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Abstract— This paper proposes a method of using run-length coding to perform thinning. First, we construct
graphs from characters. The attributes (vertical lines, horizontal lines or points) of each node in the graph
are determined according to the node’s relationship to the nodes above and below it (we will refer to these
relationships as global features) and the black runs within the node. Intersections between two adjacent
segments are determined on the basis of the graph constructed and contour information. The thinning
algorithm thus employs global features and contour information to produce a more accurate skeleton.

Thinning Run Run-length coding

1. INTRODUCTION

Many character thinning algorithms have been pro-
posed in the past two decades. Suen et al.!!) surveyed
more than 100 thinning methods and classified them
into two groups: methods based on iterative deletion
of pixels and nonpixel-based methods. Many methods
based on iterative deletion of pixels employ a window
operator for thinning. These methods place a 3 x 3,
5 x 5, or larger n x n window onto the image and then
use a look-up table to determine whether to retain
or delete the center black pixel. Some methods even
use a window larger than 5 x 5 (such as the method
which uses a 9 x 9 window),'® but they make rough
decisions in certain cases to reduce the amount of
memory needed and the search time.

In general, the advantages of using a window operator
to perform thinning are that this approach is simple
and can easily be implemented as a parallel algorithm.
The disadvantages are that this method is relatively
sensitive to noise and that it is less effective than other
methods in processing the cross sections of a character.
To overcome this second disadvantage, Suen et al.®®
extracted ten different cross sections for further thinning
and then substituted the thinning result obtained for
the thinning result of the method in reference (4).

One type of nonpixel-based method is to employ
run-length coding for thinning. This approach is almost
used for character thinning.®>~” This method divides
a character into a number of segments (a segment is
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Stroke extraction

Skeleton

composed of several connected black runs). The seg-
ments and their connections are then used to deter-
mined how the segments will be thinned. In refer-
ence (5) the merge and fork relationships between runs
were used to convert characters into compressed line
adjacency graphs (henceforth, “c-LAG™). If there was a
significant change in the width of the runs of a node
in the graph, the node was divided into a horizontal
stroke and a vertical stroke. Vertical strokes with
approximately constant width and nearly collinear
centerpoints were denoted “candidates for vector-
ization”. Finally, compound vectorization was used to
generate the final result. In reference (6), it was assumed
that the width of the lines in a character was approxi-
mately constant. Merges, forks and significant changes
in width in runs were used to construct graphs from
characters. Relatively short nodes were regarded as
noise and deleted. The line segments in each node were
divided into horizontal strokes and vertical strokes;
stroke extraction was then performed to obtain the
final result. In reference (7), the line segments in Chinese
characters were classified into four primitive types of
strokes: horizontal strokes, vertical strokes, up-right-
slanting strokes, and up-left-slanting strokes. On the
basis of knowledge of the structure of Chinese charac-
ters, twenty parameters were derived to distinguish
between these four primitive strokes. These parameters
were then used in the stroke extraction procedure to
determine to what type of stroke each line segment
belonged.

One recent paper® used run-length coding to perform
thinning of objects with similar widths. The main aim
of this method is to preserve an x-crossing skeleton. It
is assumed that the objects in the image are lines or
curves of similar width (say, h). If the length of a
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column (row) run is less than 1.2 h, then the midpoint
of that run is used to form the skeleton. If the length
of a column (row) run is greater than 1.2 h, the clusters
of the “long” runs are located, which are found at line
intersections or vertical lines. If they are line intersec-
tions, the skeletons of the intersections are found using
heuristic rules. The column-wise result and the row-
wise result are then combined to obtain the final result.

One disadvantage of using a window operator in
preprocessing for Chinese character recognition is that
much information can be evaluated more easily before
thinning takes place. Important information about
connecting strokes and touching strokes, for example,
may be completely lost when a window operator is
used to perform thinning (see Fig. 1). When run-length
coding is used to perform character thinning (charac-
ters are decomposed into strokes only), on the other
hand, the structure of the original character is preserved.
Most Chinese characters are composed of vertical
lines, horizontal lines and slanted lines. In theory,
using run-length coding to perform thinning should
produce acceptable results. The presence of noise, con-
necting strokes, touching strokes and variations in
width along the length of a stroke (in printed charac-
ters), however, creates segment combinations of many
different shapes and hence greatly increases the dif-
ficulty of using run-length coding to perform thinning.

