
Pattern Recognition, Vol. 28, No. 4, pp. 493-512, 1995
Elsevier Science Ltd

Copyright @ 1995 Pattern Recognition Society
Printed in Great Britain. All rights reserved

@X-3203/95 $9.50 + .CKI

0031-3203(94)00122-7

A CHINESE-CHARACTER THINNING ALGORITHM BASED
ON GLOBAL FEATURES AND CONTOUR INFORMATION*

JENN-YIH LIN and ZEN CHENt
Institute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu,

300, Taiwan, R.O.C.

(Received 23 November 1993; in revised form 30 August 1994; received for publication 14 September 1994)

Abstract-This paper proposes a method of using run-length coding to perform thinning. First, we construct
graphs from characters. The attributes (vertical lines, horizontal lines or points) of each node in the graph
are determined according to the node’s relationship to the nodes above and below it (we will refer to these
relationships as global features) and the black runs within the node. Intersections between two adjacent
segments are determined on the basis of the graph constructed and contour information. The thinning
algorithm thus employs global features and contour information to produce a more accurate skeleton.

Thinning Run Run-length coding

1. INTRODUCTION

Many character thinning algorithms have been pro-
posed in the past two decades. Suen et al.“’ surveyed
more than 100 thinning methods and classified them
into two groups: methods based on iterative deletion
of pixels and nonpixel-based methods. Many methods
based on iterative deletion of pixels employ a window
operator for thinning. These methods place a 3 x 3,
5 x 5, or larger n x n window onto the image and then
use a look-up table to determine whether to retain
or delete the center black pixel. Some methods even
use a window larger than 5 x 5 (such as the method
which uses a 9 x 9 window),“) but they make rough
decisions in certain cases to reduce the amount of
memory needed and the search time.

In general, the advantages of using a window operator
to perform thinning are that this approach is simple
and can easily be implemented as a parallel algorithm.
The disadvantages are that this method is relatively
sensitive to noise and that it is less effective than other
methods in processing the cross sections of a character.
To overcome this second disadvantage, Suen et ~1.‘~)
extracted ten different cross sections for further thinning
and then substituted the thinning result obtained for
the thinning result of the method in reference (4).

One type of nonpixel-based method is to employ
run-length coding for thinning. This approach is almost
used for character thinning.“-” This method divides
a character into a number of segments (a segment is

* This study was supported by the National Science Council,
Republic of China, under contract number NSC83-0408-E-
009-009.

t To whom all correspondence should be addressed.

Stroke extraction Skeleton

composed of several connected black runs). The seg-
ments and their connections are then used to deter-
mined how the segments will be thinned. In refer-
ence (5) the merge and fork relationships between runs
were used to convert characters into compressed line
adjacency graphs (henceforth, “c-LAG”). If there was a
significant change in the width of the runs of a node
in the graph, the node was divided into a horizontal
stroke and a vertical stroke. Vertical strokes with
approximately constant width and nearly collinear
centerpoints were denoted “candidates for vector-
ization”. Finally, compound vectorization was used to
generate the final result. In reference (6), it was assumed
that the width of the lines in a character was approxi-
mately constant. Merges, forks and significant changes
in width in runs were used to construct graphs from
characters. Relatively short nodes were regarded as
noise and deleted. The line segments in each node were
divided into horizontal strokes and vertical strokes;
stroke extraction was then performed to obtain the
final result. In reference (7), the line segments in Chinese
characters were classified into four primitive types of
strokes: horizontal strokes, vertical strokes, up-right-
slanting strokes, and up-left-slanting strokes. On the
basis of knowledge of the structure of Chinese charac-
ters, twenty parameters were derived to distinguish
between these four primitive strokes. These parameters
were then used in the stroke extraction procedure to
determine to what type of stroke each line segment
belonged.

One recent paper@) used run-length coding to perform
thinning of objects with similar widths. The main aim
of this method is to preserve an x-crossing skeleton. It
is assumed that the objects in the image are lines or
curves of similar width (say, h). If the length of a

493

494 J.-Y. LIN and Z. CHEN

column (row) run is less than 1.2 h, then the midpoint
of that run is used to form the skeleton. If the length
of a column (row) run is greater than 1.2 h, the clusters
of the “long” runs are located, which are found at line
intersections or vertical lines. If they are line intersec-
tions, the skeletons of the intersections are found using
heuristic rules. The column-wise result and the row-
wise result are then combined to obtain the final result.

One disadvantage of using a window operator in
preprocessing for Chinese character recognition is that
much information can be evaluated more easily before
thinning takes place. Important information about
connecting strokes and touching strokes, for example,
may be completely lost when a window operator is
used to perform thinning (see Fig. 1). When run-length
coding is used to perform character thinning (charac-
ters are decomposed into strokes only), on the other
hand, the structure of the original character is preserved.
Most Chinese characters are composed of vertical
lines, horizontal lines and slanted lines. In theory,
using run-length coding to perform thinning should
produce acceptable results. The presence of noise, con-
necting strokes, touching strokes and variations in
width along the length of a stroke (in printed charac-
ters), however, creates segment combinations of many
different shapes and hence greatly increases the dif-
ficulty of using run-length coding to perform thinning.

At present, the most common drawbacks associated
with using run-length coding to perform thinning of
Chinese characters are as follows:

(1) the shape of a segment is evaluated on the basis
of the runs containing that segment only (or some cases
the nearest run in an adjacent segment). Yet using only
local information such as this can easily lead to

erroneous results, because completely identical seg-
ments appearing in different positions may in fact
represent different shapes;

(2) the graph constructed and the boundaries of the
character shape are not properly utilized to evaluate
the relationship between segments, such as whether
two adjacent segments intersect or whether a segment
lying on a horizontal line is connected with the right
or left end of the line;

(3) the treatment given to regions of intersection is too
rough. In Chinese characters there are many different
types of intersecting shapes and touching strokes, which
may intersect at a single point, along a vertical line, or
along a horizontal line. In some cases, even two hori-
zontal lines may touch;

(4) using each node in the constructed graph to re-
present one stroke in a Chinese character is not a very
sound approach. For example, in some cases, a short
segment lying above (or below) a horizontal line should
be joined to the horizontal line. If this short segment
is regarded as an independent line, an erroneous skel-
eton will be produced (see the discussion of graph
modification in Section 4).

This paper will propose a method of using run-
length coding to perform thinning. The attributes
(vertical lines, horizontal lines or points) of each node
in the graph are determined according to the node’s
relationship to the nodes above and below it (we will
refer to these relationships as global features) and the
runs within the node. In this way, the correct attributes
of identical segments in different positions can be ob-
tained by examining the relationships between the
nodes and the nodes above and below them. Inter-
sections between two adjacent segments are determined

.= Touching stroke

Fig. 1. An example of stroke touching.

A Chinese-character thinning algorithm based on global features and contour information 495

on the basis of the graph constructed and contour
information. This thinning algorithm thus employs
global features and contour information to produce a
more accurate skeleton.

The remainder of this paper is organized as follows.
In Section 2, we describe the process of graph construc-
tion. Node attributes and their relationships are de-
scribed in Section 3; the graph modification process is
described in Section 4. In Section 5, the thinning algor-
ithm is presented. In Section 6, experimental results are
presented that confirm the effectiveness of the proposed
thinning process. Section 7 concludes the paper.

2. GRAPH CONSTRUCTION

A Chinese character comprises one or more discon-
nected components, each of which is composed of one
or more strokes. In practice, the connections between
these strokes can be classified into the following types,
which we have identified from experiments:

(1) merge: two or more strokes merge into a single
stroke [see Fig. 2(a)];

(2) fork: a single stroke forks into two or more strokes
[see Fig. 2(b)];

(3) A combination ofmerges and forks [see Fig. 2(c)];
(4) there is a significant change in width between

adjacent strokes [see Fig. 2(d)];

(5) the centerpoints of adjacent strokes are not col-
linear [see Fig. 2(e)].

Because of the effects of noise, the width of the runs
in the stroke types described above may not be constant.
Except for the first and the last runs, we require that
the changes in the width of the runs remain within a
certain threshold.

In the following we will employ the stroke connections
set forth above to construct the graphs of a character.
In the following, if not specified ohterwise, the term
“run” denotes a black run.

2.1. Features and nodes

In this paper, every run will be classified as represent-
ing one of the following features: starting run, fork,
merge, end run, or follower. These features are described
in detail below (see Fig. 3):

(1) starting run: a run that is not connected to any
other run above it is considered a starting run;

(2) fork: a run that connects to two or more runs
below it is classified as a fork;

(3) merge: a run connected to two or more runs
above it is considered a merge;

(4) end run: a run that is not connected to another
run below it is classified as an end run;

(5) follower: a run that is connected to a single run
above it and another below it is classified as a follower.

(a) (b)

(Cl) (c2)

Cd) (e)

Fig. 2. Examples of connections between two or more strokes. (a) Merge; (b) Fork; (c) A combination of
merges and forks; (d) A significant change in width between adjacent strokes; (e) The centerpoints of adjacent

strokes are not collinear.

496 J.-Y. LIN and Z. CHEN

Starting run ==5 <== Starting run (top)

<== Merge (third)

<== Fork (fifth)

End run ==> <== End run (last)

Fig. 3. Types of features (runs for which no feature is specified arc followers).

