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Abstract—This paper addresses the structure and an associated
on-line learning algorithm of a feedforward multilayered connec-
tionist network for realizing the basic elements and functions of
a traditional fuzzy logic controller. The proposed fuzzy adaptive
learning control network (FALCON) can be contrasted with the
traditional fuzzy logic control systems in their network structure
and learning ability. An on-line structure/parameter learning
algorithm called FALCON-ART is proposed for constructing the
FALCON dynamically. It combines the backpropagation learning
scheme for parameter learning and the fuzzy ART algorithm
for structure learning. The FALCON-ART has some important
features. First of all, it partitions the input state space and
output control space using irregular fuzzy hyperboxes according
to the distribution of training data. In many existing fuzzy or
neural fuzzy control systems, the input and output spaces are
always partitioned into “grids.” As the number of input/output
variables increases, the number of partitioned grids will grow
combinatorially. To avoid the problem of combinatorial growing
of partitioned grids in some complex systems, the FALCON-ART
partitions the input/output spaces in a flexible way based on
the distribution of training data. Second, the FALCON-ART can
create and train the FALCON in a highly autonomous way. In
its initial form, there is no membership function, fuzzy partition,
and fuzzy logic rule. They are created and begin to grow as the
first training pattern arrives. Thus, the users need not give it any
a priori knowledge or even any initial information on these. More
notably, the FALCON-ART can on-line partition the input/output
spaces, tune membership functions, find proper fuzzy logic rules,
and annihilate redundant rules dynamically upon receiving on-
line incoming training data. Computer simulations have been
conducted to illustrate the performance and applicability of the
proposed system.

Index Terms—Adaptive vector quantization, fuzzy ART, fuzzy
clustering, fuzzy hyperbox, rule annihilation, time-series predic-
tion.

I. INTRODUCTION

BRINGING the learning abilities of neural networks to
automate and realize the design of fuzzy logic control

systems has recently become a very active research area
[1]–[18]. This integration brings the low-level learning and
computation power of neural networks into fuzzy logic sys-
tems and provides the high-level human-like thinking and
reasoning of fuzzy logic systems into neural networks. Such
synergism of integrating neural networks and fuzzy logic
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into a functional system provides a new direction toward the
realization of intelligent systems for various applications.

In this paper, we are extending our previous work on neural
network-based fuzzy logic control systems [19] to the on-line
supervised learning problems. The proposed fuzzy adaptive
learning control network (FALCON) can be constructed au-
tomatically by learning from training examples. It can be
contrasted with the traditional fuzzy logic control systems in
their network structure and learning ability. The FALCON is a
five-layer structure, as shown in Fig. 1. Nodes at layer one are
input nodes (linguistic nodes), which represent input linguistic
variables. Layer five is the output layer. We have two linguistic
nodes for each output variable. One is for training data (desired
output) to feed into this net and the other is for decision signal
(actual output) to be pumped out of the net. Nodes at layers two
and four are term nodes, which act as membership functions to
represent the terms of the respective linguistic variable. Each
node at layer three is a rule node which represents one fuzzy
logic rule. Thus, all layer-three nodes form a fuzzy rule base.
Layer-three links define the preconditions of the rule nodes
and layer-four links define the consequents of the rule nodes.
The links at layers two and five are fully connected between
linguistic nodes and their corresponding term nodes.

Associated with the FALCON is an on-line learning algo-
rithm called FALCON-ART. We shall call a FALCON with
this on-line learning algorithm the FALCON-ART model. The
FALCON-ART has some important properties, as described
below. In many existing fuzzy or neural fuzzy control systems,
the input and output spaces are partitioned into “grids.” Each
grid defines a fuzzy region and the overlapping region between
the grids provides a smooth and continuous membership output
surface. For example, consider a fuzzy logic controller with
two input variables. If each of them contains three fuzzy terms
(e.g., “small,” “medium,” and “large”), then the corresponding
input space partition is as shown in Fig. 2(a). Although during
the learning process, the position and shape of membership
functions will be changed, they are still grid-type partitions
inherently. The grid-type space partitioning of input and
output spaces has been widely used in many existing fuzzy
systems. It certainly makes both the fuzzy logic controller
software emulation and fuzzy chip implementation convenient.
However, as the number of input/output variables increases,
the number of the partitioned grids will grow combinatorially.
As a result, the required size of memory or hardware may
become impractically huge. This results in more difficulty in
learning because finer space partitioning needs more training
samples; otherwise, insufficient learning will occur.
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Fig. 1. Proposed FALCON.

To avoid the problem of combinatorial growing of parti-
tioned grids in complex systems, more flexible and irregular
space partitioning methods must be developed. Fig. 2(b) shows
a proposed partitioning method in the FALCON-ART. The
problem of space partitioning from numerical training data
is basically a clustering problem. The proposed FALCON-
ART applies the fuzzy adaptive resonance theory (fuzzy ART)
proposed by Carpenteret al. [22], [23] to do fuzzy cluster-
ing in the input/output spaces and find proper fuzzy logic
rules dynamically by associating input clusters and output
clusters. The backpropagation learning scheme is then used
for tuning input/output membership functions. Hence, the
FALCON-ART combines the backpropagation algorithm for
parameter learning and the fuzzy ART for structure learning.

The FALCON-ART can, thus, on-line partition the input/output
spaces, tune membership functions, and find proper fuzzy logic
rules dynamically in the fly. More notably, in this learning
method, only the training data need to be provided from
the outside world. The users need not give the initial fuzzy
partitions, membership functions, and fuzzy logic rules. Hence,
there is no input/output term nodes and no rule nodes in
the beginning of learning. They are created dynamically as
learning proceeds upon receiving on-line incoming training
data.

This paper is organized as follows. Section II describes
the structure of the FALCON-ART model. The on-line
structure/parameter learning algorithm FALCON-ART, which
combines fuzzy ART with backpropagation, is presented
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(a)

(b)

Fig. 2. (a) Grid-type fuzzy partitioning. (b) Flexible hyperbox fuzzy parti-
tioning.

in Section III. The structure learning consists of three
learning processes: input fuzzy clustering process, output
fuzzy clustering process, and mapping process. Section IV
describes the proposed rule annihilation methods used in the
learning process. In Section V, the FALCON-ART model is
used to identify the nonlinear dynamic system, predict the
Mackey–Glass chaotic time-series, control the truck backer-
upper, and control the ball and beam system to demonstrate its
on-line learning capability. Section VI describes the features
of the proposed FALCON-ART model. Conclusions are
summarized in the last section.

