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A Multi-Valued Boltzmann Machine 

C. T. Lin and C. S. G. Lee 

Abstract-The idea of Hopfield network is based on the king spin 
glass model in which each spin has only two possible states: up and 
down. By introducing stochastic factors into this network and performing 
a simulated annealing process on it, it becomes a Boltzmann machine 
which can escape from local minimum states to achieve the global 
minimum. This paper generalizes the above ideas to multi-value case 
based on the XY spin glass model in which each spin can be in any 
direction in a plane. Simply using the gradient descent method and the 
analog Hopfield network, two different analog connectionist structures 
and their corresponding evolving rules are first designed to transform 
the XY spin glass model to distributed computational models. These two 
analog computational models are single-layered connectionist structures 
and multi-layered Hopfield analog networks. The latter network eases the 
node (neuron) computational requirement of the former at the expense 
of more neurons and connections. With the proposed evolving rules, the 
proposed models evolve according to a predefined Hamiltonian (energy 
function) which will decrease until it reaches a (perhaps local) minimum. 
Since these two structures can easily get stuck in local minima, a multi- 
valued Boltznurnn machine is proposed which adopts the discrete planar 
spin glass model for the local minimum problem. Each neuron in the 
multi-valued Boltzmann machine can only take n discrete directions 
(states). The stochastic simulated annealing method is introduced to the 
evolving rules of the multi-valued Boltzmann machine to solve the local 
minimum problem. The multi-valued Boltzmann machine can be applied 
to the mobile robot navigation problem by defining proper arti3ciul 
magnetic field on the traverse terrain. This new artificial magnetic 
field approach for the mobile robot navigation problem has shown to 
have several advantages over existing graph search and potential field 
techniques. 

I. INTRODUCTION 
Spin glass is a model which can be used to investigate the collective 

properties of physical systems made from a large number of simple 
elements. The interactions among these elementary components yield 
collective phenomena, such as stable magnetic orientations and the 
crystallizing state of metal or alloy annealing. In the Ising spin 
glass model [ I]-[3], an king spin on a lattice point takes on one 
of two possible values (directions) (i.e., * 1  or up and down). By 
generalizing the Ising spin glass model to a XY spin glass model [4], 
[5], each spin can point to any direction in a plane instead of just two 
possible directions. Analogous to the king spin glass model, Hopfield 
proposed a well-known Hopfield network [6], [7] which was found to 
have many useful applications, especially in associative memory and 
optimization problems [8]. Since a Hopfield network can easily get 
stuck in a local minimum state in optimization problems, a Boltzmann 
machine [9] was proposed in which probabilistic transitions and 
the simulated annealing scheme are incorporated into the Hopfield 
network. A proper cooling process and a stochastic response function 
in a Boltzmann machine can prevent the system from getting trapped 
in a locally iiptimal state, and it can escape from a local minimum 
to reach the global minimum. 
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Based on the XY spin glass model [ 5 ] ,  this paper generalizes the 
concepts of the previous neural network systems to develop a multi- 
valued Boltzmann machine. Unlike the original Boltzmann machine 
[9] in which each neuron has only two possible states, the proposed 
machine allows its neuron to have more than two possible states. 
Associated with a XY spin glass model is an interaction energy 
called Hamiltonian which describes the total system energy. The 
Hamiltonian of a XY spin glass model changes when the spins in 
the model change their states (directions). To utilize this physical 
model for a computational problem, a proper Hamiltonian must be 
defined according to the specific application problem. As the system 
evolves according to some evolving rules, the predefined Hamiltonian 
will decrease until it reaches a minimum which corresponds to the 
solution of the computational problem. So, in our design, both the 
structure and the evolving rules must be considered for emulating a 
XY spin glass model. 

We first design two continuous-valued connectionist structures with 
their corresponding evolving rules to simulate the functions of a XY 
spin glass model. The state of each neuron in these two structures 
can be in any direction continuously in a plane. The design of 
these two structures is based on the gradient descent method and 
the analog Hopfield network [7]. First, a single-layered connectionist 
structure with a straight-forward evolving rule based on polar co- 
ordinates is proposed. This rule is then revised to form two more 
efficient evolving rules. In this structure, each neuron (computational 
unit) is required to perform some complex computations, including 
trigonometric functions. To ease this requirement, we further design 
another structure, a multi-layered Hopfield analog network, based 
on the Cartesian XY coordinates. The computational requirement in 
this structure is simpler at the expense of more neurons (hardware). 
Although these two structures can realize the functions of a XY 
spin glass model, they, like the Hopfield network, suffer the local 
minimum problem. To solve the local minimum problem, a multi- 
valued Boltzmann machine is proposed and developed according to 
the discrete planar spin model [5] which is the digitalization of the XY 
spin glass model. In the discrete planar spin model, each spin can take 
only 11 discrete directions in a plane, where I T  is a positive integer. 
The discrete planar spin model can simulate the XY spin glass model 
when it is large. Based on the concept of the discrete planar spin 
model, each neuron in a multi-valued Boltzmann machine is allowed 
to have only a limited number of stable states (directions). To utilize 
the multi-valued Boltzmann machine for a computational problem, 
a Hamiltonian (energy function) is first defined according to the a 
priori or initial knowledge and the external input information of the 
computational problem, which correspond to the intemal interaction 
magnetic field and the external local magnetic field in the XY spin 
glass model, respectively. Then each neuron will change its state 
properly according to the proposed evolving rule. The stochastic 
simulated annealing method is applied to the evolving rule such that 
a neuron can decide its next state stochastically according to the 
energy gap between two possible states. With the simulated annealing 
scheme [9], a state change which will increase the total system energy 
is allowed in the earlier evolving process. This can help the system 
to jump out of a possible minimum and reach a global minimum. 

