@ Pergamon

Pattern Recognition, Vol. 28, No. 4, pp. 493-512, 1995
Elsevier Science Ltd

Copyright © 1995 Pattern Recognition Society
Printed in Great Britain. All rights reserved
0031-3203/95 $9.50 + .00

0031-3203(94)00122-7

A CHINESE-CHARACTER THINNING ALGORITHM BASED
ON GLOBAL FEATURES AND CONTOUR INFORMATION *

JENN-YIH LIN and ZEN CHENT

Institute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu,
300, Taiwan, R.O.C.

(Received 23 November 1993; in revised form 30 August 1994; received for publication 14 September 1994)

Abstract— This paper proposes a method of using run-length coding to perform thinning. First, we construct
graphs from characters. The attributes (vertical lines, horizontal lines or points) of each node in the graph
are determined according to the node’s relationship to the nodes above and below it (we will refer to these
relationships as global features) and the black runs within the node. Intersections between two adjacent
segments are determined on the basis of the graph constructed and contour information. The thinning
algorithm thus employs global features and contour information to produce a more accurate skeleton.

Thinning Run Run-length coding

1. INTRODUCTION

Many character thinning algorithms have been pro-
posed in the past two decades. Suen et al.!!) surveyed
more than 100 thinning methods and classified them
into two groups: methods based on iterative deletion
of pixels and nonpixel-based methods. Many methods
based on iterative deletion of pixels employ a window
operator for thinning. These methods place a 3 x 3,
5 x 5, or larger n x n window onto the image and then
use a look-up table to determine whether to retain
or delete the center black pixel. Some methods even
use a window larger than 5 x 5 (such as the method
which uses a 9 x 9 window),'® but they make rough
decisions in certain cases to reduce the amount of
memory needed and the search time.

In general, the advantages of using a window operator
to perform thinning are that this approach is simple
and can easily be implemented as a parallel algorithm.
The disadvantages are that this method is relatively
sensitive to noise and that it is less effective than other
methods in processing the cross sections of a character.
To overcome this second disadvantage, Suen et al.®®
extracted ten different cross sections for further thinning
and then substituted the thinning result obtained for
the thinning result of the method in reference (4).

One type of nonpixel-based method is to employ
run-length coding for thinning. This approach is almost
used for character thinning.®>~” This method divides
a character into a number of segments (a segment is

* This study was supported by the National Science Council,
Republic of China, under contract number NSC83-0408-E-
009-009.

+To whom all correspondence should be addressed.

493

Stroke extraction

Skeleton

composed of several connected black runs). The seg-
ments and their connections are then used to deter-
mined how the segments will be thinned. In refer-
ence (5) the merge and fork relationships between runs
were used to convert characters into compressed line
adjacency graphs (henceforth, “c-LAG™). If there was a
significant change in the width of the runs of a node
in the graph, the node was divided into a horizontal
stroke and a vertical stroke. Vertical strokes with
approximately constant width and nearly collinear
centerpoints were denoted “candidates for vector-
ization”. Finally, compound vectorization was used to
generate the final result. In reference (6), it was assumed
that the width of the lines in a character was approxi-
mately constant. Merges, forks and significant changes
in width in runs were used to construct graphs from
characters. Relatively short nodes were regarded as
noise and deleted. The line segments in each node were
divided into horizontal strokes and vertical strokes;
stroke extraction was then performed to obtain the
final result. In reference (7), the line segments in Chinese
characters were classified into four primitive types of
strokes: horizontal strokes, vertical strokes, up-right-
slanting strokes, and up-left-slanting strokes. On the
basis of knowledge of the structure of Chinese charac-
ters, twenty parameters were derived to distinguish
between these four primitive strokes. These parameters
were then used in the stroke extraction procedure to
determine to what type of stroke each line segment
belonged.

One recent paper® used run-length coding to perform
thinning of objects with similar widths. The main aim
of this method is to preserve an x-crossing skeleton. It
is assumed that the objects in the image are lines or
curves of similar width (say, h). If the length of a

494

column (row) run is less than 1.2 h, then the midpoint
of that run is used to form the skeleton. If the length
of a column (row) run is greater than 1.2 h, the clusters
of the “long” runs are located, which are found at line
intersections or vertical lines. If they are line intersec-
tions, the skeletons of the intersections are found using
heuristic rules. The column-wise result and the row-
wise result are then combined to obtain the final result.

One disadvantage of using a window operator in
preprocessing for Chinese character recognition is that
much information can be evaluated more easily before
thinning takes place. Important information about
connecting strokes and touching strokes, for example,
may be completely lost when a window operator is
used to perform thinning (see Fig. 1). When run-length
coding is used to perform character thinning (charac-
ters are decomposed into strokes only), on the other
hand, the structure of the original character is preserved.
Most Chinese characters are composed of vertical
lines, horizontal lines and slanted lines. In theory,
using run-length coding to perform thinning should
produce acceptable results. The presence of noise, con-
necting strokes, touching strokes and variations in
width along the length of a stroke (in printed charac-
ters), however, creates segment combinations of many
different shapes and hence greatly increases the dif-
ficulty of using run-length coding to perform thinning.

At present, the most common drawbacks associated
with using run-length coding to perform thinning of
Chinese characters are as follows:

(1) the shape of a segment is evaluated on the basis
of the runs containing that segment only (or some cases
the nearest run in an adjacent segment). Yet using only
local information such as this can easily lead to

111
11111
111131
111111
111111
11111
11111

J-Y. LIN and Z. CHEN

erroneous results, because completely identical seg-
ments appearing in different positions may in fact
represent different shapes;

(2) the graph constructed and the boundaries of the
character shape are not properly utilized to evaluate
the relationship between segments, such as whether
two adjacent segments intersect or whether a segment
lying on a horizontal line is connected with the right
or left end of the line;

(3) thetreatment given to regions of intersection is too
rough. In Chinese characters there are many different
types of intersecting shapes and touching strokes, which
may intersect at a single point, along a vertical line, or
along a horizontal line. In some cases, even two hori-
zontal lines may touch;

(4) using each node in the constructed graph to re-
present one stroke in a Chinese character is not a very
sound approach. For example, in some cases, a short
segment lying above (or below) a horizontal line should
be joined to the horizontal line. If this short segment
is regarded as an independent line, an erroneous skel-
eton will be produced (see the discussion of graph
modification in Section 4).

This paper will propose a method of using run-
length coding to perform thinning. The attributes
(vertical lines, horizontal lines or points) of each node
in the graph are determined according to the node’s
relationship to the nodes above and below it (we will
refer to these relationships as global features) and the
runs within the node. In this way, the correct attributes
of identical segments in different positions can be ob-
tained by examining the relationships between the
nodes and the nodes above and below them. Inter-
sections between two adjacent segments are determined

1111

11111
1111
1111
1111

111111
111111

111111
11111111
111111111
111 11111

111 1111

11 1111

1111

1111

1111

1111

1111

1111

1111
11 11111
111111
111111
111111
111111 11

31111121313111311211111111111

23111213113112111113111321111111
11 111
111
1111
1111

11111
11111
1111

11111
131111112111313111112122113111111111
1111112121111111313333131311111111

1111 11111
1111
111
111

111 1111
11111 1111 .
11111 1 <=== Touching stroke
1111 111
1111 11111
1111113123111111131111133111111
11211111112311111131111111111
1111
11111
1111 1111
11111112111111111111
111111311111131111111
11111 1111
1111
1111
11111
1111
1111
1111

3111111111111
111111111
11111131
1111

Fig. 1. An example of stroke touching.

A Chinese-character thinning algorithm based on global features and contour information

on the basis of the graph constructed and contour
information. This thinning algorithm thus employs
global features and contour information to produce a
more accurate skeleton.

The remainder of this paper is organized as follows.
In Section 2, we describe the process of graph construc-
tion. Node attributes and their relationships are de-
scribed in Section 3; the graph modification process is
described in Section 4. In Section 5, the thinning algor-
ithm is presented. In Section 6, experimental results are
presented that confirm the effectiveness of the proposed
thinning process. Section 7 concludes the paper.

2. GRAPH CONSTRUCTION

A Chinese character comprises one or more discon-
nected components, each of which is composed of one
or more strokes. In practice, the connections between
these strokes can be classified into the following types,
which we have identified from experiments:

(1) merge: two or more strokes merge into a single
stroke [see Fig. 2(a)];

(2) fork: a single stroke forks into two or more strokes
[see Fig. 2(b)];

(3) A combination of merges and forks [see Fig. 2(c)];

(4) there is a significant change in width between
adjacent strokes [see Fig. 2(d)];

495

(5) the centerpoints of adjacent strokes are not col-
linear [see Fig. 2(e)].

Because of the effects of noise, the width of the runs
in the stroke types described above may not be constant.
Except for the first and the last runs, we require that
the changes in the width of the runs remain within a
certain threshold.

In the following we will employ the stroke connections
set forth above to construct the graphs of a character.
In the following, if not specified ohterwise, the term
“run” denotes a black run.

2.1. Features and nodes

In this paper, every run will be classified as represent-
ing one of the following features: starting run, fork,
merge, end run, or follower. These features are described
in detail below (see Fig. 3):

(1) starting run: a run that is not connected to any
other run above it is considered a starting run;

(2) fork: a run that connects to two or more runs
below it is classified as a fork;

(3) merge: a run connected to two or more runs
above it is considered a merge;

(4) end run: a run that is not connected to another
run below it is classified as an end run;

(5) follower: a run that is connected to a single run
above it and another below it is classified as a follower.

