi(f) shown in Fig. 1). The weights define
i's. More clearly, the interva[ug), Ug)] defines the edge hyperboxes and the associated hyperbox membership functions
of the hyperbox in theith dimension. Hence, the weightn the output space. The second kind of node performs
vector{[uﬁ), 052)]’ . [u(2) 0(2)]’ . [u(2) Ur(fj)]} defines down—up transmission for decision signal output. These nodes

a hyperbox inj the inpuitj épé\]ée. An illzjéiration of a 2-fnd the Layer-5 down—up transmission links attached to them

hyperbox membership function is shown in Fig. 3(b). The rufct as a defuzzifier. |u§;> and Ui(;) are the corners of the
nodes output are connected to setspofoutput-term nodes hyperbox of thejth term of theith output-linguistic variable

in Layer 4, one for each output-linguistic variable. This sét: then the following functions can be used to simulate the
of output-term nodes defines an-dimensional trapezoidal center of areadefuzzification method:

(hyperbox) membership function in the output space that f[7(»5)] _ Z MONG)

specifies the consequent of the rule node. Note that different I — w7

rule nodes may be connected to the same output hyperbox ’

(i.e., they may have the same consequent), as is shown in = Z mﬁj)zﬁ»”)
Fig. 1. J
Layer 4: The nodes in this layer are called output-ternrand

nodes; each has two operating modes: down—up transmission alf()] = f(')' (10)

and up—down transmission modes (see Fig. 1). In down-up sz@

transmission mode, the links in Layer 4 perform the fuzzy OR J

operation on fired (activated) rule nodes that have the same }

consequent wherez](”) is the input to theith output-linguistic node from

its jth term node anahg;?) = [u§;>+v§;>]/2 denotes the center

F129] = max [V, 257, -, 2] value of the output membership function of tfte term of the

and 1th output-linguistic variable. The center of a fuzzy region is
alf()] = £() 8) defined as that point with the smallest absolute value among all

the other points in the region at which the membership value is

. 5) _ .
where 254) is the ith input to a node in Layer 4 ang equal to one. Here, the Welgmﬁj on a down—up transmission

is the number of inputs to this node from the rule nodd#K in Layer 5 is defined bng})) = mg}?) = [“E;) +U§;)]/2v

in Layer 3. Hence, the link Weighﬁz§4) = 1. In up—down where ug;’) and vi(;) are the weights on the corresponding
transmission mode, the nodes in this layer and the up—dowp—down transmission link in Layer 5.

transmission links in Layer 5 function exactly the same as The fuzzy reasoning process in the FALCON is illustrated
those in Layer 2: each Layer-4 node represents a term infFig. 4, which shows a graphic interpretation of the center
an output-linguistic variable and acts as a 1-D membedf area defuzzification method. Here, we consider a two-input
ship function. A set ofm output-term nodes (one for eachand two-output case. As shown in the figure, three hyperboxes
output-linguistic node) defines am-dimensional hyperbox (IH:, IH,, andIH3) are formed in the input space and two
(membership function) in the output space and there drgperboxes@QH,, OH,) are formed in the output space. These
also two weights%(?) and vfj) on each of the up—down hyperboxes are defined by the weightg, v;;, w;;, andv;;.
transmission links in Layer 5 (see Fig. 1). The weights defindhe three fuzzy rules indicated in the figure are %fs 1H;
hyperboxes (and, thus, the associated hyperbox membersHif=N v is OH; (Rule 1),” “IF x is IHy THEN y is OH;
functions) in the output space. More clearly, the weight ve€Rule 2),” and “IF x is IH; THEN y is OH, (Rule 3),”

tor {[ugﬁ;’)7 US)L o D 0D, W, 0P, defines a Wherex = (a1, a2) andy = (yi, 42). If an input pattern is

iy 0 Vi my? Ymyj

hyperbox in"the output space. located inside a hyperbox, the membership value is equal to

Layer 5: Each node in this layer is called a output-linguisti@n€ [se€ (6)]. I this figure, according to (8),is obtained by
node and corresponds to one output-linguistic variable. Théi@rforming fuzzy OR (maximum) operation on the inferred
are two kinds of nodes in Layer 5. The first kind of nod&esults of Rules 1 and 2, which have the same consequent
performs up—down transmission for training data (desiréd1- Also according to (8)z; is directly the inferred result
outputs) to feed into the network, acting exactly like th8f Rule 3.z andz, are then defuzzified to get the final output

input-linguistic nodes. For this kind of node we have according to (10). _ _ .
Based on the above structure, an on-line learning algorithm
@, 78 = @, 75) FALCON-ART will be proposed to determine the proper
Eaaa @% 11_ ) corners of the hyperboxuf;’s and v;,'s) for each term node

in layers two and four. Also, it will learn fuzzy logic rules and
and connection types of the links at layers three and four; that is,
alf()] =750 (9) the precondition links and consequent links of the rule nodes.
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Fig. 4. The fuzzy reasoning process in the FALCON-ART model.
Ill. THE ART-BASED LEARNING ALGORITHM of choice functionsl; are computed by
In this section, we present an on-line two-step learning , Ix' A wj )
scheme for the proposed FALCON-ART model. For an on- (') = a+|w;|’ j=12. N (11)
J

line incoming training pattern, the following two steps are

performed in this learning scheme. First, a structure learniMgere ‘A" is the minimum operator performed for the pair-
scheme is used to decide proper fuzzy partitions and to fiése elements of two vectorsy > 0 is a constantN is
the presence of rules. Second, a supervised learning schéife current number of rule nodes, ard; is the comple-
is used to optimally adjust the membership functions for thieent weight vectorwhich is defined byw; = {[uﬁ), 1-

desired outputs. This learning scheme (called FALCON-ARTY?] ... [4(® 1 — Ui(]?)]’ N S Ur(fj)]}- Notice that
uses the fast-learn fuzzy ART to perform structure learning and (2 2 2 2 2 27 :
Y P 9 U’gj)v UL')]? T [U’Ej)v Ui(j)]v ] [U’glj)v Ur(u)]} is the Welght

the backpropagation algorithm to perform parameter learni
This structure/parameter learning cycle will be repeated fgj
!

each on-line incoming training pattern. In this learning metho and the complement weight vectar;. We then need to find

only the training data need to be provided from the outsi fie complement weight vector closest0 This is equivalent

world. The users need not provide the initial fuzzy partition§o finding a hyperbox (category) to whick could belong
membership functions, and fuzzy logic rules. Hence, there.me chosen category is indexed Hywhere '

no input/output-term nodes and no rule nodes in the beginning
of learning. They are created dynamically as learning proceeds Ty =max{Tl;:j=1,---, N} (12)
upon receiving on-line incoming training data. In other words,

an initial form of the network has only input- and output_Resonancee)ccurs when the match value of the chosen cate-
linguistic nodes before the network is trained. Then, durifdP™y Meets the vigilance criterion
the learning process new input- and output-term nodes and Ix' Awyl
rule nodes will be added. —|X/| =

ctor of Layer-2 links associated with rule nogdé he choice
nction value indicates the similarity between the input vector