The proposed multi-valued Boltzmann machine provides a new 
artijcial magnetic field approach to the mobile robot navigation 
problem for solving the collision-free path problem. The obstacle 
avoidance in the mobile robot navigation problem has been a difficult 
problem in artificial intelligence, and two basic approaches have been 
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taken: graph search methods [lo]-[14] and potential field methods 
[15]-[20]. The potential field methods use artificial potential fields 
applied to the obstacles and goal positions and use the resulting field 
to influence the path of the mobile robot which is subject to this 
potential. artificial magnetic field in a multi-valued Boltzmann 
machine is the parallel part of the artificial potential in the potential 
field methods. However, unlike the potential field methods in which 
proper potential functions need to be defined, the magnetic fields are 
defined as the. link weights among neurons or external inputs to the 
neurons. In this way, the difficulties for the potential field approaches 
to navigate a mobile robot to pass around a concave-shaped object 
or through WOW passages can be solved. More importantly, by 
introducing the stochastic simulated annealing method to the evolving 
rule of the multi-valued Boltzmann machine, the local minimum 
problem, which is the major deficiency of the potential field approach, 
can be avo iw .  

In the neat section, the XY spin glass model is first introduced. 
Then based am the gradient descent method and the analog Hopfield 
network, two analog connectionist structures and their corresponding 
evolving rules are derived. The multi-valued Boltzmann machine is 
proposed in Section III. The application of the proposed multi-valued 
Boltzmann to the mobile robot navigation problem is discussed and 
illustrated in Section N. Conclusions are summarized in the last 
section. 

11. XY SPIN GLASS COMPUTATIONAL MODELS 
In this section, the XY spin glass model in [5] is first introduced. 

Then, to tramform this physical model to a computational model for 
practical applications, we design two analog connectionist structures 
and their corresponding evolving rules based on the general gradient 
descent method and the analog Hopfield network. The neurons in 
these two stuuctures have graded response. 

A. XY Spin Glass Model 
Spin glass systems are characterized by a set of values for the 

spin variable sz, by a lattice on which they are defined (we shall 
consider the one-dimensional case first), and by an interaction energy, 
Hamiltonian (E). In the king spin system, each spin (called "classic 
spin") has oldy two possible values (i.e., f l )  [1]-[3]. The classical 
XY spin glass system is composed of planar 2component spins, and 
each spin can be in any direction [4], [5]. Hence, we can define 
s, = (cos Bt,  sin to be a classical vector of unit length located 
on a lattice point i ,  where 0, is the state of s,, and superscript 'T 
denotes vectodmatrix transpose. 

To transform the physical model in [5] to a computational model for 
practical appcications, the Hamiltonian of a spin glass model comes 
from two cc@tributions. 

where J,, is a nearest-neighbor exchange interaction between spins 
sz and s3, f ,  is the external local magnetic field inserted on the spin 
s, , and the flrst summation is taken over all the nearest-neighboring 
pairs (4.j); that is, J,, # 0. Thus, Eexchange is the internal magnetic 
field produced by the surrounding spins. This magnetic field creates 
a tendency to align all the spins in a regular way, and results 
in a regulari@ing effect of the exchange interaction. This spin-spin 
interaction represents a priori knowledge on relationship between 
spins, for example, the continuity property. Efield is the external local 
magnetic field which describes the interaction of the spins with the 
local magnetic field, which tends to align the spins locally within 

the field. This field represents the external input information in a 
computational model. Hence, there are two kinds of interaction: the 
interaction among spins ( J i j )  and the interaction with the external 
field (f;). If we let 

then h, represents the internal magnetic field at site i produced by 
the surrounding spins. Then (1) becomes 

Let mi = hi + f;. Equation (3) becomes 

where Im, I indicates the magnitude of m,, and 5, is the angle of m,. 
If the XY spin glass model is extended to the two-dimensional case, 

each spin will occur in a two-dimensional mesh grid lattice. Each spin 
in a lattice site (i, j) is denoted as s13 and its state is denoted as &,. 
The internal interaction field on sZ3 from s k /  is denoted as j t j , k / ,  

and the local extemal magnetic field on s1, is denoted as f,,. The 
Hamiltonian is then defined as 

A 
E = Etotal = Eexchange + Efield 

The XY spin glass model can provide us with collective com- 
putational abilities if the energy function (Hamiltonian) is chosen 
such that there will be some orientation of one spin which gives the 
minimum of the potential energy. In the following subsection, based 
on the XY spin glass model, a single-layered connectionist model and 
a multi-layered Hopfield analog network are proposed and designed 
to have such kinds of computational capabilities. These two models 
are basically the analog connectionist realization of the XY spin glass 
model, since each computation cell (neuron) in these two models is 
allowed to point to any direction in a plane. 