(a) (b)
(c) (c2)
@ (e)

i

I

L
1
Il

Fig. 2. Examples of connections between two or more strokes. (a) Merge; (b) Fork; (c) A combination of
merges and forks; (d) A significant change in width between adjacent strokes; (€) The centerpoints of adjacent
strokes are not collinear. -

496

Starting run ==>

J.-Y. LIN and Z. CHEN

<== Starting run (top)
<== Merge (third)
<== Fork (fifth)

End run ==»

<== End run (last)

Fig. 3. Types of features (runs for which no feature is specified arc followers).

Fig. 4. Graph for Fig. 3.

The runs between any two features (excluding fol-
+ lowers) are regarded as nodes. Nodes may have one of
three attributes: vertical line, horizontal line or point.
(note: below we use line-fitting to perform thinning.
For vertical lines, the centerpoints of the horizontal
black runs are used to obtain a line equation. For
horizontal lines, the centerpoints of the vertical black
runs are used to obtain a line equation. For points,
fitting is not necessary.) Figure 4 is the graph of Fig. 3.

The information contained in the nodes of a graph
includes the following:

(1) the number of runs;

(2) the x-axis and y-axis coordinates of the leftmost
point of each run and the width of the run;

(3) the attribute of the node (vertical line, horizontal
line, or point);

(4) how many nodes there are above and below the
node under consideration and the relationships between
these nodes (see Fig. 5);

(5) the value of the label (the runs in different nodes
will be labeled with different values).

For example, in Fig. 5, the node relationships are as
follows: Node 1 has no nodes above it, but three nodes
below it (nodes 2, 3 and 4). Node 2 is connected to the
left end of node 1, but not to the right end. Nodes 2
and 3 do not intersect; nodes 3 and 4 intersect. Node
4 is not connected to the right end of node 2. Nodes 2,
3 and 4 each have one node above them (i.e. node 1)
and no nodes below them.

2.2. Processing of features

During the scanning process, each time a feature is
encountered in the scanned image, information about
the feature is recorded in the corresponding node. The
action of every feature and the information recorded
are described below.

(a)

@@

Fig. 5. (a) Run figure; (b) Graph. The node relationships are

as follows: node 1 has three nodes below it; node 2 is connected

to the left end of node 1, nodes 3 and 4 intersect; node 4 is not

connected to the right end of node 1; nodes 2, 3 and 4 each
have one node above them.

2.2.1. Startingruns. When a particular run is identi-’
fied as a starting run, the following procedures are
performed:

(1) a new node is established;

(2) the x-axis and y-axis coordinates df the leftmost
point of the run and the width of the run are recorded
in the node;

(3) the run is assigned a new label;

(4) the value of the label is saved in the node;

(5) the run count for the node is set to 1.

2.2.2. Followers. When a run is identified as a fol-
lower, the following procedures are performed:

(1) the x-axis and y-axis coordinates of the leftmost
point of the run and the width of the run are recorded
in the same node as the run above it;

(2) the run is labeled with the same label as the run
above it;

(3) the run count for the node in which the run is
saved is incremented by one.

2.2.3. End runs. When an end run is identified, we
need to determine whether the node it is in, is formed
of several strokes [see Fig. 2(d) and ()] and to eliminate
noise around the end run.

A Chinese-character thinning algorithm based on global features and contour information 497

In order to divide a node into several strokes, we
assume every stroke is composed of at least two runs.
If a node contains only one run, we merge it into a
node above or below it (see Fig. 6), or else we regard
it as noise and delete it.

To divide the runs in Fig. 2(d) into five strokes, we
take four runs at a time and determine whether the
four can be divided into two strokes. Let the widths of
runs i, i+1,i+2, and i+ 3, be W,, W;,,, W,,, and
W, s, respectively. If equation (2.1) holds, then the
runs up to (and including) run i + 1 form one stroke,
and those from run i + 2 on form a different stroke.

2+W,<W;1, and 2xWiy <W;,3) and
(W, + threshl <W;,, and W,
+ threshl < W,,.3) and
(IWirs = Wi + W3 — Wia| <[Wipo — Wiiil)
2.1

In equation (2.1), the expression in the first set of
parentheses indicates that the width of the wider runs

2222222

2222222

2222222
33333333333
444444444444444444
444444444444444444
444444444444444444

Fig. 6. The run labeled 3 is merged into either group 2 or
group 4.

111
(a) 11111 11
1111111 .1111

1111111
111111
11111
11111
1111
1111
1111
1111
1111 11
1111 111
1111 111
111 111
11 111
111
111
111
111

11111
11111
111111
111111
111111
111111
11111
11111
1111 1111
11111 11
111111
111111
11111
1111
11111
1111
1111

111 1111
1111 1111
111 11111
1111 1111
1111 11111
11111111
111111
111111
111111
1111111
1111111111
1111 111111
1111 1111111
11111 11111111
11111 111111111
11111 1111113111111
11111 111111131111111
11111 111111111111
11111 1111111
111111 1111
11111

is two or more times that of the narrower runs. The
expression in the second set of parentheses is included
to prevent the width of the narrower runs from being
too narrow (such as a width of only 1 or 2) and hence
i istaken result. The expression in the

produ
third set of parentheses is included to prevent a single
stroke from being divided into two strokes in cases
where the width of the end of a stroke is larger than
the width of the rest of the stroke (see Fig. 7).

Equation (2.1) applies to cases where the change in
the width of successive runs is from narrow to wide. In
cases where the width changes from wide to narrow,
the following equation is used to divide the runs into
separate strokes:

) 1A/, < W, and 2+ W. < W. Y and
\L"‘V'i+2\ "i (227173 A"‘"l'+3\77i+1’ “urnn

(W, +threshl < W, and W,
+ threshl < W,,,) and

Wiy — Wil + W3 — Wi < [Wiip — Wiiil)

22)

Once we have used the above equations to determine
whether the first group of four runs can be divided into
two strokes, we continue to work downward until we
have covered all of the runs.

In some cases, the runs in a node should be divided
into two strokes, but because of the effects of noise,
they may in fact fail to be divided. For example, in
Fig. 6, if the width of run 3 is less than twice that of
group 2 but more than half that of group 4, then the

(b) 1111
11111111111
111111311111121111
11111121111111113111111
11311111111111111131111
111111121131111111111111

111111111 1111
11111
111111 11
111 11111 11111
111 11111 111111
1111 1111 1111111
11111 1111 11111
11111 1111 11111
1111 1111 1111
11111 1111 1111
11111 1111 1111
11111 1111 1111
1111 1111 111
1111 1111 111
11 1111 11 111
1111 11111
1111 1111111

11111111111111133311321233121113313211211112111111
111311211211311211112121132121133122121311113121111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111
111111111111
111311131111

1111111
111

Fig. 7. The width of the end of a stroke is larger than the width of the rest of the stroke.

498 J.-Y. LIN and Z. CHEN

method described above will fail to divide the runs in
Fig. 6 into two strokes. Hence after the above decision
method is applied, we check to see whether the number
of runs in a stroke is greater than five. If it is, the
decision procedure is repeated, this time using groups
of five runs instead of groups of four. Suppose that the
widths of five runs, from top to bottom, are W, W, ,,
W, 5, Wi.; and W, ,, respectively. Then W,, ; and
W, . 4 are substituted for W;; , and W, 3, respectively,
in Equations (2.1) and (2.2), and the stroke division
procedure is repeated. If one of the equations holds,
then the group of runs must be further subdivided, and
run W,, , is considered to be a part of the group of
longer runs.

To delete noise, at this stage of the procedure we
merely delete any nodes consisting of a single run. Any
remaining noise is eliminated using the procedure de-
scribed in Section 4 below.

In summary, when a run is identified as an end run,
the following procedures are performed:

(1) if the run can also be identified as a starting run,
then the node is regarded as noise and deleted (it is
merely a short black run);

(2) if the feature above the run is a fork, then the
node in which the current run is located is deleted;

(3) We check whether the node in which the run is
located can be divided into two or more different
strokes [see Figs 2(d) and (e)]. If it can, then we divide
it, save each stroke as an individual node, and reassign
the nodes that were above or below the original node
so that they connect to the new nodes.

2.2.4. Forks. When a fork is identified during the
scanning procedure, the following procedures are per-
formed:

(1) The fork node is checked to see whether it can be
divided into two or more strokes using a procedure
analogous to that described in Section 2.2.3;

(2) in a procedure analogous to that for starting
runs, a node is created for each run after the fork and
these nodes are inserted below the node that contains
the fork run.

2.2.5. Merges. When a merge is found, the following
procedure is performed:

Step 1. the nodes before the merge are checked and
any node with a run count of one is deleted. If after
this step is performed no nodes are left above the
merge, then the run being scanned is identified as a
starting run.
Step 2. if after step 1 there are nodes remaining above
the merge, then each node is checked to see if it can be
further subdivided into new nodes [see Fig. 2(d) and
(e)]. If so, the node is divided and the nodes above and
below it are reassigned to connect to the new nodes.
Step 3. (1) if after step 2, the number of nodes preced-
ing the merge is one, then the current run is identified
as a follower;

(2) if the number of nodes is more than one, then a

new node is created and the node preceding the merge
is inserted above this node.

2.2.6. Graph construction algorithm. Our graph
construction procedure can be summarized by the
following algorithm:

Step 1. scan a bilevel image from left to right and top
to bottom. When one of the following cases is found
to hold, go to step 2.

Case 1. the first pixel scanned is a white pixel; con-
tinue scanning rightward until a non-white pixel or the
end of the row is reached.

Case 2. the first pixel scanned is a black pixel; con-
tinue scanning rightward until a non-black pixel or the
end of the row is reached.