(13)

where p € [0, 1] is a vigilance parameter. If the vigilance
criterion is not met we sagnismatch resetbccurs. In this case,
The problem for the structure learning can be statebe choice function valud’; is set to zero for the duration of
as—given the training input data at timer;(t),< = 1, ---, », the input presentation to prevent persistent selection of the
and the desired output valyg(t), i = 1, - --, m, we want to same category during search (we call this action “disabling
decide proper fuzzy partitions as well as membership functiofi®). A new index J is then chosen using (12). The search
and find the fuzzy logic rules. In this step, the network worksrocess continues until the chosérsatisfies (13). If no such
in a two-sided manner; that is, the nodes and links at Laygris found, then a new input hyperbox is created by adding
4 are in the up—down transmission mode so that the trainiagset ofn new input-term nodes, one for each input-linguistic
input and output data are fed into this network from both sidegariable, and setting up links between the newly added input-
The structure-learning step consists of three learning pterm nodes and the input-linguistic nodes. The complement
cesses: input fuzzy clustering process, output fuzzy clusteringight vectors on these new Layer-2 links are simply given
process, and mapping process. The first two processes @&gethe current input vectoss’. These newly added input-
performed simultaneously on both sides of the network amekm nodes and links define a new hyperbox and, thus, a
are described below. new category in the input space. We denote this newly added
1) Input Fuzzy Clustering ProcesdMe use the fuzzy ART hyperbox asJ.
fast-learning algorithm [22], [23] to find the input membership 2) Output Fuzzy Clustering Proces¥he output fuzzy
function parameterag) andvi(f).This is equivalent to finding clustering process is exactly the same as the input fuzzy
proper input-space fuzzy clustering or, more precisely, tdustering process except that it is performed between Layers
forming proper fuzzy hyperboxes in the input space. Initialld and 5, which are working in the up—down transmission mode.
for each complement coded input veckdifsee (1)], the values Of course, the training pattern used now is the desired output

A. The Structure Learning Step
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vector after complement coding’ = (3, ¥°) = (7, 1 —%). process again. This search (called “match tracking”) continues
We denote the chosen or newly added output hyperbox butil an input hyperbox/’ that can be associated with output
K. This hyperbox is defined by the complement weightyperboxX is found [e.g.,(J’, K) = (IHs, OH>)].

vector in Layer 5wy = {[u§3)7 1— US)L . [u§?)7 1- In the structure-learning step, the vigilance parametes

G) 1 _ Uf,?z]}_ an important parameter. The vigilance value is set between

(5)
Vis ]7"'7[“mj7 I .
The two fuzzy clustering processes above produce a chod&r? and one. A low vigilance value leads to the learning

input hyperbox indexed ag and a chosen output hyperboXOf coarse cl_usters, whereas a hig_h vigilance \{alue leads to the
indexed ask, where the input hyperbox is defined by learning of f_me clusters. If the vigilance value is equal to'zero,
w. and the output hyperboX by wy. If the chosen input _aII the training data belong to thg same fuzzy clust_er in the
hyperboxJ is not newly added, then there is a rule notighat !nput space or output space; that_ls, o_nly one cluster is fprmed
corresponds to it. If the input hyperbok is a newly added N the input and output spaces in this case. If the vigilance

one, then a new rule node (indexed.§sin Layer 3 is added V&lue is set to one, every training datum forms one fuzzy
and connected to the input-term nodes that constitute it, ClUSter in the input or output space. An increase in sensitivity

3) Mapping Process:After the two hyperboxes in the input!S Mmodeled within the FALCON-ART model by an increase
and output spaces are chosen in the input and output fui'Nhe vigilance value. With a fixed V|g|!ance value, the fuzzy.
clustering processes, the next step is to perform the mappfigSters may grow too many as learning proceeds. To avoid
process which decides the connections between Layer-3 4§ Problem and to increase learning speed, we had better use
Layer-4 nodes. This is equivalent to deciding the consequeﬁgapt've (monotonically decreasing) vigilance values. Initially,

of fuzzy logic rules. This mapping process is described by tH use & high vigilance value such that more and fine clusters
following algorithm wherein connecting rule nodeto output are formed in the initial stage of learning. The vigilance value

hyperboxk means connecting the rule nodeto the output- is then decreased gradually. As the vigilance value decrease
term nodes that constitutes the hyperbfix in the output to some extent, mismatch reset will seldom occurs and new

space. cluster will not be created easily.

Step 1) IF rule node/ is a newly added node THEN .
connect rule nodg to output hyperboxs. B. The Parameter Learning Step

Step 2) ELSE IF rule nod¢ is not connected to output After the network structure has been adjusted according
hyperbox K originally THEN disable/ and per- to the current training pattern, the network then enters the
form input fuzzy clustering process to find the nextecond learning step to adjust the parameters of the member-
qualified J [i.e., the next rule node that satisfieship functions optimally with the same training pattern. The

(12) and (13)]. Go to Step 1). problem for the parameter learning can be stated as: given
Step 3) ELSE no structure change is necessary. the training input data;(¢), i = 1, - - -, n, the desired output
In the mapping process, hyperbox@sand K are resized valuey;(t), i = 1, ---, m, the input and output hyperboxes,
according to thefast-learning rule[22] by updating weights and the fuzzy logic rules, we want to adjust the parameters
w; and wy as follows: of the membership functions optimally. These hyperboxes
(new) (old) and fuzzy logic rules are learned in the structure-learning
g EXAW, step. In the parameter learning, the network works in the
wite) =y A wio), (14) feedforward manner; that is, the node and links in Layer 4

are in the down-up transmission mode. Basically, the idea of
N_ote that once the_consequent O_f a _rule node has bec?a[bkpropagation algorithm is used for this parameter learning
decided in the mapping process, it will not be chang&f finq the output errors of the node in each layer. Then, these

thereafter. We now use Fig. 4 to illustrate the SWUCIUrG; g are analyzed to perform parameters adjustment. The goal
learning step as follows. For a given training datum, ﬂ\g to minimize the error function

input fuzzy clustering process and the output fuzzy clustering

process find or form proper clusters (hyperboxes) in the input E= % [y(t) — 4(8)] (15)

and output spaces. Assume that the input and output hyperbox

pair found (or formed) are [, K). The mapping processwherey(t) is the desired output anglt) is the current output.
then tries to relate these two hyperboxes by setting up link®r the current training data pair starting at the input nodes,
between them. This is equivalent to finding a fuzzy logig forward pass is used to compute the activity levels of
rule that defines the association between an input hyperhglk the nodes in the network. Then, starting at the output
and an output hyperbox. If this association exists alrea@pdes, a backward pass is used to compie/ 9y for all
le.g., (J, K) = (IH:, OHy), (IH>, OHy), or (IH3, OH2) the hidden nodes. It is noted that in the parameter learning
in Fig. 4], then no structural change is necessary. If inpwe use only normalized training vectogsandy rather than
hyperbox J is newly formed and, thus, not connected téhe complement coded ones andy’. Assuming thatw is

any output hyperbox, it is connected to output hyperliox the adjustable parameter in a node, the general learning rule
directly. Otherwise, if input hyperboX is associated with an ysed is
output hyperbox different frordC originally [e.g.,(J, K) =

(IH3, OH>)], then a new input hyperbox close td will w(t +1) =w(t) +77<__> (16)
be found or formed by performing the input fuzzy clustering
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OF _OF 8f In the multiple output case, the computations in Layers 4 and
ow ~ Af ow 5 are exactly the same as the above and proceed independently

_OF da 0f (17) for each output-linguistic variable.