B. Analog Connectionist Computational Structures 
for the XY Spin Glass Model 

In this subsection, the XY spin glass model is transformed to 
a computational model for practical applications. For this purpose, 
two different connectionist structures, a single-layered connectionist 
structure and a multi-layered Hopfield analog network, are designed 
using the gradient descent method and the analog Hopfield network 

Fig. 1 shows the structure of the proposed single-layered COMW- 
tionist architecture. The external local magnetic field, fl,, is further 
decomposed into an attractive field g,, and a repulsive field rz j  for 
some application domains while still maintaining its generality. The 
Hamiltonian for this structure (in (5)) becomes 

~71. 

E = Eexchange + Eg-field + &-field 

- Jg g,, . st3 - Jr rz3 . S I ]  (6) 

where N(ij) is the neighbor of (ij) but (ij) $! N(ij), and Jg and Jr  
are scalar constants. A computational unit (i.e., a neuron) corresponds 
to a spin at a lattice site, and J*, ,k l  can be viewed as the connection 
weight between neurons s , ~  and S k / .  Through J , , , k l ,  s,] can get its 
inputs from other neurons. Hence, Ski is called a "neighbor" of s,, 

' 3  ' J  
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if JzJ,kr # 0. g , ,  and rt, are the weights on the direct input links to 
neuron sZJ  from the external world. The connections in Fig. 1 show 
the eight-nearest-neighbors on a mesh grid lattice. Next, we need to 
derive the evolving rules of B,, for each neuron s , ~ .  Let 

then (6) becomes 

Let 

mi, = ht3 + J g g , ,  + J r ~ t j .  (9) 

then 

E =  - ~ m , , . s , ,  = - ~ l m , , I c o s ( 5 , ,  - O Z J )  (10) 

where Im, , 1 indicates the magnitude of mz3,  5,  is the angle of m, J ,  

and 0 5 6,3 < 2 ~ .  Applying the gradient descent method to (IO), 
we have 

( 1 1 )  
dE d E  de,, 

J 1, 

Since 

if we let 

for k 2 0, (13) 

then we have 

2, 

So the energy always decreases or remains unchanged. 
Eq. (13) is a feasible evolving rule of B z J ;  however, it has two 

drawbacks. First, the updating magnitude (distance) becomes smaller 
and smaller when 16,, - 8,, I > ( ~ 1 2 ) .  Second, the gradient descent 
rule fails when - @,,I = -K. since dE/dO,,  = 0 at this critical 
point. To speed up the convergence and avoid the critical point, we 
revise the evolving rules according to the following two principles: 

1) The evolving rule of 8,, must yield dE/dt  5 0. 
2) The updating magnitude (distance) factor, k .  must be small as 

compared to 16,, - Ot,l to avoid over-running. 
The first revised evolving rule uses a fixed updating distance: 

(14) 
dB,, - 
nt - { k(or - k ) .  

ksign(sin(S,, - B , J ) ) .  if 16,, - B Z , I  # K 
if 16,, - B,,I = -K 

Using (14), (1 1) becomes 

dE/d t  = - klm,,II sin(&, - 8*,)1 5 0. 
J 

The second revised evolving rule uses a changing updating dis- 
tance: 

do,, 
d t  
- 

ksin(6,, - e , , ) ,  
k ( - 2  - sin(&, - 8 t 3 ) ) .  
k ( 2  - sin(6,, - B , , ) ) ,  

if 15,) - @,,I 5 i ~ / 2  
if --K 5 6,, - B,, 5 - ~ / 2  
if - ~ / 2  5 6,, - e Z J  5 T .  

(15) 
= {  

It can be easily shown that dE/dt 5 0 in any of the above cases 

' i  i 

0 \ - \ , I + \  @ i , j + \  ... ' , + \ , j - \  

v 
inputs f rom neighboring neurons 

(i) Structure o f  each neuron 

0 . .  

l 

R i l  G i j  

( i i )  O v e r a l l  connections 
Fig. 1. Single-layered connectionist structure. 

Any one of the above equations, (13), (14), or (15) can be used 
as an evolving rule of the neuron in Fig. 1 to update their @,, 'S .  

Obviously, each neuron (computational unit) is required to have the 
capability of computing vector addition and trigonometric functions. 
To avoid this complex computational requirement, we further design 
a multi-layered Hopfield analog network by using more neurons 
with simpler computational functions. This design is based on the 
existing analog Hopfield network which comes from the concept of 
king spin glass model [l], [2]. Instead of using polar coordinates as 
we did in the single-layered connectionist structure, Cartesian (X-Y) 
coordinates are used for the multi-layered Hopfield analog network. 
We use two individual analog Hopfield networks to process the X 
coordinate and Y coordinate. These two networks are connected 
together through the neurons of the third layer. The multi-layered 
Hopfield analog network provides a simple way to realize the XY spin 
glass model using existing hardware techniques [25]. The detailed 
design process and the structure of this network is shown in the 
Appendix. 
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When applied to optimization problems like the application in the 
mobile robot navigation problem, the above proposed structures suffer 
from the locd minimum problem, that is, the system easily gets stuck 
in a local milrimum without further evolution. In this case, a solution 
of the compulational problem cannot be obtained. To obtain a robust 
computational model, we develop a multi-valued Boltzmann machine 
which can avoid the local minimum problem. The proposed multi- 
valued Boltzmann machine is based on the discrete planar X Y  spin 
glass model [SI for its structure, and it utilizes stochastic simulated 
annealing mdthods [6] to develop its associated evolving rules. 

