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Bit-Error Bounds for Trellis-Coded
MPSK in Mixed Fading Channels
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Abstract—Bit-error probability (BEP) bounds of trellis-coded
MPSK systems over two classes of mixed fading channels are
studied. These two classes of channels have been proposed as
candidate models for mobile satellite communications. The first
class consists of slow and frequency-nonselective fading channels
whose output field strengths follow a probability law character-
ized by a convex combination of Rician and Rayleigh/lognormal
distributions. For the other class of fading channels, the received
signal amplitude has a convex combination of Rician and Ri-
cian/lognormal distributions. We analyze performance bounds for
trellis codes that belong to the class of either geometrically uni-
form codes (GUC’s) or quasi-regular codes (QRC’s). Receivers
with either ideal channel state information (CSI) or no CSI at
all are considered. We examine asymptotic behaviors of these
codes and identify key design parameters. Numerical results are
provided to illustrate and compare the BEP performances of
various codes and to validate the usefulness of the asymptotic
analysis.

Index Terms—Fading channels, satellite communication, trellis-
coded modulation.

I. INTRODUCTION

L AND MOBILE satellite communication systems have
emerged in recent years as an alternative to complement

terrestrial mobile radio systems and to provide new services
previously unavailable to land mobile users. As pointed out
in [1], the constraint on the downlink flux density and the
requirement of a small receiving antenna aperture make a
mobile satellite channel power limited. On the other hand,
to serve a large number of users in a given bandwidth, it is
inevitably band limited. For such an operation scenario, trellis-
coded modulation (TCM) is a good candidate modulation
scheme [1], [2] for it is both power and bandwidth efficient.

Experiments had been conducted to measure and model mo-
bile satellite communication channels [3]–[6]. In cases where
a line-of-sight (LOS) path is available, e.g., when the mobile
is in an open terrain, the received signal amplitude is generally
modeled as a Rician random variable (r.v.) [1]. Measurement
results also indicated that multipath and shadowing effects
cause the mean received signal strength to vary with the
receiver location, and this mean strength can be described
by a lognormal distribution [7]–[9]. Loo [5] proposed a
model, which assumes that the LOS component under foilage
shadowing follows a lognormal distribution. The resulting
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signal strength has a combined Rician/lognormal (shadowed
Rician) distribution. These propagation models are suitable for
approximating short-term signal strength variations only. Two
different approaches have been adopted to account for both
short- (or small area) and long-term (or large area) fading
effects in a mobile satellite environment. The first approach
assumes that the overall signal strength statistic follows a
convex combination of a Rician probability density function
(pdf) and a Rayleigh/lognormal pdf [4]. Another approach [6]
uses a combination of a Rician r.v. and a Rician/lognormal
r.v. to model the received field strength. Both approaches use
a parameter called time-share factor or fraction of shadowing,
denoted by , to account for the mobile
environment in which the downlink receiver has a LOS view
of the satellite with a probability of

Performance bounds for a two-state TCM signal on a Rician
fading channel was presented by Divsalar and Simon [11].
Mckay et al. [2] evaluated performance bounds for a four-state
TCM system on both Rician and shadowed Rician channels.
Benedettoet al. [13] have divided various TCM schemes into
four classes. Ordered in increasing degrees of symmetry, they
are called general codes (GC’s), quasi-regular codes (QRC’s),
regular codes, and geometrically uniform codes (GUC’s). The
code studied in [11] belongs to the class of GUC, while
that in [2] is a member of QRC. This paper extends the
works of [2] and [11] to the cases characterized by the two
mixed channel models mentioned above. These two classes
encompass a large fraction of mobile satellite communication
channels encountered in practice. Using appropriate values for
the related channel parameters, we can accurately describe
the communication environment under investigation. TCM
performance bounds in a mixed channel characterized by Barts
and Stutzman [6] can be obtained from [2] by straightforward
extension and suitable combinations. But our derivations of
those in the other class of mixed channels are new. Fur-
thermore, we present asymptotical analysis for both classes
and obtain results that are similar to that shown in [1]. The
rest of this paper is organized as follows. The next section
provides an equivalent baseband block diagram of the system
and two probabilistic models of the mobile satellite channels
to be studied. The basic analysis technique used in [2] and
[11], which is the starting point of our derivation, is also
briefly reviewed there. The associated bit-error probability
(BEP) bounds are derived in Section III. Section IV analyzes
the asymptotic behaviors under various operation scenarios.
Section V presents numerical results of our analysis, and in
the last section, the major results are summarized.
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Fig. 1. Baseband model for a trellis-coded MPSK system.

II. SYSTEM AND CHANNEL MODELS

AND PERFORMANCE BOUNDS

A. Baseband System Model

An equivalent baseband block diagram for the system under
investigation is shown in Fig. 1. The data stream enters a
rate binary convolutional encoder. The encoder
output symbols are then block interleaved and mapped into an
MPSK signal according to a predetermined set partitioning rule
[1]. The transmitted signals are impaired by amplitude/phase
distortions and additive white Gaussian noise. The received
samples are deinterleaved before being fed into the Viterbi
convolutional decoder. CSI can be derived from the received
waveform to help the convolutional decoder in improving its
performance. Of course, the decoding metric used when CSI
is available is different from that without CSI. Subsequent
discussion, like the analysis presented in [2] and [11], assumes:
1) interleaving and deinterleaving is such that the “channel”
between the interleaver and deinterleaver is memoryless; 2)
the communication channel suffers from slow and frequency-
nonselective fading; 3) perfect coherent detection is achieved;
and 4) an infinite decoding delay in the Viterbi decoding
process.