At present, the most common drawbacks associated
with using run-length coding to perform thinning of
Chinese characters are as follows:

(1) the shape of a segment is evaluated on the basis
of the runs containing that segment only (or some cases
the nearest run in an adjacent segment). Yet using only
local information such as this can easily lead to
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erroneous results, because completely identical seg-
ments appearing in different positions may in fact
represent different shapes;

(2) the graph constructed and the boundaries of the
character shape are not properly utilized to evaluate
the relationship between segments, such as whether
two adjacent segments intersect or whether a segment
lying on a horizontal line is connected with the right
or left end of the line;

(3) thetreatment given to regions of intersection is too
rough. In Chinese characters there are many different
types of intersecting shapes and touching strokes, which
may intersect at a single point, along a vertical line, or
along a horizontal line. In some cases, even two hori-
zontal lines may touch;

(4) using each node in the constructed graph to re-
present one stroke in a Chinese character is not a very
sound approach. For example, in some cases, a short
segment lying above (or below) a horizontal line should
be joined to the horizontal line. If this short segment
is regarded as an independent line, an erroneous skel-
eton will be produced (see the discussion of graph
modification in Section 4).

This paper will propose a method of using run-
length coding to perform thinning. The attributes
(vertical lines, horizontal lines or points) of each node
in the graph are determined according to the node’s
relationship to the nodes above and below it (we will
refer to these relationships as global features) and the
runs within the node. In this way, the correct attributes
of identical segments in different positions can be ob-
tained by examining the relationships between the
nodes and the nodes above and below them. Inter-
sections between two adjacent segments are determined

1111

11111
1111
1111
1111

111111
111111

111111
11111111
111111111
111 11111

111 1111

11 1111

1111

1111

1111

1111

1111

1111

1111
11 11111
111111
111111
111111
111111 11

31111121313111311211111111111

23111213113112111113111321111111
11 111
111
1111
1111

11111
11111
1111

11111
131111112111313111112122113111111111
1111112121111111313333131311111111

1111 11111
1111
111
111

111 1111
11111 1111 .
11111 1 <=== Touching stroke
1111 111
1111 11111
1111113123111111131111133111111
11211111112311111131111111111
1111
11111
1111 1111
11111112111111111111
111111311111131111111
11111 1111
1111
1111
11111
1111
1111
1111

3111111111111
111111111
11111131
1111

Fig. 1. An example of stroke touching.
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on the basis of the graph constructed and contour
information. This thinning algorithm thus employs
global features and contour information to produce a
more accurate skeleton.

The remainder of this paper is organized as follows.
In Section 2, we describe the process of graph construc-
tion. Node attributes and their relationships are de-
scribed in Section 3; the graph modification process is
described in Section 4. In Section 5, the thinning algor-
ithm is presented. In Section 6, experimental results are
presented that confirm the effectiveness of the proposed
thinning process. Section 7 concludes the paper.

2. GRAPH CONSTRUCTION

A Chinese character comprises one or more discon-
nected components, each of which is composed of one
or more strokes. In practice, the connections between
these strokes can be classified into the following types,
which we have identified from experiments:

(1) merge: two or more strokes merge into a single
stroke [see Fig. 2(a)];

(2) fork: a single stroke forks into two or more strokes
[see Fig. 2(b)];

(3) A combination of merges and forks [see Fig. 2(c)];

(4) there is a significant change in width between
adjacent strokes [see Fig. 2(d)];
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(5) the centerpoints of adjacent strokes are not col-
linear [see Fig. 2(e)].

Because of the effects of noise, the width of the runs
in the stroke types described above may not be constant.
Except for the first and the last runs, we require that
the changes in the width of the runs remain within a
certain threshold.

In the following we will employ the stroke connections
set forth above to construct the graphs of a character.
In the following, if not specified ohterwise, the term
“run” denotes a black run.

2.1. Features and nodes

In this paper, every run will be classified as represent-
ing one of the following features: starting run, fork,
merge, end run, or follower. These features are described
in detail below (see Fig. 3):

(1) starting run: a run that is not connected to any
other run above it is considered a starting run;

(2) fork: a run that connects to two or more runs
below it is classified as a fork;

(3) merge: a run connected to two or more runs
above it is considered a merge;

(4) end run: a run that is not connected to another
run below it is classified as an end run;

(5) follower: a run that is connected to a single run
above it and another below it is classified as a follower.

(a) (b)
(c) (c2)
@ (e)

i

I

L
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Il

Fig. 2. Examples of connections between two or more strokes. (a) Merge; (b) Fork; (c) A combination of
merges and forks; (d) A significant change in width between adjacent strokes; (€) The centerpoints of adjacent
strokes are not collinear. -
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<== Starting run (top)
<== Merge (third)
<== Fork (fifth)

End run ==»

<== End run (last)

Fig. 3. Types of features (runs for which no feature is specified arc followers).

Fig. 4. Graph for Fig. 3.

The runs between any two features (excluding fol-
+ lowers) are regarded as nodes. Nodes may have one of
three attributes: vertical line, horizontal line or point.
(note: below we use line-fitting to perform thinning.
For vertical lines, the centerpoints of the horizontal
black runs are used to obtain a line equation. For
horizontal lines, the centerpoints of the vertical black
runs are used to obtain a line equation. For points,
fitting is not necessary.) Figure 4 is the graph of Fig. 3.