IlB. A MULTI-VALUED BOLTZMANN MACHINE 
As pointed out by Tanaka and Edwards [3], [5] ,  there are many 

local minimmn states in the XY spin glass model. It is possible that 
the above updating algorithms will cause the network to stuck in a 
local minimum. To solve this problem, stochastic simulated annealing 
methods are introduced in our algorithm. Before doing this, the 
concept of “discrete planar spin” must be introduced first. A discrete 
planar spin at lattice site i can take only n discrete directions in 
a plane. If n = 2, then it becomes an king spin glass model, and 
if n + m, then it becomes the above XY spin glass model. The 
angle betweem two adjacent directions is given by w, = 27r/n. To 
find the local minimum of the energy function in (4), we must study 
the energy dlfference for a deformation of the ith spin, sz. Let E, 
be the local anergy at lattice site i for a given configuration of { J:,} 
and be defined as (see (2)-(4)) 

(16) 

If we change the direction of s1 by the angles m w ,  (m = 
1,2,3, .  . . , n - 1) from the starting configuration, the local energy 
after such daformation becomes 

A E ,  = -s, . m,. 

E: = -lmzl cos(8, + mw, - 5 , )  

= -(COS mwn)(st em,) - (sin mw,)(s, x m1)= (17) 

where (s. x mS)= = -Im,(sin(& - 5%).  The energy difference 
becomes 

AE, 2 E: - E, = (1 -cos mw,)(s, . m,)  

- (sin mw,)(s, x mZ)=. (18) 

The local minimum state can be defined as A E, 2 0 for all site i and 
for m = 1 and n - 1 (or equivalently, m = &l) .  This is the stability 
condition against a single-spin deformation by one elementary step 
in either direotion. This condition can be written explicitly as 

(19) 

where a, = 1-cos w,, and b, = sin w,. Notice that, when n + oc), 
the above condition gives (se x mS)* = 0 and (s, . m,) 2 0. This is 
equivalent to saying that m, = k,s,, where k, 2 0. That is, the spin 
s, always tries to align itself in the direction of m,. 

Based on the properties of the discrete planar spin system discussed 
above, a mulEi-valued Boltzmann machine is proposed according to 
the Metroplis algorithm [26]. The Metroplis algorithm states that if 
the energy gap between two states, 8, and 8, of the kth unit, is AEk 
(where AEk = Eo, - Eo,), and suppose unit k is in state 8,, then 
unit k will cbange to state 8, with probability 

an(s, .m,) f b,(s, x m,)= 2 0 for alli, 

where T is a parameter that acts like “temperature.” This probability 
is called Boliemann distribution. The temperature T will decrease in 
the evolving process to simulate the cooling effect in the annealing 
process [26]. So the probability of finding the system in any global 

state will obey a Boltzmann distribution. It is this cooling process 
and the stochastic state changing that enable the system to escape 
from a local minimum to achieve the global minimum [26]. 

To incorporate the Metroplis algorithm into our system, the discrete 
planar spin model is used. If a particular spin, sZ3, is currently in state 
(angle) Ot3, then the local energy defined above can be obtained from 
(10) as E,, = -st, . m,,. If we change the direction of s , ~  by an 
angle m w ,  (m = 1 ,2 ,3 , .  , n- 1) from O Z J ,  then according to (17), 
the local energy after such deformation becomes 

E:, = - ( C O S  mwn)(szj . mt3) - (sin mwn)(s,j x m,,)z, 

(21) 

where (sZ3 x mZ,)= = Im,,lsin(8,, - b Z J )  is the third component 
of the extemal product in the spin space. From (18), the energy 
difference becomes 

A E  * J  - - E  ‘3 - E‘ 1.1 = -(1 - cos mw,)(s,, . m Z j )  

+ (sin mWn)(S:j x mtJ)= 

+ (sin mwn)Im:ll sin(&, - &,). 
= -(1- cos mw,)lm,,I cos(8,, - 

(22) 

From (20), the probability that spin s,, changes to state (angle) 
+ mu,) is 

In the case of n = 8, (for example, in an eight-nearest-neighbor 
situation, each spin may point to one of its neighbors), W, = ~ / 4 .  
If the current angle of s;j is O i j ,  then (22) and (23), respectively, 
become 

So the neuron s;j will change its state stochastically according to 
these probabilities: 

and 

+ ”> = Ej (7 ) .  
4 

The evolving rule in (24) always has a tendency to decrease the 
total system energy. However, from (25), when T is a large value 
(high temperature), a neuron has a higher probability to change to a 
state which will increase total system energy than when T is a small 
value (low temperature). So in high temperature, the system tends to 
escape from local minima, and in low temperature, the system tends 
to converge to a global minimum. This enables the system to get rid 
of a local minimum and seek for a global minimum. 