II. THE STRUCTURE OF THEFALCON-ART MODEL

In this section, we shall describe the structure and functions
of the proposed FALCON-ART model. The FALCON (see
Fig. 1) has five layers with node and link numbering defined
by the brackets on the right-hand side of the figure. Layer-
1 nodes are input nodes (input-linguistic nodes) representing
input-linguistic variables. Layer-5 nodes are output nodes
(output-linguistic nodes) representing output linguistic vari-
ables. Layer-2 and Layer-4 nodes areterm nodesthat act as
membership functions representing the terms of the respective
input- and output-linguistic variables. Each Layer-3 node is a
rule node representing one fuzzy logic rule. Thus, together,

all the Layer-3 nodes form a fuzzy rule base. Links between
Layers 3 and 4 function as aconnectionist inference engine.
Layer-3 links define the preconditions of the rule nodes
and Layer-4 links define the consequents of the rule nodes.
Therefore, each rule node has at most one link to some
term node of a linguistic node, and may have no such
links. This is true both for precondition links (links in Layer
3) and consequent links (links in Layer 4). The links in
Layers 2 and 5 are fully connected between linguistic nodes
and their corresponding term nodes. The arrows indicate the
normal signal flow directions when the network is in operation
(after it has been built and trained). We shall later indicate
the signal propagation layer-by-layer, according to the arrow
direction.

The FALCON uses the technique ofcomplement cod-
ing from fuzzy ART [22] to normalize the input/output
training vectors. Complement coding is a normalization
process that rescales an-dimensional vector in ,

, to its 2 -dimensional complement coding
form in , , such that

(1)

where and is the
complement of , i.e., . As mentioned in
[22], complement coding helps avoid the problem of category
proliferation when using fuzzy ART for fuzzy clustering.
It also preserves training vector-amplitude information. In
applying the complement coding technique to the FALCON,
all training vectors (either input state vectors or desired output
vectors) are transformed to their complement coded forms in
the preprocessing process and the transformed vectors are then
used for training.

A typical neural network consists of nodes with some finite
number of fan-in connections from other nodes represented
by weight values and fan-out connections to other nodes.
Associated with the fan-in of a node is an integration function

which combines information, activation, or evidence from
other nodes, and provides the net input, i.e.,

net-input

(2)

where is the th input to a node in layer and is
the weight of the associated link. The superscript in the above
equation indicates the layer number. This notation will also
be used in the following equations. Each node also outputs an
activation value as a function of its net-input

output (3)

where denotes the activation function. Next, we shall
describe the functions of the nodes in each of the five layers of
the FALCON. Assume that the dimension of the input space
is and that of the output space is.
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Layer 1: Each node in this layer is called an input-linguistic
node and corresponds to one input-linguistic variable. Layer-
1 nodes just transmit input signals to the next layer directly.
That is

and

(4)

From the above equation, the link weight in Layer 1
is unity. Notice that due to the complement coding process,
for each input node there are two output values and

.
Layer 2: Nodes in this layer are called input-term nodes

and each represents a term of an input-linguistic variable and
acts as a one-dimensional (1-D) membership function. The
following trapezoidal membership function [24] is used:

and

(5)

where and are, respectively, the left-flat and right-
flat points of the trapezoidal membership function of theth
input-term node of theth input-linguistic node [see Fig. 3(a)],

is the input to the th input-term node from theth

input-linguistic node (i.e., ), and

if
if
if

(6)

The parameter is the sensitivity parameter that regulates the
fuzziness of the trapezoidal membership function. A large
means a more crisp fuzzy set, and a smallermakes the
fuzzy set less crisp. A set of input-term nodes (one for each
input-linguistic node) is connected to a rule node in Layer 3
where its outputs are combined. This defines an-dimensional
membership function in the input space with each dimension
specified by one input-term node in the set. Hence, each input-
linguistic node has the same number of term nodes. That is,
each input-linguistic variable has the same number of terms
in the FALCON. This is also true for output-linguistic nodes.
A Layer-2 link connects an input-linguistic node to one of
its term nodes. There are two weights on each Layer-2 link.
We denote the two weights on the link from input node
(corresponding to the input-linguistic variable) to its th
term node as and (see Fig 1). These two weights

define the membership function in (5). The two weights

and correspond, respectively, to the two inputsand
from the input-linguistic node. More precisely, and , the
two inputs to the input-term node, will be used during the
fuzzy-ART clustering process in FALCON’s structure-learning
step to decide and , respectively. In FALCON’s
parameter-learning step and normal operating, onlyis used
in the forward reasoning process [i.e., in (5)]. We
detail the FALCON learning scheme in Section III.

(a)

(b)

Fig. 3. (a) One-dimensional (1-D) trapezoidal membership function. (b)
Two-dimensional (2-D) trapezoidal membership function.

Layer 3: Nodes in this layer are called rule nodes and each
represents one fuzzy logic rule. Each Layer-3 node has
input-term nodes fed into it, one for each input-linguistic node.
Hence, there are as many rule nodes in the FALCON as there
are term nodes of an input-linguistic node (i.e., the number
of rules equals the number of terms of an input-linguistic
variable). Notice that each input-linguistic variable has the
same number of terms in the FALCON, as mentioned in the
above. The links in Layer 3 are used to perform precondition
matching of fuzzy logic rules. Hence, the rule nodes perform
the product operation

and

(7)

where is the th input to a node in Layer 3 and the
product is over the inputs of this node. The link weight in
Layer 3 is then unity. Note that the product operation
in the above equation is equivalent to defining a multidi-
mensional ( -dimensional) membership function, which is the
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product of the trapezoid functions in (5) over. This forms a
multidimensional trapezoidal membership function called the
hyperbox membership function[24] since it is defined on a
hyperbox in the input space. The corners of the hyperbox
are decided by the Layer-2 weights and for all

’s. More clearly, the interval defines the edge
of the hyperbox in the th dimension. Hence, the weight
vector defines
a hyperbox in the input space. An illustration of a 2-D
hyperbox membership function is shown in Fig. 3(b). The rule
nodes output are connected to sets ofoutput-term nodes
in Layer 4, one for each output-linguistic variable. This set
of output-term nodes defines an-dimensional trapezoidal
(hyperbox) membership function in the output space that
specifies the consequent of the rule node. Note that different
rule nodes may be connected to the same output hyperbox
(i.e., they may have the same consequent), as is shown in
Fig. 1.

Layer 4: The nodes in this layer are called output-term
nodes; each has two operating modes: down–up transmission
and up–down transmission modes (see Fig. 1). In down–up
transmission mode, the links in Layer 4 perform the fuzzy OR
operation on fired (activated) rule nodes that have the same
consequent

and

(8)

where is the th input to a node in Layer 4 and
is the number of inputs to this node from the rule nodes
in Layer 3. Hence, the link weight . In up–down
transmission mode, the nodes in this layer and the up–down
transmission links in Layer 5 function exactly the same as
those in Layer 2: each Layer-4 node represents a term of
an output-linguistic variable and acts as a 1-D member-
ship function. A set of output-term nodes (one for each
output-linguistic node) defines an -dimensional hyperbox
(membership function) in the output space and there are
also two weights and on each of the up–down
transmission links in Layer 5 (see Fig. 1). The weights define
hyperboxes (and, thus, the associated hyperbox membership
functions) in the output space. More clearly, the weight vec-
tor , defines a
hyperbox in the output space.