The information contained in the nodes of a graph
includes the following:

(1) the number of runs;

(2) the x-axis and y-axis coordinates of the leftmost
point of each run and the width of the run;

(3) the attribute of the node (vertical line, horizontal
line, or point);

(4) how many nodes there are above and below the
node under consideration and the relationships between
these nodes (see Fig. 5);

(5) the value of the label (the runs in different nodes
will be labeled with different values).

For example, in Fig. 5, the node relationships are as
follows: Node 1 has no nodes above it, but three nodes
below it (nodes 2, 3 and 4). Node 2 is connected to the
left end of node 1, but not to the right end. Nodes 2
and 3 do not intersect; nodes 3 and 4 intersect. Node
4 is not connected to the right end of node 2. Nodes 2,
3 and 4 each have one node above them (i.e. node 1)
and no nodes below them.

2.2. Processing of features

During the scanning process, each time a feature is
encountered in the scanned image, information about
the feature is recorded in the corresponding node. The
action of every feature and the information recorded
are described below.

(a)

@@

Fig. 5. (a) Run figure; (b) Graph. The node relationships are

as follows: node 1 has three nodes below it; node 2 is connected

to the left end of node 1, nodes 3 and 4 intersect; node 4 is not

connected to the right end of node 1; nodes 2, 3 and 4 each
have one node above them.

2.2.1. Startingruns. When a particular run is identi-’
fied as a starting run, the following procedures are
performed:

(1) a new node is established;

(2) the x-axis and y-axis coordinates df the leftmost
point of the run and the width of the run are recorded
in the node;

(3) the run is assigned a new label;

(4) the value of the label is saved in the node;

(5) the run count for the node is set to 1.

2.2.2. Followers. When a run is identified as a fol-
lower, the following procedures are performed:

(1) the x-axis and y-axis coordinates of the leftmost
point of the run and the width of the run are recorded
in the same node as the run above it;

(2) the run is labeled with the same label as the run
above it;

(3) the run count for the node in which the run is
saved is incremented by one.

2.2.3. End runs. When an end run is identified, we
need to determine whether the node it is in, is formed
of several strokes [see Fig. 2(d) and ()] and to eliminate
noise around the end run.
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In order to divide a node into several strokes, we
assume every stroke is composed of at least two runs.
If a node contains only one run, we merge it into a
node above or below it (see Fig. 6), or else we regard
it as noise and delete it.

To divide the runs in Fig. 2(d) into five strokes, we
take four runs at a time and determine whether the
four can be divided into two strokes. Let the widths of
runs i, i+1,i+2, and i+ 3, be W,, W;,,, W,,, and
W, s, respectively. If equation (2.1) holds, then the
runs up to (and including) run i + 1 form one stroke,
and those from run i + 2 on form a different stroke.

2+W,<W;1, and 2xWiy <W;,3) and
(W, + threshl <W;,, and W,
+ threshl < W,,.3) and
(IWirs = Wi + W3 — Wia| <[Wipo — Wiiil)
2.1

In equation (2.1), the expression in the first set of
parentheses indicates that the width of the wider runs

2222222
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Fig. 6. The run labeled 3 is merged into either group 2 or
group 4.
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is two or more times that of the narrower runs. The
expression in the second set of parentheses is included
to prevent the width of the narrower runs from being
too narrow (such as a width of only 1 or 2) and hence
i istaken result. The expression in the

produ
third set of parentheses is included to prevent a single
stroke from being divided into two strokes in cases
where the width of the end of a stroke is larger than
the width of the rest of the stroke (see Fig. 7).

Equation (2.1) applies to cases where the change in
the width of successive runs is from narrow to wide. In
cases where the width changes from wide to narrow,
the following equation is used to divide the runs into
separate strokes:

) 1A/, < W, and 2+ W. < W. Y and
\L"‘V'i+2\ "i (227173 A"‘"l'+3\77i+1’ “urnn

(W, +threshl < W, and W,
+ threshl < W,,,) and

Wiy — Wil + W3 — Wi < [Wiip — Wiiil)

22)

Once we have used the above equations to determine
whether the first group of four runs can be divided into
two strokes, we continue to work downward until we
have covered all of the runs.

In some cases, the runs in a node should be divided
into two strokes, but because of the effects of noise,
they may in fact fail to be divided. For example, in
Fig. 6, if the width of run 3 is less than twice that of
group 2 but more than half that of group 4, then the
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Fig. 7. The width of the end of a stroke is larger than the width of the rest of the stroke.
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method described above will fail to divide the runs in
Fig. 6 into two strokes. Hence after the above decision
method is applied, we check to see whether the number
of runs in a stroke is greater than five. If it is, the
decision procedure is repeated, this time using groups
of five runs instead of groups of four. Suppose that the
widths of five runs, from top to bottom, are W, W, ,,
W, 5, Wi.; and W, ,, respectively. Then W,, ; and
W, . 4 are substituted for W;; , and W, 3, respectively,
in Equations (2.1) and (2.2), and the stroke division
procedure is repeated. If one of the equations holds,
then the group of runs must be further subdivided, and
run W,, , is considered to be a part of the group of
longer runs.