IV. APPLICATION TO MOBILE ROBOT NAVIGATION PROBLEM 
In this section, existing approaches to the mobile robot navigation 

problem are. reviewed. This background introduction serves to show 
the motivation of our application and the advantages of our approach. 
Then, the use of the proposed multi-valued Boltzmann machine on 
the mobile mbot navigation problem is discussed. 
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A. Mobile Robot Navigation Problem 

Endowing mobile robots with the ability to plan their own collision- 
free paths is a difficult problem in Artificial Intelligence that has 
received a great deal of research interest. Two basic approaches have 
been taken: graph search (global) methods [IO]-[I41 and potential 
field (local) methods [15]-[20]. The graph search methods rely on 
an exhaustive search of the unoccupied configuration space for a 
continuous path from the start point to the goal point. A chart or 
graph is first produced showing free spaces, where no collision will 
occur, and forbidden spaces, where a collision will occur. Based on 
this graph, a collision-free path is then selected by piecing together the 
free spaces or by tracing around the forbidden spaces. Global methods 
generally entail searching for a path in a graph, where the graph is 
computed from the constraints [lo]-[ 131. Especially in [ 131, some 
route planning algorithms were proposed. These algorithms begin 
by assigning a cost to each grid cell of a digital terrain map. These 
costs are usually selected according to some mission criteria, with the 
highest costs associated with untraversable areas. A search algorithm, 
such as A* search [27], is then applied to obtain a value for each grid 
cell, indicating the minimum cost remaining to get from that cell to 
the goal. The best incremental step to get to the goal from any given 
cell is obtained by finding the neighboring cell with the lowest value. 
In this way, an optimal path can be found from any starting point 
to the goal. Although the graph search methods can always yield the 
set of all optimal paths to a goal without local minimum problem, 
it is rather time consuming. Thus, they are suited only for off-line 
path planning and cannot be used for real-time obstacle avoidance. 
Moreover, since the graph search only specifies a predetermined path, 
this route abstraction loses a lot of information needed in real-time 
decisionmaking. In [ 141, a gradient field representation of a traverse 
terrain is proposed to solve the information-losing problem due to 
abstraction. In this representation, a proper direction for a mobile 
robot to moke in is indicated for each grid cell of a terrain map. 
The gradient field is a natural by-product of existing route planning 
algorithms in [ 131. 

In the potential field methods, information about the local en- 
vironment is used in real-time to generate a control input for 
the mobile robot which brings the robot closer to the goal while 
avoiding nearby obstacles. Among existing potential field methods, 
the artificial potential method is the most popular and frequently 
used local method. The idea of using “potential functions” for the 
specification of robot tasks was pioneered by Khatib [15] in the 
context of obstacle avoidance; the methodology was also developed 
independently by Arimoto [ 161. The potential field methods use 
artificial potential fields applied to the obstacles and goal positions 
and use the resulting field to influence the path of the mobile 
robot which is subject to this potential. In the artificial potential 
method, obstacles to be avoided are surrounded by repulsive potential 
functions and the goal point is surrounded by an attractive well. These 
potentials are added to form a composite potential that indicates the 
movement of a robot. In [17], the potential function control was 
presented in the context of impedance control to avoid a moving 
obstacle while heading for a fixed goal. The potential function 
control was enhanced through the use of a “reserve avoidance 
time” in [ 181 such that potential functions increase their amplitudes 
depending on the minimum braking distance to stop a robot from 
colliding with an obstacle. In [19], a variant of the potential field 
method was used to produce the appropriate velocity and steering 
commands for the robot. Although not as thorough as the graph 
search techniques, the computational speed of the potential field 
methods and their ease of extension to higher dimensions make 
them an excellent alternative to the graph search techniques. They 
provide the necessary framework to deal with changing environments 

and can be used for real-time obstacle avoidance. However, the 
artificial potential methods have one major problem-the addition 
of attractive and repulsive potentials can create local minima in 
the potential and the mobile robot may get stuck in a local min- 
imum. Moreover, the potential functions also make the mobile 
robot difficult, if not impossible, to traverse through narrow pas- 
sages and around concave-shaped obstacles due to the limitation 
of chosen functions. The local minimum problem was attacked 
in [20] by creating potential functions based on superquadrics, 
which closely model a large class of object shapes; however, this 
approach requires spherically symmetric attractive wells and complex 
computations. 

Several attempts have been made to use the best features of both 
graph search and potential fields methods. The geometrical solutions 
for global planning and potential fields for local planning were used 
in [21], [22]. These benefit from the global planning ability of the 
graph search methods, but suffer from their same shortcomings as 
well. In [23], a trial path is chosen and then modified under the 
influence of the potential field until an appropriate path is found. 
In [24], a stochastic technique for path planning was proposed. The 
algorithm incrementally builds a graph connecting the local minima 
of a potential function and concurrently searches this graph until a 
goal configuration is attained. The local minimum graph is searched 
using a depth-first strategy [27] with random backtracking. 

In the next subsection, a new approach for the mobile robot 
navigation problem is presented using the proposed multi-valued 
Boltzmann machine. The basic concept of this approach comes from 
the artificial potential field methods. However, several problems of 
the artificial potential field approach are tackled and solved. 

B. Artifcial Magnetic Field Approach to Mobile 
Robot Navigation Problem 

The proposed multi-valued Boltzmann machine has been applied 
to the mobile robot navigation problem using an artificial magnetic 
field approach. The artificial magnetic field is the parallel part of 
the artificial potential field in the potential field methods. Similar 
to the potential field approaches, an attractive magnetic field is 
defined for the goal position and a repulsive magnetic field is defined 
for an obstacle. However, instead of defining the potential fields 
as potential functions, the magnetic fields are defined as the link 
weights among neurons or the extemal inputs to each neuron in 
the multi-valued Boltzmann machine. In this way, a magnetic field 
can be defined to surround any irregular-shaped (including concave- 
shaped) object accurately. Thus, the proposed approach can navigate 
a mobile robot to traverse around a concave-shaped object or pass 
through narrow passages, which are not easy for the potential field 
methods as mentioned above. More importantly, since the stochastic 
simulated annealing method is used in the evolving rule of the 
multi-valued Boltzmann machine, the local minimum problem, which 
is the major deficiency of the potential field approach, can be 
avoided. 