" da Of ow Layer 3: As in Layer 4, only the error signals need to be
where is the learning rate. To show the learning rules, W%omputed According to (8), this error signal can be derived as
derive the rules layer by layer using the hyperbox member- §® —_ OF
ship functions with corners;;'s andv;;'s as the adjustable ’ 0a3)
parameters for these computations. For clarity, we consider _ OE 9a® 9f® 27)
the single output case. T 9a® af® 9a®

Layer 5: Using (10), (16), and (17), the updating rule O(Nhere
the corners of hyperbox membership functignis derived as OF @
OE _9E da 9a® = i (28)
ov;  da v Aa® 29
— [yt - . 18) 6@ = @9
2Zzi afw  gfWw
Hence, the corner parameter is updated by da® 8254)
@

vi(t +1) = vi(t) +ny(t) 2272 (29) — :z (30)
Similarly, using (10), (16), and (17), the updating rule of th¥heré zmax = max (inputs of output-term nodeg). The
other corner parameter; is derived as term, z;’ /#max, iS t0 normalize the error to be propagated

9E OE oa for the fired rules with the same consequent. Hence, the error
== signal is
ou; da Ou; ( )
%
==[y(t) — a(t)] : (20) 58 = S s, (31)
2ZZZ‘ Zmax
Hence, the other comer parameter is updated by If(?:c)here are muIt|pIe outputs, then the error signal becomes

DRES )/zmax]é(f*), where the summation is performed

(21) over the consequents of a rule node; that is, the error of a rule

Z% node is the summation of the errors of its consequents.
Layer 2: Using (5), (16), and (17), the updating rulewf

is derived as in the following:

wi(t+ 1) = w;i (t) + nly(t)

The error to be propagated to the preceding layer is
oF

(3 — _ (3 9a2
T _% = _aai> ga@) aaa‘» (32)
=y(t) — (). (22) Vi @ ot
o ~ where
Layer 4: In the down—up transmission mode, there is no PWE)
parameter to be adjusted in this layer. Only the error signal a@) — H £3> (33)
[654)] needs to be computed and propagated. According to (10), Oa ki
the error signa6i(4) is derived as in the following: 8a® _ [ ifo< (i — vij)y < 1 (34)
50 _ OF v 0, otherwise.
da So the updating rule of;; is
OE 9a®
= — 23 da?
54 Ga® 23) vt +1) =gt +n 5 — o [[ 47, @9)
where N ki
OE ) Similarly, using (5), (16), and (17), the updating ruleqf
da® (24) is derived as
9al® my Zzi - Zmizi - OF = — OE 9a® da? (36)
9a® 2 J J
(Z Zi) where
Hence, the error signal is da® 3
’ 5w = 114" @
6(4) 6(0) ZZ i~ Zmizi (26) (2) o .
2 . da _ { —y if0< (u“ —zi)v <1 (38)
(Z Zi) duj 0  otherwise.
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Hence, the updating rule af;; becomes

da? (3) (3) method 1
S A3 (39) - . _
8uij };IZ k Hk - Hj
J

IV. RULE ANNIHILATION uj; l:ik vlikvij ~ ' i
With the above on-line learning algorithm, FALCON-ART,
the fuzzy logic rules can only be created and cannot be
annihilated. It would be better if the FALCON-ART has
the ability to delete unnecessary or redundant rules. In this
section, we shall present two methods of rule annihilation. method 2
The basic idea is to combine two or more “similar” rules into Hy - Hg
a representative one. During the on-line structure/paramete Hj
learning, the hyperboxes of input and output spaces are tuned, | { - 1 | _—
These hyperboxes may be updated to greater hyperboxesUjjujk Vik Vij Uik Vik !

or smaller hyperboxes gradually. Thus, the perfect inclusion
between two hyperboxes may happen. Let's consider the ®)
situation that the hyperbox contains the hyperbok; i.e., the Fig. 5. Two rule-annihilation methods.
hyperboxk is a subset of the hyperbax In this situation,
it is intuitive that one of the hyperboxeg ©r k) can be y2 x2 y2
annihilated. This is equivalent to the case that two fuzzy terms o Vethod |
of a linguistic variable represent redundant fuzzy meaning and | 7z 14— "
thus one of them can be removed. i om | ==

To determine the rule similarity, a dimension-by-dimensio x1 ¥1 x1 yl
comparison process of hyperboxes is conducted kgt v;;] (@)
and [u;x, v] be the edges of two compared hyperboxyes
and & in the ith dimension. Ifu;; < w;, andwv;; > vy, for %2 y2 x2
all dimensionsi = 1,2, ---, in the input space or output or, Method 2
space we say the hyperbgxcontains the hyperbok. For NS o, | T
such two hyperboxeg and k, if we annihilate the hyperbox Uit 2
k and remain the hyperboy we will obtain the greater xl yl
hyperbox. This will cause the membership functions to do ()
coarse clustering in the input or output space. On the contr
if the hyperbox; is annihilated and the hyperbdxremains,
we will obtain the smaller hyperbox and the membership
functions will do finer clustering in the input or output space.
In the latter case, the training patterns outside the hyperbg
k will be reclustered in the next iteration. When we decid
to annihilate an input hyperbox, we delete all the nodes a
attached connections that constitute this hyperbox. We al
need to annihilate the output hyperbox associated by th
input hyperbox if this output byperbox is not associated b?P
other input byperboxes. On the other hand, if we decide té"
annihilate a output byperbox, we delete all the nodes that
constitute this hyperbox, and then redirect all its input links

wii(t+1) = wiz(t) + 1

@

yl

ary,
F}é. 6. lllustrations of the rule-annihilation process in the FALCON-ART
del.