To delete noise, at this stage of the procedure we
merely delete any nodes consisting of a single run. Any
remaining noise is eliminated using the procedure de-
scribed in Section 4 below.

In summary, when a run is identified as an end run,
the following procedures are performed:

(1) if the run can also be identified as a starting run,
then the node is regarded as noise and deleted (it is
merely a short black run);

(2) if the feature above the run is a fork, then the
node in which the current run is located is deleted;

(3) We check whether the node in which the run is
located can be divided into two or more different
strokes [see Figs 2(d) and (e)]. If it can, then we divide
it, save each stroke as an individual node, and reassign
the nodes that were above or below the original node
so that they connect to the new nodes.

2.2.4. Forks. When a fork is identified during the
scanning procedure, the following procedures are per-
formed:

(1) The fork node is checked to see whether it can be
divided into two or more strokes using a procedure
analogous to that described in Section 2.2.3;

(2) in a procedure analogous to that for starting
runs, a node is created for each run after the fork and
these nodes are inserted below the node that contains
the fork run.

2.2.5. Merges. When a merge is found, the following
procedure is performed:

Step 1. the nodes before the merge are checked and
any node with a run count of one is deleted. If after
this step is performed no nodes are left above the
merge, then the run being scanned is identified as a
starting run.
Step 2. if after step 1 there are nodes remaining above
the merge, then each node is checked to see if it can be
further subdivided into new nodes [see Fig. 2(d) and
(e)]. If so, the node is divided and the nodes above and
below it are reassigned to connect to the new nodes.
Step 3. (1) if after step 2, the number of nodes preced-
ing the merge is one, then the current run is identified
as a follower;

(2) if the number of nodes is more than one, then a

new node is created and the node preceding the merge
is inserted above this node.

2.2.6. Graph construction algorithm. Our graph
construction procedure can be summarized by the
following algorithm:

Step 1. scan a bilevel image from left to right and top
to bottom. When one of the following cases is found
to hold, go to step 2.

Case 1. the first pixel scanned is a white pixel; con-
tinue scanning rightward until a non-white pixel or the
end of the row is reached.

Case 2. the first pixel scanned is a black pixel; con-
tinue scanning rightward until a non-black pixel or the
end of the row is reached.

Step 2. process the two cases in step 1.

Case 1. in step 1, a white run was scanned. Now
check whether a previously labeled run appears above
this white run;

(1) ifyes, then label each labeled run as an end run;
(2) if no, then go to step 4.

Case 2. In step 1, a black run was scanned. Now
check whether a previously labeled run appears above
this black run.

(1) if no, then label the currently scanned black run
as a starting run;

(2) if two or more labeled runs appear above the
current black run, then label the current run as a merge
and check whether the rightmost labeled run connected
to the run below is a fork run [see Fig. 2(c.1)]. If yes,
insert these nodes below the node that the rightmost
labeled run is in;

(3) if only one labgeled run appears above the current
run, then check how many non-white runs in the
scanning row are connected to the above labeled run;

(a) if there is only one, then label the currently
scanned run as a follower;

(b) if there are two or more, then label the run
above as a fork and check whether the rightmost black
run connected to the run above is a merge run [see
Fig. 2(c.2)]. If yes, insert these nodes above the node
that the rightmost black run is in.

Step 3. once a run has been labeled as a starting run,
fork, merge, follower, or end run in step 2, execute the
processing described in the subsections above for the
corresponding type of label.
Step 4. Check whether the scanning process has
reached the rightmost pixel in the last line of the image.

(1) if yes, then go to step 5.

(2) if no, then check whether the scanning process
has reached the last pixel in the current row;

(a) if no, then go to step 1 and continue scanning
rightward;

(b) if yes, then move to the first pixel in the next row,
go to step 1 and begin scanning rightward.

Step 5. end.
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3. NODE ATTRIBUTES AND NODE RELATIONSHIPS

In this section, we shall discuss two topics:

(1) node attributes: each node is assigned one of
three attributes: vertical line, horizontal line, or point;

(2) node relationships: whether the adjacent nodes
intersect or whether the nodes above or below the node
under consideration are connected on the left end or
right end with the node under consideration (see Fig. 5).

3.1. Node attributes

Nodes may have one of three attributes: vertical line,
horizontal line or point. Unless the ratio of a node’s

width to its heioht ig verv laree in which cace the nade
YYALRLLIL LU LD Ll\ll&ljl, Ly V\JI.J 1l 5\4’ 411 ¥Ylllwil VAOW LLiw LIV

is definitely a horizontal line, we must examine a par-
ticular node’s relationship to other nodes above and
below it in order to identify the attribute of the node.
If we attempt to identify node attributes on the basis of
only the run information contained in the nodes, then
the risk of error is very high. In the following discussion,
we use the parameter “up” to indicate the number of
nodes a particular node is connected with above it and
the parameter “dn” to indicate the number of nodes a
node is connected with below it. Our guidelines for
identifying the attributes of nodes are described below.