Fig. 4. Graph for Fig. 3.

The runs between any two features (excluding fol-
\ lowers) are regarded as nodes. Nodes may have one of

three attributes: vertical line, horizontal line or point.
(note: below we use line-fitting to perform thinning.
For vertical lines, the centerpoints of the horizontal
black runs are used to obtain a line equation. For
horizontal lines, the centerpoints of the vertical black
runs are used to obtain a line equation. For points,
fitting is not necessary.) Figure 4 is the graph of Fig. 3.

The information contained in the nodes of a graph
includes the following:

(1) the number of runs;
(2) the x-axis and y-axis coordinates of the leftmost

point of each run and the width of the run;
(3) the attribute of the node (vertical line, horizontal

iine, or point);
(4) how many nodes there are above and below the

node under consideration and the relationships between
these nodes (see Fig. 5);

(5) the value of the label (the runs in different nodes
will be labeled with different values).

For example, in Fig. 5, the node relationships are as
follows: Node 1 has no nodes above it, but three nodes
below it (nodes 2,3 and 4). Node 2 is connected to the
left end of node 1, but not to the right end. Nodes 2
and 3 do not intersect; nodes 3 and 4 intersect. Node
4 is not connected to the right end of node 2. Nodes 2,
3 and 4 each have one node above them (i.e. node 1)
and no nodes below them.

2.2. Processing offeatures

During the scanning process, each time a feature is
encountered in the scanned image, information about
the feature is recorded in the corresponding node. The
action of every feature and the information recorded
are described beiow.

(a)

(b)

Fig. 5. (a) Run figure; (b) Graph. The node relationships are
as follows: node 1 has three nodes below it; node 2 is connected
to the left end of node 1, nodes 3 and 4 intersect; node 4 is not
connected to the right end of node 1; nodes 2, 3 and 4 each

have one node above them.

2.2.1. Starting runs. When a particular run is identi-’
fied as a starting run, the following procedures are
performed:

(11 a new node is established; \m, -~ ~~~
(2) the x-axis and y-axis coordinates bf the leftmost

point of the run and the width of the run are recorded
in the node;

(3) the run is assigned a new label;
(4) the value of the label is saved in the node;
(5) the run count for the node is set to 1.

2.2.2. Followers. When a run is identified as a fol-
lower, the following procedures are performed:

(1) the x-axis and y-axis coordinates of the leftmost
point of the run and the width of the run are recorded
in the same node as the run above it;

(2) the run is labeled with the same label as the run
above it;

(3) the run count for the node in which the run is
saved is incremented by one.

2.2.3. End runs. When an end run is identified, we
need to determine whether the node it is in, is formed
of several strokes [see Fig. 2(d) and (e)] and to eliminate
noise around the end run.

A Chinese-character thinning algorithm based on global features and contour information 497

In order to divide a node into several strokes, we
assume every stroke is composed of at least two runs.
If a node contains only one run, we merge it into a
node above or below it (see Fig. 6), or else we regard
it as noise and delete it.

To divide the runs in Fig. 2(d) into five strokes, we
take four runs at a time and determine whether the
four can be divided into two strokes. Let the widths of
runs i, ifl, i+2, and i+3, be Wi, Wi+r, Wi+z and

W+3r respectively. If equation (2.1) holds, then the
runs up to (and including) run i + 1 form one stroke,
and those from run i + 2 on form a different stroke.

(2* Wi < Wi+* and 2* W,+r < Wi+3) and

(Wi + thresh1 < Wi+z and Wi+l
+ thresh1 < Wi+3) and

~I~+~~wil+IWi+3~~+2l~I~+2~Wi+II~

(2.1)

In equation (2.1), the expression in the first set of
parentheses indicates that the width of the wider runs

2222222
2222222
2222222

33333333333
444444444444444444
444444444444444444
444444444444444444

Fig. 6. The run labeled 3 is merged into either group 2 or
group 4.

1
11

111
Cd 11111 ,

1111111 1111
1111111 11111

111111 11111
11111 111111

11111 111111
1111 111111

1111 111111
1111 11111

1111 11111
1111 11 1111 1111

1111 111 11111 11
1111 111 111111
11 111 111111

111 11111
111 1111
111 11111
111 1111
111 1111
111 1111
1111 1111
111 11111
1111 1111
1111 11111
11111111
111111
111111
111111
1111111

1111111111
1111 111111

1111 1111111
11111 11111111

11111 111111111
11111 111111111111

11111 11111l.l.1111111
11111 111111111111

11111 1111111
111111 1111

11111

is two or more times that of the narrower runs. The
expression in the second set of parentheses is included
to prevent the width of the narrower runs from being
too narrow (such as a width of only 1 or 2) and hence
producing a mistaken result. The expression in the
third set of parentheses is included to prevent a single
stroke from being divided into two strokes in cases
where the width of the end of a stroke is larger than
the width of the rest of the stroke (see Fig. 7).

Equation (2.1) applies to cases where the change in
the width of successive runs is from narrow to wide. In
cases where the width changes from wide to narrow,
the following equation is used to divide the runs into
separate strokes:

(2* Wi+2 < Wi and 2* Wi+3 < W,+l) and
(Wi+z + thresh1 < Wi and Wi+3

+ thresh1 < Wi+ 1) and

(IW+1-~l+IW+3- wi+Zl < Iwi+Z - wi+il)
(2.2)

Once we have used the above equations to determine
whether the first group of four runs can be divided into
two strokes, we continue to work downward until we
have covered all of the runs.

In some cases, the runs in a node should be divided
into two strokes, but because of the effects of noise,
they may in fact fail to be divided. For example, in
Fig. 6, if the width of run 3 is less than twice that of
group 2 but more than half that of group 4, then the

(b) 1111
11111111111

L/~~~~1111111111
1111111111111111111111

1111111111111111111111
1111111111111111111111
111111111 1111

11111

111
111111 11
11111 11111

111 11111 111111
1111 1111 1111111
11111 1111 11111
11111 1111 11111
1111 1111 1111
11111 1111 1111
11111 1111 1111
11111 1111 1111
1111 1111 111
1111 1111 111
11 1111 11 111

1111 11111
1111 1111111

111
111

1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

111111111111
1111111111

1111111
111

Fig. 7. The width of the end of a stroke is larger than the width of the rest of the stroke.

498 J.-Y. LIN and Z. CHEN

method described above will fail to divide the runs in
Fig. 6 into two strokes. Hence after the above decision
method is applied, we check to see whether the number
of runs in a stroke is greater than five. If it is, the
decision procedure is repeated, this time using groups
of five runs instead of groups of four. Suppose that the
widths of five runs, from top to bottom, are Wi, Wi+ l,
Wi+z, Wi+ 3 and Wi+4, respectively. Then Wi+ 3 and
Wiy4 are substituted for Wi+z and Wi+3, respectively,
in Equations (2.1) and (2.2), and the stroke division
procedure is repeated. If one of the equations holds,
then the group of runs must be further subdivided, and
run Wi+2 is considered to be a part of the group of
longer runs.

To delete noise, at this stage of the procedure we
merely delete any nodes consisting of a single run. Any
remaining noise is eliminated using the procedure de-
scribed in Section 4 below.

In summary, when a run is identified as an end run,
the following procedures are performed:

(1) if the run can also be identified as a starting run,
then the node is regarded as noise and deleted (it is
merely a short black run);

(2) if the feature above the run is a fork, then the
node in which the current run is located is deleted;

(3) We check whether the node in which the run is
located can be divided into two or more different
strokes [see Figs 2(d) and (e)]. If it can, then we divide
it, save each stroke as an individual node, and reassign
the nodes that were above or below the original node
so that they connect to the new nodes.

2.2.4. Forks. When a fork is identified during the
scanning procedure, the following procedures are per-
formed:

(1) The fork node is checked to see whether it can be
divided into two or more strokes using a procedure
analogous to that described in Section 2.2.3;

(2) in a procedure analogous to that for starting
runs, a node is created for each run after the fork and
these nodes are inserted below the node that contains
the fork run.

2.2.5. Merges. When a merge is found, the following
procedure is performed:

Step 1. the nodes before the merge are checked and
any node with a run count of one is deleted. If after
this step is performed no nodes are left above the
merge, then the run being scanned is identified as a
starting run.
Step 2. if after step 1 there are nodes remaining above
the merge, then each node is checked to see if it can be
further subdivided into new nodes [see Fig. 2(d) and
(e)]. If so, the node is divided and the nodes above and
below it are reassigned to connect to the new nodes.
Step 3. (1) if after step 2, the number of nodes preced-
ing the merge is one, then the current run is identified
as a follower;

(2) if the number of nodes is more than one, then a

new node is created and the node preceding the merge
is inserted above this node.

2.2.6. Graph construction algorithm. Our graph
construction procedure can be summarized by the
following algorithm:

Step 1. scan a bilevel image from left to right and top
to bottom. When one of the following cases is found
to hold, go to step 2.

Case 1. the first pixel scanned is a white pixel; con-
tinue scanning rightward until a non-white pixel or the
end of the row is reached.

Case 2. the first pixel scanned is a black pixel; con-
tinue scanning rightward until a non-black pixel or the
end of the row is reached.