X1) Method 1: If one hyperboxj contains another hyperbox
(.e., IH; D IHy or OH; D> OH;), we can delete the

H1a||er hyperbox: (i.e., IHy or OHy) and keep the greater

%oerboxj (i.e., IH; or OH;). This is achieved by letting
left-flat points(u;; and u;,) perform the fuzzy AND

eration for all dimensions and the right-flat poins; (and

) perform the fuzzy OR operation for all dimensions

U5 N Ugpe = MIN (U,ij, uzk)

to the remaining similar output hyperbox. The proposed rule = Uiy (40)
annihilation process is based on the natural property of most vij V v, = max (v, vik)
control systems that if two input data are close (similar) in the =i (41)

input space, the two mapped outputs are also close (similar) in

the output space. Based on the above discussion, we propesam these operations we can obtain the greater hyperbox in
two methods to determine the combination of two similar rulethe input and output spaces [Fig. 5(a)].

The first method is to keep the greater hyperbox in the inputThe rule-annihilation process in the FALCON-ART is il-
and output spaces, whereas the second method is to keeplubtrated in Fig. 6, which shows a graphic interpretation of
smaller hyperbox in the input and output spaces. These tMethods 1 and 2 of the rule-annihilation process. Here, we
methods are described as follows. The rule annihilation processsider a two-input and two-output case. As shown in the
is illustrated in Figs. 5 and 6, where we consider two-inpdigure, two hyperboxesi{H;, IHs) are formed in the input
and two-output case. space and two hyperboxe®)Hd,, OH,) are formed in the
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output space. The two fuzzy rules indicated in the figure areThe plant to be identified is guided by the difference
“IF x is IH; THEN y is OH; (Rule 1),” and “IFx is equation

IH, THEN y is OH; (Rule 2),” wherex = (x1, z2) and

¥ = (y1, y2). These rules reflect the natural property of most yk+1) = ﬂ + u3(k). (45)
control problems that if two input data are close (similar) in 1+y*(k)

the input space, the two mapped outputs are also close in #jf qytput of the plant depends nonlinearly on both its past
output space. In Fig. 6(a), the hyperhbi{, contains the other o1t values and the input values, but the effects of the input

hyperbox/ H;. According to the Method 1 of rule-annihilation 4 output values are additive. In applying the FALCON-

process, we delete _the smaller hyperbi, and keep the aApT model to this identification problem, the learning rate

gRreIat(;r hyper:bO)IHg, Itzhatg' we combine Rules 1 and 21into, _ ( 905, sensitivity parametety = 4, and vigilance pa-
ule 2 as shown in Fig. 6(a). rameterpigpu; = 0.6, poutpur = 0.5 are chosen, wherginpu:

2) Method 2: If one hyperbox; contains another hyperboxand poutput. @re vigilance parameters used in the input and

k(i.e.,lH; > 1Hy orOH; O OHy), we can delete the greatery, it fuzzy clustering processes, respectively. The training

hyperboxj (i.e.,IH; or O_H_j) and_keep the smaller hyperboxinput patterns are generated with(k) = sin (27k/100)
k (i.e., TH) or OHy). This is achieved by letting the left-flat 5y the training process is continued for 60000 time steps.
points (u;; and ;) perform the fuzzy OR operation for all garting at zero, the number of clusters grow dynamically
dimensions and the right-flat points;{ andv;,) perform the ¢, incoming training data. Each cluster corresponds to a
fuzzy AND operation for all dimensions hyperbox in the input or output space. Fig. 7 shows the root-
mean-square (rms) errors during learning. Each point on the
Uij V U = max (Uiy, Uik) curve is the average of 200 training time steps. The curve
= (42) appears to have a big oscillation at the beginning of learning.
This situation reflects the structure changing in the early
stage of learning; that is, the numbers of fuzzy partitions of
x1, T2, andy, are increasing and new fuzzy logic rules are
generated. In this example, the case of two input and one
From these operations we can obtain the smaller hyperboxgiitput is considered for illustration. Fig. 8(a) illustrates the
the input and output spaces [Fig. 5(b)]. distribution of the training patterns and the final assignment
We also use Fig. 6 as an example to explain the Methodo® the rules (i.e., distribution of the membership functions)
of rule-annihilation process. In Fig. 6(b), the hyperbbi{> in [u(k), (k)] plain (input space). There are six hyperboxes
contains the other hyperbai¢i;. According to Method 2 of (1H,, IH,, IHs, IH,, IH;5, 1Hg) formed in the input space.
rule-annihilation process, we delete the greater hypeflidx Fig. 8(b) shows the distribution of the output membership
and keep the smaller hyperbd# ; that is, we combine Rules functions iny(k+1) domain (output space). Three trapezoidal
1 and 2 into Rule 1, as shown in Fig. 6(b). membership function§OH,, OH,, OH3) are generated in
the output space. After the hyperboxes in the input and output
spaces are tuned or created in the fuzzy clustering process, the
V. ILLUSTRATIVE EXAMPLES mapping process then decides proper mapping between the
A general purpose simulator for the FALCON-ART modeinput clusters and output clusters. There are six fuzzy logic
has been written in “C” language and runs on a PC-486. Usifigles formed, finally, as in the following:
this simulator, four typical examples are presented in this
section to show the fundamental applications of the proposed

Vij A v = min (Uijv Uik)

Rule 1: IFxis IH;, THENy is OH;

model. The first example is to identify a dynamic system [25], Rule 2. IFxis IH,, THEN Yy is OH;

the second example is to predict time-series [17], the third Rule 3: IFxis IH;, THEN y is OH3

example is to contrql the truck backer-upper [26], [27], and Rule 4: IFx is [H,, THEN y is OH,

the fourth example is to control the ball and beam system _ .

[16], [28] Rule 5: IFxis IH;), THEN yIs OHl
Example 1—Identification of the Dynamic Systémthis ex- Rule 6: IFxis [Hg, THEN Yy is OH;,

ample, the proposed FALCON-ART model is used to identify

a dynamic system. The identification model has the form Wherex = [u(k), y(k)] andy = y(k + 1). From these fuzzy
logic rules, we know Rules 1 and 3 have the same consequent.

N 2 Also, Rules 2 and 5 and Rules 4 and 6 map to the same
gtk +1) = flulk), u(k = 1), -+, u(k = p+1) consequent. These rules reflect the natural property that if

y(k), y(k=1), .-, y(k—q+1)].  (44) two input data are close (similar) in the input space, the two

mapped outputs are also close in the output space. Fig. 9 shows

Since both the unknown plant and the FALCON-ART modéhe outputs of the plant and the identification model. In this
are driven by the same input, the FALCON-ART model adjusfigure, the output of the FALCON-ART model are presented as
itself with the goal of causing the output of the identificatiomlotted curve while plant output values are represented as solid
model to match that of the unknown plant. Upon convergenagyrve. The results show the perfect identification capability of
the input/output response relationship should match. the trained FALCON-ART model.
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Fig. 8. Simulation results of the FALCON-ART model without rule annihi
lation in Example 1. (a) The input training patterns and the final assignm
of rules.