Layer 5: Each node in this layer is called a output-linguistic
node and corresponds to one output-linguistic variable. There
are two kinds of nodes in Layer 5. The first kind of node
performs up–down transmission for training data (desired
outputs) to feed into the network, acting exactly like the
input-linguistic nodes. For this kind of node we have

and

(9)

where is the th element of the normalized desired output
vector. Notice that complement coding is also performed on
the desired output vectors. Thus, as mentioned above, there
are two weights on each of the up–down transmission links in
Layer 5 (the and shown in Fig. 1). The weights define
hyperboxes and the associated hyperbox membership functions
in the output space. The second kind of node performs
down–up transmission for decision signal output. These nodes
and the Layer-5 down–up transmission links attached to them
act as a defuzzifier. If and are the corners of the
hyperbox of the th term of the th output-linguistic variable

, then the following functions can be used to simulate the
center of areadefuzzification method:

and

(10)

where is the input to the th output-linguistic node from

its th term node and denotes the center
value of the output membership function of theth term of the
th output-linguistic variable. The center of a fuzzy region is

defined as that point with the smallest absolute value among all
the other points in the region at which the membership value is
equal to one. Here, the weight on a down–up transmission

link in Layer 5 is defined by ,

where and are the weights on the corresponding
up–down transmission link in Layer 5.

The fuzzy reasoning process in the FALCON is illustrated
in Fig. 4, which shows a graphic interpretation of the center
of area defuzzification method. Here, we consider a two-input
and two-output case. As shown in the figure, three hyperboxes
( , , and ) are formed in the input space and two
hyperboxes ( , ) are formed in the output space. These
hyperboxes are defined by the weights and .
The three fuzzy rules indicated in the figure are “IFis
THEN is (Rule 1),” “IF is THEN is
(Rule 2),” and “IF is THEN is (Rule 3),”
where and . If an input pattern is
located inside a hyperbox, the membership value is equal to
one [see (6)]. In this figure, according to (8), is obtained by
performing fuzzy OR (maximum) operation on the inferred
results of Rules 1 and 2, which have the same consequent

. Also according to (8), is directly the inferred result
of Rule 3. and are then defuzzified to get the final output
according to (10).

Based on the above structure, an on-line learning algorithm
FALCON-ART will be proposed to determine the proper
corners of the hyperbox ( ’s and ’s) for each term node
in layers two and four. Also, it will learn fuzzy logic rules and
connection types of the links at layers three and four; that is,
the precondition links and consequent links of the rule nodes.
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Fig. 4. The fuzzy reasoning process in the FALCON-ART model.

III. T HE ART-BASED LEARNING ALGORITHM

In this section, we present an on-line two-step learning
scheme for the proposed FALCON-ART model. For an on-
line incoming training pattern, the following two steps are
performed in this learning scheme. First, a structure learning
scheme is used to decide proper fuzzy partitions and to find
the presence of rules. Second, a supervised learning scheme
is used to optimally adjust the membership functions for the
desired outputs. This learning scheme (called FALCON-ART)
uses the fast-learn fuzzy ART to perform structure learning and
the backpropagation algorithm to perform parameter learning.
This structure/parameter learning cycle will be repeated for
each on-line incoming training pattern. In this learning method,
only the training data need to be provided from the outside
world. The users need not provide the initial fuzzy partitions,
membership functions, and fuzzy logic rules. Hence, there is
no input/output-term nodes and no rule nodes in the beginning
of learning. They are created dynamically as learning proceeds
upon receiving on-line incoming training data. In other words,
an initial form of the network has only input- and output-
linguistic nodes before the network is trained. Then, during
the learning process new input- and output-term nodes and
rule nodes will be added.

A. The Structure Learning Step

The problem for the structure learning can be stated
as—given the training input data at time, , ,
and the desired output value , , we want to
decide proper fuzzy partitions as well as membership functions
and find the fuzzy logic rules. In this step, the network works
in a two-sided manner; that is, the nodes and links at Layer
4 are in the up–down transmission mode so that the training
input and output data are fed into this network from both sides.

The structure-learning step consists of three learning pro-
cesses: input fuzzy clustering process, output fuzzy clustering
process, and mapping process. The first two processes are
performed simultaneously on both sides of the network and
are described below.

1) Input Fuzzy Clustering Process:We use the fuzzy ART
fast-learning algorithm [22], [23] to find the input membership
function parameters and . This is equivalent to finding
proper input-space fuzzy clustering or, more precisely, to
forming proper fuzzy hyperboxes in the input space. Initially,
for each complement coded input vector[see (1)], the values

of choice functions are computed by

(11)

where “ ” is the minimum operator performed for the pair-
wise elements of two vectors, is a constant, is
the current number of rule nodes, and is the comple-
ment weight vector, which is defined by

. Notice that

is the weight
vector of Layer-2 links associated with rule node. The choice
function value indicates the similarity between the input vector

and the complement weight vector . We then need to find
the complement weight vector closest to. This is equivalent
to finding a hyperbox (category) to which could belong.
The chosen category is indexed bywhere

(12)

Resonanceoccurs when the match value of the chosen cate-
gory meets the vigilance criterion

(13)

where is a vigilance parameter. If the vigilance
criterion is not met we saymismatch resetoccurs. In this case,
the choice function value is set to zero for the duration of
the input presentation to prevent persistent selection of the
same category during search (we call this action “disabling

”). A new index is then chosen using (12). The search
process continues until the chosensatisfies (13). If no such

is found, then a new input hyperbox is created by adding
a set of new input-term nodes, one for each input-linguistic
variable, and setting up links between the newly added input-
term nodes and the input-linguistic nodes. The complement
weight vectors on these new Layer-2 links are simply given
as the current input vector, . These newly added input-
term nodes and links define a new hyperbox and, thus, a
new category in the input space. We denote this newly added
hyperbox as .

2) Output Fuzzy Clustering Process:The output fuzzy
clustering process is exactly the same as the input fuzzy
clustering process except that it is performed between Layers
4 and 5, which are working in the up–down transmission mode.
Of course, the training pattern used now is the desired output
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vector after complement coding .
We denote the chosen or newly added output hyperbox by

. This hyperbox is defined by the complement weight
vector in Layer 5,

.
The two fuzzy clustering processes above produce a chosen

input hyperbox indexed as and a chosen output hyperbox
indexed as , where the input hyperbox is defined by

and the output hyperbox by . If the chosen input
hyperbox is not newly added, then there is a rule nodethat
corresponds to it. If the input hyperbox is a newly added
one, then a new rule node (indexed as) in Layer 3 is added
and connected to the input-term nodes that constitute it.

3) Mapping Process:After the two hyperboxes in the input
and output spaces are chosen in the input and output fuzzy
clustering processes, the next step is to perform the mapping
process which decides the connections between Layer-3 and
Layer-4 nodes. This is equivalent to deciding the consequents
of fuzzy logic rules. This mapping process is described by the
following algorithm wherein connecting rule nodeto output
hyperbox means connecting the rule nodeto the output-
term nodes that constitutes the hyperbox in the output
space.

Step 1) IF rule node is a newly added node THEN
connect rule node to output hyperbox .

Step 2) ELSE IF rule node is not connected to output
hyperbox originally THEN disable and per-
form input fuzzy clustering process to find the next
qualified [i.e., the next rule node that satisfies
(12) and (13)]. Go to Step 1).