Step 2. process the two cases in step 1.

Case 1. in step 1, a white run was scanned. Now
check whether a previously labeled run appears above
this white run;

(1) ifyes, then label each labeled run as an end run;
(2) if no, then go to step 4.

Case 2. In step 1, a black run was scanned. Now
check whether a previously labeled run appears above
this black run.

(1) if no, then label the currently scanned black run
as a starting run;

(2) if two or more labeled runs appear above the
current black run, then label the current run as a merge
and check whether the rightmost labeled run connected
to the run below is a fork run [see Fig. 2(c.1)]. If yes,
insert these nodes below the node that the rightmost
labeled run is in;

(3) if only one labgeled run appears above the current
run, then check how many non-white runs in the
scanning row are connected to the above labeled run;

(a) if there is only one, then label the currently
scanned run as a follower;

(b) if there are two or more, then label the run
above as a fork and check whether the rightmost black
run connected to the run above is a merge run [see
Fig. 2(c.2)]. If yes, insert these nodes above the node
that the rightmost black run is in.

Step 3. once a run has been labeled as a starting run,
fork, merge, follower, or end run in step 2, execute the
processing described in the subsections above for the
corresponding type of label.
Step 4. Check whether the scanning process has
reached the rightmost pixel in the last line of the image.

(1) if yes, then go to step 5.

(2) if no, then check whether the scanning process
has reached the last pixel in the current row;

(a) if no, then go to step 1 and continue scanning
rightward;

(b) if yes, then move to the first pixel in the next row,
go to step 1 and begin scanning rightward.

Step 5. end.

A Chinese-character thinning algorithm based on global features and contour information

3. NODE ATTRIBUTES AND NODE RELATIONSHIPS

In this section, we shall discuss two topics:

(1) node attributes: each node is assigned one of
three attributes: vertical line, horizontal line, or point;

(2) node relationships: whether the adjacent nodes
intersect or whether the nodes above or below the node
under consideration are connected on the left end or
right end with the node under consideration (see Fig. 5).

3.1. Node attributes

Nodes may have one of three attributes: vertical line,
horizontal line or point. Unless the ratio of a node’s

width to its heioht ig verv laree in which cace the nade
YYALRLLIL LU LD Ll\ll&ljl, Ly V\JI.J 1l 5\4’ 411 ¥Ylllwil VAOW LLiw LIV

is definitely a horizontal line, we must examine a par-
ticular node’s relationship to other nodes above and
below it in order to identify the attribute of the node.
If we attempt to identify node attributes on the basis of
only the run information contained in the nodes, then
the risk of error is very high. In the following discussion,
we use the parameter “up” to indicate the number of
nodes a particular node is connected with above it and
the parameter “dn” to indicate the number of nodes a
node is connected with below it. Our guidelines for
identifying the attributes of nodes are described below.

First we define a series of conditions. (Note: in each
of the following, “Cond i” indicates the condition
expressed by the words outside the parentheses, while
“Cond i(a)” indicates the condition expressed by the
words in parentheses.)

Cond 1(a): the location where the node under con-
sideration is connected to the node above (below) is
not the first (last) run of the node under consideration
(see Fig. 8).

Cond 2(a): the node under consideration is connected
to only a single node above (below) it, and the width
of the first (last) run of the node under consideration
is wider than that of the last (first) run of the node
above (below) it plus threshl.

’Cond 3(a): the node under consideration is connected
to two or more nodes (assume n nodes) above (below)
it, the width of the node under consideration is more
than twice its height, and the width of its first (last) run
is greater than the sum of the widths of the last (first)
runs of all nodes above (below) it plus (n + thresh1).

Cond 4(a): the run count of the node under con-
sideration is less than thresh3 and the widths of the
runs are strictly decreasing (increasing) (this criterion
can be relaxed to allow several runs to have equal
width).

2222

2222 33333

2222 3333333333

2222 33333333333
3333333333333333333

3333333333333333333333
3333333333333333333333333

499

Casel. up=0and dn=0:

This indicates that the node under consideration is
an isolated node. If the ratio of the maximum width of
the runs to the height of this node is greater than 1,
then the node is a horizontal line; otherwise, it is a
vertical line.

Case2. (up=landdn=0)or (up=0and dn=1)

this indicates that if the node is not a horizontal line,
it is a vertical line. Consider up=1, dn=0 as an
example:

(a) if the node above the node under consideration
is connected to more than one node below it, then the
node under consideration is a vertical line;

(b) if Cond 1 or Cond 2 holds, then the node under
consideration is a horizontal line;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

An analogous algorithm can be used on up =0 and
dn=1.

Case3. up=landdn=1

This indicates that if the current node is not horizontal
line, it is a vertical line.

(a) if the node above the current node is connected
to more than one node below it, and the node below
the current node is connected to more than one node
above it, then the current node is a vertical line.

(b) if Cond 1, Cond 1(a), Cond 2, or Cond 2(a) holds,
then the current node is a horizontal line;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

Case 4. (up>2and dn=0)or (up=0and dn >2)

the current node may be a horizontal line, vertical line,
or a point. Consider up > 2, dn = 0 as an example:

(a) if Cond 1 or Cond 3 holds, then the current node
is a horizontal line;

(b) if Cond 4 holds, then the node is a point;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

Case 5. (up=>2anddn=1)or(up=1and dn>2)

the current node may be a horizontal line, vertical
line, or a point. Let us consider up>2, dn=1 as an
example:

(a) if Cond 1, Cond 1(a), Cond 2(a), or Cond 3 holds,
then the current node is a horizontal line;

(b) if Cond 4 holds, then the node is a point;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

<== Intersection run

(fourth}

Fig. 8. The node labeled by 2 connects to the node labeled by 3 at its fourth run.

500

Case 6. up>2and dn>2

the current node may be horizontal line, vertical line,
or a point.

(a) if Cond 1, Cond 1(a), Cond 3, or Cond 3(a) holds,
then the current node is a horizontal ling;

(b) if the widths of the runs in the current node are
strictly decreasing followed by strictly increasing and
the run count is less than thresh3, then the node is a
point (this criterion can be relaxed to allow several
runs to have the same width);

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

3.2. Relationships between nodes

During the thinning process, we need to know
whether the left ends (right ends) of strokes formed by
two nodes one above the other are connected and
whether strokes formed by adjacent nodes intersect. If
the strokes do intersect, we need to fit them so that
they intersect at one point in order to produce a correct
skeleton.

When identifying node relationships, we need only
to consider nodes that represent horizontal lines. This
is because if nodes that are vertical lines or points are
connected to two or more nodes above (below), then
the nodes above (below) will definitely intersect.

Before identifying the relationships between nodes,
we must first delete any noise above and below vertical
lines [see labels 5 and 9 in Fig. 13(c1)].

Suppose node A is a horizontal line, and let node B
be the rightmost node above node A to which node A
is connected. The following algorithm (algorithm 1) is
designed to determine wheter these nodes are connected
on the right end (an analogous algorithm can be used
to check whether the left end is connected).

Algorithm 1:

Step 1. find the runin node A that has the largest value
for its x-axis coordinate and denote it by x,. Denote
its y-axis coordinatee by y,;

Step 2. find the line equation of the line formed by the
rightmost point of each run in node B;

Step 3. obtain the value of x, by substituting y, into
the line equation found in step 2.

Step 4. if |x, —x,| <2, then the right end of these
nodes is connected; otherwise, they are not connected
on the right.

Suppose node A is a horizontal line. If there are n
(> 1) nodes above node A that are connected with it,
the following algorithm (algorithm 2) can be used to
determine whether node (i — 1) and node (i) intersect.

Algorithm 2:

Step 1. use line fitting to find the line equation of the
line formed by the centerpoints of each run in node
(i — 1) and that formed by the centerpoints of each run
in node (i);

Step 2. find the intersection of the two lines in step 1
and denote it by (x,, y,);

J.-Y. LIN and Z. CHEN

Step 3. find the largest y-axis coordinate among the
coordinates of all the runs in node (i — 1) and node (i)
and denote it by y,;

Step 4. if |y, — y,| < thresh2, node (i — 1) and node (i)
intersect. Otherwise, node (i — 1) and node (i) do no
intersect.

4. GRAPH MODIFICATION

After we have determined the attributes of every node
and the relationships between nodes, we further modify
and refine the graph in the following ways:

(1) Noise is eliminated as follows: if a vertical line
located directly above (below) a horizontal line is found
to be unconnected to any node above (below) it and
the height of the vertical line is less than half the height
of the horizontal line, then the vertical line is deleted.

(2) If a horizontal line is connected to a point above
(below) it, the point is deleted [see Fig. 9(c)]. If, after
the point is deleted, other points are found, these too
are deleted [see Fig. 9(d)].

(3) If two horizontal lines are connected together
and the difference in the slope of the lines is negligible,
the two lines are merged into a single horizontal line.

(4) To facilitate the processing described in Section
5 below, when a vertical line is connected to two or
more vertical lines above (below) it, we add a “point”
node between the vertical line and the vertical lines
above (below) it (see Fig. 10).

5. THINNING

We have now completed our description of the stroke
extraction process and shown how the attributes of
each stroke and the relationships between strokes are
identified. In this section, we shall describe how the data
derived through the processes outlined in Sections 2,
3, and 4 may be used to obtain a character skeleton.