(b) The distribution of output membership functions.
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Fig. 9. The outputs of the plant and the identification model.

During the simulation, we also applied the rule-annihilation
techniques into the FALCON-ART. The learning results of
the FALCON-ART with the Method 1 of rule annihilation are
shown in Fig. 10. There are four fuzzy logic rules generated
in this case. Fig. 10(a) and (b) show the distribution of the
input and output membership functions, respectively. The four
generated fuzzy logic rules are “¥is IH; THENy isOH3,”

“IF x is IHy, THEN y is OH»,” “IF x is IH3 THEN y is
OH,," and “IFxis IH, THENy is OH;.” If we use Method

2 of rule annihilation, there are five fuzzy logic rules generated
when learning is terminated. Fig. 11(a) and (b) shows the
distribution of the input and output membership functions in
this case. The five generated fuzzy logic rules connecting these
two figures are “IFx is IH; THEN y is OH3,” “IF xis IHs
THEN y is OH,,” “IF xis IH3; THENy is OH,” “IF x is
IH, THENyis OH;,” and “IF x is [H; THEN y is OH3."
Simulation results show that with rule-annihilation techniques,
we can still obtain perfect identification capability by using
fewer fuzzy logic rules.

Notice that the possibility of the occurrence of the perfect
inclusion between two hyperboxes is not low. This is the nature
of the fuzzy ART and fuzzy ARTMAP algorithms [22], [23].
Especially, when a large hyperbox formed in the input (output)
space, a following input pattern may easily fall into it. If
this pattern is not considered to belong to the large hyperbox
(e.g., the desired output of this pattern is not in the output
hyperbox that the large input hyperbox associates with), it will
form a new small hyperbox in the large hyperbox and perfect
inclusion occurs. Moreover, since our model uses the fast-learn
fuzzy ART to decide the initial hyperboxes (structure learning)
and the backpropagation algorithm to tune the hyperboxes
(parameter learning), a hyperbox may be tuned to include or
be included by another hyperbox gradually in the parameter
learning step and perfect inclusion between two hyperboxes
may happen.

Example 2—Prediction of the Chaotic Time-Serlest (%),

k = 1,2,---, be a time series. The problem of time-
series prediction can be formulated as: giveft — m +
o, p(k —m +2), -+, p(k), determinep(k + 1), wherem
and! are fixed positive integer (i.e., determine a mapping from
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Fig. 10. Simulation results of the FALCON-ART model with Method 1 ofFig. 11. Simulation results of the FALCON-ART model with Method 2 of
rule annihilation in Example 1. (a) The input training patterns and the finalle annihilation in Example 1. (a) The input training patterns and the final
assignment of rules. (b) The distribution of output membership functions. assignment of rules. (b) The distribution of output membership functions.

[p(k—m4+1), p(k—m+2), -+, p(k)] € R™ to [p(k+1)] € R). After the structure-parameter learning, there are twenty-two
To illustrate the on-line learning ability, the FALCON-ARTfuzzy logic rules generated in our model. Fig. 13 shows the
model is used to predict the Mackey—Glass chaotic time-seriggediction of the chaotic time series from(701)—x(1000)
The Mackey-Glass chaotic time-series is generated from tBen 200 training data [from(501)-z(700)] are used. In this

following delay differential equation: figure, predictions of the FALCON-ART model are represented
da(t) 0.20(f — 7) aso's while true values are represented*ds The rms error
= — T 0.1z(t) (46) of prediction output approximates 0.08. The results show the

dt 14210t —7) good prediction capability of the FALCON-ART model trained
wherer > 17. In our simulation, we choose the series witltonly by a small set of training data.
7 = 30. Fig. 12 shows 1000 points of this chaotic series usedWe now compare the performance of our system with
to test the FALCON-ART model. We choose= 9 and/ =1 that of other existing methods that can generate fuzzy rules
in our simulation (i.e., nine point values in the series are usé@dm numerical data automatically. The performance indexes
to predict the value of the next time point). The 200 pointsonsidered include numbers of fuzzy rules generated and
of the series frome(501)—x(700) are used as training data,rms error of prediction output. The comparison results are
and the final 300 points from:(701)—z(1000) are used as tabulated in Table |. First, we compare the performance of
test data. The learning rate = 0.005, sensitivity parameter the FALCON-ART model with that of the system proposed by
~ = 4, and vigilance paramet@f,,u; = 0.6, poutput = 0.5 are  Wang and Mendel [17]. They developed a general method to
chosen, wherginpu: andpoutpu: are vigilance parameters usedyenerate fuzzy rules from numerical data. This method consists
in the input and output fuzzy clustering processes, respectivedy. five steps: Step 1 divides the input and output spaces
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TABLE |
PERFORMANCE COMPARISON OF VARIOUS RULE GENERATION METHODS ON THE TIME-SERIES PREDICTION PROBLEM
Kosko (AVQ) ) Kosko (AVQ) )
FALCON-ART | Wang & Mendel [Data distribution | Without backpropagation| ~ with backpropagation
uUCL DCL UCL DCL
Rule number | 55 30° 121 118 100 100 22 1100 | 22 | 100
(200 training data)
RMS error 0.08 0.04 0.08 0.08 0.17 0.2 0.16 { 0.09 | 0.17 | 0.09
* 700 training data are used
/ . /W T - /‘ m(x)
I\ /‘t [ , M | i ‘\ ;| s s2 st CcE B B2 B3
L AR b T
1»\‘\3\1\)'\\/ MH b |
'\‘ Nl TR u
LRRTRAE NIRRTy in
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- ol ! Ll A \r
2 a \) I ’ I I ‘ .
£ \ || ! l 1
S 1 T I IR Y N RV
I -
05F \{ \, [ } \ \; \l 53 05 07 05 11 13 15 0
; v ‘ } ‘ Fig. 14. The membership functions used in Wang and Mendel's system for
| \{ ! k ! the chaotic time-series prediction.
defuzzifying procedure. They also chose= 9 and/ =1 in
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their simulation, i.e., nine point values in the series were used
to predict the value of the next time point. The membership
functions used in the system are shown in Fig. 14. The 200
points of the series in Fig. 12 from(501)—x(700) are used as
training data and the final 300 points fran(701)—x(1000) are
used as test data. After performing the five steps described in
the above, we have 121 generated fuzzy rules. Fig. 15 shows
the prediction of the chaotic time series frar(ir01)—z(1000)
when 200 training data [fronz(501)—(700)] are used. The
rms error of prediction output approximates 0.08. The results
show that the proposed FALCON-ART predictor is able to
keep similar rms error but needs fewer fuzzy rules than Wang
and Mendel's system. These results are shown in the second
column of Table I.