First we define a series of conditions. (Note: in each
of the following, “Cond i” indicates the condition
expressed by the words outside the parentheses, while
“Cond i(a)” indicates the condition expressed by the
words in parentheses.)

Cond 1(a): the location where the node under con-
sideration is connected to the node above (below) is
not the first (last) run of the node under consideration
(see Fig. 8).

Cond 2(a): the node under consideration is connected
to only a single node above (below) it, and the width
of the first (last) run of the node under consideration
is wider than that of the last (first) run of the node
above (below) it plus threshl.

’Cond 3(a): the node under consideration is connected
to two or more nodes (assume n nodes) above (below)
it, the width of the node under consideration is more
than twice its height, and the width of its first (last) run
is greater than the sum of the widths of the last (first)
runs of all nodes above (below) it plus (n + thresh1).

Cond 4(a): the run count of the node under con-
sideration is less than thresh3 and the widths of the
runs are strictly decreasing (increasing) (this criterion
can be relaxed to allow several runs to have equal
width).
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Casel. up=0and dn=0:

This indicates that the node under consideration is
an isolated node. If the ratio of the maximum width of
the runs to the height of this node is greater than 1,
then the node is a horizontal line; otherwise, it is a
vertical line.

Case2. (up=landdn=0)or (up=0and dn=1)

this indicates that if the node is not a horizontal line,
it is a vertical line. Consider up=1, dn=0 as an
example:

(a) if the node above the node under consideration
is connected to more than one node below it, then the
node under consideration is a vertical line;

(b) if Cond 1 or Cond 2 holds, then the node under
consideration is a horizontal line;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

An analogous algorithm can be used on up =0 and
dn=1.

Case3. up=landdn=1

This indicates that if the current node is not horizontal
line, it is a vertical line.

(a) if the node above the current node is connected
to more than one node below it, and the node below
the current node is connected to more than one node
above it, then the current node is a vertical line.

(b) if Cond 1, Cond 1(a), Cond 2, or Cond 2(a) holds,
then the current node is a horizontal line;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

Case 4. (up>2and dn=0)or (up=0and dn >2)

the current node may be a horizontal line, vertical line,
or a point. Consider up > 2, dn = 0 as an example:

(a) if Cond 1 or Cond 3 holds, then the current node
is a horizontal line;

(b) if Cond 4 holds, then the node is a point;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

Case 5. (up=>2anddn=1)or(up=1and dn>2)

the current node may be a horizontal line, vertical
line, or a point. Let us consider up>2, dn=1 as an
example:

(a) if Cond 1, Cond 1(a), Cond 2(a), or Cond 3 holds,
then the current node is a horizontal line;

(b) if Cond 4 holds, then the node is a point;

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

<== Intersection run

(fourth}

Fig. 8. The node labeled by 2 connects to the node labeled by 3 at its fourth run.
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Case 6. up>2and dn>2

the current node may be horizontal line, vertical line,
or a point.

(a) if Cond 1, Cond 1(a), Cond 3, or Cond 3(a) holds,
then the current node is a horizontal ling;

(b) if the widths of the runs in the current node are
strictly decreasing followed by strictly increasing and
the run count is less than thresh3, then the node is a
point (this criterion can be relaxed to allow several
runs to have the same width);

(c) if neither (a) nor (b) holds, then the node is a
vertical line.

3.2. Relationships between nodes

During the thinning process, we need to know
whether the left ends (right ends) of strokes formed by
two nodes one above the other are connected and
whether strokes formed by adjacent nodes intersect. If
the strokes do intersect, we need to fit them so that
they intersect at one point in order to produce a correct
skeleton.

When identifying node relationships, we need only
to consider nodes that represent horizontal lines. This
is because if nodes that are vertical lines or points are
connected to two or more nodes above (below), then
the nodes above (below) will definitely intersect.

Before identifying the relationships between nodes,
we must first delete any noise above and below vertical
lines [see labels 5 and 9 in Fig. 13(c1)].

Suppose node A is a horizontal line, and let node B
be the rightmost node above node A to which node A
is connected. The following algorithm (algorithm 1) is
designed to determine wheter these nodes are connected
on the right end (an analogous algorithm can be used
to check whether the left end is connected).

Algorithm 1:

Step 1. find the runin node A that has the largest value
for its x-axis coordinate and denote it by x,. Denote
its y-axis coordinatee by y,;

Step 2. find the line equation of the line formed by the
rightmost point of each run in node B;

Step 3. obtain the value of x, by substituting y, into
the line equation found in step 2.

Step 4. if |x, —x,| <2, then the right end of these
nodes is connected; otherwise, they are not connected
on the right.