Our approach will be to construct the skeleton of a
character by performing line fitting using the attributes
of and relationships between nodes in the character
graph. For horizontal lines, we shall use the center-
points of vertical runs for line fitting. For vertical lines,
we shall use the centerpoints of horizontal runs for line
fitting. The steps in the process are as follows:

Step 1. we begin by fitting all horizontal lines. If the
left end or right end of a horizontal line is a connected
to a vertical line, then the horizontal line is fitted to
half the average line width of the vertical line. The
coordinates of the left and right end points of the
horizontal line after fitting are then recorded;

Step 2. all points are masked out (fitting is not per-
formed on points), with the centerpoint of each point
being used to represent the location of the point. The
coordinates of the centerpoints are then recorded;
Step 3. werepeat step 4 through step 7 until all vertical
lines have been fitted;

Step 4. we identify a node of a vertical line that has
not yet been fitted;

A Chinese-character thinning algorithm based on global features and contour information 501

(@)

(c)

Com) G
G

(d)

Fig. 9. (a) Run figure; (b) Graph; (c) We delete the point node above a horizontal line node; (d) After (c), if
there is still a point node in the horizontal line node, it is also deleted.

(o)
G

Fig. 10. (a) Run figure; (b) Graph; (¢) We add a “point” node
between the two existing nodes.

Step 5. for the line identified in step 4, we determine
how many collinear vertical lines there are above it and
below it. We regard these lines as forming a set, which
we will call a line set;

Step 6. we attempt to identify how many points the
line set must pass through, in the following way:

if a particular line in the line set is connected to a
node whose attribute is “point”, then the line must pass
through that point;

if a particular line in the line set intersects a neighbor-
ing line for which fitting has been completed, then the
line must pass through the point of intersection;

if a particular line in the line set is connected to the
left end or right end of a horizontal line, then the line
must pass through the point where it connects with the
horizontal line;

if the very top {bottom) line in the line set intersects
another vertical line for which fitting has been comple-
ted, then it must pass through the point where it
intersects this vertical line;

if the very top (bottom) line in the line set is connected
to a horizontal line, and there is another vertical line
located above (below) this horizontal line that passes
through the horizontal line and intersects with the top
(bottom) line of the line set, then if fitting of this other
vertical line has been completed, the top (bottom) line
in the line set must pass through an end point of this
vertical line.

Step 7. after step 6 is completed, we apply the following
rules to find the points that form the skeleton of the
line set under consideration:

502

(A) if in step 6 no point is found, then line fitting is
used to obtain the line equation of the line set;

(B) if in step 6 only one point is found, then line
fitting that must pass through a specific point is used
to obtain the line equation for the line set;

(C) if two or more points are found step 6, then
working from the top, we search for every two neighbor-
ing points and obtain the line equation that passes
through these two points.

Step 8. the procedure terminates.

6. EXPERIMENTAL RESULTS

To verify the feasibility of our method, we tested it
on printed characters collected and filed by the Tele-
communication Laboratories of the Ministry of
Transportation and Communications. The highest
resolution of the characters is 48+48. We selected a
sample of 700 characters by beginning from character
500 in the list and selecting every fifth character until
we reached character 4000. The characters in our

(a)

111
111
111 5555
111 55
111 33
111 3
111
111 22
111 2222
777777
7777

(bl) 33

3333
4444 333333

8888888888883883388883388888888888888
888838888838383388888888888888888388888

9999

9999 55

9999 5555

9999 77777777777777777777777777

9999 7777777777777777777777777 66
9999 6666
5999 666666

aaaaaaaaadaadaaaaaaaadaaaaaaaaaaaaaaaaa
aaaaaaaaaalaaaadaaa’aidaaaaaaaaaaaaaaaaa

bbbb cceco ddd eecee
bbbb ccec ddd eeecee
bbbb cceo ddd eeecee
bbbb ccce fEEEEEEELE
bbbb ccece fEELFFEFEEE
bbbb FEEFELLLLLELEfEELES
bbbb fEEEELELFES 9999999
bbbk FEEEFEELEES 999999999999
bbb TELEFLLF 999999999999
bbbb fff 999999999
bbb 99999
bbb iiii 3333
bpb kkkkkkkkkkkkkkkkkkkkkkkkkkkkk
bb kkkkkkkkkkkkkkkkkkkkkkkkkkkkk
1111 Mmmm
1111 mmmm
1111 mmmm

nnnnnnnnnnnnnnnhinnnnnnnnnnn
nnnnnnnnnnnnnnnnnnnnnnnnnnn
[olelele} rrrp
0000 PPPP
oooo PPPD
999999gggqqaIqaqIgadaagdaqqy
9999999999999999999999I9gqq

rrrr ssss
rrrr ssss
ITrr ssss
rrrr ttttttttt
rrrr tettttt
rrrr ttttt

rrr ttt

J.-Y. LIN and Z. CHEN

sample had the following characteristics: there were
many different types of touching strokes and inter-
sections; there were cases where a single run formed a
complete stroke; and there were cases where the stroke
boundaries contained noise. In the test results, correct
skeletons were obtained for all but eleven out of 700
characters, so the success rate was 98.43%.

The algorithm is written in Microsoft C language
on an IBM PC 486-33. The total execution time for
using run-length coding to extract the strokes of 700
Chinese characters (including reading data from disk)
is 512.83 s, or on average, 0.73 s for each character. On
the other hand, total computer time including line
fitting the extracted strokes to produce the skeletons
for the 700 Chinese characters is 821.31 s, or 1.17 s for
each character.

During the thinning stage, in some cases we had to
force lines to pass through certain points, causing some
of the thinning results to become slightly curved [see
Fig. 11(a)]. This is because the center point of a wider
run may shift to one side dramatically, yet after thinning

6666
6666
B 6666
33333
333333
222 4444
22 4444
4444
(b2)
b
b
b
©4444444444444444 b
e 44444444444444444p
e
e c
e c
e 33333333333333333 c
e 3333333c d
e d
e d
£55555555555555555 d
f g 555555555555555555d
f g h i
f g h i
f g h i
£ g h 663
£ g 66666 3
£ g 6666 3
£ 66666 3
£ 66666 b
f 6 b
£ J
£ J
£
£ K777777777777
£ X 77777777777771
k 1
k 1
k 1
k888882888888 1
k 8888888888811
k 1
k 1
k 1
k99999999999 1
k 9999999299991
k 1
k 1
k 1
k 1
k aaaaaaal
k
k

Fig. 11 (Cont.)

A Chinese-character thinning algorithm based on global features and contour information 503

ch)

333 44 55
33333 4444 5555
33333 6666666666666666666666
33333 6666666666666666666666
3333 7777 8888
3333 7777 8888
3333 7777 88838
3333 7777 8888
3333 7777 8888
3333 99 7777 8888
3333 9999 aaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbb aaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbb cccc dddd
kkkk ccee dddd
kkkk ccce dddd
kkkk cccc dddd
kkkk ccce dddd
kkkk ccee dddd
kkkk
kkkk
kkkk ffff gg hhh
kkkk ffff ggg
kkkk ffff 999 ii
kkkk ffff ggg iiiii
kkkk ffff ggg iiiiiii
kkkk 33j ffff gg iiiijiiii
kkkk 3333 ffff ggg iiiii
PPPPPPPPP EfEE gggg iiii
11111111 ffff ggggaaq
11111111 £fff
111111111 ffff mmmm
1111111 fEff mmmm
1111 ffff Imm
111 fEff mmmmm
Ifff MINMITMMITT
ffff FYIrrrrrrrrrr
IIIrrrrrrrrr 000000
nnnnnnnnnn 0000000
nnnnnnnnnnn 000000000
nnnnnnnnnn 00000000
nnnnnnnn ooogo
nnnnn oo
nn
@an
3333 4
33333 444
33333 555 44444
33333 $99999999999999959999999999
3333 99999999999999999999999939
3333 aaaa
3333 aaaa
3333 aaaa
3333 aaaa 6
3333 77 aaaa 666
3333 7777 aaaa 66666
88888888888888888 bbbbbbbbbbbbbbbbbbbbbb
888858838888888888 bbbbbbbbbbbbbbbbbbbbbb
3333 dddd
3333 dddd
13313 addd
3333 dddd c
3333 ddda cce
31333 dddd cceece
1333 e
J333 ff
3J)3j £ffff gggg hhhh ii
kkkkkkkk gggg hhhh ii
kkkkkkkkk gggg hhhh ii 11
kkkkkkkkkk gggg hhhh ii 1111
kkkkkkkkkk gggg hhhh ii 111111
kkkkkkkkkk 999 hhhh ii 1111111
mmm ssss 999 hhhh ii 1111
SSSS g9g hhhh ii 1111
ssss gggg hhhh uuuuu
ssss 999 hhhh ooo
ssss g99 hhhh coo
ssss ggg hhhh ooo
ssss agg hhhh cooo
ssss 999 hhhh [eToTolele)
sSss8 ggg hhhh VVVVVVVVV
ssss 999 hhhh ppppp gqqqq
5588 999 qqd9qqgq
ssss ggg rrrrrrrr qaaqgyq
ssss gg IrYrrrrrrr qgqaqq
sssss ag YIrrrrrrrr agqggq
tttttttttt ggg rrrrrrr aqq
tttttttt gg rrrr
tttttt rrr
tttt

(c2)
8 9 a
8 9 a
8 333333333 a
8 b 333333333a
8 b a
8 b a
8 b a
8 b a
8 b a
8 c b a
8 c b44444444 a
555555585 c b 444444444a
8 5555555¢ o] a
8 b a
8 b a
8 b a
8 b a
8 b a
8 b666666666 a
8 b d 66666666a
8 b d
8 b d
8 b d e
8 b d eee
8 o] d ee
8 £ b a eee
8 fff b d ee
gfff b cee
q b a
b d
gggg b d
b a
qgg b dd
b
%9 b di
b 7777777777777771
hb77 i.
h i
h i
h i
h i
h 1
h
(d2)
9 “a
9 a
9 2 -
9 d44444444444 a
9 d 44444444444a
9 d
9 d
9 d
9 d b
9 c d b
9 c d b
33333339 c 4555555555 b
93333333cC d 555555555b
9 d
9 d
9 a
9 d e
9 d e
9 d e
9 g66666666666 e
9 £ g h 1 666666666666
9 £ g h i
9 7f g h i
9777 g h i 3j
77779 g h i bl
777 9 g h i 5
9 g h i 33
9 g h i j
9 g h i3
9 g h k
9 g h k
9 g h k
9 g h k
9 g h k
9 g h k
9 g h m
9 g h 1111 m
9 g nllll m
9 g n mm
9 g nn m
9 g n mm
8888 9 g nn m
88889 g nn

Fig. 11 (Cont.)