Step 3) ELSE no structure change is necessary.

In the mapping process, hyperboxesand are resized
according to thefast-learning rule[22] by updating weights

and as follows:

(14)

Note that once the consequent of a rule node has been
decided in the mapping process, it will not be changed
thereafter. We now use Fig. 4 to illustrate the structure-
learning step as follows. For a given training datum, the
input fuzzy clustering process and the output fuzzy clustering
process find or form proper clusters (hyperboxes) in the input
and output spaces. Assume that the input and output hyperbox
pair found (or formed) are (, ). The mapping process
then tries to relate these two hyperboxes by setting up links
between them. This is equivalent to finding a fuzzy logic
rule that defines the association between an input hyperbox
and an output hyperbox. If this association exists already
[e.g., , or
in Fig. 4], then no structural change is necessary. If input
hyperbox is newly formed and, thus, not connected to
any output hyperbox, it is connected to output hyperbox
directly. Otherwise, if input hyperbox is associated with an
output hyperbox different from originally [e.g.,

], then a new input hyperbox close to will
be found or formed by performing the input fuzzy clustering

process again. This search (called “match tracking”) continues
until an input hyperbox that can be associated with output
hyperbox is found [e.g., ].

In the structure-learning step, the vigilance parameteris
an important parameter. The vigilance value is set between
zero and one. A low vigilance value leads to the learning
of coarse clusters, whereas a high vigilance value leads to the
learning of fine clusters. If the vigilance value is equal to zero,
all the training data belong to the same fuzzy cluster in the
input space or output space; that is, only one cluster is formed
in the input and output spaces in this case. If the vigilance
value is set to one, every training datum forms one fuzzy
cluster in the input or output space. An increase in sensitivity
is modeled within the FALCON-ART model by an increase
in the vigilance value. With a fixed vigilance value, the fuzzy
clusters may grow too many as learning proceeds. To avoid
this problem and to increase learning speed, we had better use
adaptive (monotonically decreasing) vigilance values. Initially,
we use a high vigilance value such that more and fine clusters
are formed in the initial stage of learning. The vigilance value
is then decreased gradually. As the vigilance value decrease
to some extent, mismatch reset will seldom occurs and new
cluster will not be created easily.

B. The Parameter Learning Step

After the network structure has been adjusted according
to the current training pattern, the network then enters the
second learning step to adjust the parameters of the member-
ship functions optimally with the same training pattern. The
problem for the parameter learning can be stated as: given
the training input data , , the desired output
value , , the input and output hyperboxes,
and the fuzzy logic rules, we want to adjust the parameters
of the membership functions optimally. These hyperboxes
and fuzzy logic rules are learned in the structure-learning
step. In the parameter learning, the network works in the
feedforward manner; that is, the node and links in Layer 4
are in the down–up transmission mode. Basically, the idea of
backpropagation algorithm is used for this parameter learning
to find the output errors of the node in each layer. Then, these
errors are analyzed to perform parameters adjustment. The goal
is to minimize the error function

(15)

where is the desired output and is the current output.
For the current training data pair starting at the input nodes,
a forward pass is used to compute the activity levels of
all the nodes in the network. Then, starting at the output
nodes, a backward pass is used to compute for all
the hidden nodes. It is noted that in the parameter learning
we use only normalized training vectorsand rather than
the complement coded ones and . Assuming that is
the adjustable parameter in a node, the general learning rule
used is

(16)
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(17)

where is the learning rate. To show the learning rules, we
derive the rules layer by layer using the hyperbox member-
ship functions with corners ’s and ’s as the adjustable
parameters for these computations. For clarity, we consider
the single output case.

Layer 5: Using (10), (16), and (17), the updating rule of
the corners of hyperbox membership functionis derived as

(18)

Hence, the corner parameter is updated by

(19)

Similarly, using (10), (16), and (17), the updating rule of the
other corner parameter is derived as

(20)

Hence, the other corner parameter is updated by

(21)

The error to be propagated to the preceding layer is

(22)

Layer 4: In the down–up transmission mode, there is no
parameter to be adjusted in this layer. Only the error signal

needs to be computed and propagated. According to (10),
the error signal is derived as in the following:

(23)

where

(24)

(25)

Hence, the error signal is

(26)

In the multiple output case, the computations in Layers 4 and
5 are exactly the same as the above and proceed independently
for each output-linguistic variable.

Layer 3: As in Layer 4, only the error signals need to be
computed. According to (8), this error signal can be derived as

(27)

where

(28)

(29)

(30)

where inputs of output-term nodes . The
term, , is to normalize the error to be propagated
for the fired rules with the same consequent. Hence, the error
signal is

(31)

If there are multiple outputs, then the error signal becomes
, where the summation is performed

over the consequents of a rule node; that is, the error of a rule
node is the summation of the errors of its consequents.

Layer 2: Using (5), (16), and (17), the updating rule of
is derived as in the following:

(32)

where

(33)

if
otherwise.

(34)

So the updating rule of is

(35)

Similarly, using (5), (16), and (17), the updating rule of
is derived as

(36)

where

(37)

if
otherwise.

(38)
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Hence, the updating rule of becomes

(39)

IV. RULE ANNIHILATION

With the above on-line learning algorithm, FALCON-ART,
the fuzzy logic rules can only be created and cannot be
annihilated. It would be better if the FALCON-ART has
the ability to delete unnecessary or redundant rules. In this
section, we shall present two methods of rule annihilation.
The basic idea is to combine two or more “similar” rules into
a representative one. During the on-line structure/parameter
learning, the hyperboxes of input and output spaces are tuned.
These hyperboxes may be updated to greater hyperboxes
or smaller hyperboxes gradually. Thus, the perfect inclusion
between two hyperboxes may happen. Let’s consider the
situation that the hyperboxcontains the hyperbox; i.e., the
hyperbox is a subset of the hyperbox. In this situation,
it is intuitive that one of the hyperboxes (or ) can be
annihilated. This is equivalent to the case that two fuzzy terms
of a linguistic variable represent redundant fuzzy meaning and
thus one of them can be removed.

To determine the rule similarity, a dimension-by-dimension
comparison process of hyperboxes is conducted. Let
and be the edges of two compared hyperboxes
and in the th dimension. If and for
all dimensions , in the input space or output
space we say the hyperboxcontains the hyperbox. For
such two hyperboxes and , if we annihilate the hyperbox

and remain the hyperbox we will obtain the greater
hyperbox. This will cause the membership functions to do
coarse clustering in the input or output space. On the contrary,
if the hyperbox is annihilated and the hyperboxremains,
we will obtain the smaller hyperbox and the membership
functions will do finer clustering in the input or output space.
In the latter case, the training patterns outside the hyperbox

will be reclustered in the next iteration. When we decide
to annihilate an input hyperbox, we delete all the nodes and
attached connections that constitute this hyperbox. We also
need to annihilate the output hyperbox associated by this
input hyperbox if this output byperbox is not associated by
other input byperboxes. On the other hand, if we decide to
annihilate a output byperbox, we delete all the nodes that
constitute this hyperbox, and then redirect all its input links
to the remaining similar output hyperbox. The proposed rule
annihilation process is based on the natural property of most
control systems that if two input data are close (similar) in the
input space, the two mapped outputs are also close (similar) in
the output space. Based on the above discussion, we propose
two methods to determine the combination of two similar rules.
The first method is to keep the greater hyperbox in the input
and output spaces, whereas the second method is to keep the
smaller hyperbox in the input and output spaces. These two
methods are described as follows. The rule annihilation process
is illustrated in Figs. 5 and 6, where we consider two-input
and two-output case.