Step 2. process the two cases in step 1.

Case 1. in step 1, a white run was scanned. Now
check whether a previously labeled run appears above
this white run;

(1) if yes, then label each labeled run as an end run;
(2) if no, then go to step 4.

Case 2. In step 1, a black run was scanned. Now
check whether a previously labeled run appears above
this black run.

(1) if no, then label the currently scanned black run
as a starting run;

(2) if two or more labeled runs appear above the
current black run, then label the current run as a merge
and check whether the rightmost labeled run connected
to the run below is a fork run [see Fig. 2(c.l)]. If yes,
insert these nodes below the node that the rightmost
labeled run is in;

(3) if only one labeled run appears above the current
run, then check how many non-white runs in the
scanning row are connected to the above labeled run;

(a) if there is only one, then label the currently
scanned run as a follower;

(b) if there are two or more, then label the run
above as a fork and check whether the rightmost black
run connected to the run above is a merge run [see
Fig. 2(c.2)]. If yes, insert these nodes above the node
that the rightmost black run is in.

Step 3. once a run has been labeled as a starting run,
fork, merge, follower, or end run in step 2, execute the
processing described in the subsections above for the
corresponding type of label.
Step 4. Check whether the scanning process has
reached the rightmost pixel in the last line of the image.

(1) if yes, then go to step 5.
(2) if no, then check whether the scanning process

has reached the last pixel in the current row;
(a) if no, then go to step 1 and continue scanning

rightward;
(b) if yes, then move to the first pixel in the next row,

go to step 1 and begin scanning rightward.

Step 5. end.

A Chinese-character thinning algorithm based on global features and contour information 499

3. NODE ATTRIBUTES AND NODE RELATIONSHIPS

In this section, we shall discuss two topics:

(1) node attributes: each node is assigned one of
three attributes: vertical line, horizontal line, or point;

(2) node relationships: whether the adjacent nodes
intersect or whether the nodes above or below the node
under consideration are connected on the left end or
right end with the node under consideration (see Fig. 5).

3.1. Node attributes

Nodes may have one of three attributes: vertical line,
horizontal line or point. Unless the ratio of a node’s
width to its height is very large, in which case the node
is definitely a horizontal line, we must examine a par-
ticular node’s relationship to other nodes above and
below it in order to identify the attribute of the node.
If we attempt to identify node attributes on the basis of
only the run information contained in the nodes, then
the risk of error is very high. In the following discussion,
we use the parameter “up” to indicate the number of
nodes a particular node is connected with above it and
the parameter “dn” to indicate the number of nodes a
node is connected with below it. Our guidelines for
identifying the attributes of nodes are described below.

First we define a series of conditions. (Note: in each
of the following, “Cond i” indicates the condition
expressed by the words outside the parentheses, while
“Cond i(a)” indicates the condition expressed by the
words in parentheses.)

Cond l(a): the location where the node under con-
sideration is connected to the node above (below) is
not the first (last) run of the node under consideration
(see Fig. 8).

Cond 2(a): the node under consideration is connected
to only a single node above (below) it, and the width
of the first (last) run of the node under consideration
is wider than that of the last (first) run of the node
above (below) it plus threshl.

Cond 3(a): the node under consideration is connected
to” two or more nodes (assume n nodes) above (below)
it, the width of the node under consideration is more
than twice its height, and the width of its first (last) run
is greater than the sum of the widths of the last (first)
runs of all nodes above (below) it plus (n + threshl).

Cond 4(a): the run count of the node under con-
sideration is less than thresh3 and the widths of the
runs are strictly decreasing (increasing) (this criterion
can be relaxed to allow several runs to have equal
width).

2222

Case 1. up = 0 and dn = 0:

This indicates that the node under consideration is
an isolated node. If the ratio of the maximum width of
the runs to the height of this node is greater than 1,
then the node is a horizontal line; otherwise, it is a
vertical line.

Case 2. (up = 1 and dn = 0) or (up = 0 and dn = 1)

this indicates that if the node is not a horizontal line,
it is a vertical line. Consider up = 1, dn = 0 as an
example:

(a) if the node above the node under consideration
is connected to more than one node below it, then the
node under consideration is a vertical line;

(b) if Cond 1 or Cond 2 holds, then the node under
consideration is a horizontal line;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

An analogous algorithm can be used on up = 0 and
dn=l.

Case3. up=landdn=l

This indicates that if the current node is not horizontal
line, it is a vertical line.

(a) if the node above the current node is connected
to more than one node below it, and the node below
the current node is connected to more than one node
above it, then the current node is a vertical line.

(b) if Cond 1, Cond l(a), Cond 2, or Cond 2(a) holds,
then the current node is a horizontal line;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

Case 4. (up 2 2 and dn = 0) or (up = 0 and dn 2 2)

the current node may be a horizontal line, vertical line,
or a point. Consider up 2 2, dn = 0 as an example:

(a) if Cond 1 or Cond 3 holds, then the current node
is a horizontal line;

(b) if Cond 4 holds, then the node is a point;
(c) if neither (a) nor (b) holds, then the node is a

vertical line.

Case 5. (up 2 2 and dn = 1) or (up = 1 and dn 2 2)

the current node may be a horizontal line, vertical
line, or a point. Let us consider up 2 2, dn = 1 as an
example:

(a) if Cond 1, Cond l(a), Cond 2(a), or Cond 3 holds,
then the current node is a horizontal line;

(b) if Cond 4 holds, then the node is a point;
(c) if neither (a) nor (b) holds, then the node is a

vertical line.

2222 33333
2222 3333333333
2222 33333333333

3333333333333333333 <== Intersection run (fourth)
3333333333333333333333

3333333333333333333333333

Fig. 8. The node labeled by 2 connects to the node labeled by 3 at its fourth run.

500 J.-Y. LIN and Z. CHEN

Case6. up22anddn22

the current node may be horizontal line, vertical line,
or a point.

(a) if Cond 1, Cond l(a), Cond 3, or Cond 3(a) holds,
then the current node is a horizontal line;

(b) if the widths of the runs in the current node are
strictly decreasing followed by strictly increasing and
the run count is less than thresh3, then the node is a
point (this criterion can be relaxed to allow several
runs to have the same width);

Step 3. find the largest y-axis coordinate among the
coordinates of all the runs in node (i - 1) and node (i)
and denote it by y,;
Step 4. if ly, - yPl I thresh2, node (i - 1) and node (i)
intersect. Otherwise, node (i - 1) and node (i) do no
intersect.

4. GRAPH MODIFICATION

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

After we have determined the attributes of every node
and the relationships between nodes, we further modify
and reline the graph in the following ways:

3.2. Relationships between nodes

During the thinning process, we need to know
whether the left ends (right ends) of strokes formed by
two nodes one above the other are connected and
whether strokes formed by adjacent nodes intersect. If
the strokes do intersect, we need to lit them so that
they intersect at one point in order to produce a correct
skeleton.

(1) Noise is eliminated as follows: if a vertical line
located directly above (below) a horizontal line is found
to be unconnected to any node above (below) it and
the height of the vertical line is less than half the height
of the horizontal line, then the vertical line is deleted.

(2) If a horizontal line is connected to a point above
(below) it, the point is deleted [see Fig. 9(c)]. If, after
the point is deleted, other points are found, these too
are deleted [see Fig. 9(d)].

When identifying node relationships, we need only
to consider nodes that represent horizontal lines. This
is because if nodes that are vertical lines or points are
connected to two or more nodes above (below), then
the nodes above (below) will definitely intersect.

(3) If two horizontal lines are connected together
and the difference in the slope of the lines is negligible,
the two lines are merged into a single horizontal line.

Before identifying the relationships between nodes,
we must first delete any noise above and below vertical
lines [see labels 5 and 9 in Fig. 13(cl)].

(4) To facilitate the processing described in Section
5 below, when a vertical line is connected to two or
more vertical lines above (below) it, we add a “point”
node between the vertical line and the vertical lines
above (below) it (see Fig. 10).

Suppose node A is a horizontal line, and let node B
be the rightmost node above node A to which node A
is connected. The following algorithm (algorithm 1) is
designed to determine wheter these nodes are connected
on the right end (an analogous algorithm can be used
to check whether the left end is connected).

5. THINNING

Algorithm 1:

Step 1. find the run in node A that has the largest value
for its x-axis coordinate and denote it by xi. Denote
its y-axis coordinatee by y,;
Step 2. find the line equation of the line formed by the
rightmost point of each run in node B;
Step 3. obtain the value of x2 by substituting y1 into
the line equation found in step 2.
Step 4. if lx2 -x11 5 2, then the right end of these
nodes is connected; otherwise, they are not connected
on the right.

We have now completed our description of the stroke
extraction process and shown how the attributes of
each stroke and the relationships between strokes are
identified. In this section, we shall describe how the data
derived through the processes outlined in Sections 2,
3, and 4 may be used to obtain a character skeleton.

Our approach will be to construct the skeleton of a
character by performing line fitting using the attributes
of and relationships between nodes in the character
graph. For horizontal lines, we shall use the center-
points of vertical runs for line fitting. For vertical lines,
we shall use the centerpoints of horizontal runs for line
fitting. The steps in the process are as follows:

Suppose node A is a horizontal line. If there are n
(> 1) nodes above node A that are connected with it,
the following algorithm (algorithm 2) can be used to
determine whether node (i - 1) and node (i) intersect.

