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An eigenfunction expansion approach is combined with a power series solution technique to establish
the asymptotic solutions for geometrically induced electroelastic singularities in a piezoelectric body
of revolution, with its direction of polarization not parallel to the axis of revolution. The asymptotic solu-
tions are obtained by directly solving the three-dimensional equilibrium and Maxwell’s equations in
terms of displacement components and electric potential. When the direction of polarization is not along
the axis of revolution, the assumption of axisymmetric deformation that is often made in the published
literature is not valid, and the direction of polarization and the circular coordinate variable can substan-
tially affect the singularities. The numerical results related to singularity orders are shown in graphical
form for bodies of revolution that comprise a single material (PZT-4 or PZT-5H) or bonded piezo/piezo
(PZT-4/PZT-5H) or piezo/isotropic elastic (PZT-4/Al or PZT-5H/Al) materials. This is the first study to pres-
ent results for the direction of polarization not along the axis of revolution.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials have been extensively adopted to
manufacture various sensors, conductors, actuators, resonators,
oscillators and monitors, and have an important role in smart
structures. A comprehensive understanding of the electroelastic
singularities that are induced by geometry is valuable in optimiz-
ing the design of piezoelectric components, and analyzing their
failure. An accurate numerical analysis of problems that involve
stress singularities depends on knowledge of such stress singular-
ity behaviors. The two typical geometries that are commonly
considered in the literature on geometrically induced stress singu-
larities are wedges and bodies of revolution.

Only a few studies have examined the eletroelastic singularity
behaviors at the vertex of a piezoelectric wedge, even though con-
siderable research has been done on elastic wedges, using various
plate theories and 3D elasticity theory ([1-13], for example). Xu
and Rajapakse [14] extended Lekhnitskii’s complex potential func-
tions to study plane problems of piezoelectric wedges and multi-
material wedges involving piezoelectrics, while Hwu and Ikeda
[15] proposed an extended Stroh formulation. Chue and Chen
[16] presented a decoupled formulation of piezoelectric elasticity
based on generalized plane deformation, and this formulation
was subsequently adopted to examine antiplane stress singulari-
ties in a bi-material piezoelectric wedge [17]. Chen et al. [18] uti-
lized the extended Lekhnitskii formulation to determine the
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electroelastic singularity behaviors near the apex of a cylindrical
polarized piezoelectric wedge.

Numerous analyses of stress singularities for elastic isotropic
bodies of revolution are available. Making an assumption of axi-
symmetric deformation, Zak [19] utilized the Love stress approach
[20] to investigate geometrically induced stress singularities in
bodies of revolution that were made of a single material, while Li
et al. [21,22] adopted the Love stress approach and Boussinesq’s
solution [23], respectively, to obtain the stress field near the bond
edge of a bi-material body of revolution. Ting et al. [24] presented
eigenfunctions at a singular point of a body of revolution made of
transversely isotropic material. Without assuming axisymmetric
deformation, Huang and Leissa [25] presented three-dimensional
sharp corner displacement functions for bodies of revolution, and
further studied the geometrically induced stress singularities in
bimaterial bodies of revolution [26].

A review of the literature reveals only two investigations that
considered electroelastic singularities in a piezoelectric body of
revolution, based on axisymmetric deformation assumptions. To
perform stress singularity analysis of axisymmetric piezoelectric
bonded structures, Xu and Mutoh [27] adopted the general solu-
tions for coupled equations for piezoelectric material that was
developed by Ding et al. [28], while Li et al. [29] extended the
method proposed by Ting et al. [24] for an elastic material. These
solutions consist of four and three quasi-harmonic functions,
respectively. In these two works, the direction of polarization of
the piezoelectric material was assumed to be along the axis of
revolution.

The main purpose of the present research is to develop an
asymptotic solution for the eletroelastic singularities in a
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piezoelectric body of revolution without assuming that the direc-
tion of polarization of the material is along the axis of revolution.
When a piezoelectric material is considered to be transversely iso-
tropic, and the axis of material symmetry is not parallel to the axis
of revolution, the assumption of axisymmetric deformation is no
longer valid. An eigenfunction expansion approach combined with
a power series method is adopted to solve the equilibrium and
Maxwell’s equations in terms of mechanical displacement compo-
nents and electric potential. The correctness of the proposed solu-
tion is confirmed by comparing the present results with the
published results in cases in which the direction of polarization
is along the axis of revolution. Analyses are performed on bodies
that comprise a single piezoelectric material (PZT-4 or PZT-5H),
bonded piezo/piezo (PZT-4/PZT-5H) or piezo/isotropic elastic
(PZT-4/Al or PZT-5H/Al) materials. The effects of polarization ori-
entation, material type (s) and boundary conditions on the singu-
larity orders are comprehensively examined. This study is the
first to present numerical results for a direction of polarization that
is not along the axis of revolution.