(a)

(b)

Fig. 5. Two rule-annihilation methods.

(a)

(b)

Fig. 6. Illustrations of the rule-annihilation process in the FALCON-ART
model.

1) Method 1: If one hyperbox contains another hyperbox
(i.e., or ), we can delete the

smaller hyperbox (i.e., or ) and keep the greater
hyperbox (i.e., or ). This is achieved by letting
the left-flat points and perform the fuzzy AND
operation for all dimensions and the right-flat points (and

) perform the fuzzy OR operation for all dimensions

(40)

(41)

From these operations we can obtain the greater hyperbox in
the input and output spaces [Fig. 5(a)].

The rule-annihilation process in the FALCON-ART is il-
lustrated in Fig. 6, which shows a graphic interpretation of
Methods 1 and 2 of the rule-annihilation process. Here, we
consider a two-input and two-output case. As shown in the
figure, two hyperboxes ( ) are formed in the input
space and two hyperboxes ( ) are formed in the
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output space. The two fuzzy rules indicated in the figure are
“IF is THEN is (Rule 1),” and “IF is

THEN is (Rule 2),” where and
. These rules reflect the natural property of most

control problems that if two input data are close (similar) in
the input space, the two mapped outputs are also close in the
output space. In Fig. 6(a), the hyperbox contains the other
hyperbox . According to the Method 1 of rule-annihilation
process, we delete the smaller hyperbox and keep the
greater hyperbox ; that is, we combine Rules 1 and 2 into
Rule 2 as shown in Fig. 6(a).

2) Method 2: If one hyperbox contains another hyperbox
(i.e., or ), we can delete the greater

hyperbox (i.e., or ) and keep the smaller hyperbox
(i.e., or ). This is achieved by letting the left-flat

points and perform the fuzzy OR operation for all
dimensions and the right-flat points ( and ) perform the
fuzzy AND operation for all dimensions

(42)

(43)

From these operations we can obtain the smaller hyperbox in
the input and output spaces [Fig. 5(b)].

We also use Fig. 6 as an example to explain the Method 2
of rule-annihilation process. In Fig. 6(b), the hyperbox
contains the other hyperbox . According to Method 2 of
rule-annihilation process, we delete the greater hyperbox
and keep the smaller hyperbox ; that is, we combine Rules
1 and 2 into Rule 1, as shown in Fig. 6(b).

V. ILLUSTRATIVE EXAMPLES

A general purpose simulator for the FALCON-ART model
has been written in “C” language and runs on a PC-486. Using
this simulator, four typical examples are presented in this
section to show the fundamental applications of the proposed
model. The first example is to identify a dynamic system [25],
the second example is to predict time-series [17], the third
example is to control the truck backer-upper [26], [27], and
the fourth example is to control the ball and beam system
[16], [28].

Example 1—Identification of the Dynamic System:In this ex-
ample, the proposed FALCON-ART model is used to identify
a dynamic system. The identification model has the form

(44)

Since both the unknown plant and the FALCON-ART model
are driven by the same input, the FALCON-ART model adjusts
itself with the goal of causing the output of the identification
model to match that of the unknown plant. Upon convergence,
the input/output response relationship should match.

The plant to be identified is guided by the difference
equation

(45)

The output of the plant depends nonlinearly on both its past
output values and the input values, but the effects of the input
and output values are additive. In applying the FALCON-
ART model to this identification problem, the learning rate

, sensitivity parameter , and vigilance pa-
rameter , are chosen, where
and are vigilance parameters used in the input and
output fuzzy clustering processes, respectively. The training
input patterns are generated with
and the training process is continued for 60 000 time steps.
Starting at zero, the number of clusters grow dynamically
for incoming training data. Each cluster corresponds to a
hyperbox in the input or output space. Fig. 7 shows the root-
mean-square (rms) errors during learning. Each point on the
curve is the average of 200 training time steps. The curve
appears to have a big oscillation at the beginning of learning.
This situation reflects the structure changing in the early
stage of learning; that is, the numbers of fuzzy partitions of

and are increasing and new fuzzy logic rules are
generated. In this example, the case of two input and one
output is considered for illustration. Fig. 8(a) illustrates the
distribution of the training patterns and the final assignment
of the rules (i.e., distribution of the membership functions)
in plain (input space). There are six hyperboxes

formed in the input space.
Fig. 8(b) shows the distribution of the output membership
functions in domain (output space). Three trapezoidal
membership functions are generated in
the output space. After the hyperboxes in the input and output
spaces are tuned or created in the fuzzy clustering process, the
mapping process then decides proper mapping between the
input clusters and output clusters. There are six fuzzy logic
rules formed, finally, as in the following:

Rule 1: IF is THEN is

Rule 2: IF is THEN is

Rule 3: IF is THEN is

Rule 4: IF is THEN is

Rule 5: IF is THEN is

Rule 6: IF is THEN is

where and . From these fuzzy
logic rules, we know Rules 1 and 3 have the same consequent.
Also, Rules 2 and 5 and Rules 4 and 6 map to the same
consequent. These rules reflect the natural property that if
two input data are close (similar) in the input space, the two
mapped outputs are also close in the output space. Fig. 9 shows
the outputs of the plant and the identification model. In this
figure, the output of the FALCON-ART model are presented as
dotted curve while plant output values are represented as solid
curve. The results show the perfect identification capability of
the trained FALCON-ART model.
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Fig. 7. Learning curve of the FALCON-ART identifier in Example 1.

(a)

(b)

Fig. 8. Simulation results of the FALCON-ART model without rule annihi-
lation in Example 1. (a) The input training patterns and the final assignment
of rules. (b) The distribution of output membership functions.

Fig. 9. The outputs of the plant and the identification model.

During the simulation, we also applied the rule-annihilation
techniques into the FALCON-ART. The learning results of
the FALCON-ART with the Method 1 of rule annihilation are
shown in Fig. 10. There are four fuzzy logic rules generated
in this case. Fig. 10(a) and (b) show the distribution of the
input and output membership functions, respectively. The four
generated fuzzy logic rules are “IFis THEN is ,”
“IF is THEN is ,” “IF is THEN is

,” and “IF is THEN is .” If we use Method
2 of rule annihilation, there are five fuzzy logic rules generated
when learning is terminated. Fig. 11(a) and (b) shows the
distribution of the input and output membership functions in
this case. The five generated fuzzy logic rules connecting these
two figures are “IF is THEN is ,” “IF is
THEN is ,” “IF is THEN is ,” “IF is

THEN is ,” and “IF is THEN is .”
Simulation results show that with rule-annihilation techniques,
we can still obtain perfect identification capability by using
fewer fuzzy logic rules.