The second rule-generation method for comparison is called
the data-distribution method. This method generates fuzzy
rules according to the training data distribution in the in-
put/output product space. This method consists of five steps:
Step 1 divides the input/output product space of the given
numerical data into crisp regions, Step 2 generates fuzzy rules
Fig. 13. Simulation results of the time-series prediction fronffOM Numerical data allocated in the regions and then decides
x(701)—x(1000) using the FALCON-ART model with 22 fuzzy rules the weight of each rule according to the number of numerical
when 200 training data [from(501)—(700)] are used. data falling into each region, Step 3 fuzzifies these crisp

regions into fuzzy regions by defining proper membership
of the given numerical data into fuzzy regions by choosirfginctions, Step 4 creates a combined fuzzy rule base based on
proper membership functions, Step 2 generates fuzzy rutbe generated rules, and Step 5 determines a mapping from
from the given data, Step 3 assigns a degree of each of thput space to output space based on the combined fuzzy
generated rules for the purpose of resolving conflicts amorige base using a defuzzifying procedure. The membership
the generated rules, Step 4 creates a combined fuzzy rule Hasetions shown in Fig. 14 are also used in the data distribution
based on both the generated rules and linguistic rules of hurmaathod for chaotic time series prediction. After performing
experts, and Step 5 determines a mapping from input spaceite five steps stated in the above, we have 118 generated
output space based on the combined fuzzy rule base usinfuzzy rules. Fig. 16 shows the prediction of the chaotic time

Fig. 12. The Mackey—Glass chaotic time series.

o: estimate output  * : true output
1.4 T T :
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Fig. 15. Simulation results of the time series prediction fronfig. 17. Simulation results of the time series prediction from
2(701)—-x(1000) using the Wang and Mendel's system when 200:(701)—x(1000) using the UCL-AVQ algorithm with 100 fuzzy rules
training data [fromz(501)—x(700)] are used. when 200 training data [from(501)—x(700)] are used.

o: estimate output " true output of each FAM cell (FAM rule) according to the number of
‘ ‘ ‘ guantization vectors falling into it. Consider the case that
X =R andY = R. The system samples the nonfuzzy input
and output streanizy, y1), (x2, y2), - - -. Competitive AVQ
algorithm, which includes unsupervised competitive learning
(UCL) and differential competitive learning (DCL), distributes
the k£ synaptic quantization vectors to different FAM cells;
in the X xY space, wheré is an integer given in advance. To
do this, we use a UCL or DCL network with two input nodes
and k£ output (competitive) nodes. Assuni€; containsk;;
quantization vectors. Then cell courits; define a frequency
histogram, since alt;; sum tok. Hencew;; = k;;/k weights
the corresponding FAM rule. According to the desired number
of fuzzy rules or a given rule—weight threshold, a final FAM
o2 ) , ) F . rule base is generated.
0 50 100 150 200 250 300 The membership functions in Fig. 14 are also used in the
Fig. 16. Simulation results of the time series prediction fronproduct space-clustering method for the chaotic time-series
x(TOl)—TL:(lOOO)’husing the data distribution method when 200 training datprediction problem. In our simulation, after competitive AVQ
[from +(501)~¢(700)] are used. learning we find that the centroid defuzzification process can-
not be performed on the used triangular membership functions
series fromz(701)—x(1000) when 200 training data are usedsince some test data do not fire any fuzzy rules in the rule
The rms error of prediction output approximates 0.08. Thebase and thus causes a “divide by zero” problem in the
results are shown in the third column of Table I. Accordindefuzzification process. To solve this problem, we replace
to these results, the number of fuzzy rules generated in driangular membership functions with bell-shaped membership
FALCON-ART model is still much smaller than that of thefunctions. We set the number of rules as 100 and use the
data distribution method. It is noted that the number of thixed weighting of rulew;; calculated from cell count:;;
generated fuzzy rules in the data distribution method amdter competitive AVQ learning. Figs. 17 and 18 show the
Wang and Mendel's system cannot be determined by the usgrediction of the chaotic time series from(701)—z(1000)
That is, the number of fuzzy rule generated from the datsing UCL-AVQ and DCL-AVQ algorithms, respectively. The
distribution method and Wang and Mendel's system depenaiss errors of prediction output approximate 0.17 and 0.2.
on incoming training patterns. To improve the prediction accuracy, we combine
Kosko [14] proposed the product space-clustering techniqUEL(DCL)-AVQ algorithm with the backpropagation
to the adaptive fuzzy associative memory (FAM) systems suldarning algorithm. The former determines the fuzzy rule
that they can generate FAM rules directly from training datdase and the latter tunes the weighting values of fuzzy rules
The basic concept of automatic generation of FAM rules {3v;;). For comparison, we consider two cases:= 22 and
to use the adaptive vector quantization (AVQ) algorithm tew = 100. Figs. 19 and 20 show the prediction of the chaotic
find and allocate synaptic quantization vectors to FAM cefime series fromz(701)—(1000) using the UCL-AVQ and
from input/output training data, and then decide the weightckpropagation hybrid learning algorithm. Figs. 21 and
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Fig. 18. Simulation results of the time series prediction fronFig. 20. Simulation results of the time-series prediction from

2(701)=2(1000) using the DCL-AVQ algorithm with 100 fuzzy rules x(701)—(1000) using the UCL-AVQ
when 200 training data [from:(501)—z(700)] are used. learning algorithm with 100 fuzzy rules
2(501)—x(700)] are used.

and backpropagation hybrid
when 200 training data [from
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Fig. 19. Simulation results of the time-series prediction from
2(701)-2(1000) using the UCL-AVQ and backpropagation hybridFig. 21. Simulation results of the time-series prediction from
learning algorithm with 22 fuzzy rules when 200 training data [fromz(701)—2(1000) using the DCL-AVQ and backpropagation hybrid

2(501)—x(700)] are used. learning algorithm with 22 fuzzy rules

2(501)—2(700)] are used.

when 200 training data [from

22 show the prediction of the chaotic time series from ) ) o
#(701)—z(1000) using the DCL-AVQ and backpropagatiorPUtpU_t approxmgtes 0.04. Fig. 23 shows the pred|ct|c_)n_ of the
hybrid learning algorithm. The results show that the predict§faotic time series fronx(701)—x(1000) when 700 training
that uses hybrid learning algorithm is able to keep smalléta [fromz(1)—(700)] are used. The simulation results show
rms error than the original predictor. These results are sho#i¢ perfect prediction capability of the well-trained FALCON-
in Table I. ART. It is noted that the big increase of training data does not
As shown in Table |, the proposed FALCON-ART predictofduce impractical increase of fuzzy rules in the FALCON-
produces smaller or similar rms error by using fewer fuzZART model. In [17], Wang and Mendel tried to improve the
rules than other rule generation methods. However, theg@diction accuracy by increasing the training data, using the
simulation results do not show the perfect prediction capabiligpdating fuzzy rule base procedure and dividing the “domain
of the proposed model trained only by a small set of trainirigterval” into finer regions in their system. Finally, their
data. It seems that 200 training data are not enough for ti¢stem achieved perfect prediction capability when the domain
chaotic time-series prediction problem. Thus, we replace 20@erval was divided into 29 regions. Hence, the price paid
training data with 700 training data to train the FALCON-ARTor achieving high-prediction accuracy is a larger fuzzy rule
predictor. The learning parameters used are the same as th@mse. Recently, Jang [9] proposed a model, called adaptive-
used previously. After the structure-parameter learning, thevetwork-based fuzzy inference system (ANFIS) architecture,
are 30 fuzzy rules generated and the rms error of predictifor learning and tuning a fuzzy predictor. By using a hybrid
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o: estimate output * true output loading dock (Xdesired, Ydesired?
Y T T
3 |

1.21

front

Fig. 24. Diagram of the simulated truck and loading zone.