504 J.-Y. LIN and Z. CHEN

(el)
333
33333
333333
33333
3333 4
3333 444
3333 44444
555
55

8888

8888

8888 66
777 8888 6666

999999999999999999999999999999999
999999599999999995999999999999999

aaaa bbbb ccee
aaaa bbbb ccee
aaaa bbbb ccece
aaaa bbbb ccec
aaaa bbbk ccee
aaaa bbbb ccecce
aaaa bbbb ccec

dddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddd

eeee dddddddd ggg
ceee hhhhh iii
cee hhhhh iii 333
hhhhh iii 333373
hhhhh iii 333333
hhhhh iii 3333333
hbhhh iii 333333
hhhhhh iii 33333
hhhhhhh kkkkkkk
999999999 kkkkk
11111 mmmm kkkk
11111 TRmm kkkkkk
1111 mmm kkkkkkkkkkk
1111 mmm nnnnnnn = 0cocooo
111 mmmm nnnonnnn 00000000
rrrrrrrrrrrr 000000000
PPPPPPPPPPP 0000000000
PPPPPPPPPPP 0000000000
PPPPPPPPPPpR ©ooo
PPPPPPPPP
PPPPPP
ppp

(e2)
6
6
&6
6
6 7
& 7
6 7
33333333333333333333633333333 7
6 3333333333337
6
6
[8
6 8
9444444444444464 8
9 6 444444444444448
9 6
9 &6 8
9 6 8
9 6 8
9 & 8
9 <] 8
9 b 8
95555555555550b5 8
9 a b555555555555585
S a b
9 a b
9 a b o]
a b [+
a b ce
a b c
a b c
a b c
a b c
e b ¢
ddd e g
dd e fff g
ad e £f g
dd e fff 99
ad e ff g
£ht g
hh g9
hh g
hh g
hh
hh
hh

Fig. 11. Stroke pattern ‘p<” to be considered. (a) Label 7 is the upward book, label 3 is the crossing stroke
and label 2 is the intermediate stroke; (b)—(e) Several variations of the stroke pattern “p<”.

the affected strokes still had to pass through this par-
ticular center point. We used line fitting to construct
the skeleton, hence the final result was not a one-pixel,
four-connected (or eight-connected) graph.

Results for several characters are shown in Fig. 11,
12 and 13. Figure 11 depicts the thinning results
of several different variations of the stroke pattern
“p<”. The connection between the upward hook and
the crossing stroke, called an intermediate stroke [see
Fig. 11(a)], varies as follows [in Fig. 11(a)], we do not
discuss the strokes labeled 4, 5 and 6 because the
characters in Fig. 11(b), (c), (d) and (¢) have the same
structures]: In Fig. 11(b) the two are connected to
become a run (labeled “f” in the figure, with no inter-
mediate stroke). In Fig. 11(c), the top end of the upward
hook (labeled “r”) and the bottom end of the crossing
stroke (labeled “r”) are connected directly together (no
intermediate stroke). In Fig. 11(d), the upward hook
and the crossing stroke are separated by a run (labeled
“p™ which is an intermediate stroke). In Fig. 11(g), two
runs (labeled “n”; which is an intermediate stroke) lie
between the upward hook and the crossing stroke.

Figure 12 depicts the thinning results for several
variations of the stroke pattern “=”., The “&” in
Fig. 12(a)is the standard character shape. In Fig. 12(b),

the horizontal line on the top of the character (labeled
“E” and “F” in the figure) is formed from two horizontal
runs, whereas in the second horizontal line a third run
appears between the two horizontal runs (labeled “v”
and “t”). In Fig. 12(c), there is a horizontal line with
two runs (labeled “j”). In the character in Fig. 12(d),
the top horizontal line is composed of three runs
(labeled “b”) and the bottom horizontal line is com-
posed of four runs (labeled “h™).

Even though many different types of connections
appear in Figs 11 and 12, acceptable thinning results
were obtained for all of the characters shown.

Figure 13 depicts several characters with relatively
high stroke counts. A variety of different touching
strokes and boundary noise can be seen in these
characters. Again, our method achieved reasonably
good thinning results for all of the characters
shown.

In order to evaluate the thinning results of the pro-
posed method, it is compared with four existing algor-
ithms.®~1? In Figs 14 and 15 we show the thinning
results for the five methods. In general, the proposed
method produces better results in two respects: strokes
at crossing sections are preserved and the resistance to
noise at the character border is high.

@l)
3333 4444 5555
666666666666666 55555
666666666666666 55555
7777 8888 5555 999
7777 8888 5555 995999
7777 8888 5555 aaaaaaaaa
7777 8888 5555 aaaaaaaaaaa
7777 8888 5555 aaaaaaaaa
7777 8888 WHAWWWWWWWW
7777 8888 bbbbbbb [+
7777 8888 bbbbb cc
7777 8888 bbbb cce
ddddddddddddd bbbb ccc
ddddddddddddd bbbb ccce
eeee £Efff bbbbb cceec
ceee Lffe 9999999999999999999999
eeee Efff 999999999999999999999
eeee ffff 99999999999999999
ceece ffff 99999999999
eeee ffff
eeee ffff
eeese £fEE££
ceee fEff hhhh iiii
3333333333333 kkkkkkkkkkkkkkkkkkkkkk
3333333333333 kkkkkkkkkkkkkkkkkkkkkk
1111 mmm nnnn ocoo
1111 s nnnn 0000
1111 mmm nnnn 0000
1111 mmmm nnnn 0000
1111 mmmm nnnn feYelele)
1111 mmmm PPPPPPPPPPPPPPYPPPPP
1111 mnmm PPPPDPPPPPPPPRPPDPEP
1111 mmmm qaqq Irrr
1111 mmmm qqqq rrrr
111 ummm qqqq rrrr
1111 mmmm qgaq rrrr
1111 mmmm qqaq rrrr
111 mmmm S5SSSSSSSSSSSSSSSSSS
111 mmmm S5558S55SSS5SSSSSSSS
111 vvvvvvvvvvy tttt uuuu
111 VVVVVVVVYV tttt uuuu
11 VVVVVVY tttt uu
1 vvvv tt
(bD)
33
3333 44 55
3333 4444 666 5555
333 7777777777777 aaaaaaaaaaaaaa
333 7777777777777 aaaaaaaaaaaaaa
333 888 9999 bbb ccce
333 888 9999 bbb ccece
333 888 9999 bbb ccece
333 [} 888 9999 bbb ccce
333 ddd 888 9999 bbb ccee
ceeeececececececeee 888 9999 bbb ccee
ecececececeeceee 88888 9999 bbbbb ccce
nnn EEEEEEE 9999 FFFFFFF cccc
nnn f£ff EEEEEEEE hhh F??ff???
nnnn fff ggggggy hhh iiiiiii
nnnnnn £f£f 3 9999 hhh 1 jidid
KKKKKKK £fE£ 9999 hhh iiii
00000 PPP fff gggg hhh iiii
oocoo pppp fff gggg hhh iiii
oooco pppp fff gggqg hhh iiii
oocoooo pppp £f£ gggqq hhhh iiii
LLLILL pp £fff gg9g IIITIX iiii
gqq rrr GGGGGG gggg sss ttt iiii
qqqg rrr uuu VvV gggg sss MMMMMMM
qqq rrr uuu NNNNNNN 5SS WWWWWWW
qq rrr uuu XXXXXXX sSS Y WWWW
gqq rrr uuun A XXXX sss WWWW
aq rrr uuu XXKX sSS WWWW
qad rrr uuuu XXX ssSs WWWW
qq rrr uuuu XXXX ssss WWWW
q rrr uuu XXXX ssss wWWW
rrr uuu XXXX sSS WWWW
rrxr uuuu XXXX SSS WWWW
rrr uuu XXXX Sss WWWW
rrr uuu XXXX SSS WWWW
rrr uuuu KXXX 588 WWWW
rrr uuu KRXX [=2= WWWW
Irrr uuu XXXX Sss WWWW
rrr uuu XXXX SS WWWWW
rrr uuu cceceecee ss DDDDDDDDD
rrr uu CCCCCCC s DDDDDDD
rrr ccee DDDD
rrr cc DD
rr

A Chinese-character thinning algorithm based on global features and contour information

(a2)

o
N O

I B e e

(®2)

Fig. 12 (Cont.)