Notice that the possibility of the occurrence of the perfect
inclusion between two hyperboxes is not low. This is the nature
of the fuzzy ART and fuzzy ARTMAP algorithms [22], [23].
Especially, when a large hyperbox formed in the input (output)
space, a following input pattern may easily fall into it. If
this pattern is not considered to belong to the large hyperbox
(e.g., the desired output of this pattern is not in the output
hyperbox that the large input hyperbox associates with), it will
form a new small hyperbox in the large hyperbox and perfect
inclusion occurs. Moreover, since our model uses the fast-learn
fuzzy ART to decide the initial hyperboxes (structure learning)
and the backpropagation algorithm to tune the hyperboxes
(parameter learning), a hyperbox may be tuned to include or
be included by another hyperbox gradually in the parameter
learning step and perfect inclusion between two hyperboxes
may happen.

Example 2—Prediction of the Chaotic Time-Series:Let
be a time series. The problem of time-

series prediction can be formulated as: given
determine , where

and are fixed positive integer (i.e., determine a mapping from
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(a)

(b)

Fig. 10. Simulation results of the FALCON-ART model with Method 1 of
rule annihilation in Example 1. (a) The input training patterns and the final
assignment of rules. (b) The distribution of output membership functions.

to ).
To illustrate the on-line learning ability, the FALCON-ART
model is used to predict the Mackey–Glass chaotic time-series.
The Mackey–Glass chaotic time-series is generated from the
following delay differential equation:

(46)

where . In our simulation, we choose the series with
. Fig. 12 shows 1000 points of this chaotic series used

to test the FALCON-ART model. We choose and
in our simulation (i.e., nine point values in the series are used
to predict the value of the next time point). The 200 points
of the series from – are used as training data,
and the final 300 points from – are used as
test data. The learning rate , sensitivity parameter

, and vigilance parameter , are
chosen, where and are vigilance parameters used
in the input and output fuzzy clustering processes, respectively.

(a)

(b)

Fig. 11. Simulation results of the FALCON-ART model with Method 2 of
rule annihilation in Example 1. (a) The input training patterns and the final
assignment of rules. (b) The distribution of output membership functions.

After the structure-parameter learning, there are twenty-two
fuzzy logic rules generated in our model. Fig. 13 shows the
prediction of the chaotic time series from –
when 200 training data [from – ] are used. In this
figure, predictions of the FALCON-ART model are represented
as ’s while true values are represented as’s. The rms error
of prediction output approximates 0.08. The results show the
good prediction capability of the FALCON-ART model trained
only by a small set of training data.

We now compare the performance of our system with
that of other existing methods that can generate fuzzy rules
from numerical data automatically. The performance indexes
considered include numbers of fuzzy rules generated and
rms error of prediction output. The comparison results are
tabulated in Table I. First, we compare the performance of
the FALCON-ART model with that of the system proposed by
Wang and Mendel [17]. They developed a general method to
generate fuzzy rules from numerical data. This method consists
of five steps: Step 1 divides the input and output spaces
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TABLE I
PERFORMANCE COMPARISON OF VARIOUS RULE GENERATION METHODS ON THE TIME-SERIES PREDICTION PROBLEM

Fig. 12. The Mackey–Glass chaotic time series.

Fig. 13. Simulation results of the time-series prediction from
x(701)–x(1000) using the FALCON-ART model with 22 fuzzy rules
when 200 training data [fromx(501)–x(700)] are used.

of the given numerical data into fuzzy regions by choosing
proper membership functions, Step 2 generates fuzzy rules
from the given data, Step 3 assigns a degree of each of the
generated rules for the purpose of resolving conflicts among
the generated rules, Step 4 creates a combined fuzzy rule base
based on both the generated rules and linguistic rules of human
experts, and Step 5 determines a mapping from input space to
output space based on the combined fuzzy rule base using a

Fig. 14. The membership functions used in Wang and Mendel’s system for
the chaotic time-series prediction.

defuzzifying procedure. They also chose and in
their simulation, i.e., nine point values in the series were used
to predict the value of the next time point. The membership
functions used in the system are shown in Fig. 14. The 200
points of the series in Fig. 12 from – are used as
training data and the final 300 points from – are
used as test data. After performing the five steps described in
the above, we have 121 generated fuzzy rules. Fig. 15 shows
the prediction of the chaotic time series from –
when 200 training data [from – ] are used. The
rms error of prediction output approximates 0.08. The results
show that the proposed FALCON-ART predictor is able to
keep similar rms error but needs fewer fuzzy rules than Wang
and Mendel’s system. These results are shown in the second
column of Table I.

The second rule-generation method for comparison is called
the data-distribution method. This method generates fuzzy
rules according to the training data distribution in the in-
put/output product space. This method consists of five steps:
Step 1 divides the input/output product space of the given
numerical data into crisp regions, Step 2 generates fuzzy rules
from numerical data allocated in the regions and then decides
the weight of each rule according to the number of numerical
data falling into each region, Step 3 fuzzifies these crisp
regions into fuzzy regions by defining proper membership
functions, Step 4 creates a combined fuzzy rule base based on
the generated rules, and Step 5 determines a mapping from
input space to output space based on the combined fuzzy
rule base using a defuzzifying procedure. The membership
functions shown in Fig. 14 are also used in the data distribution
method for chaotic time series prediction. After performing
the five steps stated in the above, we have 118 generated
fuzzy rules. Fig. 16 shows the prediction of the chaotic time
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Fig. 15. Simulation results of the time series prediction from
x(701)–x(1000) using the Wang and Mendel’s system when 200
training data [fromx(501)–x(700)] are used.

Fig. 16. Simulation results of the time series prediction from
x(701)–x(1000) using the data distribution method when 200 training data
[from x(501)–x(700)] are used.

series from – when 200 training data are used.
The rms error of prediction output approximates 0.08. These
results are shown in the third column of Table I. According
to these results, the number of fuzzy rules generated in our
FALCON-ART model is still much smaller than that of the
data distribution method. It is noted that the number of the
generated fuzzy rules in the data distribution method and
Wang and Mendel’s system cannot be determined by the users.
That is, the number of fuzzy rule generated from the data
distribution method and Wang and Mendel’s system depends
on incoming training patterns.

Kosko [14] proposed the product space-clustering technique
to the adaptive fuzzy associative memory (FAM) systems such
that they can generate FAM rules directly from training data.
The basic concept of automatic generation of FAM rules is
to use the adaptive vector quantization (AVQ) algorithm to
find and allocate synaptic quantization vectors to FAM cell
from input/output training data, and then decide the weight

Fig. 17. Simulation results of the time series prediction from
x(701)–x(1000) using the UCL–AVQ algorithm with 100 fuzzy rules
when 200 training data [fromx(501)–x(700)] are used.

of each FAM cell (FAM rule) according to the number of
quantization vectors falling into it. Consider the case that

and . The system samples the nonfuzzy input
and output stream . Competitive AVQ
algorithm, which includes unsupervised competitive learning
(UCL) and differential competitive learning (DCL), distributes
the synaptic quantization vectors to different FAM cells
in the space, where is an integer given in advance. To
do this, we use a UCL or DCL network with two input nodes
and output (competitive) nodes. Assume contains
quantization vectors. Then cell counts define a frequency
histogram, since all sum to . Hence, weights
the corresponding FAM rule. According to the desired number
of fuzzy rules or a given rule–weight threshold, a final FAM
rule base is generated.