The 2-D mobile robot navigation problem can be stated as: Given 
a 2-D transverse map divided into small grid cells, the goal location 
and the obstacle locations, find the proper moving direction of each 
grid cell that can navigate the mobile robot to the goal from any 
“free” grid cell (the grid cell without any obstacle on it) quickly 
without colliding with any obstacles. This problem can be formulated 
as follows. Each free grid cell corresponds to a spin, and the state 
(direction) of a spin (neuron) represents the proper moving direction 
on the corresponding grid cell. An energy function (Hamiltonian) 
whose ground state represents the proper spin directions will be 
defined, and it will then be minimized on the proposed multi-valued 
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Fig. 2. An example of attractive magnetic field. 
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Fig. 3. Examples of repulsive magnetic field. 

Boltzmann machine. Our approach is based on building three kinds of 
(artificial) magnetic fields and a continuity constraint. The continuity 
constraint asaumes that the moving directions of nearby grid cells 
should be similar to assure the smooth motion of the mobile robot. 
In a physical system, this is also the case for the magnetic lines 

Goal 

I 
I 

Fig. 4. Examples of breakline-repulsive magnetic field. 

which are always continuous in the magnetic field. This constraint 
forms the internal magnetic field produced by surrounding spins 
to create a tendency to align all the spins in a regular way and 
corresponds to the exchange interaction, &changer in ( I )  or (6). 
For a given goal location, an attractive artificial magnetic field is 
built to “attract” the mobile robot to this position. An example of 
the attractive magnetic field is shown in Fig. 2. This can be viewed 
as the external attractive magnetic field g-field in (6). Similarly, on 
the boundaries of each obstacle, a repulsive magnetic field, &-field, 

is built to repulse the mobile robot away from the obstacle. Some 
examples of such repulsive magnetic field are shown in Fig. 3. Each 
pattern in Fig. 3 is a “window” or “mask” we used to decide the 
repulsive field on the center grid cell of the window, where the 
center grid cell is the cell with an arrow on it in each window. 
We assume that the resolution of the digital traverse map is not so 
high to result in “one-cell-width” obstacle or free gap. The windows 
in Fig. 3 are only for illustration and not intended to be exhaustive. 
It is obvious that such kind of repulsive magnetic field can be built 
around any irregular-shaped obstacle. We also provide a breakline- 
repulsive magnetic field, &,-field, for each obstacle to simulate the 
breakline situation of the vortex patterns in fluid flow such that a 
near optimal path (i.e., better direction) to surround the obstacle and 
reach the goal can always be found for the grid cells surrounding the 
obstacle. Some examples of the breakline-repulsive magnetic field are 
shown in Fig. 4. A good chosen breakline-repulsive magnetic field 
of an obstacle quite depends on the relative positions of the goal 
and the center of area of the obstacle. This choice is very simple for 
regular-shaped objects as shown in Fig. 4. The Hamiltonian for this 
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formulation is 

where r ,J  = R,-,, + R b P z J .  and we simply set J 1 , . k l  = J, = 
constant. The final result we will get is the magnetic field represen- 
tation of traverse terrain, or called “magnetic field map,” in which 
the black grids represent the goal and the obstacles, and the arrows 
on the other grids indicate the proper directions for the mobile robot 
to move into. Applying a multi-valued Boltzmann machine to the 
navigation problem, the neighborhood of a grid cell must be first 
defined. For example, if we use the eight-nearest neighbors, then 
n is set to 8 in the multi-valued Boltzmann machine. Then, in the 
ground state. each neuron will point to one of its eight neighbors 
properly to indicate the next grid for the mobile robot to move into. 
The magnetic field map obtained in the first simulation is shown in 
Fig. 5. Here, obstacles with regular and simple shapes are used. In the 
second simulation, obstacles with more complex shapes are set in the 
traverse terrain. The resulting magnetic field map is shown in Fig. 6. 
This simulation illustrates the abilities of the magnetic field approach 
to deal with \ ery irregular-shaped and concave-shaped objects, which 
are difficult to deal with for the potential field methods. Fig. 7 shows 
the simulation result of applying the magnetic field approach to a 
more realistic planning problem. Here, a higher resolution is used on 
the digital traverse map and each arrow on this map represents the 
combined effect of the final outputs of a group of neurons (grid cells). 
The traverse map used is adopted from the cross-country experiments 
performed in [14]. The basic mission objective is for the vehicle to 
get from one location to another while maintaining radio contact at 
all times. The obstacles to be avoided include gully and rock outcrop. 
Moreover, the vehicle cannot run into the RF shadow area where the 
radio contact will be disconnected. The magnetic field representation 
in Fig. 7 is similar to the gradient field representation shown in [14] 
which is obtained through precise but time consuming graph search 
technique. 