Algorithm 2:

Step 1. use line fitting to find the line equation of the
line formed by the centerpoints of each run in node
(i - 1) and that formed by the centerpoints of each run
in node (i);

Step 1. we begin by fitting all horizontal lines. If the
left end or right end of a horizontal line is a connected
to a vertical line, then the horizontal line is fitted to
half the average line width of the vertical line. The
coordinates of the left and right end points of the
horizontal line after fitting are then recorded;
Step 2. all points are masked out (fitting is not per-
formed on points), with the centerpoint of each point
being used to represent the location of the point. The
coordinates of the centerpoints are then recorded;
Step 3. we repeat step4 through step 7 until all vertical
lines have been fitted;

Step 2. find the intersection of the two lines in step 1 Step 4. we identify a node of a vertical line that has
and denote it by (xf, yf); not yet been fitted;

A Chinese-character thinning algorithm based on global features and contour information 501

(b)

Cc)

vert.
line 9 vert.

line

vert. SF point
ine

point

(4

Fig. 9. (a) Run figure; (b) Graph; (c) We delete the point node above a horizontal line node; (d) After (c), if
there is still a point node in the horizontal line node, it is also deleted.

(a)

(b)
vet-t. vet-t.

line line YP
vet-t.

a line

(c)
vet-t.
line 13

vert. 0 line

/-

point

z

vet?.
line

Fig. 10. (a) Run figure; (b) Graph; (c) We add a “point” node
between the two existing nodes.

Step 5. for the line identified in step 4, we determine
how many collinear vertical lines there are above it and
below it. We regard these lines as forming a set, which
we will call a line set;
Step 6. we attempt to identify how many points the
line set must pass through, in the following way:

if a particular line in the line set is connected to a
node whose attribute is “point”, then the line must pass
through that point;

if a particular-line in the line set intersects a neighbor-
ing line for which fitting has been completed, then the
line must pass through the point of intersection;

if a particular line in the line set is connected to the
left end or right end of a horizontal line, then the line
must pass through the point where it connects with the
horizontal line;

if the very top (bottom) line in the line set intersects
another vertical line for which fitting has been comple-
ted, then it must pass through the point where it
intersects this vertical line;

if the very top (bottom) line in the line set is connected
to a horizontal line, and there is another vertical line
located above (below) this horizontal line that passes
through the horizontal line and intersects with the top
(bottom) line of the line set, then if fitting of this other
vertical line has been completed, the top (bottom) line
in the line set must pass through an end point of this
vertical line.

Step 7. after step 6 is completed, we apply the following
rules to find the points that form the skeleton of the
line set under consideration:

502 J.-Y. LIN and Z. CHEN

(A) if in step 6 no point is found, then line fitting is
used to obtain the line equation of the line set;

(B) if in step 6 only one point is found, then line
fitting that must pass through a specific point is used
to obtain the line equation for the line set;

(C) if two or more points are found step 6, then
working from the top, we search for every two neighbor-
ing points and obtain the line equation that passes
through these two points.
Step 8. the procedure terminates.

6. EXPERIMENTAL RESULTS

To verify the feasibility of our method, we tested it
on printed characters collected and tiled by the Tele-
communication Laboratories of the Ministry of
Transportation and Communications. The highest
resolution of the characters is 48*48. We selected a
sample of 700 characters by beginning from character
500 in the list and selecting every fifth character until
we reached character 4000. The characters in our

&I)

(4
111

111

sample had the following characteristics: there were
many different types of touching strokes and inter-
sections; there were cases where a single run formed a
complete stroke; and there were cases where the stroke
boundaries contained noise. In the test results, correct
skeletons were obtained for all but eleven out of 700
characters, so the success rate was 98.43%.

The algorithm is written in Microsoft C language
on an IBM PC 486-33. The total execution time for
using run-length coding to extract the strokes of 700
Chinese characters (including reading data from disk)
is 512.83 s, or on average, 0.73 s for each character. On
the other hand, total computer time including line
fitting the extracted strokes to produce the skeletons
for the 700 Chinese characters is 821.31 s, or 1.17 s for
each character.

During the thinning stage, in some cases we had to
force lines to pass through certain points, causing some
of the thinning results to become slightly curved [see
Fig. 1 l(a)]. This is because the center point of a wider
run may shift to one side dramatically, yet after thinning

6666

4444 333333
8888888888888888888888888888888888888
8888888888888888888888888888888888888
9999
9999 55
9999 5555
9999 77777777777777777777777777
9999 7777777777777777777777777 66
9999 6666

bbbb cccc fffffffffff
bbbb fffffffffffffffffff
bbbb fffffffffff 44mzacIcl ~______

bbbb fffffffffff vmmggggggg
bbb ffffffff gm-K!ggggggg

bbbb fff wgwgmg
bbb 5T3w

bbb iiii jjjj
bbb kkkkkkkkkkkkkkkkkkkkkkkkkkkkk
bb kkkkkkkkkkkkkkkkkkkkkkkkkkkkk

1111 nunmill

111 5555 6666
111 555 6666
ill 3333333
111 3333333
111 222 4444
111 2222 4444
111 2222 4444
777777
7777

WI
b
b
b

e4444444444444444 b
e 44444444444444444b
e
e c
e c
e 33333333333333333 c
e 3333333~ d
e d

F55555555555555555 d
d

f 4 555555555555555555d
f g h i

f g h i
f g h i
f 4 h

f
66j

cl
f

66666 j
g 6666

f
j

66666 f 66666 j
f 6 j

f
j

f
j

f
j

f k777777777777

f E
77777777777771

1
k 1
k 1
k88888888888 1
k 8888888888811
k 1
k 1
k 1
k99999999999 1
k 9999999999991
k 1
k 1
k 1
k 1
k .!..?laaaaa1
k
k

Fig. 11 (Cont.)

A Chinese-character thinning algorithm based on global features and contour information 503

(cl)
333 44 55
33333 4444 5555
33333 6666666666666666666666
33333 6666666666666666666666
3333 7777 8888
3333 7777 8888
3333 7777 8888
3333 7777
3333 7777
3333 99 7777

8888
8888
8888

3333 9999 aaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbb aaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbb cccc dddd

kkkk cccc dddd
kkkk cccc dddd
kkkk cccc dddd
kkkk cccc dddd
kkkk cccc dddd
kkkk eeeeeeeeeeeeeeeeeeeee
kkkk eeeeeeeeeeeeeeeeeeeee
kkkk ffff gg hhh
kkkk ffff CKm
kkkk ffff ~-- ggg ii
kkkk ffff ggg iiiii
kkkk ffff ggg iiiiiii
kkkk jjj ffff iiiiiiii
kkkk jjjj ffff zg iiiii
PPPPPPPPP ffff gggg iiii

11111111 ffff gwgqm
11111111 ffff mmmmmm

111111111 ffff innmill

Cdl)

555 44444
99999999999999399999999999
93999999999399939999999999
aaaa
aaaa
aaaa

3333 aaaa 6
3333 77 aaaa 666
3333 7777 aaaa 66666

88888888888888888 bbbbbbbbbbbbbbbbbbbbbb
88888888888888888 bbbbbbbbbbbbbbbbbbbbbb

jjjj dddd
jjjj dddd
jjjj dddd
jjjj dddd c
jjjj dddd ccc
jj>j dddd ccccc 9
1713 eeeeeeeeeeeeeeeeeeeeeeeeeee 9
jjjj ff eeeeeeeeeeeeeeeeeeeeeeeeeee 9
jjjj fffff gggg hhhh ii 9 f
kkkkkkkk gggg hhhh ii 9 f

kkkkkkkkk gggg hhhh ii 11 9 7f
kkkkkkkkkk gggg hhhh ii 1111 3777
kkkkkkkkkk gggg hhhh ii 111111 77779
kkkkkkkkkk ggg hhhh ii lllllli 777 9
nunm ssss ggg hhhh ii 1111 3

5555 ggg hhhh ii 1111 9
ssss gggg hhhh uuuuu 9
ssss ggg hhhh ooo 9
ssss ggg hhhh 000 9 g h
ss55 ggg hhhh 000 9 g h
ssss ggg hhhh 0000 9 g h k
ssss ggg hhhh 00000 9 g h k
ssss ggg hhhh YVVVVVVVV 9
SSSS ggg bbhh PPPPP gww 9 gg

h k
h

ssss ggg wwwwwwwww 444944 9 g h llllrnln
ssss ggg rrrrrrrr gwlggg 9 g tlllll m
ssss gg rrrrrrrrrr mgggq 9 g n mm

sssss rrrrrrrrr
tttttttttt ,;; rrrrrrr

ggggg 9 4 nn m
ggg 9

tttttttt gg rrrr ; nnn
mm

8888 9 m
tttttt rrr 88889 4 ml
tttt n

Fig. 11 (Cont.)