2. Basic equations

Consider a body of revolution made of a piezoelectric material
polarized along the direction Z, which makes an angle y with the
axis of revolution Z (Fig. 1). Although Fig. 1 displays a bi-material
body of revolution, a body of a single material will be first consid-
ered in the following development of basic equations and solu-
tions. The solutions are then easily extended to a bimaterial
body. Define two Cartesian coordinate systems (X,Y,Z) and
(X,Y,Z), where Y and Y axes are coincidental. A cylindrical coordi-
nate system (r,0,Z) (Fig. 1) can be conveniently used to solve prob-
lems of bodies of revolution. Without body force and charges, the
equilibrium and Maxwell’s equations in terms of stress compo-
nents (o) and electric displacements (D;) in the cylindrical coordi-
nate system are [30].
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The constitutive equations of a piezoelectric material possessing
transversely isotropic property on X —Y plane are expressed in
X,Y,Z) as

Fig. 1. Bi-material body of revolution with a sharp corner.

{0} = [c{e} — [e]'{E}, (2a)
{D} = [e]{&} + [{E}, (2b)
where
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Transformation among coordinate systems (X,Y,Z), (X,Y,Z) and
(r,0,Z) yields the constitutive equations in (r,0,2),
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The components of [c], [e] and [#] are related to the components of
[c], [e] and [#], respectively, and are functions of 0 and 7. The rela-
tions are given in Appendix A.

From Egs. (4) and (5) and using strain-displacement relations
and electric field-potential relations,
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Notably, the coefficients in the above partial differential equations
are functions of 0 and y (Appendix A), and the assumption of axi-
symmetric deformation does not hold.

Fig. 2 shows a half plane with any constant 0 in Fig. 1. To find an
asymptotic solution around the sharp corner in Fig. 2, (r,Z) coordi-
nates are transformed to (p,¢) coordinates as shown in Fig. 2.

Transforming Eqs. (7) from (r,Z) to (p,¢) using the relations,

p=1/(r—R?*+2, (p:tan“(%), r—R=pcoso,

and z=-—psing,
yields the following complicated partial differential equations
variable coefficients;
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Fig. 2. Cylindrical (r, Z) and sharp corner (p, ¢) coordinates.
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3. Asymptotic solution at a sharp corner

To find solutions to Egs. (9) for bodies of revolution, the meth-
odology of Hartranft and Sih [3] for elastic wedges can be applied.
The solutions are expressed as
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where /,, is a parameter to be determined, which can be a complex
number, and the real part of /,, must be positive to ensure finite dis-
placement and electric potential at p = 0. To determine the eletro-
elastic singularity behaviors as p approaches zero, substituting Eq.
10 into Eqgs. (9) with careful arrangement and considering only
the equations for the least power order of p yield
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2
+(615;e31 sm2<p>” (11a)
PV 1 . ovim
8@2 + A—z().m —1)[(Ca4 — Co6) SIN2¢p — 2C46 COS 2] 80
1 .
+ 5 {),m(().m — 1)Ca4 + Co5) sin? @ + Am((Am — 1)Co6 + Ca4) cos? ®

+ 2m(2 = 2m)Cag SIN Z(p]Vg“) + Al { {cm sin® @ + c45 COS2
2

2
U .
slemton s]n2(p} U= Dl — cre) sin20
OU(”’) .
— (€56 + C14) COS 2¢0)] 90 {) (Am —1)<c16c052(p+64551n2¢
(C56+C14 sm2q)> + 2 C]G sin” ¢ + C45 C0S” @
+(C56+C14 sm2q)> } C5651n (p+c34COS ]
wm
c +c i
(€36 + Ca5) sm2(p} 5 3 —1)[(C34 — Cs6) SIN2¢p

awm .
— (C36 + Ca5) COS 200] 8(p0 + [Am(zm -1) (css oS (¢ + C345in” @

(Css—ZFCzts) sm2</)> + (Cse sin? ¢ +C34 cos? [}
+(C36;C45 Sll‘12§0>}} 61651n (p+eg4COS 0]
2 (m)
€3 +¢€
(55 249) 5in2g (pg + (m = 1l(es4 = e16) sin 2

®m )
(?) + pm(ﬂm -

— (e36 + €14) COS 2] 1) (615 cos? @ + es4 sin’ @

(936 +e14)
2

+ (€0 —5 €14) gin 2@0)} }

sin 2<p> + A (ew sin? @ +e3y cos? @
(11b)
FW 1 , oWy

8(p3 E(xm — 1)[(c33 — C55) Sin2¢ — 2¢35 oS 2] —-2

1
+ 45 Pim(Cim

—1)C33 + C55) Sin> @ + A ((Am — 1)Cs5 + C33) COS® @

+ m(2 — Am)C35 Sin 2(/)]\/\78“) + Al{ {cls sin? @ + C35 COS>
3

(€31 + Cs5) gy
T2 oz (=

5 sianD} 1)[(c35 — €15) Sin2¢
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m

85) + {).m(im —1)(c15 COS* @ + €35 5in” @

— (€13 + C55) €COS 2]