The simulated annealing method adopted in the multi-valued 
Boltzmann machine aims to solve the local minimum problem in 
the corresponding multi-valued Hopfield network. However, the ro- 
bustness of the proposed method in getting out of the local minimum 
depends on the selection of the annealing temperatures. Theoretically, 
slow and smooth annealing procedure (i.e., the sequence of annealing 
temperatures) can achieve better results, but it will lengthen the 
convergence time. Hence, there is a tradeoff between the annealing 
temperatures and the convergence time. Empirical studies showed 
that a few (about three to eight) discrete decreasing temperatures 
are enough to obtain satisfactory results [26]. For example, if four 
decreasing temperatures are used in the annealing process, we can 
choose these temperatures to be T = 17.85, 4.46, 1.28, 0.06, which 
were suggested in [26] for solving the traveling salesman problem. 
It is noted that the proposed multi-valued Boltzmann machine is a 
generalization of the original two-valued Boltzmann machine. Hence, 
it inherits most of the properties of the original Boltzmann machine 
on the issues including the convergence, the sensitivity, annealing 
temperatures, and the ability of getting out of local minima, etc. Ref. 
[26] provides more detailed and theoretical studies on these important 
issues. 

The multi-valued Boltzmann machine serves as a compass for 
the mobile robot in its traverse terrain. It suggests to the mobile 

Fig. 5. 
mobile robot (i). 

Artificial magnetic field representation of transverse terrain for 

Fig. 6.  
mobile robot (ii). 

Artificial magnetic field representation of transverse terrain for 

robot the next direction to move in at any cell of traverse terrain. 
As compared to most previous work, especially the potential field 
methods, one significant advantage of the proposed magnetic field 
approach is its abilities to handle very irregular and concave-shaped 
obstacles. This is illustrated in Figs. 6 and 7. For example, consider 
the traverse terrain shown in Fig. 6. If an artificial potential field 
is used to cover the H-shaped obstacle in the figure, the upper and 
lower concave regions around this obstacle will become forbidden 
regions. That means the mobile robot is forbidden from entering 
these regions and thus it cannot start its traverse from any point 
in these regions. However, like the potential field method, the 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 4, APRIL 1995 

Fig. 7. 
mobile robot riii). 

Artificial magnetic field representation of transverse terrain for 

proposed method does not guarantee time-optimal solutions. Parallel 
to the potential functions to the potential field method, the breakline- 
repulsive magnetic fileds are the key components to the magnetic field 
method. Proper choice of these fields are important to the performance 
of the proposed approach. The breakline-repulsive magnetic fileds 
used in this paper (see Figs. 3 and 4) are chosen subjectively in 
an ad-hoc manner. A systematic method to choosing proper and 
efficient magnetic fileds for the multi-valued Boltzmann machine is 
an on-going research topic. 

The proposed magnetic field approach can be considered as a 
compatible co-process with higher-level path planning. Complex 
path planning should be performed in parallel with the magnetic 
field approach, providing intermediate goals in the event that a 
solution cannot be obtained by local techniques. In addition to 
the differences between the magnetic field and the potential field 
approaches mentioned above, another significant distinction between 
them is how the resulting information is used. In the potential 
field approach, the final resulting potential field is used directly to 
compute the desired motion, while in our approach, the magnetic 
field representation of a traverse terrain is never used to provide 
direct control of the vehicle. Instead, they are only an additional 
source of information provided to a set of real-time decisionmaking 
processes. So, all features of the environment are kept for intelligent 
decisionmaking and are not abstracted into a single representational 
framework. 

V. CONCLUSION 
In this paper, two analog connectionist structures are designed 

to transform the XY spin glass model to computational models for 
practical applications. These structures are the generalization of the 
original Hopfield network which is based on the concept of king spin 
glass model. Due to the inevitable local minimum problem of these 
structures when applied to optimization problems, a multi-valued 
Boltzmann machine is developed based on the discrete planar XY 
spin glass model and the stochastic simulated annealing method. This 
multi-valued Boltzmann machine generalizes the original two-valued 
Boltzmann machine to a multi-valued machine. To utilize the XY 
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Fig. 8. Elementary analog circuit in multi-layered Hopfield network. 
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Fig. 9. 
network. 

Node connections within layers 1 and 3 in  multi-layered Hopfield 

spin glass model as a computational machine, a general Hamiltonian 
(energy function) is defined. This Hamiltonian is minimized by the 
evolving rules associated with the proposed analog connectionist 
structures and the multi-valued Boltzmann machine. The proposed 
multi-valued Boltzmann machine has been applied to the mobile 
robot navigation problem using an artificial magnetic field approach. 
Computer simulations were conducted and they verified the validity of 
the proposed system. The proposed solution to the mobile robot nav- 
igation problem has been shown to possess several advantages over 
the traditional graph search and artificial potential field approaches. 
Other possible applications of the proposed multi-valued Boltzmann 
machine can be found in combinatorial optimization problems and 
fuzzy content addressable memory (fuzzy associative memory). These 
will be studied closely in the future. 

VI. APPENDIX 

To avoid vector addition and trigonometric function computations 
in the single-layered connectionist structure proposed in Section 11, a 
multi-layered Hopfield analog network is designed in this Appendix 
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Fig. IO.  Analog circuit of layer 2 in multi-layered Hopfield network 

layer 1 ( x )  

x i j  .f. 

Y i j  

layer 2 ($1 

layer 3 ( y )  1 
Fig. 11. 
Hopfield network. 