The membership functions in Fig. 14 are also used in the
product space-clustering method for the chaotic time-series
prediction problem. In our simulation, after competitive AVQ
learning we find that the centroid defuzzification process can-
not be performed on the used triangular membership functions
since some test data do not fire any fuzzy rules in the rule
base and thus causes a “divide by zero” problem in the
defuzzification process. To solve this problem, we replace
triangular membership functions with bell-shaped membership
functions. We set the number of rules as 100 and use the
fixed weighting of rule calculated from cell count
after competitive AVQ learning. Figs. 17 and 18 show the
prediction of the chaotic time series from –
using UCL–AVQ and DCL–AVQ algorithms, respectively. The
rms errors of prediction output approximate 0.17 and 0.2.

To improve the prediction accuracy, we combine
UCL(DCL)–AVQ algorithm with the backpropagation
learning algorithm. The former determines the fuzzy rule
base and the latter tunes the weighting values of fuzzy rules

. For comparison, we consider two cases: and
. Figs. 19 and 20 show the prediction of the chaotic

time series from – using the UCL-AVQ and
backpropagation hybrid learning algorithm. Figs. 21 and
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Fig. 18. Simulation results of the time series prediction from
x(701)–x(1000) using the DCL–AVQ algorithm with 100 fuzzy rules
when 200 training data [fromx(501)–x(700)] are used.

Fig. 19. Simulation results of the time-series prediction from
x(701)–x(1000) using the UCL–AVQ and backpropagation hybrid
learning algorithm with 22 fuzzy rules when 200 training data [from
x(501)–x(700)] are used.

22 show the prediction of the chaotic time series from
– using the DCL–AVQ and backpropagation

hybrid learning algorithm. The results show that the predictor
that uses hybrid learning algorithm is able to keep smaller
rms error than the original predictor. These results are shown
in Table I.

As shown in Table I, the proposed FALCON-ART predictor
produces smaller or similar rms error by using fewer fuzzy
rules than other rule generation methods. However, these
simulation results do not show the perfect prediction capability
of the proposed model trained only by a small set of training
data. It seems that 200 training data are not enough for the
chaotic time-series prediction problem. Thus, we replace 200
training data with 700 training data to train the FALCON-ART
predictor. The learning parameters used are the same as those
used previously. After the structure-parameter learning, there
are 30 fuzzy rules generated and the rms error of prediction

Fig. 20. Simulation results of the time-series prediction from
x(701)–x(1000) using the UCL–AVQ and backpropagation hybrid
learning algorithm with 100 fuzzy rules when 200 training data [from
x(501)–x(700)] are used.

Fig. 21. Simulation results of the time-series prediction from
x(701)–x(1000) using the DCL–AVQ and backpropagation hybrid
learning algorithm with 22 fuzzy rules when 200 training data [from
x(501)–x(700)] are used.

output approximates 0.04. Fig. 23 shows the prediction of the
chaotic time series from – when 700 training
data [from – ] are used. The simulation results show
the perfect prediction capability of the well-trained FALCON-
ART. It is noted that the big increase of training data does not
induce impractical increase of fuzzy rules in the FALCON-
ART model. In [17], Wang and Mendel tried to improve the
prediction accuracy by increasing the training data, using the
updating fuzzy rule base procedure and dividing the “domain
interval” into finer regions in their system. Finally, their
system achieved perfect prediction capability when the domain
interval was divided into 29 regions. Hence, the price paid
for achieving high-prediction accuracy is a larger fuzzy rule
base. Recently, Jang [9] proposed a model, called adaptive-
network-based fuzzy inference system (ANFIS) architecture,
for learning and tuning a fuzzy predictor. By using a hybrid
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Fig. 22. Simulation results of the time-series prediction from
x(701)–x(1000) using the DCL–AVQ and backpropagation hybrid
learning algorithm with 100 fuzzy rules when 200 training data [from
x(501)–x(700)] are used.

Fig. 23. Simulation results of the time-series prediction from
x(701)–x(1000) using the FALCON-ART model with 30 fuzzy rules
when 700 training data [fromx(1)–x(700)] are used.

learning procedure, the proposed ANFIS can construct an
input/output mapping based on both human knowledge (in the
form of fuzzy IF–THEN rule) and stipulated input/output data
pairs. The ANFIS also has perfect prediction capability on the
chaotic time series prediction problem after learning. However,
a set of correct fuzzy logic rules and proper input/output space
partition must be given in advance by experts before initiating
the training of the ANFIS.

Example 3—Control for Backing Up the Truck:Backing a
truck to a loading dock is a difficult exercise. It is a non-
linear control problem for which no traditional control design
methods exits. Nguyen and Widrow [26] developed a neural
network controller which only used numerical data for the
backing up the truck problem. Kong and Kosko [27] proposed
a fuzzy controller which only used linguistic rules for the
same problem. In this example, we develop a controller (called
FALCON-ART controller) to back up a simulated truck to a

Fig. 24. Diagram of the simulated truck and loading zone.

loading dock in a planar parking lot. We use on-line structure-
parameter learning algorithm for the FALCON to adaptively
generate fuzzy rules and adjust parameters according to train-
ing data. This FALCON-ART controller enables the truck to
reach the desired position successfully.

The simulated truck and loading zone are shown in Fig. 24.
The truck position is exactly determined by three state vari-
ables , , and , where is the angle of truck with the
horizontal and the coordinate pair specifies the position
of the rear center of the truck in the plane. The steering
angle of the truck is the controlled variable. The positive
values of represent clockwise rotations of the steering wheel
and negative values represent counterclockwise rotations. The
truck is placed at some initial position and is backed up while
being steered by the controller. The objective of this control
problem is to use backward movements of the truck only
to make the truck arrive at the loading dock at right angle

and to have the position of the truck with
the desired loading dock . The truck moves
backward by fixed distance of the movement of the steering
wheel at every step. The loading region is limited to the plane
[0, 100] [0, 100].

The input and output variables of the FALCON-ART con-
troller must be specified. The controller has two inputs, truck
angle and the cross position. Assuming enough clearance
between the truck and the loading dock, thecoordinate is
not considered as an input variable. The output of controller
is the steering angle. The ranges of the variables and

are as follows:

(47)

(48)

(49)

The equations of backward motion of the truck are given by

(50)

where is the length of the truck. Equation (50) is used to
obtain the next state when the present state is given.

For the purpose of training the FALCON-ART controller,
learning takes place during several different tries, each starting
from an initial state and terminating when the desired state
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Fig. 25. The moving trajectories of the truck where the solid curves represent
the six sets of training trajectories and the dashed curves represent the moving
trajectories of the truck under the control of the learned FALCON-ART
controller.