IGE ; 5) sin 20) + /m (615 sin’ ¢ + ¢35 cos ¢
(€13 +Cs5) + Css) sin 2(/))} } c56 sin® @ + ¢34 cos? @
+Msn2 } vy + (4m — 1)[(C34 — Cs6) SIN2¢
2 8(!)2
— (€36 + Ca5) E) [’1’" (656 cos” ¢+ C54 sin’ ¢

c c
(36+ 45) sin2 >+ (565111 q0+c34cos 0}

+(C36+C45 51n2</>>}} 615 sin® @ +e33¢c08° @
2 pm
M sin2¢ @3 + (Zm — 1)[(e33 — e15) sin 2

H(m
— (e13 + €35) COS 2] 5 0

+ [),m(im -1 (615 cos? @ + es3 sin’ @

B (61%635) sin 24") + Jm (els sin” ¢ + es3 s> @
ey Eslinz ) i —o o
ror 1 i 0z

92 + A_4(Am = D)[(M35 — 141) SIN2¢ — 21]13 cos 2¢)] E)

1 . )
A4 [/lm((}m Ds3 +111) Sin’ @ + Jm ((7m — 1)1y +133) cos® ¢
+ Zm(2 = Am)N;5 SIN 2@0]@8”') - Al { [en sin® ¢ + e35 cos? @
4
(e15 +€31) (() )

>’u .
5 sm2(p} 992 + (Am — 1)[(e35 — €11) SIn2¢

{jm

0 1 _
o + [/hm(;vm

— (e15 + e31) c0s 2] 1) (e cos® ¢

(GERAZ1) sin2(p) +
2
(e15 +€31)

. ~ 1 .2
5 sm2q)>}}Ug”) —E{[em sin® ¢ + e34 oS @

+esssin’ @ — Im (e” sin® @ + e35 cos? @

(€14 +€36) . ZAéJm)
— sin2¢ 992

+ (;vm — 1)[(834 — 616) sin 2@

ym

\%4 .
a(‘;) + [xm(;,m - 1)(615 0s? @ + es4 sin’ @

— (e14 + €36) COS 2(0]

_ (e —5 €3) gin 2<p> + (em sin” ¢ + e34 c0S% @
+(e14-5e36 sm2<p)}} e15 sin” ¢ + es3 cos® @
e;3+e Pwm .
(1%35) ano} (pg + (Am — 1)[(e33 — €15) sin2¢
m)
— (e13 + e35) COS 2] + [2m(%m — 1) (e15 cOs* @
1 es3 sin® ¢ — (8132& sin 2cp) + m (els sin? @ + e33c0S* @

L (e +ess) szq))}}wgn) ~0, (11d)

2

where

Ay = €11 8in® @ + €55 COS? @ + C155IN2¢p, Ay = Cep 5iN” @

+ €44 COS% @ + C46SIN 200,

A3 = Css Sin’ @+ C33 cos? @+ C358in2¢0, Ay =1y, sin® ®

+ 133 COS? @ + 1,5 SIN 2.

Egs. (11) are a set of ordinary differential equations with variable
coefficients that are functions of ¢, 0 and 7. Finding a closed-form
solution for these equations is generally impossible.

The power series method is utilized to find a general solution
for Egs. (11). Very high-order terms are typically required to obtain
an accurate solution and can cause numerical difficulties. To over-
come these difficulties, the range of ¢ under consideration is di-
vided into a number of sub-domains (see Fig. 3). A series
solution for Egs. (11) is established in each sub-domain. Then, a
general solution for the whole domain of ¢ is constructed from
these series solutions in the sub-domains by satisfying the conti-
nuity conditions between each pair of adjacent sub-domains. This
means of constructing solutions is very convenient for analyzing
the bi-material body that is considered in this work.

With fixed 6 and 7, the following functions that specify the var-
iable coefficients in Egs. (11) are expressed as Taylor expansions
over sub-domain i;

sin2p & _ coslp W -
A _kz:;ak (@ - i), A _Zbk (@ — o)

k=0 k=0
sin2¢ ) cos? ¢ i
= — , = » - @),
h 2 ™ Hf (@ —¢1)
sin K cos 2 Ko _
A -3 gl0- )k, X o3 hg - i)t
2 k=0 2 k=0
Sin 2(/) - K (i) _ \k cos? ¢» K o) _ k
A3 - ;lk (QD - (pl) ) A3 - rar mk ((,D - q)l) )

k=0 k=0
SN20 S pl (- gy C052¢=ZK:q(')(¢—¢)k
A4 s k 1 bl A4 o k 1 I’
-2 K K
sin i _ cos2 i _
- kz;r;<'>(¢ —ot - > s¢ (@ - @), (12)

where @; is a reference point in sub-domain i. Here, ¢; is chosen as
the middle point along the ¢ in the sub-domain i. Consequently, the
general solutions of Eqs. (11) in sub-domain i are expressed in the
following form:

J =N J . .