cc3
8
8
8
8
8
8
8
FI
-8
8 C
8 c

555555585 c
8 5555555c
8
8
8

w
gg

w
w

g

a
a
8
8
8
8
8
8 f
8 fff
gfff

4

9 a
9 a
b333333333 a
b 333333333a
b a
b a
b a
h a
b a
b a
b44444444 a.
b 444444444a
b a
b a
b a
b a
b a
b a
b666666666
b d 66666666:
b d
b d
b d e

d eee
d ee
d eee
d ee
eee

d
d
d
d

b d
b d
b di
b 777777777777777i

hb77 i

Cd21
9
9
9
9
9
9
9
9
9
3 c
9 c

33333339 c
93333333c
9
9

h i
h i

h i
h i

h 1
h

a
a
a _~

d44444444444 a
d 44444444444a
d
d
d
d b
d b
d b
d555555555 b
d 555555555b
d
d
d
d e
d e
d e
966666666666 e

g :
i 666666666666e

g i
gh i
g h i j
4 h i j

g h i j
g h i jj
4 h i j
4 h ij
g h k

504

Cell
333
33333
333333
33333
3333 4
3333 444
3333 44444

555
55

8888
8888
8888 66

777 8888 6666
999999999999999999999999999999999
999999999999999999999999999999999
aaaa bbbb cccc
aaaa bbbb cccc
aaaa bbbb cccc
aaaa bbbb cccc
aaaa bbbb cccc
aaaa bbbb cccc

J.-Y. LIN and Z. CHEN

(e2)
6
6
6
6
6 7
6 7
6 7

33333333333333333333633333333 7
6 3333333333337
6

aaaa bbbb cccc
dddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddd
e-see dddddddd wg
eeee hhhhh iii
eee hhhhh

hhhhh
hhhhh

hhhhh
hhhhh

hhhhhh
hhhhhhh

qqwclqqqq
11111 mm*

11111 mmmm
1111 mmmm

kkkkkk
kkkkkkkkkkk

PPPPPPPPPPP
PPPPPPPPPPP

PPPPPPPPPPP
PPPPPPPPP
PPPPPP
PPP

Fig. 11. Stroke pattern “g” to be considered. (a) Label 7 is the upward book, label 3 is the crossing stroke
and label 2 is the intermediate stroke; (b)-(e) Several variations of the stroke pattern “K”.

: 8
6 8

9444444444444464 8

9 6 8
9 6 8
9 6 8
9 6 8
9 b 8
9555555555555b5 8
9 a b555555555555585
9 a
9 a
9 a

a
a

a
a

a
a

b
b
b c
b c
b cc
b c
b
b cc
b c

dddee
bc

dd e fffgg
dd e ff cl

dd e fff Lw
dd e ff a

fhf *'3
hh T3

hh g
hh &I

hh
hh

hh

the affected strokes still had to pass through this par-
ticular center point. We used line fitting to construct
the skeleton, hence the final result was not a one-pixel,
four-connected (or eight-connected) graph.

Results for several characters are shown in Fig. 11,
12 and 13. Figure 11 depicts the thinning results
of several different variations of the stroke pattern
“K”. The connection between the upward hook and
the crossing stroke, called an intermediate stroke [see
Fig. 1 l(a)], varies as follows [in Fig. 1 l(a)], we do not
discuss the strokes labeled 4, 5 and 6 because the
characters in Fig. 1 l(b), (c), (d) and (e) have the same
structures]: In Fig. 11(b) the two are connected to
become a run (labeled “f” in the figure, with no inter-
mediate stroke). In Fig. 1 l(c), the top end of the upward
hook (labeled 9”) and the bottom end of the crossing
stroke (labeled “r”) are connected directly together (no
intermediate stroke). In Fig. 11(d), the upward hook
and the crossing stroke are separated by a run (labeled
“p” which is an intermediate stroke). In Fig. 1 l(e), two
runs (labeled “n”; which is an intermediate stroke) lie
between the upward hook and the crossing stroke.

Figure 12 depicts the thinning results for several
variations of the stroke pattern “B.“. The “.@” in
Fig. 12(a) is the standard character shape. In Fig. 12(b),

the horizontal line on the top of the character (labeled
“E” and “F” in the figure) is formed from two horizontal
runs, whereas in the second horizontal line a third run
appears between the two horizontal runs (labeled “v”
and “t”). In Fig. 12(c), there is a horizontal line with
two runs (labeled “j”). In the character in Fig. 12(d),
the top horizontal line is composed of three runs
(labeled “b”) and the bottom horizontal line is com-
posed of four runs (labeled “h”).

Even though many different types of connections
appear in Figs 11 and 12, acceptable thinning results
were obtained for all of the characters shown.

Figure 13 depicts several characters with relatively
high stroke counts. A variety of different touching
strokes and boundary noise can be seen in these
characters. Again, our method achieved reasonably
good thinning results for all of the characters
shown.

In order to evaluate the thinning results of the pro-
posed method, it is compared with four existing algor-
ithms.‘g-‘2’ In Figs 14 and 15 we show the thinning
results for the five methods. In general, the proposed
method produces better results in two respects: strokes
at crossing sections are preserved and the resistance to
noise at the character border is high.

A Chinese-character thinning algorithm based on global features and contour information 505

(al)
3333 4444

666666666666666
666666666666666

7777 8888
7777 8888
7777 8888
7777 8888
7777 8888
7777 8888
7777 8888
7777 8888
7777 8888
ddddddddddddd
ddddddddddddd
eeee ffff
eeee ffff
eeee ffff
eeee ffff
eeee ffff
eeee ffff
eeee ffff
eeee ffff
eeee ffff
jjjjjjjjjjjj?
~~~~713113131 

mnunm 
1111 mmmm 
1111 mmmm 
1111 mmmm 
1111 mmmm 
1111 Imnmm 

1111 mmmm 
1111 mmmm 
1111 mmnlm 
111 inmnlm 

1111 llulum 
1111 mnunm 
111 mmmm 

111 mmun 
111 vwvvvyvvw 

111 vvvvwvvw 
11 vvvvvvV 
1 vvvv 

bbbbbbb c 
bbbbb cc 
bbbb ccc 
bbbb ccc 
bbbb cccc 
bbbbb ccccc 
gggggggggggggggggggggg 
ggggggggawgggggggggg 

ggggggggggggggggg 
ggggggggggg 

hhhh iiii 
kkkkkkkkkkkkkkkkkkkkkk 
kkkkkkkkkkkkkkkkkkkkkk 
ll"IUl oocm 
nnnn 0000 
nnnn 0000 
~IX-l" 0000 
nnnn 0000 

PPPPPPPPPPPPPPPPPPPP 
qqqq rrrr 
qqqq rrrr 

(bl) W’) 
a 
a b c 
a b c 
a d3333 b e44444 
a d 3333313 e 4444:c 
a d b e c 
a d b e c 
a d b e c 
a f d b e c 

f d 
5555555:55 f d 

b e c 
b e c 

a 555f5 d b e c 
a d8888888 b egg99999 c 
a d b¶ e ch 
a d 

z 
e h 

a d e h 
j d 

: 
e h 

ij d e h 
i j 

: 
g e 

i e :: 
i 

j 
9" e h 

il 
j ; 
j g mn 

kl P g m nnn :: 
kl 0 PPP g m 
kl 

nnq 
0 PPr m 

kl 
4 

0 r m 
k 1 

q 
0 r m 

k Cl r m 
k : 

: 
0 r m 

k 1 0 r m 
k 

: 

: 
0 r m 4 
0 r m 

1 0 r m 
1 

9" 
0 r m 

1 0 r m : 
0 

: 0 
r m 4 
II m 

1 
q 

1 o" 
r m 
r m 

lo 
: 

6666 r m 
1 Cl 

7777 q 
666r m 

1 
777q 

I 

33 
3333 44 
3333 4444 
333 7777777777777 
333 7777777777777 
333 888 9999 
333 888 9999 
333 888 9999 
333 d 888 9999 
333 ddd 888 9999 

eeeeeeeeeeeeeee 888 9999 
eeeeeeeeeeeeee 88888 9999 

l-l"ll EEEEEEE 9999 
nnn fff EEEEEEEE 

nnnn fff ggggggg 
nnnnnn fff j 4499 
KKKKKXX fff gggg 

00000 ppp fff gggg 
000~~ PPPP fff gggg 
00000 pppp fff gggg 

~mo;; PPPP fff 4949 
PP ffff gggg 

qq rrr GGGGGG qggg 
qqq rrr 
qqq rrr 

lnJu +J&w3~ 
U"U 

94 rrr U"U xxxxxxx 

qqq === uuu A xXxX 

qq 3Tr-r uul.l xxxx 
qqq rrr uuuu xxxx 

44 r== uuuu xxxx 

q rrr lluu xxxx 
rrr uuu xxxx 

uuuu xxxx 
uull xxxx 
uuu xxxx 

“UUU xxxx 
uuu xxxx 

uull xxxx 
U”U xxxx 

Ul” ccccccccc 
uu ccccccc 

cccc 
cc 

55 
666 5555 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaa 
bbb CCC= 
bbb CCC= 
bbb CCCC 
bbb CCC= 
bbb cccc 
bbb cccc 
bbbbb CCC= 
FFFFFFF CCC= 
hhh FFFFFFFF 
hhh iiiiiii 
hhh 1 iiii 
hhh iiii 
hhh iiii 
hhh iiii 
hhh iiii 
hhhh iiii 
111111 iiii 
sss ttt iiii 
555 mQ4MMMM 

sss wwww 
sss wwww 
555 wwww 
55 wwww 

sss wwww 
ss wwwww 
ss DDDDDDDDD 
s DDDDDDD 

DDDD 
DD 

Fig. 12 (Cont.) 

(a21 

c33333 
c 3333338 
c d 
c d 
c d 
c d 
c d 
c d 
c d 
c d 
c d 
c44444 d 
c 444dd 
c d 
c d 
c d 
c d 
c d 
c d 
c d 
c d 
c d 

ic6666 d 
i 66666d 
i d 
i d 
i 
i : 

i 
i : 
i d 
i d 
i 

i : 
i d 
i 
i : 
i d 

i aaa d 
i aaaaaad 
i 

b 
b 
b 
b 
b fee 
b fff 
b fff 
b fff 
gf 

h 
h 

: 
h 
h 

Cl h 

: :: 
g555555555555555555h 

j777777777 

1 
777777777k 

! 
: 
k 

i k 
3 k 
j88888888 k 

i 
8888888kk 

k 

1: 
k 
k 

j99999999 k 

] 
99999999k 

k 

: 
k 

k 
j 

1 



506 J.-Y. LIN and Z. CHEN 

(cl) 333 
33333 

44 55 33333 
4444 5555 33333 

bbbbbbbbbbbbbbbbbbb 5555 3333 
bbbbbbbbbbbbbbbbbbb 5555 3333 

cccc 555 3333 

(a 
7 
7 

9 7 
9 7 

9 7 
9 7 
9 7 
9 7 a 
Y 7 a 
9 7 a 
b333333373 a 

8 
8 

444444444 8 
c 444444484 
c 

c 
c 
c 
c 

c 

cccc 5555 3333 6 
5555 3333 666 
555 3333 66666 cccc 

cccc 77777777777777777777777 
cccc 77777777777777777777777 
cccc 8888 9999 
cccc aaa 888 9999 
ddddddddddddd 888 9999 

dddddddddddddd 888 9999 
eeee ffff 88 9999 
eee ffff 8 9999 

eeee fff 9999 Lw 
eeee ffff 9999 gwg 
eeee ffff 9999 wxKw 

eeeeee fff hhhhhhhhhhhhhhhhhhhhhhhhhhhhh 
qqqqqqq ffff hhhhhhhhhhhhhhhhhhhhhhhhhhhh 

iii jjjj ffff hhhhhh 
ii jjj ffff hhhhhhhh 
ii rrrrrrrr hhhhbhhhh 
i kkkkkkk hbhhhhh ""n 

kkkkk hhhhhhhh ""n 

b 7 3333333333a 
b 7 c 

c f: 7 
c55555 7 
c 555558 b 7 
c d b 7 
c : b 7 
c 7 e 
c d 7 e 
c d 7 e 

d 7 e 
666666666666j76666666666666e 

f g j7i 
f 

ff 
whd j 7i 

f 
.j 7 i 

7 i 
j' 7 i 

h i 7 i 
kkkk 0000 PPPP 

k!% 
~~~~~ PPPP 