5555

505
b
€33333 b
c 3333334 b
c d b e
] d b fe
<] d b fff
[on d b fff
c d b fff
c d gf
[} d g h
c d g h
c d q h
c44444 d g h
[+] 444dd = h
[+ d g h
c d g h
c d g555555555555555555h
c d
c d
c da
c d
c d
c a
ices666 d 3777777777
i 66666d] 777777777k
i d 3j 3
i d j k
i a 3 3
i d 3j k
d Jj k
d j8s8888888 k
d j 8888888kk
a 3 'S
d 3j k
d 3 k
da 3 k
d 3 X
d 399999939 X
d 3 99999999k
aaa d 3J k
aaaaaad j k
3 k
j
a
a b c
a b c
a d3333 b e44444 c
a a 33333b e 44444c
a d b e [
a a b e c
a <3 b e c
a £ d b e c
a b4 d b e [
555a55 b d b e c
a 555f5 d b e c
a dsssssss b €9999999 c
a d bg e ch
a a g e h
a, d g e h
J d g e h
i3 d g e h
i 3 d g e h
i j d g e h
i j d g e h
il 3j d g mn h
kl P g mnnn h
1 o ppp ¢ m nng
1 o ppr m q
1 o r m q
1 o r m q
1 o r m q
1 o r m q
1 [} r m’ q
1] r m q
1 o r m q
1 <} r m q
1 [} r m q
1 o r m q
1 -] r m q
1) r m q
1 o r m q
1 o r m q
1 ° 6666 m 7777 q
1 o 666r m 777q
1
1
1

506

(D)

J-Y. LIN and Z. CHEN

333
33333
44 55 33333
4444 5555 33333
bbbbbbbbbbbbbbpbbbh 5555 3333
bbbbbbbbbbbbbbbbbbb 5555 3333
ccee 555 3333
ccee 5555 3333 6
cecce 5555 3333 666
ccce 555 3333 66666
ccee 77777777777777777777777
ccee 7777777777771771777777777
ccee 8888 9999
ccee aaa 888 9999
ddddddddddddd 888 9999
dddddddddddddd 888 99359
eeee £fff 88 9999
eee ffff 8 9999
eeee fff 9939 [={°}
eeee ffff 9999 gggg
eecee fEff 9939 999999
eeeceee ££f hhhhhhbhhhhhhhhhhhhhhhhhhhhhh

9999999 £f££f hhhhhhhhhhhhhhhhhhhhhhhhhhhh

iii 3333 fref hhhhhh
ii 333 ffff hhhhhhhh
ii Irrrrrrrr hhhhhhhhh
i kkkkkkk hhhhhhh nnn
kkkkk hhhhhhhh nnn
kkkk ©O00 pppp nnn
kkk 0000C PpPPP NNnn
kkkk coO00 PPPP nnnn
kkk 00000 PPPP nnnnn
kkkk 00000 PPPP nnnnn
kkkk 00000 PPPP nonnn
kkk 00000 PPPP nnannn
kkkk 00000 PPPP nnnnnn
kkkk [eIeTels] PPPP nnnnnn
kkk oooo PPRP nnnnn
kkkk cooo PPPP nn
kkkk 0000 PPPP
kkkk ooo PPPP
kkk pppp
kk PpPPP
k PPPPP
PPPPP
PPP
dn
3333
33333 44
333333 44 55
33333 444 5555
3333 666 44 dddddddddddddd
7777777777777777 444 daddddddddddd
77777777777777777 444 eeeee
7777 9999 444 eeeee
7777777 89999 444 eecee
aaaa bbb 99999 444 eecee
aaa bbb 99999 444 eee
aaa bbbb 9999 444 eee
aaaa 5SSSSSS 4444 eee
IrYrrrr cceceece tttttt
ggg hhh cccece fEfEf
999 hhh ceccee fEEf
hhhh cccc ffff
hhh cccc ii fffff
uuuuuuu iiii f£ffff

13333
3337 KKkkKKKKKKKK

iiiiii ffffff
kkkkkkk ffffff

3333 kkkkkkkkkkkkkkkkkk fEEfEfEf

fEEEEELS
fLEFEEF
11 fEEEEE
1111 £f
111111

000000000000 C0C00000000000CO000
000000000000000000000000000000

33333
,,3333
33333
., 1333
J31)
PPPP
pPPPP
Tmm PPPP
mmmm pPPPP
Mmmmnmm PrpPPP
mmmmmmm rrpep
MmMmmMImn PPPP
mrmmmm PPPP
rammmn PPPP
TR PPPP
Tmmmm PPPP
mmmm PpPpp
mmmm PPPPP
mmm 3999999499999
499999999
qqadaaq
999

nn
nnnnn
nnnnn
nnnnn
nnnnnn
nnnnnn
nnnnnn
nnnnnn
nnnnn
nnnn
nn

(2)

8 9
8 9
444444444 8
C 444444484

c
a
a
a

aaaa

333333373

NN NNNNN NN

a
3333333333a

b
55555 b
555554 b
da b
d b

d

d

e
e
e

R N R N N R S R |

an

H
[sieNe Moo Mo NoRe oMo Mo Nl

e
d 666666666666]76666666666666¢e
f g d 'j7i'
i
i
i
i
i
i
i
i

J
h 3

£ h 3
h j

h j

h j

33

RN IR LN IEN IR R IEN JEN BN JEN |

=4
[
NN A AN NN N NN NN

(d2)
8
8
8 a
8 9 a
8 9 444444444 a
8 33b 9 44af
dc3333333333 b 9 ££

cd b 9 f
c dd b 9 £

w0

b
k 5555555555555 3 g
k 55557 g

666666666666666666666 1
666666661

g
Q00000

[}
o
o
o
o
m =] n
o
o
m 7717777 =]
70

Fig. 12. Several variations of the stroke pattern &\’

A Chinese-character thinning algorithm based on global features and contour information

507

(al) (a2)
7 8 9
333 44 555 7 8 9
33333 4444 5555 7 8 9
33333 4444 5555 7 a 8 9
3333 66 444 5555 7 a 8 b 9
3333 666 444 77 5555 7 a 8 b 9
3333 6666 444 77 555 7 a 8 b 9
3333 6666 444 777 555 7 a 8 b 9
3333 6666 444 77 555 7 a 8 b 9
3333 666 444 777 555 7 a 8 b 9 c
3333 666 444 777 555 88 7 a 8 b 9
3333 99 666 444 777 555 8888 33337333 a 8 b edd4444 c
aaaaaaaaaaaaaaaa 444 777 bbbbbbbbbbbbbbb 7 3333343 8 b e 444444F
aaaaaaaaaaaaaaaa 444 7 bbbbbbbbbbbbbbbb 7 da 8 e £
cece dd 444 eee £Ef£f 7 d 8 e £
ccee dddd 444 eee £EfFf 7 di 8 eg £
cecce ceceee 444 eeee gg fEfff 7 hhi666666686666 eqg £
ceccec hh CCCCCCCCCCCCCCCCCC gg ffff 7 h i 8 666ej g f
cecc hh ccecccceccecceceececece gg fEf£ff 7 i 8 3 g £
cece 333 kkk 111 ggg ffEF 7 i 8 3 g £
ccce 333 kkk 111 ggg £E£E 7 i 8 3 g £
ccce 333 kkk 111 gg £££F 7 i 8 3 g £
ccee 133 kkk 111 ggg £££~f 7 i 8 3j g £
ccece 333 kkk 111 ggg fff 7 i 8 bl g f
ccccecece jjj m kkkk 111 gg ffff 7 i 8 bl g f
cceccece jjj kkkkkkk 111 ggg ££ff 7 i kK bl gf
ccecece j3jj DDDDDDD 111 gg fff 7 i n kk 3j 1
cccecece j3jj EEEEEE oo 111 FFFFFF P i mmmn kk j 1
BBEBBBBEB 333 99 rrr oo 11l PPPPPP oop mm n kk 1
sss tttt 333 99 rrr HHHHH pPPPP oo p i n k 1
ss tttt IIIII rrr uuuuu PPPP P i n k 1
tttt VVVVV rrruuuuu jaje)ed P i n k 1
tttt vvvv rrr uuuu PPP P i n k 1
tttt VvV rrr uuuu PPPP P i n k 1
tttt Atatais rrr uuu PPPRP] i n k r
tttt vvv rrr uuu GGGGGG P i n k ar
tttt vvv rrr uuu WWWW XX P i n k q r
tttt vvv rrr uuu WWW XXX P i n k aq r
tttt vvv rrr uuu WWWW XXX P i n k q r
tttt vvv rrr uuu Wwww XXXX P i n k q r
tttt ha'a's rrr uuu Www XKXXH P i n k g r
ttttt Na'a% rrr uuu www XXXKXX P i n 55555545 r
tttttttt vvv rrr yyyyyvyyy XXXX P i n r
ttttttt vvv rrr Yyyyy AA péd P i n
ttttt v rr vy P
tt
(bl) (b2)
33 a
3333 444 a b
3333 44444 555 666 a b
333 44444 7777777777777 a b €33333
333 4444 77777777777777 a b c 333334
333 4444 8888 99999 a b c d
333 4444 8888 9999 a b c d
333 4444 8888 9999 a b c a
333 aaa 4444 bbbb 8888 9999 a b c d
333 ddddddddddddddd 8888 9999 a de c 4
333 cc ddddddddddddddd 8888 9399 a 444444444442 c a
dddddddddddddddddd ffff 8888 999 44a4444444 e c a
ddddddddddddddddd ffff 8888 999 44444 a £ e c d
ggg hhhh ffff 8888 99 a £ e c d
999 hhhh f£ff 8888 999 a f e c da
999 ijiiiiijiidiiii 3333333 a £55555 e c66 d
99999 iiiiiidiiiiiii 3333333 a £ 5555ee c 69
gggggg kkkk 1111 mmmm nn a 4 e ¢ g
FFFFFFF kkkk 1111 mmmm nnn i b4 e c g
oooco ppp kkkk 1111 mmmm nnn h i £ e c g
ooocoo ppp kkkk 1111 mmmm nnn h i £ e c g
00000 g4ggqggadgqqggddg mmmm nnn h 1177£777777 e c 9
00000 gggqqdgdddadayqqg mmmm nnn h £ 7777e c g
000000 r ssss tttt mmmm nnnn h £ e c g
GGGGGG ssss tt mmmm nnn jk £ e c g
uuu vvv ssss mmmm nnnn Jk £ c g
uuu vvv ssss ww mmmm nnn Jk £ 1 c q
uuuu Vv ssss Xx WWWW Tmmm EEE j kx £f m 11 c d
wuu vvv SSSS XX WWWWW mmmm EEEE J k f mm 1 c q
uu vvv ssss HHHHEHH mmmm EEEE J k £ mmn c q
uuu vvv ssss yyyy mmmm EEEE j k 4 n c q
uu Naa's ssss yyy mmmm EEEE 3 k £ n c dq
uu v ssss yyyy mmmm EEEE] k £ n c d
u v ssss yyyy mmmm EEEE j x £ n c q
vvv ssss YYYYy mmmm EEEE k £ P c q
v ssss IITTIIIT mmom EEEEE k £ 999999999p c8888 q
vvv IIITIIIII AAAAA BBBBBBBBBEBEB k o9 P c 88888q
vvv 2zzz222 AAAA CCCC DDDDDDDD x o P c q
vvv 222222 AAAA CCCC DDDDD k Gl P c q
VvV zzzzzzz AAA cCCCC DD k o P c q
VvV zzz2zz AR ccce k ° P c
vvv zz ccee x o c
vvv cecee k c
vvv ceee k c
vvv cece k c
v cc k c