> A Ve =Y "B (¢ -,

j=0 j=0

! F(m) . N =\

Z Y-y, o5 =>"D(p- ). (13)
j=0

Substituting Eq. (13) into Eqgs. (11) with careful arrangement yields
the recursive equations for the coefficients in Eq. (13),
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A]('ﬁz + (Clscg) +Casby) +7( p) )a8)> B;L)z
i i C13 4 Cs5
+ (C15C8) +C35b8) +—( ) )a8)> CJ(+>2
i i , (B15 T+ €31 A
+ (ean) +e3sbg) (st 2 )af))>D;(1)2

-1 - i i (C1a+Cs6) i
| S (ot r 50
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C13+C
x (k+2)(k+1)B k+2+<C15C k+C35b“ ( 13-2F 55) <x>k>

; ) (ers+e
x (k+2)(k+1)C{, + (611C;?k+335b1(-1,)k+(152731) ,“k>

x (k+2)(k+1)DY, +zj: [(/lm -1 [(c55 —en)af’, — 2015 ]
k=0

(k+1) k+1 [)”m((;“m_1)C55+C]1)C€i)k+)\m((/lm_1)(:11+C55)
{(C45 - Clﬁ)a('?k
[ m(Am — 1) x <C16b ,(+C45C()

Cia+Cs6) iy \|pa
C]GCj(lk-'rC (]24)a]('i>lc>:|81(<1)

><b k+Am2 )um C15a ]
(i)

—(C1a+ Css)d,(I ] (k+ 1)§

(C14+C56
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+ (Am — 1)[(C35—C15)‘11k (C13+C55)d()k](k+1)6§21

. i i C13 +C i
+ |:/Lm ()vm - 1) (CISb;I,)k + C3SC]('I,)]( - ( ! 2 55) a;l,)k)
) C13+C ;
+m (ClsC + C35b 7( B 3 SS)G;I)k)} Cl(cl)

4 Um—1) [(e35 —en)al, — (ers +ex )d}?k] (k+1)D{",
N |:;Lm()vm )<e“b<1 ot esscl, _Ma(ik)

J
e | S

+ Am <€11C “k +€35b

50) (Cse +¢14) i)\ 50
B, + (C16g0 + C45fo T % )4
i i , (€36 +Ca5) Falt
+ (c%gé') + C34f(§1) 2 eg) 1(22
i i , (€3 +€14) A
+ <916g8) + e34fél) 42 ef)) Dﬁz

-1 & i i (C +C ) i
aliESiEs) {Z (cug ety + =301, )

i i (€36 + Ca5) i
x (k+2)(k+1)A, (cssg}’fk + Caaf) + e el

(e36 + €14) ) )

x (k+2)(k+1)C, + (emg}"ﬂk +enfl) e

x (k+2)(k + 1)13};12 + z]: [(im -

2 - 2c46h ]

1) [(C44 - Cse)

x (k+1)BY, + [Am(um ~1)Cas + Co6)8.") + 7m((Zm — 1)Cos

+ Ca)f "+ i (2 — Am)c%e@ (B + (m = 1) [(cas - cro)e’,
<C56 + C14) }(k + l) ,(H + [Zm( im — 1) x (waj(,i)k + c45g](2k
Cs56 + C Cs56 +C i NG
(s rew ) Hm( o8, + ! k+%€}fk>}/\§2

+ <Am -1 [(C34 — cs6)e)”y — (C36 + Cas)” ](k +1)Cy,

i i C36 + Cas)
[t 1) (e cugfl - 5 )

i i C36 +Cas5) i) \|pa
(el + e+ L0V, |

+ (m = 1) (€34 — e16)€]’s — (ess + era)h’, | (k + 1)DY,
; y  (esste
+ {zm(im -1) (eleﬁ‘i)k +esg)) - (3627”)6,9,()

) @ . (ess+ew) o \an
+ Am (elsgj,k + e34fj,k + fejfk D\ s
20 (i o (C13+6s5) @)\ 2
Cjirz + (C]sl’lol) +c35m0' +Tlo Ajirz
(@ , (C36+C45) 10

+ <C56"3)+C34mo R 0 )Bﬁz

0 o, (e tess) i\ nao
+ <e15n0 + e33m, +flo Dj+2

-1 Sl iy (C13+Cs5) i
:o+2>o+1>{z[( s+ O )

C36 +C, i
x (k+2)(k+1)A M+(c56n +2+cam’, +wl§3k>}

(i)
lj—k)

)[(e53 = s3I~ 2e50(", |

(€13 +e3s)

x (k+2)(k+1)BY, + (e15n}?k+e33m}?k s
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M0+ 2m(2 = 2)essl, | €+ (2 = 1) (€35 — 1)1

~ (crs+ess)0"| (k+ DAL + [l — 1) x (crsm)?, + casmf’,
(c13 +C55)l(i) (€13 +C55)1<1
2 2 Tk

+C33)

2
+Um—1) [(@4 — sl —

k>+/1m<C15n e+ C3s ]‘)k+

(C36+C45) ](k+l)§

R C36 +C.
+ {Am(ﬂm 1)<C56m e T Caall” ) Mlﬁk
C36 +C.
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- <916r(()i> +634qg) + 3 Do | B