~0~~~ PPPP
kkk 00000 PPPP

kkkk 00000 PPPP
kkkk 00000 PPPP
kkk 00000 PPPP

kkkk 00000 PPPP
kkkk 0000 PPPP
kkk 0000 PPPP

kkkk 0000 PPPP
kkkk 0000 PPPP

E
000 PPPP

PPPP
kk PPPP
k PPPPP

PPPPP
PPP

nnn
““ml

nnnn
““““”

““““”
nnnnn

lUl”ll””

h
h
h

.-
1 7 i

jj 7 i
i 7 i

h 7
h ,j- 7
h 7

h ,j'
h
h

.jj'
7
7

j'
7
7

i 7

i
i
i
i
i
i
i

nnnnnn
nnnnnn

nnnnn
nn

h
.-
1 7

h

hh

Cdl)
3333
33333 44 W)

8
8
8

8'
8 33b

dc3333333333 b
cd

c dd bb
c d

c dd bb
c db

c de

i2i
e

hh i ee
ii e

ie
ik

333333 44 55
33333 444 5555
3333 666 44 dddddddddddddd

7777777777777777 444 ddddddddddddd
77777777777777777 444 eeeee
7777 9999 444 eeeee

7777777 99999 444 eeee

9
9 a

9
9 444444444 aa
9 44af
9 ff
9 f aaaa bbb 99999 444 eeee

aaa bbb 99999 444 eee
aaa bbbb 9999 444 eee

aaaa sssssss 4444 eee
rrrrrr ccccccc tttttt

ggg hhh ccccc fffff
gw hhh ccccc ffff

hhhh cccc ffff
hhh cccc ii fffff
UUUUUUU iiii fffff
jjjjj iiiiii ffffff
jjjj kkkkkkkkkkkkkkkkkkk ffffff

jjjj kkkkkkkkkkkkkkkkkk fffffff

jjjjj ffffffff
jjjj fffffff

jjjjj 11 ffffff
jjjj 1111 ff

jjjj 111111
ooooooooooooooooooooooooooooooo
000000000000000D0000oooooooooD

DDDD

9 f
9 f
9 ff
9 f
Yf

;
4
-4

j
j. z

kk 3 g
k 5555555555555 i a

k 555Sj -Cl
k g

k g
k 1 Lf

k 1 g
k 1

666666666666666666666 1
cl 666666661
0
0

___-
PPPP

m PPPP
mm* PPPP ""

rNImmunm PPPP """""
mlnmmmmnl PPPP """""

PPPP """""
mmmnuNu PPPP """"""

- PPPP """"""
lnmmmm PPPP """"""

mmmmm PPPP """"""
mn!lNn PPPP """""

Llnunm PPPPP """"
mmm TswTzmqqqq ""

TFlvmFlq
wqqqqq

VKI

n
n

n
n

n
n

n
n

n
n

Fig. 12. Several variations of the stroke pattern “a”

A Chinese-character thinning algorithm based on global features and contour information

(al)

333 44 555
33333 4444 5555
33333 4444 5555
3333 66 444 5555
3333 666 444 77 5555
3333 6666 444 77 555
3333 6666 444 777 555
3333 6666 444 77 555
3333 666 444 777 555
3333 666 444 777 555 88
3333 99 666 444 777 555 8888

aaaaaaaaaaaaaaaa 444 777 bbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaa 444 7 bbbbbbbbbbbbbbbb

cccc ddd 444 eee ffff
cccc dddd 444 eee ffff
cccc ccccc 444 eeee gg ffff
cccc hh cccccccccccccccccc gg ffff
cccc hh CCCCCCCCCCCCCCCCCC gg ffff
cccc jjj kkk 111 ggg ffff
cccc jjj kkk 111 ggg ffff
cccc 111 ffff
cccc

jjj ;$
jjj 111 zg ffff

cccc jjj kkk 111 ggg fff
cccccccc jjj m kkkk 111 gg ffff
ccccccc jjj kkkkkkk 111 ggg ffff

ccccccc jjj DDDDDDD 111 gg fff
cccccccc jjj EEEEEE 00 111 FFFFFF
BBBBBBBB jjj qq rr+ 00 111 PPPPPP
sss tttt jjj qq ?xr HHHHH PPPP
ss tttt 11111 rrr "UUUU PPPP

tttt vvvvv rrr uuuuu PPP tttt vvvv rrr uuuu PPP
tttt - rrr uuuu DDDD ____
tttt vvv rrr “UU PPPPP
tttt vvv rrr UU" GGGGGG

ttttt w rr yy
tt

(bl)
33
3333 444
3333 44444
333 44444
333 4444
333 4444
333 4444
333 4'444
333 aaa 4444 bbbb
333 ddddddddddddddd
333 cc ddddddddddddddd