0.4r

loading dock in a planar parking lot. We use on-line structure-
parameter learning algorithm for the FALCON to adaptively
02 S py pys P Py 200 generate fuz_zy rules and adjust parameters according to train-

ing data. This FALCON-ART controller enables the truck to
Fig. 22. Simulation results of the time-series prediction fron}each the desired position successfully.

2(701)-x(1000) using the DCL-AVQ and backpropagation hybrid . . . .
learning algorithm with 100 fuzzy rules when 200 training data [from 1he simulated truck and loading zone are shown in Fig. 24.

x(501)—2(700)] are used. The truck position is exactly determined by three state vari-
ables ¢, z, and 5, where ¢ is the angle of truck with the
o: estimate output * true output horizontal and the coordinate pdir, i) specifies the position

angle @ of the truck is the controlled variable. The positive
- values offl represent clockwise rotations of the steering wheel
| and negative values represent counterclockwise rotations. The

truck is placed at some initial position and is backed up while

being steered by the controller. The objective of this control
; problem is to use backward movements of the truck only
* to make the truck arrive at the loading dock at right angle
4 (Paesirea = 90°) and to have the position of the truck with
the desired loading docl gesived, Ydesired)- The truck moves
backward by fixed distande) of the movement of the steering
j wheel at every step. The loading region is limited to the plane
[0, 100] x [0, 100].
J The input and output variables of the FALCON-ART con-
0 100 50 200 260 700 troller must be specified. The controller has two inputs, truck
Fig. 23. Simulation results of the time-series prediction fron‘gngled) and the cross position. A_SSUITIIHg enough elearance
2(701)=x(1000) using the FALCON-ART model with 30 fuzzy rules P€tween the truck and the loading dock, theoordinate is
when 700 training data [from(1)—x(700)] are used. not considered as an input variable. The output of controller

is the steering anglé. The ranges of the variables ¢ and

fare as follows:

\ of the rear center of the truck in the plane. The steering

learning procedure, the proposed ANFIS can construct g
input/output mapping based on both human knowledge (in the 0<z <100 (47)
for_m of fuzzy IF-THEN rule) and stlpula_te_d mput/ou_t_put data —90° < ¢ < 270° 48)
pairs. The ANFIS also has perfect prediction capability on the . .

chaotic time series prediction problem after learning. However, —30° <6 < 30°. (49)

a set of correct fuzzy logic rules and proper input/output SPagfe equations of backward motion of the truck are given by
partition must be given in advance by experts before initiating

the training of the ANFIS. xz(k +1) =z(k) + d cos 6(k) cos ¢(k)
Example 3—Control for Backing Up the TruclBacking a (. 4+ 1) =y(k) + d cos 6(k) sin ¢(k)
truck to a loading dock is a difficult exercise. It is a non- I sin ¢(k) + d cos (k) sin O(k)
linear control problem for which no traditional control design$(k + 1) = tan~* [ cos (k) — d sin $(k) sim O(k) (50)

methods exits. Nguyen and Widrow [26] developed a neural
network controller which only used numerical data for theshere! is the length of the truck. Equation (50) is used to
backing up the truck problem. Kong and Kosko [27] proposeabtain the next state when the present state is given.

a fuzzy controller which only used linguistic rules for the For the purpose of training the FALCON-ART controller,
same problem. In this example, we develop a controller (callézhrning takes place during several different tries, each starting
FALCON-ART controller) to back up a simulated truck to grom an initial state and terminating when the desired state
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100 Fig. 27. Three-dimensional (3-D) control surface of the learned FAL-
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Fig. 25. The moving trajectories of the truck where the solid curves represent . . hs. The th di . | (3-D | .
the six sets of training trajectories and the dashed curves represent the mo ﬁénmg paths. e three-dimensional (3-D) control surface

trajectories of the truck under the control of the learned FALCON-ARDf the learned FALCON-ART controller in Fig. 27 shows the

controller. steering signal outputs with respect to all the combinations
of the two input variable values and ¢ after learning the
9 - T - : . six sets of training trajectories. After the training process is
terminated, Fig. 28(a)—(c) shows the trajectories of the moving
8 1 truck controlled by the FALCON-ART controller starting
from the initial positions(z, y, ¢) = (a) (40, 20, —30°),
7 1 (b) (10, 20, —30°), and (c) (30, 20, —250°). If we remove

the truck training trajectories 3 and 4 from the six sets of
training trajectories, we find that the learned FALCON-ART
controller can still move the truck nearly to the correct parking
1 position starting at the same initial positions. The trajectory
starting af(z, y, ¢) = (10, 20, —30°) in this case is shown in
4ar ] Fig. 29. Although we reduce the number of training patterns,
this controller can still move the truck to the correct parking
3r 1 position. This indicates that the FALCON-ART controller
can also produce appropriate control action even if training
2; p 200 200 20 500 500 patterns are not distributed over a sufficiently varied area
Epoch in the state space. Therefore, the FALCON-ART has good
generalization capability and robustness.