(e13 +€35)p0 ) (i)

J+2
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et e 30
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o
x (k+2)(k+ 1)c;jjz +Z [(zm

k=
% (k+ 1Dy + [Am((n = D13 + 111
+ 1334 + (2 — im)mgp}?k} Dy — (im —
— (@15 +e31)s)", ] (k+ DAL, = [2m(im —1) x (engfy +essri?,

€15 + €31 €15 + €31 i ~i
—%pj )+Am(61]r ,<+€35qj k (2—)pj(i)k):|A;:)

-1) [('733 —1)p — 2,58,
Ukt Am((Am = Dy

1) {(935 - ell)p;?k
(i)

_(xm—1)[(e34—els)p}?k (€14 +e36)s;” ](k+1)

FP i i (€14 +e36)
- {Am (hm—1) <emq}’)k esar — )
i i €14 + €36 5
+ j.m (6161’;?;( + 634‘1;?1( ( )pJ ]():| Bl(<

—(m—1) {(633 - 615)13]@,( (13 +€35) ] (k+ 1)

N i y (e13+ess)
- |:/Lm(/hm -1) (915(1}',),{ + 6337’](-1,);< *fp,( e
+im (elsr ) +enq’ k+(132435)p}’3k>}dj)”. (14d)
() R ~0) ~0 P @ A ) (i
1fAY A9 BY BY, ¢ ¢V DY and D\ are known, then Ay, ]+2»CJI+2

and D jz can be determined using Egs. (14). Hence, the solutlons of
Egs. (11) in subdomain i can be simply represented as,

Ug}”(@, ®) = A UOzO +A Uon) + Bg)umz + B
+C um 4 D ug'gw“ um,

013 + C 014

"9, ) = v,O+A Vi + By V02+B e covn
+C v +D Vm +DY Voﬂ,
W (0, p) = AY +A "+ By W )+ BYWY + COW
+C +D W Y+ D WW,
(0, p) = 00+A +B o BV 4 CHplm
+C1 K2 +Do qjo:‘s + DY afy. (15)

To obtain the solutions of Eqs. (11) for the whole domain of ¢, the
following continuity conditions at the interface (¢ = ¢;) between
sub-domains iand i + 1 have to be satisfied;

a1 (p,0, @) sin@; + 62 (p., 0, ¢;) cos @;

= ol (p, 0, )sm(pl + a8 (p, 0, ¢;) cos @;, (16a)
a1 (p. 0, @) sin@; + 0 (p. 0, @;) cos @;
=o' (p,0, ¢, sin; + ai(p,0, ¢, cos ¢;, (16b)
5 (P, 0,9,)Sin @; + 7 (p, 0, ;) COs
= ay " (p.0, ;) sing; + ai V) (p, 0, ;) cos @, (16¢c)
D/’ (p. 0, ®;)sin@; + DY (p. 0, ¢;) cos ¢;
= D" (p. 0, @) sing; + DI (p, 0, p;) cos ¢y, (16d)
u?(p,0,0;) = u"(p,0, ), (16e)
uy(p,0,0;) = uy™ (0,0, @), (16f)
u (070 @) =ul"(p,0, ), (16g)
"(p,0,0) = (p,0, ;). (16h)

If the domain of ¢ under consideration is divided into n sub-
domains (Fig. 3), the 8n coefficients in Eq. (15) fori=1,2,...,n, must
be determined. The interface continuity conditions yield 8(n — 1)
equations (Egs. (16) with i=1,2,...,(n —1)). The homogenous
boundary conditions at ¢ = ¢ and ¢ = ¢, yield another eight equa-
tions. In total, 8n homogeneous algebraic equations for these 8n
coefficients can thus be constructed. A nontrivial solution yields

an 8n x 8n determinant of zero. The roots of the zero determinant
(4m) can be complex numbers, and were obtained herein using
the subroutine, “DZANLY”, in IMSL (International Mathematical
and Statistical Library). The subroutine is based on the numerical
approach of Miiller [31].

Two types of mechanical boundary condition were considered
herein - free and clamped. For free traction at ¢ = o or @ = @y,

Oy SinQ + 0,,c0s =0,
Oy SiNQ + 0y, cos p =0

0z SinQ + 0, cosp =0,

while the clamped boundary conditions require u, = u, = uy = 0. Two
types of electric boundary conditions can also be specified at ¢ = g
or ¢ = @, They are electrically open and closed boundary condi-
tions. Electrically open and closed conditions are D,sing + D,co-
s¢ =0 and ¢ = 0, respectively.