Overall structure (connections between layers) of multi-layered 

J z, 

/ 

with d F ( z ) / ’ d z  = f(z) and f(z) = 121. The Lagrange multiplier 
(i.e., the last term) has been added to satisfy the unit length constraint. 
Let 

E‘ = E + 1”’ h-’ (s) d r  + 4 1”’ h-’ ( y )  d y .  
3 / 

64.2) 

where h - ’ ( . )  is a monotone increasing function (e.g., a sigmoid 
function). Using the gradient descent method with respect to s and y 
coordinates, the rate of change of the Hamiltonian can be obtained as 

where 

+ xf(s7J + y?J - 1 ) Y t J  + $’ (A.4) 

In order to make the Hamiltonian E decreases (i.e., d E / d t  5 0). let 

(A.5) 
dy,, and C,J- =--. ds,, d E  C -=--  

d t  ax,, d t  a y L J  

where C,, > 0. A three-layered, Hopfield-typed, analog circuit is 
proposed for performing the computation of (AS). First, considering 
the circuit in Fig. 8, the function performed by this circuit is 

Here we let h( . )  be an identity function, since in the energy function 
((A.2)), .ztj and yzj  are already limited by the constraint that 
.rfJ + y?, = 1. Since h ( . )  represents the input-output characteristic 
of an amplifier with negligible response time in an analog circuit, 
h ( . )  is close to an identity function when steepness of the response 
is adjusted to be very small (that is, when X << 1 in [7]). Using this 
simple circuit as the basic component, a three-layered, 2-D Hopfield 
network is designed as shown in Figs. 9 to 11. Layers 1 and 3 are 
used to generate the outputs sZJ’s and yz,’s, respectively. Layer 2 
generates the feedback constraints of, (= f (  1.E + - l)s,, ) and 
oyJ (= f (  .rt +y:J - 1) yz, ). The connections within layer 1 are shown 
in Fig. 9. Assuming the response time of the constraint neurons (in 
layer 2) is negligible as compared to the s. y neurons, we have from 
(A.61, 

- xo:, + 5. 
R (A.7) 

which is exactly what we want in the first equation of (AS). 
Connections within Layer 3 are identical to those in layer 1 

and they can perform the evolving rule of the second equation in 
(AS). Connections in layer 2 are shown in Fig. 10 in which analog 
multipliers are required to compute of, and o:,. The overall structure 
is shown in Fig. 1 1  which indicates the connections between different 
layers. The components in the above structure are all elementary 
arithmetic analog unit and are all achievable by current analog VLSI 
techniques [28]. 
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Controlling a Computer via Facial Aspect 

Philippe Ballard and George C. Stockman 

Absbact-Control of a computer workstation via face position and 
facial gestnring would be an important advance for people with hand or 
body disabfities as well as for all users. Steps toward realization of such 
a system are reported here. A computer system has been developed to 
track the eyes and the nose of a subject and to compute the direclion of 
the face. Face direetion and movement is then used to control the cursor. 
Test results show that the resulting system is usable, although several 
improvements are needed. 

I. INTRODUCTION 

We demonstrate a mode of communication whereby the user 
controls the cursor and selects a desired menu item with hidher face. 
Our primary goal is to enhance both the work and living environment 
of disabled persons, but we believe that development of a system 
viable for all persons would have the most impact. 

Eye-tracking systems contained in helmets, glasses, or other de- 
vices have already been built to aim guns in aircraft and to study 
the scanning process of reading [HI. In our project, we wanted to 
demonstrate feasibility of a face tracking device contained within the 
computer workstation itself, keeping the user completely free of any 
devices or wires. A secondary goal is to also avoid having to use 
cosmetics to provide enhanced facial features. Because a long-term 
goal is to recognize gestures made with the eye and mouth, we want 
a system which will image the entire face and not just the eyes. An 
objective benchmark is to provide a choice of symbols from a set of 
64 possible choices within a time of 2 seconds. This cycle time would 
provide a viable communication altemative for many patients of the 
Artificial Languages Lab at Michigan State University, according to 
its Director, Jh. John Eulenberg. 

Much of the work on faces in computer vision is not directly 
related to face direction detection, but some of the techniques used in 
face recognition, such as feature extraction, location of templates and 
matching algorithms can be applied to face communication systems. 

Work by Wagner and Galiana [17] shows how template matching 
can be used to track eye movements. In another related work, 
Schmandt, Ackerman and Hindus [13] showed how window navi- 
gation tasks usually performed with a mouse can be controlled by 
voice. Pentland and Mase [ l l ]  present a lip reading system that 
may be used to augment any speech recognition system to get better 
accuracy in noisy environments. Although lip reading is not directly 
related to face direction detection, it presents similar constraints for 
light requirements and camera positioning. Moreover, success at lip 
reading can yield symbols for communication. 

Several other papers describe useful algorithms to locate the face 
within a noisy background. Govindaraju, Srihari and Sher [8] devel- 
oped procedures to locate human faces in newspaper photographs. 
Their approach is based on cost minimization of feature graphs. Turk 
and Pentland [16] find the face by analyzing frame differencing in 
motion under the hypothesis that people are constantly moving. In an 
early paper, Baron [3] shows how to locate the eyes in a face. His 
approach is based on the standardization of the image size. Yuille, 
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