Suppose node A is a horizontal line. If there are n
(> 1) nodes above node A that are connected with it,
the following algorithm (algorithm 2) can be used to
determine whether node (i — 1) and node (i) intersect.

Algorithm 2:

Step 1. use line fitting to find the line equation of the
line formed by the centerpoints of each run in node
(i — 1) and that formed by the centerpoints of each run
in node (i);

Step 2. find the intersection of the two lines in step 1
and denote it by (x,, y,);

J.-Y. LIN and Z. CHEN

Step 3. find the largest y-axis coordinate among the
coordinates of all the runs in node (i — 1) and node (i)
and denote it by y,;

Step 4. if |y, — y,| < thresh2, node (i — 1) and node (i)
intersect. Otherwise, node (i — 1) and node (i) do no
intersect.

4. GRAPH MODIFICATION

After we have determined the attributes of every node
and the relationships between nodes, we further modify
and refine the graph in the following ways:

(1) Noise is eliminated as follows: if a vertical line
located directly above (below) a horizontal line is found
to be unconnected to any node above (below) it and
the height of the vertical line is less than half the height
of the horizontal line, then the vertical line is deleted.

(2) If a horizontal line is connected to a point above
(below) it, the point is deleted [see Fig. 9(c)]. If, after
the point is deleted, other points are found, these too
are deleted [see Fig. 9(d)].

(3) If two horizontal lines are connected together
and the difference in the slope of the lines is negligible,
the two lines are merged into a single horizontal line.

(4) To facilitate the processing described in Section
5 below, when a vertical line is connected to two or
more vertical lines above (below) it, we add a “point”
node between the vertical line and the vertical lines
above (below) it (see Fig. 10).

5. THINNING

We have now completed our description of the stroke
extraction process and shown how the attributes of
each stroke and the relationships between strokes are
identified. In this section, we shall describe how the data
derived through the processes outlined in Sections 2,
3, and 4 may be used to obtain a character skeleton.

Our approach will be to construct the skeleton of a
character by performing line fitting using the attributes
of and relationships between nodes in the character
graph. For horizontal lines, we shall use the center-
points of vertical runs for line fitting. For vertical lines,
we shall use the centerpoints of horizontal runs for line
fitting. The steps in the process are as follows:

Step 1. we begin by fitting all horizontal lines. If the
left end or right end of a horizontal line is a connected
to a vertical line, then the horizontal line is fitted to
half the average line width of the vertical line. The
coordinates of the left and right end points of the
horizontal line after fitting are then recorded;

Step 2. all points are masked out (fitting is not per-
formed on points), with the centerpoint of each point
being used to represent the location of the point. The
coordinates of the centerpoints are then recorded;
Step 3. werepeat step 4 through step 7 until all vertical
lines have been fitted;

Step 4. we identify a node of a vertical line that has
not yet been fitted;
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(@)

(c)

Com) G
G

(d)

Fig. 9. (a) Run figure; (b) Graph; (c) We delete the point node above a horizontal line node; (d) After (c), if
there is still a point node in the horizontal line node, it is also deleted.

(o)
G

Fig. 10. (a) Run figure; (b) Graph; (¢) We add a “point” node
between the two existing nodes.

Step 5. for the line identified in step 4, we determine
how many collinear vertical lines there are above it and
below it. We regard these lines as forming a set, which
we will call a line set;

Step 6. we attempt to identify how many points the
line set must pass through, in the following way:

if a particular line in the line set is connected to a
node whose attribute is “point”, then the line must pass
through that point;

if a particular line in the line set intersects a neighbor-
ing line for which fitting has been completed, then the
line must pass through the point of intersection;

if a particular line in the line set is connected to the
left end or right end of a horizontal line, then the line
must pass through the point where it connects with the
horizontal line;

if the very top {bottom) line in the line set intersects
another vertical line for which fitting has been comple-
ted, then it must pass through the point where it
intersects this vertical line;

if the very top (bottom) line in the line set is connected
to a horizontal line, and there is another vertical line
located above (below) this horizontal line that passes
through the horizontal line and intersects with the top
(bottom) line of the line set, then if fitting of this other
vertical line has been completed, the top (bottom) line
in the line set must pass through an end point of this
vertical line.

Step 7. after step 6 is completed, we apply the following
rules to find the points that form the skeleton of the
line set under consideration:
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(A) if in step 6 no point is found, then line fitting is
used to obtain the line equation of the line set;

(B) if in step 6 only one point is found, then line
fitting that must pass through a specific point is used
to obtain the line equation for the line set;

(C) if two or more points are found step 6, then
working from the top, we search for every two neighbor-
ing points and obtain the line equation that passes
through these two points.

Step 8. the procedure terminates.