4. Convergence and Comparison

The convergence and comparison of the minimum Re[/,,] (real
part of 4,;) of bi-material bodies of revolution are summarized here
to confirm the correctness of the proposed solutions. Two geomet-
ric shapes with a horizontal interface, called geometry I and geom-
etry II, displayed in Fig. 4, are considered. Geometry I has ¢ = 90°
and ¢, =270° while geometry Il has ¢o=0° and ¢, =270° as
shown in Fig. 3. Table 1 gives the material constants, and the direc-
tion of polarization of the material is assumed to be along the axis
of revolution (y = 0°). Notably, material PZT-6B (Im.) in Table 1 is
an imaginary material with the same elastic properties as PZT-
6B, and is adopted here to obtain results that can be compared
with those of Xu and Mutoh [27]. The boundary conditions at
® = @o and ¢ = @, are traction-free and electrically open.

Table 2 lists the minimum values of Re[4,,] that were obtained
by dividing the domain of ¢ into various numbers of sub-domains
of equal size, using different numbers of terms in the series solu-
tion for each sub-domain. Notably, the /,,, which correspond to
minimum of Re[/,], are all real in the cases considered in Table
2. The convergent solutions can be obtained by fixing the number
of sub-domains and increasing the number of terms in series solu-
tions or by fixing the number of terms in series solutions and
increasing the number of sub-domains. The results published in
Xu and Mutoh [27] and Li et al. [29], which were obtained based
on the assumption of axisymmetric deformation, are also given
in Table 2. The excellent agreement between the convergent re-
sults herein and the published data validates the proposed
solutions.

5. Numerical results and discussion

The electroelastic singularity is governed by the real part of
(4m-1), and the root of primary interest is the one with the smallest
positive real part between zero and one. In this section, the values
of minimum Re[4,,] are shown for single material and bi-material
bodies of revolution. The piezoelectric materials, PZT-4 and PZT-
5H, and an elastic material, Al (aluminium), are considered. The
material properties of PZT-4 and PZT-5H are given in Table 1, while
the elastic constants for Al are E (Young’s modulus) = 68.9 GPa and
v (Poisson’s ratio) = 0.25. The results were obtained using eight
equal sub-domains for ¢ and 15-term series solutions for each
sub-domain. The boundary conditions under consideration are
specified by four letters. The first pair of letters refers to the bound-
ary conditions at ¢ = ¢, while the second pair specifies the bound-
ary conditions at ¢ = ¢,,. The first letter in each pair concerns the
mechanical boundary conditions, with C and F's denoting clamped
and free boundary conditions, respectively, while the second letter
concerns the electric boundary conditions with C and O’s repre-
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senting electrically closed and open boundary conditions, respec-
tively. Accordingly, in the following, COFO boundary conditions
mean that the mechanical boundary conditions are clamped and
free at ¢ = @o and ¢ = ¢, respectively, and the electric boundary
conditions are open at ¢ = ¢ and @ = @y,

5.1. Bodies of revolution made of a single piezoelectric material

Consider a PZT-4 or PZT-5H body of revolution with a direction
of polarization that my not be along the Z-axis (axis of revolution).
The geometry of the body considered in this section is similar to
geometry Il in Fig. 4. Figs. 5 plots the variations of minimum Re[4,,]
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with 0 for PZT-4 bodies with ) = 0°, 45° and 90°, while Fig. 6 plots
corresponding curves for PZT-5H bodies. Notably, the results at
0 =27 — 0y are identical to those at 0 =0y in all the cases that are
considered in this work. Consequently, the range of 0 considered
is between 0° and 180°. The /i, that corresponds to minimum
Re[ /] are all real in the cases examined in Figs. 5 and 6.

As expected, minimum Re[Z,,] does not change with 6 when the
direction of polarization is along the Z-axis (y=0°). When the
direction of polarization is not along the Z-axis, minimum Re[,]
varies significantly with 6. For example, when 7y = 45°, the maxi-
mum relative difference may reach 7.8% for a PZT-4 body with
COCO boundary conditions, while the maximum difference is

Z Z
A A
Q;_ﬁ Q Free + Opened
1 Free + Opened |
' Material 2 PR ' Material 2
1 |
| i L/
. Free + Opened :
1 o =180 k | o =270
1 <__d, 1
| Material 1 1 Material 1
I I
1 |
Geometry I Geometry 11

Fig. 4. Geometry and boundary conditions for bodies of revolution considered in convergence studies.

Table 1
Material properties of piezoelectric materials.

Material Stiffness [GPa] Piezoelectric const. [C/m?] Dielectric const. x 107'°[F/m]
C11 C12 Ci3 C33 Caa e1s €31 €33 M1 733
CdSe 741 45.2 393 83.6 13.2 -0.138 -0.159 0.347 0.844 0.903
PZT-4 139.0 77.8 743 115.0 25.6 12.7 -5.2 151 64.6 56.2
PZT-5H 126.0 55.0 53.0 117.0 353 17.0 -6.5 233 151.0 130.0
PZT-6B 168.0 60.0 60.0 163.0 271 4.6 -09 7.1 36.0 34.0
BaTiO3 275.0 179.0 152.0 165.0 543 213 -2.69 3.65 175.0 9.88
PZT-6B (Im.) 168.0 60.0 60.0 163.0 271 43.0 -14.0 36.0 200.0 247.0
Table 2

Convergence of minimum Re[2,].