Fig. 26. Learning curve of the FALCON-ART controller in Example 3.

is reached. In our simulation, six different initial positions
of the truck are chosen. The six training paths are shown in
Fig. 25. The truck moves by a small fixed distance at
every step and the length of the truck is set to be .
The learning rate , sensitivity parameter ,
and initial vigilance parameter ,
are chosen. The vigilance values decrease gradually with
training epoch number increasing. The training process is
continued for 600 epochs. In each epoch, all the six sets
of training trajectories are presented once to the FALCON-
ART controller in a random order. Fig. 26 shows the learning
curves for the FALCON-ART controller. After the on-line
structure-parameter learning, there are 19 fuzzy logic rules
generated in our simulation. The rms error of the controller
with nineteen rules approximates to 2.3. The training result
is shown in Fig. 25. In the figure, the solid curves are the
training paths and the dotted curves are the paths that the
truck runs under the control of the learned controller. As this
figure shows, the FALCON-ART controller can smooth the

Fig. 27. Three-dimensional (3-D) control surface of the learned FAL-
CON-ART controller in Example 3.

training paths. The three-dimensional (3-D) control surface
of the learned FALCON-ART controller in Fig. 27 shows the
steering signal outputs with respect to all the combinations
of the two input variable values and after learning the
six sets of training trajectories. After the training process is
terminated, Fig. 28(a)–(c) shows the trajectories of the moving
truck controlled by the FALCON-ART controller starting
from the initial positions (a) ,
(b) , and (c) . If we remove
the truck training trajectories 3 and 4 from the six sets of
training trajectories, we find that the learned FALCON-ART
controller can still move the truck nearly to the correct parking
position starting at the same initial positions. The trajectory
starting at in this case is shown in
Fig. 29. Although we reduce the number of training patterns,
this controller can still move the truck to the correct parking
position. This indicates that the FALCON-ART controller
can also produce appropriate control action even if training
patterns are not distributed over a sufficiently varied area
in the state space. Therefore, the FALCON-ART has good
generalization capability and robustness.

In the case that six sets of training patterns are used during
learning process, we also tried the rule-annihilation technique
to combine some similar rules. With this learning, there are
twelve fuzzy rules generated in the use of Method 1 of rule
annihilation and seven fuzzy logic rules generated in the use
of Method 2. The results show that by incorporating the rule-
annihilation process into the FALCON-ART, we can obtain
fewer fuzzy logic rules that can still move the truck to the
correct parking position.

Example 4—Control of the Ball and Beam System:The ball
and beam system is shown in Fig. 30. The beam is made to
rotate in a vertical plane by applying a torque at the center
of rotation; the ball is free to roll along the beam. We require
that the ball remain in contact with the beam. The system can
be written in the following state-space form:

(51)

(52)
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(a) (b)

(c)

Fig. 28. Truck moving trajectories starting at three different initial positions under the control of the FALCON-ART model after learning six sets of
training trajectories.

where is the state of
the system and is the output of the system. The
control is the angular acceleration and the parameters

and are chosen in this system. The
purpose of control is to determine such that the closed-
loop system output will converge to zero from different
initial conditions.

According to the input/output-linearization algorithm [28],
the control law is determined as follows: for state,
compute ,
where , , ,

, and the are chosen so that
is a Hurwitz polynomial.

Compute and ;
then .

In our simulation, we solve the differential equations using
the second/third-order Runge–Kutta method. We train the
FALCON-ART model to approximate the aforementioned
conventional controller of a ball and beam system. Let
all closed-loop poles be placed at . Thus, ,

Fig. 29. Truck moving trajectory under the control the FALCON-ART model
after learning four sets of training trajectories.

, , and are chosen. We use
to generate the input/output
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Fig. 30. The ball and beam system.

Fig. 31. The responses of the closed-loop ball and beam system controlled
by the FALCON-ART model for four initial conditions.

training pair with obtained from randomly sampling 300
points in the region .
The learning rate , sensitivity parameter ,
and vigilance parameter , are
chosen. After the on-line structure-parameter learning, there
are 28 fuzzy logic rules generated in our simulation. We
have tested the learned controller at four initial conditions:

, ,
, and .

Fig. 31 shows the output responses of the closed-loop ball
and beam system controlled by the FALCON-ART model.
These responses approximate those of the original controller
for the four initial conditions. As a comparison, Fig. 32 shows
the output responses of the closed-loop ball and beam system
controlled by the input/output-linearization algorithm for four
initial conditions. We also show the behavior of the four states
of the ball and beam system starting at the initial condition

in Fig. 33. In this figure, the four
states of the system decay to zero gradually. The results show
the perfect control capability of the trained FALCON-ART
model.

VI. DISCUSSION

In this section, we summarize the features of the proposed
FALCON-ART model. First, distributed representation is used
to represent the input patterns in the FALCON-ART model.
This is achieved by the fuzzification process through the
adaptive input membership functions. With the adaptive input
membership functions, the input space is divided into overlap-
ping smaller regions and, more importantly, this partitioning is

Fig. 32. The responses of the closed-loop ball and beam system controlled
by the input/output-linearization algorithm for four initial conditions.

Fig. 33. The responses of the four states of the ball and beam system under
the control of the learned FALCON-ART controller.

not performed in advance, but is dynamically and appropriately
adjusted during the learning process. As a result, each region
varies in size and the degree of overlapping between regions is
also adjustable. This is in contrast to the Wang and Mendel’s
system [17], ANFIS system [9], and Kosko’s system [14] in
which the input space need to be divided properly in advance.
The second feature of the proposed FALCON-ART model is
its dynamic structure-parameter-learning ability that can find
proper fuzzy logic rules. This is in contrast to the approaches
in [9] and [18], which needa priori control knowledge from
expert operators in term of fuzzy control rules. The third
feature of the proposed FALCON-ART model is its rule-
annihilation ability. The FALCON-ART model has the ability
to delete unnecessary or redundant rules. In other words, it
can combine some nodes with the same or a very similar
control action. The fourth feature of the proposed FALCON-
ART model is the ease with which expert knowledge can be
incorporated into the network greatly shortening learning time.
The fifth feature of the proposed FALCON-ART model is that
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it flexibly partitions the input/output spaces according to the
distribution of environment states. This avoids the combinato-
rial growth problem encountered by partitioned grids in some
complex systems. In addition to the simulations done in this
paper, the proposed supervised structure-parameter-learning
algorithm has been used to solve many practical problems,
including crane-position control and adaptive control of elec-
trodischarge machining (EDM) in our laboratory.

VII. CONCLUSION

In this paper, we introduced a general connectionist model
of a fuzzy logic control system called FALCON. An on-line
structure-parameter learning algorithm called FALCON-ART
was proposed for constructing the FALCON dynamically.
The proposed learning algorithms is able to partition the
input and output spaces and then find proper fuzzy rules and
optimal membership functions dynamically. The FALCON-
ART partitions the pattern space into irregular hyperboxes
and, thus, can avoid the problem of combinatorial growing
of partitioned grids in some complex systems. Simulations
demonstrate that the proposed FALCON-ART model is quite
effective in many applications.
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