6. EXPERIMENTAL RESULTS

To verify the feasibility of our method, we tested it
on printed characters collected and filed by the Tele-
communication Laboratories of the Ministry of
Transportation and Communications. The highest
resolution of the characters is 48+48. We selected a
sample of 700 characters by beginning from character
500 in the list and selecting every fifth character until
we reached character 4000. The characters in our

(a)
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111 5555
111 55
111 33
111 3
111
111 22
111 2222
777777
7777

(bl) 33

3333
4444 333333

8888888888883883388883388888888888888
888838888838383388888888888888888388888

9999

9999 55

9999 5555

9999  77777777777777777777777777

9999 7777777777777777777777777 66
9999 6666
5999 666666

aaaaaaaaadaadaaaaaaaadaaaaaaaaaaaaaaaaa
aaaaaaaaaalaaaadaaa’aidaaaaaaaaaaaaaaaaa

bbbb cceco ddd eecee
bbbb ccec ddd eeecee
bbbb cceo ddd eeecee
bbbb ccce fEEEEEEELE
bbbb ccece fEELFFEFEEE
bbbb FEEFELLLLLELEfEELES
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bbb TELEFLLF 999999999999
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1111 Mmmm
1111 mmmm
1111 mmmm

nnnnnnnnnnnnnnnhinnnnnnnnnnn
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0000 PPPP
oooo PPPD
999999gggqqaIqaqIgadaagdaqqy
9999999999999999999999I9gqq

rrrr ssss
rrrr ssss
ITrr ssss
rrrr ttttttttt
rrrr tettttt
rrrr ttttt

rrr ttt
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sample had the following characteristics: there were
many different types of touching strokes and inter-
sections; there were cases where a single run formed a
complete stroke; and there were cases where the stroke
boundaries contained noise. In the test results, correct
skeletons were obtained for all but eleven out of 700
characters, so the success rate was 98.43%.

The algorithm is written in Microsoft C language
on an IBM PC 486-33. The total execution time for
using run-length coding to extract the strokes of 700
Chinese characters (including reading data from disk)
is 512.83 s, or on average, 0.73 s for each character. On
the other hand, total computer time including line
fitting the extracted strokes to produce the skeletons
for the 700 Chinese characters is 821.31 s, or 1.17 s for
each character.

During the thinning stage, in some cases we had to
force lines to pass through certain points, causing some
of the thinning results to become slightly curved [see
Fig. 11(a)]. This is because the center point of a wider
run may shift to one side dramatically, yet after thinning
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B 6666
33333
333333
222 4444
22 4444
4444
(b2)
b
b
b
©4444444444444444 b
e 44444444444444444p
e
e c
e c
e 33333333333333333 c
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e d
e d
£55555555555555555 d
f g 555555555555555555d
f g h i
f g h i
f g h i
£ g h 663
£ g 66666 3
£ g 6666 3
£ 66666 3
£ 66666 b
f 6 b
£ J
£ J
£
£ K777777777777
£ X 77777777777771
k 1
k 1
k 1
k888882888888 1
k 8888888888811
k 1
k 1
k 1
k99999999999 1
k 9999999299991
k 1
k 1
k 1
k 1
k aaaaaaal
k
k

Fig. 11 (Cont.)
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Fig. 11 (Cont.)
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Fig. 11. Stroke pattern ‘p<” to be considered. (a) Label 7 is the upward book, label 3 is the crossing stroke
and label 2 is the intermediate stroke; (b)—(e) Several variations of the stroke pattern “p<”.

the affected strokes still had to pass through this par-
ticular center point. We used line fitting to construct
the skeleton, hence the final result was not a one-pixel,
four-connected (or eight-connected) graph.

Results for several characters are shown in Fig. 11,
12 and 13. Figure 11 depicts the thinning results
of several different variations of the stroke pattern
“p<”. The connection between the upward hook and
the crossing stroke, called an intermediate stroke [see
Fig. 11(a)], varies as follows [in Fig. 11(a)], we do not
discuss the strokes labeled 4, 5 and 6 because the
characters in Fig. 11(b), (c), (d) and (¢) have the same
structures]: In Fig. 11(b) the two are connected to
become a run (labeled “f” in the figure, with no inter-
mediate stroke). In Fig. 11(c), the top end of the upward
hook (labeled “r”) and the bottom end of the crossing
stroke (labeled “r”) are connected directly together (no
intermediate stroke). In Fig. 11(d), the upward hook
and the crossing stroke are separated by a run (labeled
“p™ which is an intermediate stroke). In Fig. 11(g), two
runs (labeled “n”; which is an intermediate stroke) lie
between the upward hook and the crossing stroke.

Figure 12 depicts the thinning results for several
variations of the stroke pattern “=”., The “&” in
Fig. 12(a)is the standard character shape. In Fig. 12(b),

the horizontal line on the top of the character (labeled
“E” and “F” in the figure) is formed from two horizontal
runs, whereas in the second horizontal line a third run
appears between the two horizontal runs (labeled “v”
and “t”). In Fig. 12(c), there is a horizontal line with
two runs (labeled “j”). In the character in Fig. 12(d),
the top horizontal line is composed of three runs
(labeled “b”) and the bottom horizontal line is com-
posed of four runs (labeled “h™).