Geometry Material 1/Material ~ Number of Sub-

Number of Polynomial terms

Published results [27]",

2 domains [29]*
5 6 7 9 11 13 15
1 CdSe/ PZT-5H 2 0.9363 0.9348 0.9357 0.9377 0.9387 0.9383 0.9380 0.9381*
4 0.9379 0.9381 0.9382 0.9381 0.9381 0.9381 0.9381
6 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381
8 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381
CdSe/ PZT-6B 2 0.9268 0.9242 0.9308 0.9302 0.9280 0.9272 0.9278 0.9281*
4 0.9286 0.9289 0.9279 0.9281 0.9281 0.9281 0.9281
6 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281
8 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281
CdSe/ BaTiO3; 2 0.8949 0.9588 09429 09172 09394 09256 0.9284  0.9429*
4 0.9436 0.9430 0.9430 0.9430 0.9429 0.9429 0.9429
6 0.9429 0.9428 0.9428 0.9429 0.9429 0.9429 0.9429
8 0.9429 0.9428 0.9429 0.9429 0.9429 0.9429 0.9429
PZT-6B/ PZT-6B 2 0.98792 0.98475 0.98641 0.98793 0.98713 0.98828 0.98792 0.98724"
(Im.)
4 0.98742 0.98732 0.98731 0.98720 0.98613 0.98725 0.98724
6 0.98802 0.98764 0.98764 0.98733 0.98724 0.98724 0.98724
8 0.98730 0.98724 0.98723 0.98724 098724 0.98724 0.98724
11 PZT-6B/ PZT-6B 3 0.54766 0.53669 0.52792 0.52053 0.52716 0.52670 0.53197 0.52819"
(Im.)
6 0.52694 0.52758 0.52801 0.52836 0.52819 0.52818 0.52820
9 0.52803 0.52809 0.52823 0.52820 0.52820 0.52820 0.52820

+

means that the results are from reference [29].
* means that the results are from reference [27].
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about 5.2 % for a PZT-5H body. When 7y changes from 0° to 45° or
90°, the minimum Re[4,;] may increase or decrease, depending
on the values of 0 and the boundary conditions. PZT-4 bodies exhi-
bit more severe electroelastic singularities than PZT-5H bodies un-
der clamped-clamped mechanical boundary conditions; the
opposite is true under free-free mechanical boundary conditions.
Figs. 7 and 8 display the variations in minimum Re[4,,] at 0 = 60°
with g for PZT-4 and PZT-5H bodies, respectively. Two values of ),
0°and 45°, were considered. Generally, minimum Re[/,,] declines
as pincreases, such that a larger g induces more severe electroelas-
tic singularities at the sharp corner of a body of revolution. Electro-
elastic singularities under free-free boundary conditions are more
severe than those obtained under clamped-clamped boundary
conditions. When y = 0°, the electric boundary conditions do not
significantly affect the singularities. However, when 7y =45°,
open-open electric boundary conditions results in a smaller mini-
mum Re[/;;] than closed-closed electric boundary conditions for
clamped-clamped bodies of revolution, while the opposite trend
is true for bodies of revolution with free-free mechanical boundary
conditions. As )y changes from 0° to 45°, the A,, which corresponds
to minimum Re[/,], may change from real to complex or from
complex to real. For instance, under CCCC boundary conditions,
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/m are complex for y=45° when g is between 48° and 73° for
PZT-4 bodies and between 52° and 70° for PZT-5H bodies, while
they are all real for y = 0°. A comparison of Figs. 7 and 8 reveals that
PZT-4 bodies have stronger singularities than PZT-5H bodies under
clamped-clamped boundary conditions, but not at all values of 8
under free-free boundary conditions.

5.2. Bi-material bodies of revolution made of piezoelectric and elastic
materials

This section investigates bi-material bodies of revolution with a
geometry that is similar to geometry Il in Fig. 4, in which material 1
is an isotropic elastic material, Al, and material 2 is PZT-4 or PZT-
5H. The arrangements considered in Figs. 9-12 are the same as
those in Figs. 5-7, respectively, except that bi-material bodies of
revolution are considered in Figs. 9-12. Notably, the continuity
conditions on the interface between the piezoelectric material
and the elastic material are given by Eqs. (16) and ¢, 6, ¢;) = 0.
No electric boundary condition applies at ¢ = ¢, and the second
letter of the four letters that denote the boundary conditions is re-
placed by “—*.

Figs. 9 and 10 discover that when 7y # 0°, the minimum Re[/,]
does significantly vary with 0. When y = 45°, the maximum relative
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difference may reach 25% for a PZT-4/Al body under C-CC boundary
conditions, while the maximum difference is approximately 16 %
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for a PZT-5H/Al body. Unlike in Figs. 5 and 6, the minimum Re[ 4]
for the C-CC boundary conditions can be smaller than those for C-
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CO boundary conditions, depending on y and 0. When 7y = 45°, the
/m, Which correspond to minimum Re[/,,] under C-CC boundary
conditions, are no longer all real; they are complex for
63°<0<110° in Fig. 9(b) and 68°<0<101° in Fig. 10(b).
Fig. 9(b) demonstrates that the minimum Re[Z,] under C-CC
boundary conditions are lower than those under free-free bound-
ary conditions when 0 < 14°.