Fig. 13 (Cont.)

508

J-Y. LIN and Z. CHEN

(cl) (c2)
8 9
333 444 8 9
3333 44444 8 El
3333 44444 8 El
3333 4444 8 S
333 4444 8 a 9
333 55 4444 8 a 9
333 5555 4444 8 a 9
333 5555 4444 8 9
333 5555 666 4444 777 3333383333 a 44444444494
33 5555555555 bbbbbbbbbbbbbbbbbbbbbbbb 3333333ac d 9 4444444444e
88888888888888888888 bbbbbbbbbbbbbbbbbbbbbbbb b c d 9 ee
99999999999999 aaaa cccc dddd eeee b c d 9 e
fff 999 aaaa cccc dddd eeee £ b c d 9 ee
hh 999 aa cccc dddd eee 4 b a 9 e
hhhh 999 cecee dddd ee £ b d]
hhhh 999 ccece dddd £ b g d 9
hhh 999 i ceee dddd 4 b g d 9
hhhh 999 i cccc dddd £ b g d 9
hhh 999 ii cccc dddd 33 £ b g h55555555
hhh 999 1iijii kkkkkkkkkkkkkkkkkkk f b666666g h i 555555557
hhh 111111111 kkkkkkkkkkkkkkkkkkkk 4 h i j
hhh 1111111 mmm nn cao00 £ b3 h i]
hhh pp 111 mmm nn 0000 £ k i 3
hhh ppp mmm nnn 00000 £ k h i bl
hh PPPP mmmm nn oooo f k h i j
h PPP q9g mmmm nnn 0000 4 7771 h i 3j
IIXrrrrrrrrrryx mIm nnn oocoo k 77777777 1 h i 3j
rrrrrryrrrrrrrr - mmm nn oooo n77 1 h i J
rrrr tttt mmm nnn oooco m n 1 h i3
rrrr tttt mmmm nnn oooo m n 1 h i3
rrrrrr ttt I uuuuuuu m n 1 h ij
VVVV WWW ttt mmm uuuuuu m n 1 h P
vvv wW ttt mmmm uuuuu m n 1 h 00 p
vvv www ttt mmm uuuuuu m nl h [=] P
v XXXXXX mm uuuuuauu gr h o P
XXXXX mm YYYYY 2222 q r h o P
XXXXXXX mm YYYYY 22223 q r h o P
AAAA BBBB mmm YYYYY 22222 q rh oo P
AAAA cceceece YYYYY ZZZZZZ qq rh o] P
ARAA cccece YYYYyY ZZZZZZZ aq hr Q P
AARAA cce YYYYY ZZZZZZZ q o P
ARAR cce YYYYY z2zz aq o
AAA cCc yyy
dn (d2)
333 44 (=]
33333 44444 555 c 333 d
33333 44444444 55555 [} 3333 d
3333 444444444 558555 c 3333 d
3333 444444444 5555 [+] 333 =1 a
3333 66666 aaaa 5555 c g d
3333 aaaa 5555 c g d
3333 aaaa 5555 c g d
3333 aaaa 8 5555 c g e d
3333 aaaa 888 5555 o] g e a
3333 99 bbbbbbbbbbbbbbbbbblb 5555 (=] £ 4444444494444 e d
3333 99 bbbbbbbbbbbbbbbbbb 5555 c £ g 44444e d
3333 999 hhhh 5555 cc [£ g d h
3333 99 hhhh 5555 cccc =] £ g d h
dd 3333 999 hhhh e FEELEEFEEEFLELSE i c £ g j 5555d55555 h
ad 3333 999 gg hhhh eee fELFEFFEELEEES i ¢ £ g 3 d 555h
ddd 3333 99 iiiiiiiiidiiiiiiii 333 kkkk i c £ k666669 3 d h
add 3333 99 iijiiijiiiijiidiii) i c £ k g666666667 a h
dadd 3333 111 mmmm nnn i c k g Jj d h
ddd 3333 111 mmm nnn i c k g 3j d h
dd 3333 111 mmmm nnn i c k g 3j d h
dd 3333 111 MImmm nnn i c k g j d h
3333 0000000000000 c k777779 j d h
3333 0000000O00000A00 c k g7777733 a h
3333 ppP gggqg rrr c X g J d h
3333 PpPP qqqq rrr c k g 3j d h
3333 PP qqqq rrr c k g b d h
3333 PPP qaqgq rrr c k g 3 d h
3333 S5SS5SSSSSSSSSSSS [+] 188888g J d h
3333 SSSSSSESSSSSSSSS c 1 g8888887 4 h
3333 ttt uuuu v c 1 g d h
3333 tt uuua c 1 g a h
3333 uuuu W c g m d h
3333 uuuu WwWw c g m d h
3333 XXXXEXXEXXXXXXXX I37 kkkk c 99999999999 m d h
3333 AUAXXXXKXKXKXKXX T] kkkk c g 9999m d h
3333 YyYYy I3 kkkk c g d h
3333 yyyy 333 kkkk c g d h
3333 YYyyy 33 kkkk < g d h
3333 Yyyy cccceccec kkkk c g bbbbbbbbo h
3333 €Ccceeeee AR kkkk c ngb o h
3333 ZZZ2ZZZZEZZ ARA kkkk [+ nn o h
3333 ZZZZZZZZ2Z2ZZ AA EBBBBBBEBB c nn [¢] aaaaa h
3333 ZZZZZZ2Z2 AAA BBBBBBEB c nn [+] aha
3333 222z AAA BBBBB < nn o
33 BB c

Fig. 13. Several characters with relatively high stroke counts.

(a)
1111

IEEEEE
113311

111111
11111
1111
i1 1111 11
11 1111 1111
11111111311311131131111121311111211311111
1111111113131111113131113131111313131111211111

111 1111111
1111 11111
11111 1111 1111
1111 11111 111
1111 11111 111
11 1111
1111
1111
1111
1111 11
1111 1111
1111 11111l

113111111111111131111311131121331331313111111111
11111321311113113122131131211131211213131111111111
11111
1111111
11111111
1111111111

11111111111
1111 1111 111
11111 1111 1111
11111 1111 1111
11111 1111 1111
11111 1111 1111
11111 1111 11111
11111 1111 111111
11111 1111 111111
11111 1111 111111
11111 1111 1111111
11111 1111 11111111
11111 1111 111111111
1111 1111 111111111
1111 1111 111
1111 11111
11111
11111
111

(c)

1 1
1 1
1311111111313131123113111111311211
1 111
1 1
1 1
1 11
1 1
1 1

HEP R RS HR

11
11111111211113111111 11111121311111111 1
111

1
1
1
11111111
11 1 1
1
11
11
11

11111

"
PHRHEBHBEPHEBRRBEHRRRB PR
"

(b) 509

1
1
1
1
1
1 1 1
1 1 1
1111111111111111111 1
1 11111111111111131111
1 1
1 1
1 1 11
1 1 1
1 1 1
1 1
1
1
1
1 1
1 1
1 1
1 1
11111213111111171123112111113132111231111111131
111
i1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1
1
1
@
111
1
1
1
1 11
1 1 1
111111111111211 1111111111111 1111
1 1 1
1 1
1 1
1 11
1 1
1
1
1
1
1
1
1 1
1 1 111 11
11111111111111111123 11111111111111 1
11
1
11
1 111
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
11 1 11 11
1 1 1 111
1 1
1111 1
11

Fig. 14 (Cont.)