dddddddddddddddddd ffff
ddddddddddddddddd ffff

ggg hhhh ffff
ggg hhhh ffff
ggg iiiiiiiiiiiiii

ggggg iiiiiiiiiiiiii
gggggg kkkk 1111
FFFFFFF kkkk 1111
0000 ppp kkkk 1111

ooooo ppp kkkk 1111
~~~~~ qqqqqqqqqqqqqqqqq 
00000 

000000 
qqqqqqqqqqqqffw: 
r ssss 

GGGGGG ssss tt 
UU" VW ssss 
uuu VW ssss ww 

UUU" VW ssss xx wwww 
uuu VW ssss xx wwwww 
U" vvv ssss HHHHHHH 

555 666 
7777777777777 
77777777777777 
8888 99999 
8888 9999 
8888 9999 
8888 9999 
8888 9999 
8888 999 
8888 999 
8888 999 
8888 99 
a888 999 
jjjjjjj 
jjjjjjj 
mmmm nn 
mmn!m ml" 
ulmmm nnn 
mmmm nnn 
minmm nnn 
mmmm nnn 
mmmm nnnn 
mmmm nnn 
Inmmm nnnn 
nlmmin nnn 
inmmm EEE 
mmmm EEEE 
lnminm EEEE 
mmmm EEEE 
mmmTn EEEE 
mmn!in EEEE 
mlnmm EEEE 
mmmm EEEE 

EEEEE 
EBBBBBBBB* 
CCCC DDDDDDDD 
cccc DDDDD 
cccc DD 
cccc 
cccc 
cccc 
cccc 
cccc 

cc 

(a3 

7 
7 
7 a 
7 a 
7 a 
7 a 
7 a 
7 a 
7 a 
7 a 

33337333 
-I 33333d: 
; 
7 
7 
7 
7 
7 

7 
7 
7 
7 
7 
7 
7 
7 
P 

OOP 
00 P 

P 
P 
P 

:: 
P 

: 

:: 

:: 

:: 
P 

d 
d 

di eg 
hhi666666686666 e g ; 

hi 8 666ej g f 
i 8 g f 
i 8 f 
i 8 

14 

i 8 
i 8 

3 
g f 

q : g 
i 8 1' f 
i 8 

] 
i: f 

i 
i n kkk 

kk : 
": 

immmn 1 
nun n kk 1 
i 

i 
i 
i 
i 
i 
i 

i 
i 
i 
i 
i 
i 
i 

i 

(W 

8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
a 
8 

507 

9 
9 

9 

9 
b 9 
b 9 
b 9 
b 9 
b 9 
b 9 c 
b 9 c 
b e444444 c 
be 444444f 

e f 
8 f 

a 
a 
a 
a 
a 
a 
a 

a 
a 

n 
n 
n 
n 

n 
n 
n 
n 
n 
i-l 

n 
n 
n 
n 
n 

b 
b 
b 
b 
b 
b 
b 

b 

k 1 
k 1 
k 1 
k 1 

:: 
1 
r 

k qr 
k q r 
k r 
k qq r 
k 
k qq 

r 
r 

555555q5 r 
r 

a b 4e 

44:4444444 
44444444444e 

e 
44444 a e 

a : e 
a e 
a f55555 e 
a 5555ee 
a z e 
i f e 

.: 
: 

hi e 
hi s e 

:: 
ii77f777777 

7777: 
h : e 

jk 
f' 

e 
jk 

.j k f 1 

: 
k f m 11 

j L 
mm 

: mm1 
k f n 
k f n 
k f n 

:: :: 
n 
D 

k 
k 
k 
k 
k 
k 
k 
k 
k 
k 
k 

c33333 
c 33333d 
c d 
c d 
c d 
c d 
c d 
c d 
c d 
c d 
c d 
c d 
~66 d 

C8888 4 
c 88888q 
c 4 
c q 
c q 
c 
c 
c 
c 
c 
c 

Fig. 13 (Cont.) 



508 J.-Y. LIN and Z. CHEN 

(cl) (a 
8 9 

333 444 
3333 44444 
3333 44444 

3333 4444 
333 4444 
333 55 4444 

333 5555 4444 
333 5555 4444 

333 5555 666 4444 777 
5555555555 bbbbbbbbbbbbbbbbbbbbbbbb 

88888~~8888888888888 bbbbbbbbbbbbbbbbbbbbbbbb 
99999999999999 aaaa cccc dddd eeee 
fff 999 aaaa cccc dddd eeee 

hh 999 aa cccc dddd eee 
hhhh 999 
hhhh 999 
hhh 999 i 

hhhh 999 i 
hhh 999 " 

hhh 999 i;;i 
hhh 111111111 

hhh 1111111 
hhh PP 111 

cccc dddd ee 
cccc dddd 
cccc dddd 
cccc dddd 

hhh PPP 
hh PPPP 
h PPP ggg 

rrrrrrrrrrrrrlr 

cccc dddd ” 
kkkkkkkkkkkkkkkk~:k 
kkkkkkkkkkkkkkkkkkkk 

vvv www ttt mmm UU”““” 
w xxxxxx mmm UUl.l”UUUU 

xxxxx mmm YYYYY zzzz 
xxxxxxx mm YYYYY zzzzz 

AAAA BBBB mmm YYYYY zzzzz 
AAAA ccccccc YYYYY zz?.zz7. 

AAAA cccccc YYYYY zz7.zzzz 
AAAA ccc YYYYY zzzzzzz 

AA?A ccc YYYYY zzz 
AAA cc YYY 

a 
a 

9 
9 

a 9 
8 9 
a a 9 

a a 9 
a a 9 
a a 

3333383333 
333333&c 

d44444444i4 
d 9 4444444444e 

:: c c d 9 9 e et? 

f :: c : 9 ee 
f 9 e 

f b : 9 
f g 9 

f :: g : 9 
f g d 
f :: b5555555~ 

f b66666zg h i 55555555j 
f h i 

f k i 
k i 

.j 

f k 
f k h i , 

Cdl) Cd3 
333 44 
33333 44444 555 
33333 44444444 55555 
3333 444444444 55555 
3333 444444444 5555 
3333 66666 aaaa 5555 
3333 aaaa 5555 
3333 aaaa 5555 
3333 aaaa a 5555 
3333 aaaa 888 5555 
3333 99 bbbbbbbbbbbbbbbbbbb 5555 
3333 99 bbbbbbbbbbbbbbbbbb 5555 

f k h i ; 
k 7771 h i 

k 77777777 1 h i 
.j 

n77 h 
l1 h 

i 4 
mn ij 
m n lh ij 

m n lh ij 
m n 1 h P 

m nl h 00 P 
m Ill h 0 P 

h 
qq'r h 

0 P 
0 P 

g rh 0 P 

ggq 
rh cl0 P 
rh 0 P 

g hr 0 P 
g 0 P 

gg 0 

dd 
dd 3333 

ddd 3333 
ddd 3333 

ddd 3333 
ddd 3333 
dd 3333 
dd 3333 

3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
3333 
33 

999 
99 
999 
999 

99 
99 

hhhh 5555 
bhhb 5555 c::c 
hhhh e fffffffffffffff 

gg hhhh eee ffffffi 
iiiiiiiiiiiiiiiii jjj 
iiiiiiiiiiiiiiiii jjj 
111 mum nnn iii 
111 
111 

'fffffff 
kkkk 
kkkk 

Innunm nnn 3;; 
kkkk 
kkkk 

INnnun nnn jjj kkkk 
111 nunINn nnn jjj kkkk 
OOOOOOcmOOaOoOcm 
0000000000000000 

jjjj ;E 
jjj 

PPP 9449 ?2-i- jjj kkkk 
PPP gggg rr= jjj kkkk 
PPP gggg === jjj kkkk 
ppp qooo rrr iii kkkk 
sssssss kkkk 
ssssssssssssssss jjj kkkk 
ttt UUU" w jjj kkkk 
tt IlLluu jjj kkkk 

ynnn w ii ---- ‘- .i’ 
kkkkk 

c LUUU www 3ij kkkk 
xxxxxxxxxxxxxxxx jjj kkkk 
xxxxxxxxxxxxxxx jj kkkk 

kkkk 
kkkk 
kkkk 
kkkk 
kkkk 

i 
i 

i 
i 
i 

i 
i 
i 

c 
c 
c 
c 
u-2 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

333 d 
3333 d 

3333 d 
333 g d 

; 
d 
d 

g d 

z 
e d 
e d 

f 44444444g4444 
f g 4444:e 
f 4 d h 
f 6 d h 

j 5555d55555 h 
55531 

1 gaaaaaaj d 
1 g d 
1 g d 

m 
4' md 

d 

9999999g999 m d 
g 9999m d 

i: 
d 
d 
d 

; bbbbbbbbo 
ngb 0 

nn 0 

h 
h 
h 
h 
h 
h 

h 
h 
h 
h 
h 
h 
h 

h 

:: 
h 
h 
h 
h 

h 
h 
h 

:: 
h 

Fig. 13. Several characters with relatively high stroke counts. 



(b) 509 

1 

1 
1 

1 1 
1 1 
1111111111111111111111111111111 
1 111 
1 1 
1 1 

1 11 
1 1 

1 

1 II 
1 11 
11111111111111 1111111111111 I.111 

1 1 1 
1 1 

1 1 
1 11 

1 1 I. 
1 1 
1 I 
1 I 
1 I. 
1 I. 
1 1 
1 11 1 1 

1111111111111111111 11111111111111111 1 1 1 111 11 
111 11111111111111111111 11111111111111 1 

1 11 
1 1 
1 11 

11111111 1 111 
11 1 1 I. I.1 
11 1 1 11 

1 1 11 1 1 1 
1 1 11 1 1 1 

1 1 11 1 1 1 
3. 1 1 1 I. 1 

1 1 1 I. I. I. 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 11 1 1 1 

1 1 11 1 1 1 
11 1 11 1 1 1 

11 1 11111 11 1 11 11 
1 1 1 1 1 1 111 

11 1 1 1 
Ill. 1 1111 1 

1 11 

Fig. 14 (Cont.) 

1 

1 1 1 
1 1 1 
1111111111111111111 1 

1 1111111111111111111 
1 1 
1 1 
1 1 11 
1 1 1 
1 1 1 
1 1 

1 
1 
1 
1 1 
1 1 
1 1 
1 1 

111111111111111111111l.1111llll1111l.111111111 
111 

111 
1 11 

1 11 
1 1 1 

1 1 1 
1 1 1 
1 1 1 

1 1 1 
1 1 1 

1 1 1 
1 1 1 
1 1 1 

1 1 1 
1 I. 1 

1 1 1 
1 1 1 
1 1 1 

1 1 1 
1 1 

1 
1 
1 

Cd) 
111 

1 



510 63 (0 1 

1 1 

1 1 

1 

1111 

11111111111111 11111111111111111 
1 1 
1 1 

1 1 
1 I. 
1 1 11 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 11 
1 11 1 11 11 

11111111111111111111 11111111111111111 11 1111111111111111111 11111111111111 
111 II.1 

1 1 
1 1 
1 111111 

111111 1 11 
111 1 11 

11 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 11 

11 1 11 11 1 11 1 
1 1 11111 1 1 I. 11 

1 1 1 1 
11 1 1111 1 

111 I. 1 

Fig. 14. A sample pattern and its skeletons; (a) an original pattern; (b) ours; (c) C. Y. Suen et a1$‘) (d) N. J. 
Naccache et .2.;(“’ (e) W. H. Tsai et LI~.;‘~” (f) C. Y. Suen et ~l.(‘~’ 

@I 1 
1 
1 
1 1 
1 1 
1 1 

111111111111111111 1 
1 1 1111111111111111111 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 1 
1 1 1 1 
1111111111111111 1 1 
1 1 11111111111111111 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 i 1 
1 1 1 1 
1 1 1 1 
1111111111111111 1 1 

1 1 1111111111111111 
1 1 
1 1 

1 1 
1 1 
I. 1 1 

1 1 1 
1 1 1 
1 13.111 1 

1 1 11111 
1 1 
1 1 

1 1 
1 1 
1 1 

1 1 1 
1 1 11111 
1 11111 
1 11111 

1 
1 

1 1 
1 1 
1 
1 
I. 
1 
1 1 
1 1 
1 1 
1111111 1 
I. 3.1111111 