In the case that six sets of training patterns are used during
éearning process, we also tried the rule-annihilation technique
tl% combine some similar rules. With this learning, there are
twelve fuzzy rules generated in the use of Method 1 of rule
annihilation and seven fuzzy logic rules generated in the use
of Method 2. The results show that by incorporating the rule-
annihilation process into the FALCON-ART, we can obtain
V\ﬁ er fuzzy logic rules that can still move the truck to the

RMS error
v [+]
T T

Fig. 26. Learning curve of the FALCON-ART controller in Example 3.

is reached. In our simulation, six different initial position
of the truck are chosen. The six training paths are shown
Fig. 25. The truck moves by a small fixed distante 1.6 at
every step and the length of the truck is set tolbe 1.
The learning raten = 0.01, sensitivity parametery = 4,
and initial vigilance parametgiypu, = 0.6, poutpus = 0.7
are chosen. The vigilance values decrease gradually

= . X o rrect parking position.
training epoch number increasing. The training process 58
continued for 600 epochs. In each epoch, all the six SetSExampIe 4—Control of the Ball and Beam Systdime ball

of training trajectories are presented once to the FALCOIQ-ntdtbe.{"rn systt(?ml |s|shovxt/)n n Fllgi 30. 'I;he beant1 tlﬁ madet 0
ART controller in a random order. Fig. 26 shows the Iearning ate In a vertical plan€ by applying a forque at the center
rotation; the ball is free to roll along the beam. We require

curves for the FALCON-ART controller. After the on-line t the ball o tact with the b Th i
structure-parameter learning, there are 19 fuzzy logic rulgrga € ball remain In contact wi € beam. The System can

generated in our simulation. The rms error of the controll written in the following state-space form:

with nineteen rules approximates to 2.3he training result 1 T2 0
is shown in Fig. 25. In the figure, the solid curves are the T2 B(x123 — G sin 3) 0
o S = + U (51)
training paths and the dotted curves are the paths that the 3 Ty 0
truck runs under the control of the learned controller. As this Ty 0 1

figure shows, the FALCON-ART controller can smooth the Yy = (52)
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Fig. 28. Truck moving trajectories starting at three different initial positions under the control of the FALCON-ART model after learning six sets of
training trajectories.

wherex = (x1, z2, 3, 24)T = (r, 7, 6, )T is the state of 100
the system and = xz; = r is the output of the system. The
control « is the angular acceleratiof#) and the parameters
B = 0.7143 and G = 9.81 are chosen in this system. The
purpose of control is to determingx) such that the closed- 701
loop system outputy will converge to zero from different
initial conditions.

90F

80

60

According to the input/output-linearization algorithm [28], > %] |
the control lawu(x) is determined as follows: for state, 40F 1
computey(x) = —asPa(X) — 2¢3(X) — a1 d2(X) — aop1(X), aof ]
where ¢1(x) = 21, ¢2(x) = 22, ¢3(x) = —BG sin z3,
¢pa(x) = —BGxy cos x3, and theq; are chosen so that 201 7
s* + a3s® + ass® + s + o, iS a Hurwitz polynomial. 1o} 1
Computea(x) = —BG cos z3 and b(x) = BGx? sin x3; 0 . . . . . . ; . .
then u(x) = [v(x) — b(x)]/a(x). 0 10 20 3 40 5)? 60 70 80 90 100

In our simulation, we solve the differential equations usmlgl 29. Truck moving trajectory under the control the FALCON-ART model
the second/third-order Runge—Kutta method. We train tg@e'r |e'amml$ four Setﬂ othrainmgutrajectories.
FALCON-ART model to approximate the aforementioned
conventional controller of a ball and beam system. Lef; = 32, o = 24, and a3 = 8 are chosen. We use
all closed-loop poles be placed at2. Thus, a, = 16, wu(x) = [v(x) — b(x)]/a(x) to generate the input/output
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Fig. 32. The responses of the closed-loop ball and beam system controlled
by the input/output-linearization algorithm for four initial conditions.
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Fig. 31. The responses of the closed-loop ball and beam system controlled
by the FALCON-ART model for four initial conditions.

0
x3

T

training pair withx obtained from randomly sampling 300
points in the regio/ = [—4, 4] x [-3, 3] x[-1, 1] x [-2, 2]. xt
The learning raten = 0.001, sensitivity parametery = 4, -2r
and vigilance parametepi,pus = 0.3, pPoutpur = 0.7 are
chosen. After the on-line structure-parameter learning, there [
are 28 fuzzy logic rules generated in our simulation. We “ . .
have tested the learned controller at four initial conditions: © 5 10 15

Time (second)
x(0) = [2.4, -0.1, 0.6, 0.1]7, [1.6, 0.05, —0.5, —0.05]7, e een
[—1.6 —0.05. 0.5 0'05]T and [_2'4 0.1. —0.6 _0'1]T_ Fig. 33. The responses of the four states of the ball and beam system under

. the control of the learned FALCON-ART controller.
Fig. 31 shows the output responses of the closed-loop ball

and beam system controlled by the FALCON-ART model.
These responses approximate those of the original control@t performed in advance, but is dynamically and appropriately
for the four initial conditions. As a comparison, Fig. 32 showadjusted during the learning process. As a result, each region
the output responses of the closed-loop ball and beam systearies in size and the degree of overlapping between regions is
controlled by the input/output-linearization algorithm for foualso adjustable. This is in contrast to the Wang and Mendel’s
initial conditions. We also show the behavior of the four statasystem [17], ANFIS system [9], and Kosko’s system [14] in
of the ball and beam system starting at the initial conditiowhich the input space need to be divided properly in advance.
[-2.4, 0.1, —0.6, —0.1]7 in Fig. 33. In this figure, the four The second feature of the proposed FALCON-ART model is
states of the system decay to zero gradually. The results shi@vdynamic structure-parameter-learning ability that can find
the perfect control capability of the trained FALCON-ARTproper fuzzy logic rules. This is in contrast to the approaches
model. in [9] and [18], which need priori control knowledge from
expert operators in term of fuzzy control rules. The third
VI. DiscussioN feature of the proposed FALCON-ART model is its rule-

In this section, we summarize the features of the proposaanihilation ability. The FALCON-ART model has the ability
FALCON-ART model. First, distributed representation is usel® delete unnecessary or redundant rules. In other words, it
to represent the input patterns in the FALCON-ART modetan combine some nodes with the same or a very similar
This is achieved by the fuzzification process through theontrol action. The fourth feature of the proposed FALCON-
adaptive input membership functions. With the adaptive inpRT model is the ease with which expert knowledge can be
membership functions, the input space is divided into overlajmcorporated into the network greatly shortening learning time.
ping smaller regions and, more importantly, this partitioning iEhe fifth feature of the proposed FALCON-ART model is that




496

IEEE

it flexibly partitions the input/output spaces according to thg7]
distribution of environment states. This avoids the combinato-
rial growth problem encountered by partitioned grids in S
complex systems. In addition to the simulations done in this

paper, the proposed supervised structure-parameter-Iearnilr(])(];

algorithm has been used to solve many practical problenﬁs,
including crane-position control and adaptive control of elec-

trodischarge machining (EDM) in our laboratory.

[20]

VIl. CONCLUSION [21]

In this paper, we introduced a general connectionist model
of a fuzzy logic control system called FALCON. An on-linel22]
structure-parameter learning algorithm called FALCON-ART
was proposed for constructing the FALCON dynamically23]
The proposed learning algorithms is able to partition the
input and output spaces and then find proper fuzzy rules and
optimal membership functions dynamically. The FALCONj24]
ART partitions the pattern space into irregular hyperboxes
and, thus, can avoid the problem of combinatorial growinb%]
of partitioned grids in some complex systems. Simulations
demonstrate that the proposed FALCON-ART model is quité®l
effective in many applications.
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