510

(e) 1
1
1
1
1 1
11111113111111111212112111111111
1 11111
1 1
1 1
1 1
1 1
1 11
1
1
1
1
1
1
1 11
1111311111111111111311 211311111111111111 11
111 .
1
1
1
111111
i1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
11 1 11
1 1 11111
1 1
11 1
111 1

©®

1
1
1
1
1111
111211311111111 11111111311111111
1 1
1 1
1 1
1 1
1 1 11
1
1
1
1
1
1
1 11
1 11 11
1111131111111111111 11111111111111
111
1
1
111111
1 11
1 1 1
1 1 1
1 1 1
1 i 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 i1
11 1 111
1 1 111
1 1
1111 1

Fig. 14. A sample pattern and its skeletons; (a) an original pattern; (b) ours; (c) C. Y. Suen et al;® (d) N. J.
Naccache et al;1? () W. H. Tsai et al ;1 (f) C. Y. Suen ez a1

(a)

111
11111
1111311
11111 1
1111 111
111 1111 11111
1113111113131122133121213221333113311131113111111
11111113131323133333113311121313113111131111
1111 11111 11111
1111 11111 11111
1111 1111 i111
1111 1111 1111
1111 1111 1111 11
1111 1111 1111 1111
111111111111131311131113133333111111111
111111131222113131131311131111122131311311
1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111
11111111311311311213113131211131311111
111111311121313131313313113111131311131111
111 11111 11111 1111
1111 11111 11111 111
1111 1111 1111
1111 1111 1111
111 1111 1 1111
111 1111 111 1111
111 1111 11111 1111 1
1111 1111111111311 1111 111
111 1111121311131 1111 11111
111 1111 11311113111111131111
111 1111 111311111111111111
111 1111 1111
111 1111 1111
111 1111 1111 1
111 1111 11111 1111 11
11 1111111111111 1111 111
111 1111111111111 1111 11111
11 111111111 11111 111111
11 11111 11113111131111111211
1 1111 11111111111113111
11 1111111111111

(b)

1111111111111111
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1111311111111111
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1111131113111111%
1 1
1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
1 11111 1
1 1 11111
1 1
1 1
1 1
1 1
1 1
1 1 1
1 1 11i11
1 11111
1 11111
1
1

Fig. 15 (Cont.)

1
1
1
1
1
1
1

1
11

111

PHRHEBRQ

Mo e

1
1111
1

HERERR PR

1

1
1
1
1
1
1
1
1
1

1
1
1
1
11111131111111111
1

1
1
1
1
1
1

1131111111111
1

R R R

111111111111
1
1

1

1

1
111111 1
11111111

1111113121111111

1

1 @ 1 111
1 1
1 1 1 1
111111 11111 1111111111 1 11 1
11 11 11 11 11 11 11 11
1 1 1 111111111 11 1 111111111 1
1 1 1 1 11 11
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
11111111311133121131113121113111113111 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1111131111111111111131111113113
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1111 1111131111 11111111111 1 1 1 1
1 11 11 111 11 11 1 1
1 1 1 1 111 1 111111 1111111111
1 1 1 1 11 1l
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1 1
11 111111 1 1 1 1 1 1
1 1 1 1 1 1 11 11 1 1
1 1 11111111111 1 1 111 101 1
1 1 1 1 1 1 11 11
1 1 1 1 1 11111111 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 11 1 1 1 1 1
1 1111111 1 1 1 1 1 1
1 11 1 i 1 11 11111 1 1
1 1 1 11 1 11 111 1 1
1 1 1 11 1 1 1 1
1111111111 1 i1 1 1
1 11111111111
® 1
(© 1 1
1 1 1
1 1 1
1 1 1 1
111111 11111 1111111111 1111 11111
11 11 11 11 11 11111111 11 1 111111111
1 1 1 1 111 111
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1111131113111111111131111111111 1 1 1
1 1 1 1 111111113113113112113131111111211
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1111 1111111311 11111111111 11 111 1 1
1 11 1 111 1 1111 1 11111111 11111111
1 1 1 1 111 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 111111 11 1 1 1 11111 1 1
1 1 1 1 1 111 1 1
1 1 11111111111 11 1 1 1 11111
1 1 1 1 1 11111111
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 11 1 1 1 1 1 1
1 1111111 1 1 1 11 11111 1 1
1 11 1 1 1 1 111 1 1
1 1 1 1 1 11 1 1
1 1 1 1 1 1 1 11
1 1111111111 1 1111111111

Fig. 15. Another sample pattern and its skeletons; (a) an original pattern; (b) ours; (c) C. Y. Suen et al;®
(d) N. J. Naccache et al;1? (c) W. H. Tsai et al;*? (f) C. Y. Suen et al.*?

512

7. CONCLUSION

Thinning, or stroke extraction, is the preprocessing
step in machine recognition of Chinese characters. A
good thinning result can help eliminate many unneces-
sary decisions in the recognition of Chinese characters,
thereby increasing the recognition rate and speed. In
this paper, we have proposed an effective thinning
method that offers a number of advantages: (1) our
method uses runs to perform thinning rather than a
window operator which deletes black pixels Iayer-by-
layer, and thus our method provides higher quality
thinning results; (2) in identifying the attributes of
nodes, intersections between adjacent nodes, and con-
nections between the vertical lines and the left end and
righr end of horizontal lines, we eliminate an important
potential source of error by examining global features
in addition to contour information; (3) noise is detected
by comparing the height of a vertical line with half the
height of the horizontal line to which the vertical line
is connected, instead of merely applying a fixed threshold,;
(4) to obtain a more reasonable graph, before the
thinning stage, we merge the point nodes above and
below a horizontal line; (5) in some cases it is difficult
to determine whether a node should be identified as a
point or a line (knowledge of the structure of Chinese
characters is needed). Our policy is that it is better to
mistakenly identify a point as a line rather than to
identify a line as a point; (6) since our method incor-
porates a noise-climination step, it is less likely to
generate “hairy” thinning results; (7) last, we use line
fitting to construct character skeletons, so if the graph
itself is free of errors, the thinning result is likely to be
satisfactory.

10.

11.

12.

J.-Y. LIN and Z. CHEN

REFERENCES

. Louisa Lam, Seong-Whan Lee and Ching Y. Suen, Thin-

ning methodologies—a comprehensive survey, IEEE
Trans. Pattern Analysis Mach. Intell. 14(9), 869-885
(1992).

. Xiaobo Liand Anup Basu, Variable-resolution character

thinning, Pattern Recognition Lett. 12, 241-248 (1991).

. Bei Li and Ching Y. Suen, A knowledge-based thinning

algorithm, Pattern Recognition 24(12),1211-1221(1991).

. Paul C. K. Kwok, A thinning algorithm by contour

generation, Comm. ACM 31, 1314-1324 (1988).

. Theo Pavlidis, A vectorizer and feature extractor for

document recognition, CVGIP 35, 111-127 (1986).

. Ling-Hwei Chen, A new approach for handwritten

character stroke extraction, Computer Process. Chinese
Oriental Lang. 6(1), 1-17 (1992).

. LY. Tseng and C. T. Chuang, An efficient knowledge-

based stroke extraction method for multi-font chinese
characters, Pattern Recognition 12, 1445-1458 (1992).

. G. Hu and Z. N. Li, An X-crossing preserving skeleton-

ization algorithm, Int. J. Pattern Recognition Artif. Intell.
7(5), 1031-1053 (1993).

. T.Y.Zhang and C. Y. Suen, A fast parallel algorithm for

thinning digital patterns, Commun. ACM 27, 236-239
(1984).

N. J. Naccache and R. Shinghal, SPTA: a proposed algor-
ithm for thinning binary patterns, [EEE Trans. Syst. Man
Cybernetics 14(3), 409-418 (1984).

R. Y. Wuand W. H. Tsai, A new one-pass parallel thinning
algorithm for binary images, Pattern Recognition Lett. 13,
715-723 (1992).

A. Arumugam, T. Radhakrishnan, C. Y. Suenand P. S. P
Wang, A thinning algorithm based on the force between
charged particles, Int. J. Pattern Recognition Artif. Intell.
7(5), 9871008 (1993).

About the Author—JENN-YIH LIN was born on 3 December 1959 in Taiwan, Republic of China. He
received the B.S. degree in control engineering in 1981 and M.S. degree in computer engineering in 1986,
both from National Chiao Tung University, Taiwan. In 1983-1984, he worked in Mechanical Industry
Research Laboratories, Industrial Technology Research Institute (MIRL, ITRI) at Hsinchu as a software
engineer. From 1986 to 1990, he worked as a research assistant in the Chung-Shan Institute of Science
and Technology. In 1991, he entered the Institute of computer science and information engineering at
National Chiao Tung University, where he is now a Ph.D. candidate. Currently, he is also an instructor at
Ming-Hsin Institute of Technology and Commerce. His current research interests include image processing,
computer vision, optical character recognition and parallel computation.

About the Author—ZEN CHEN received the B.Sc. degree from National Taiwan University, Taiwan,
Republic of China in 1967, the M.Sc. degree from Duke University, Durham, North Carolina, in 1970, and
the Ph.D. degree from Purdue University, West Lafayette, Indiana, in 1973, all in electrical engineering.
After graduating from Purdue University, he joined Burroughs Corporation, Detroit, Michigan, where he
was engaged in the development of a document recognition system. In 1974, he began to teach at National
Chiao Tung University, Taiwan, Republic of China. He served as the director of the Institute of Computer
Engineering from 1975 to 1980. He spent the academic year 19811982 at Lawrence Berkeley Laboratory,
University of California, Berkeley, California, as a visiting scientist. Later, in August 1989 he spent about
six months at Computer Vision Laboratory of the Center for Automation Research, University of Maryland,
College Park, Maryland, as a visiting professor. His current research interests include computer vision,
CAD/CAM system, expert system, and parallel algorithms and architectures. Dr Chen is a member
of Sigma Xi and Phi Kappa Phi. He is also a member of China Computer Society and Chinese Institute of

Electrical Engineering.