1 
1 
1 1 
1 1 
1 1 
1 1 
1 1 
11111111111111111 

Fig. 15 (Cont.) 



1 

1 

1 

1 

1 

11 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Cd 
11 

1 
1 
1 1 

111111 11111 1111111111 
11 11 11 11 11 

1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 I 
11111111111111111111111111111 
1 1 I I. 

1 1 1 1 
1 1 1 I. 
1 1 I. 1 
L 1 1 1 
L 1 1 1 
1 1 1 1 
lLl.1 111111111 11111111111 
L 11 1 111 1 
L 1 I 
L 1 1 

1 
1 
1 

1 

1 
1 
I. 
1 

1 
1 

1 
I. 

1 
1 
3. 

1 
1 
1 

1 

1 11 
1111111 

11 
1 

1 

1 

1 

1 

J. 

1 1 
11111111111 I.1 
1 

1 
1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1111111111 

1 111 

1 1 
11 1 

11 11 11 
1 11111111 11 1 111111111 1 
1 11 11 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
11111111111111111111111111111 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

11 11 1 1 
1 111 1 111111 1111111111 
1 11 
1 1 
1 1 

1 1 
1 I. 
1 1 1 
1 I. 1 
1 1 11 11 

1 111 1 
I I. 
1 1 

1 1 
1 1 

1 1 
1 1 
1 Il. 11111 

1 11 111 
1 1 
1 I.1 

1 

11 
1 
1 
I 
1 
1 
1 
1 1 
1 1 
1 11 11 
11111111 1 

1 
1 
1 
1 1 
1 1 
1 1 
1 1 
1 1 
11l.11111111 

(0 

1 1 
1 1 

1 1 
1 1 
1 11 
1111111111 

511 

Fig. 15. Another sample pattern and its skeletons; (a) an original pattern; (b) ours; (c) C. Y. Suen et al.;“’ 
(d) N. J. Naccache et a1.;““’ (c) W. H. Tsai et aL;‘“’ (f) C. Y. Suen et ai. 



512 J.-Y. LIN and Z. CHEN 

7. CONCLUSION REFERENCES 

Thinning, or stroke extraction, is the preprocessing 
step in machine recognition of Chinese characters. A 
good thinning result can help eliminate many unneces- 
sary decisions in the recognition of Chinese characters, 
thereby increasing the recognition rate and speed. In 
this paper, we have proposed an effective thinning 
method that offers a number of advantages: (1) our 
method uses runs to perform thinning rather than a 
window operator which deletes black pixels layer-by- 
layer, and thus our method provides higher quality 
thinning results; (2) in identifying the attributes of 
nodes, intersections between adjacent nodes, and con- 
nections between the vertical lines and the left end and 
righr end of horizontal lines, we eliminate an important 
potential source of error by examining global features 
in addition to contour information; (3) noise is detected 
by comparing the height of a vertical line with half the 
height of the horizontal line to which the vertical line 
is connected, instead of merely applying a fixed threshold, 
(4) to obtain a more reasonable graph, before the 
thinning stage, we merge the point nodes above and 
below a horizontal line; (5) in some cases it is difficult 
to determine whether a node should be identified as a 
point or a line (knowledge of the structure of Chinese 
characters is needed). Our policy is that it is better to 
mistakenly identify a point as a line rather than to 
identify a line as a point; (6) since our method incor- 
porates a noise-elimination step, it is less likely to 
generate “hairy” thinning results; (7) last, we use line 
fitting to construct character skeletons, so if the graph 
itself is free of errors, the thinning result is likely to be 
satisfactory. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10. 

11. 

12. 

Louisa Lam, Seong-Whan Lee and Ching Y. Suen, Thin- 
ning methodologies-a comprehensive survey, IEEE 
Trans. Pattern Analysis Mach. Intell. 14(9), 869-885 
(1992). 
Xiaobo Li and Anup Basu, Variable-resolution character 
thinning, Pattern Recognition Lett. 12,241-248 (1991). 
Bei Li and Ching Y. &en, A knowledge-based thinning 
algorithm. PatternRecoanition24(12), 1211l1221(1991). 
Paul C. K. Kwok, A ihinning algorithm by contour 
generation, Comm. ACM 31, 1314-1324 (1988). 
Theo Pavlidis, A vectorizer and feature extractor for 
document recognition, CVGIP 35,111-127 (1986). 
Ling-Hwei Chen, A new approach for handwritten 
character stroke extraction, Computer Process. Chinese 
Oriental Lang. 6(l), l-17 (1992). 
L. Y. Tseng and C. T. Chuang, An efftcient knowledge- 
based stroke extraction method for multi-font Chinese 
characters, Pattern Recognition 12, 1445-1458 (1992). 
G. Hu and Z. N. Li, An X-crossing preserving skeleton- 
ization algorithm, Int. J. Pattern Recognition Arti$ Intell. 
7(5), 1031-1053 (1993). 
T. Y. Zhang and C. Y. Suen, A fast parallel algorithm for 
thinning digital patterns, Commun. ACM 27, 236-239 
(1984). 
N. J. Naccache and R. Shinghal, SPTA: a proposed algor- 
ithm for thinning binary patterns, IEEE Trans. Syst. Man 
Cybernetics 14(3), 409-418 (1984). 
R. Y. Wu and W. H. Tsai, A new one-pass parallel thinning 
algorithm for binary images, Pattern Recognition Lett. 13, 
715-723 (1992). 
A. Arumugam, T. Radhakrishnan, C. Y. Suen and P. S. P 
Wang, A thinning algorithm based on the force between 
charged particles, Int. J. Pattern Recognition Artif. Intell. 
7(5), 987-1008 (1993). 

About the Author-JENN-YIH LIN was born on 3 December 1959 in Taiwan, Republic of China. He 
received the B.S. degree in control engineering in 1981 and MS. degree in computer engineering in 1986, 
both from National Chiao Tung University, Taiwan. In 1983-1984, he worked in Mechanical Industry 
Research Laboratories, Industrial Technology Research Institute (MIRL, ITRI) at Hsinchu as a software 
engineer. From 1986 to 1990, he worked as a research assistant in the Chung-Shan Institute of Science 
and Technology. In 1991, he entered the Institute of computer science and information engineering at 
National Chiao Tuna University, where he is now a Ph.D. candidate. Currentlv, he is also an instructor at 
Ming-Hsin Institute of Technology and Commerce. His current research interesis include image processing, 
computer vision, optical character recognition and parallel computation. 

About the Author-ZEN CHEN received the B.Sc. degree from National Taiwan University, Taiwan, 
Republic of China in 1967, the M.Sc. degree from Duke University, Durham, North Carolina, in 1970, and 
the Ph.D. degree from Purdue University, West Lafayette, Indiana, in 1973, all in electrical engineering. 
After graduating from Purdue University, he joined Burroughs Corporation, Detroit, Michigan, where he 
was engaged in the development of a document recognition system. In 1974, he began to teach at National 
Chiao Tung University, Taiwan, Republic of China. He served as the director of the Institute of Computer 
Engineering from 1975 to 1980. He spent the academic year 1981-1982 at Lawrence Berkeley Laboratory, 
University of California, Berkeley, California, as a visiting scientist. Later, in August 1989 he spent about 
six months at Computer Vision Laboratory of the Center for Automation Research, University of Maryland, 
College Park, Maryland, as a visiting professor. His current research interests include computer vision. 
CAD/CAM system, expert system, and parallel algorithms and architectures. Dr Chen is a member 
of Sigma Xi and Phi Kappa Phi. He is also a member of China Computer Society and Chinese Institute of 
Electrical Engineering. 