Figs. 11 and 12 plot the variations of minimum Re[/,] at
0 =60°with g for PZT-4/Al and PZT-5H/Al bodies, respectively.
The relatively abrupt changes in the curves (i.e., atf ~ 159° under
F-FC boundary conditions and f ~ 99° under C-CO boundary condi-
tions in Fig. 11(a)) are caused by the roots’s changing from real to
complex numbers or from complex to real numbers. Generally, the
strength of the electroelastic singularity increases with p. Free-free
boundary conditions produce singularities that are more severe
than clamped-clamped boundary conditions do, except for-
B = 160°. Interestingly, the minimum Re[4,,] for the bodies with
7y = 0°are more considerably affected by electric boundary condi-
tions than those for the bodies with y =45°. Changing y from 0°
to 45° can alter the minimum Re[/,,] with the maximum relative
difference of 9.6% occurring at g = 99° under C-CO boundary condi-
tions in Fig. 11. Unlike the minimum Re|[ ;] > 0.5 for bodies of rev-
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olution made of two isotropic elastic materials under free-free
boundary conditions given in Huang and Leissa [26], the minimum
Re[ /] can be smaller than 0.5 for g larger than around 150°under
F-FO boundary conditions.

5.3. Bi-material bodies of revolution made of piezoelectric materials

The results for bi-material bodies of revolution consisting of
PZT-4 and PZT-5H with a horizontal interface are given in Figs.
13 and 14. Fig. 13 concerns bodies of revolution with geometry I
and geometry II displayed in Fig. 4, where materials 1 and 2 are
PZT-5H and PZT-4, respectively. Fig. 14 considers bodies of revolu-
tion with geometry II and having various f.

As expected, Fig. 13 demonstrates that bodies of revolution with
geometry II (o« = 270°) have more severe singularities at the inter-
face corner than do bodies of revolution with geometry I
(oc=180°). When 7y =0° the roots corresponding to minimum
Re[/,] are all real. As y changes from 0° to 45° or 90°, the roots
may change from real to complex, depending on 0 and the bound-
ary conditions. For instance, for y = 45°and under COCO boundary
conditions, when 0 < 51° and 0 < 36° for geometries I and II, respec-
tively, the roots corresponding to minimum Re[/,,] are complex.
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The variations of minimum Re[4,,] with 0 in Fig. 13(b) indicate that
the maximum difference can reach 11% for geometry I under FOFO
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boundary conditions, and 7.2% for geometry Il under FOFO bound-
ary conditions. When y =90°, the maximum difference between
values of minimum Re[/,,] for various 0 reaches 4.5% for geometry
[ under COCO boundary conditions, and 4.3% for geometry Il under
FOFO boundary conditions.

Fig. 14 plots the variations of minimum Re[/,,] at 0 = 60° with
for bodies of revolution with geometry II. Two values of ), 0°and
45°, were considered. Again, the relatively abrupt changes in the
curves are caused by a change in the roots from real to complex
or from complex to real. Generally, free-free boundary conditions
give more severe singularities at the interface corner than do
clamped-clamped boundary conditions. Changing y from 0° to
45° changes the minimum Re[/,,] by up to 5.0%, as for the body
of revolution with g =105° under COCO boundary conditions.

6. Concluding remarks

This study developed a general solution for determining elec-
troelastic singularities in piezoelectric bodies of revolution with a
direction of polarization that may not be parallel to the axis of rev-
olution. The piezoelectric material is assumed to be transversely
isotropic. The eigenfunction expansion approach was combined
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with a power series solution technique to solve the three-dimen-
sional equilibrium and Maxwell’s equations that are presented in
terms of displacement components and electric potential. The
solution incorporates no auxiliary functions such as stress func-
tions or displacement potential. The present solution is very easily
extended to isotropic elastic materials by discarding the piezoelec-
tric constants and dielectric constants and properly setting the
elastic constants. The correctness of the proposed solution is veri-
fied by comparing the results herein with the published results for
cases in which the direction of polarization is along the axis of
revolution.

When the direction of polarization of the piezoelectric material
is not along the axis of revolution, the assumption of axisymmetric
deformation, which was made in published studies of electroelas-
tic singularities in bodies of revolution, is invalid. The numerical
results in this work for bodies of revolution, which comprise single
piezoelectric material, bonded piezo/piezo or piezo/isotropic elas-
tic materials, reveal that the geometrically induced electroelastic
singularity order can depend significantly on the polarized direc-
tion and the circular coordinate variable (0). This is the first study
to present numerical results for cases in which the direction of
polarization is not parallel to the axis of revolution.
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