Even though many different types of connections
appear in Figs 11 and 12, acceptable thinning results
were obtained for all of the characters shown.

Figure 13 depicts several characters with relatively
high stroke counts. A variety of different touching
strokes and boundary noise can be seen in these
characters. Again, our method achieved reasonably
good thinning results for all of the characters
shown.

In order to evaluate the thinning results of the pro-
posed method, it is compared with four existing algor-
ithms.®~1? In Figs 14 and 15 we show the thinning
results for the five methods. In general, the proposed
method produces better results in two respects: strokes
at crossing sections are preserved and the resistance to
noise at the character border is high.
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(al) (a2)
7 8 9
333 44 555 7 8 9
33333 4444 5555 7 8 9
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3333 6666 444 777 555 7 a 8 b 9
3333 6666 444 77 555 7 a 8 b 9
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(cl) (c2)
8 9
333 444 8 9
3333 44444 8 El
3333 44444 8 El
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333 4444 8 a 9
333 55 4444 8 a 9
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333 5555 666 4444 777 3333383333 a 44444444494
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v XXXXXX mm uuuuuauu gr h o P
XXXXX mm YYYYY 2222 q r h o P
XXXXXXX mm YYYYY 22223 q r h o P
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AARAA cce YYYYY ZZZZZZZ q o P
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3333 66666 aaaa 5555 c g d
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3333 aaaa 5555 c g d
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3333 aaaa 888 5555 o] g e a
3333 99 bbbbbbbbbbbbbbbbbblb 5555 (=] £ 4444444494444 e d
3333 99 bbbbbbbbbbbbbbbbbb 5555 c £ g 44444e d
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dd 3333 999 hhhh e FEELEEFEEEFLELSE i c £ g j 5555d55555 h
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ddd 3333 99 iiiiiiiiidiiiiiiii 333 kkkk i c £ k666669 3 d h
add 3333 99 iijiiijiiiijiidiii ) i c £ k g666666667 a h
dadd 3333 111 mmmm nnn i c k g Jj d h
ddd 3333 111 mmm nnn i c k g 3j d h
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3333 PPP qaqgq rrr c k g 3 d h
3333 S5SS5SSSSSSSSSSSS [+] 188888g J d h
3333 SSSSSSESSSSSSSSS c 1 g8888887 4 h
3333 ttt uuuu v c 1 g d h
3333 tt uuua c 1 g a h
3333 uuuu W c g m d h
3333 uuuu  WwWw c g m d h
3333 XXXXEXXEXXXXXXXX I37 kkkk c 99999999999 m d h
3333 AUAXXXXKXKXKXKXX T] kkkk c g 9999m d h
3333 YyYYy I3 kkkk c g d h
3333 yyyy 333 kkkk c g d h
3333 YYyyy 33 kkkk < g d h
3333 Yyyy cccceccec kkkk c g bbbbbbbbo h
3333 €Ccceeeee AR kkkk c ngb o h
3333 ZZZ2ZZZZEZZ ARA kkkk [+ nn o h
3333 ZZZZZZZZ2Z2ZZ AA EBBBBBBEBB c nn [¢] aaaaa h
3333 ZZZZZZ2Z2 AAA BBBBBBEB c nn [+] aha
3333 222z AAA BBBBB < nn o
33 BB c

Fig. 13. Several characters with relatively high stroke counts.
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Fig. 15. Another sample pattern and its skeletons; (a) an original pattern; (b) ours; (c) C. Y. Suen et al;®
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7. CONCLUSION

Thinning, or stroke extraction, is the preprocessing
step in machine recognition of Chinese characters. A
good thinning result can help eliminate many unneces-
sary decisions in the recognition of Chinese characters,
thereby increasing the recognition rate and speed. In
this paper, we have proposed an effective thinning
method that offers a number of advantages: (1) our
method uses runs to perform thinning rather than a
window operator which deletes black pixels Iayer-by-
layer, and thus our method provides higher quality
thinning results; (2) in identifying the attributes of
nodes, intersections between adjacent nodes, and con-
nections between the vertical lines and the left end and
righr end of horizontal lines, we eliminate an important
potential source of error by examining global features
in addition to contour information; (3) noise is detected
by comparing the height of a vertical line with half the
height of the horizontal line to which the vertical line
is connected, instead of merely applying a fixed threshold,;
(4) to obtain a more reasonable graph, before the
thinning stage, we merge the point nodes above and
below a horizontal line; (5) in some cases it is difficult
to determine whether a node should be identified as a
point or a line (knowledge of the structure of Chinese
characters is needed). Our policy is that it is better to
mistakenly identify a point as a line rather than to
identify a line as a point; (6) since our method incor-
porates a noise-climination step, it is less likely to
generate “hairy” thinning results; (7) last, we use line
fitting to construct character skeletons, so if the graph
itself is free of errors, the thinning result is likely to be
satisfactory.
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