B. Channel Models

Two classes of channel models are considered. The first
class models the received signal power as a r.v. whose pdf
is a convex combination of Rician and Rayleigh/lognormal
distributions [4]

(1)

where in the Rician part represents the direct to multipath
signal power ratio

(2a)

(2b)

(2c)

This model degenerates to a pure Rician fading model when
For this special case, we have a more compact

expression

(3)

Furthermore, it becomes a Rayleigh fading channel if we make
the change of variable and set both and

to zero.
The Barts and Stutzman model [6] is the second class of

interest. In this model, the received amplitude’s pdf is given
by

(4)

This model reduces to the one proposed by Loo [5] when
For convenience of comparison, we use normalizations such

that the mean-squared value of the received signal amplitude
equals one. This can be accomplished by letting
and , where

(5a)

(5b)
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The pdf’s for the normalized amplitudes corresponding to (1)
and (4) become

(6a)

and

(6b)

An advantage of such normalizations can be noticed by
comparing the Rician parts of (1) and (6a). Now there is only
one parameter in (6a) that has to do with the random amplitude,
while there are three in (1). Note that in normalizing the Rician
parts of (1) and (4), we have invoked the identity

(7)

which can easily be derived from [14, (11.4.28) and (13.1.27)].

C. BEP Performance

This section gives a brief review of the basic analysis
procedure used in evaluating the BEP bound of a TCM system.
For more detailed presentation, readers may refer to [1] and
[13]. Let the coded sequence be , where

’s are complex numbers representing the MPSK signals. At
the receiving end, the deinterleaved sample sequence can be
expressed as , where

(8)

is a real r.v. representing the effect of channel fading on the
received amplitude and is an additive complex Gaussian
r.v. with zero mean and variances Note that as a result
of the perfect coherent detection assumption, phase distortion
does not appear in (8). Furthermore, the perfect interleav-
ing/deinterleaving assumption makes all
independent. The probability that is the decoded sequence,
while is the transmitted sequence, denoted ,
is

(9)

where

(10)

and

with ideal CSI
without CSI

(11)

(a) (b)

(c)

Fig. 2. (a) Signal constellation and squared Euclidean distance of a two-state
rate 1\2 4PSK code. (b) The trellis diagram. (c) The corresponding signal
flow graph.

is the decoding metric. The BEP, denoted, can then be
upperbounded by [13]

(12)

where is the Hamming distance betweenand and
both summations are performed over all possible code words
(of all lengths). Furthermore, if we denote as the average bit
signal energy, the one-sided noise power spectral density,

the set of all ’s for which the correspondingth transmitted
symbol is incorrectly decoded (i.e., ), and let
be a nonnegative number, we can show [11] that the pairwise
error probability is bounded by

(13)

where and

ideal CSI

no CSI.

(14)

Using the transfer function method [13], we can show that
for the two-state code analyzed in [11] is upperbounded by

(15)

where

(16a)

ideal CSI
no CSI

(16b)

ideal CSI
no CSI

(16c)

are the squared Euclidean distances between
different pairs of signal points [see Fig. 2(a)] andis a r.v.,
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(a) (b)

(c) (d)

Fig. 3. (a) Encoder of four states, rate 1/2, and 4PSK code. (b) Signal
constellation and squared Euclidean distance. (c) Trellis diagram of four states
and (d) the corresponding signal flow graph.

which has the same distribution as of (8). For the four-
state rate 1/2 4PSK GUC code shown in Fig. 3(a)–(c), the
corresponding transfer function is given by

(17)

and the BEP is upperbounded by

(18)

where

For QRC’s, we can use the modified transfer function method
to obtain similar BEP upperbounds [13] [2]. The four-state
rate 2/3 8PSK code analyzed in [2] is an example of QRC.
It can be shown that the associated modified transfer function
is given by

(19)

where

(20)

ideal CSI
no CSI

(21a)

ideal CSI
no CSI

(21b)

and are two other (besides and
squared Euclidean distances between candidate signal points.
A BEP upperbound for QRC can also be obtained in a manner
similar to the GUC case. In summary, the BEP performance
of both GUC and QRC can be evaluated by using either the
transfer function or the modified transfer function associated
with these codes. The effect of the channel characteristic
is reflected in the parameters– , defined in (16b), (16c),
(21a), and (21b), respectively. Therefore, to calculate the BEP
upperbound for either GUC or QRC, we need only to compute
the values of these parameters.

III. BEP BOUNDS

Equation (7) and the following two identities are needed in
the calculation of BEP bounds for the trellis codes discussed
in Section II

(22)

(23)

where The last equation is derived
in the Appendix, and follows directly from [14, (11.4.29)].

A. Performance with Ideal Channel State Information (CSI)

1) Mixed Model of the First Kind:For the case when the
received amplitude has a pdf given by (6a), the corresponding
parameters – can be computed via

(24)

where represents one of the squared Euclidean dis-
tances (i.e., and defined in the last section,

represents the expectation of taken
with respect to the pdf , and is the
expectation of taken with respect to the Rayleigh/lognormal
part of (6a). We can easily show that the first expectation on
the right-hand side of the above equation is

(25)
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where The other expectation can be evaluated
as follows:

(26)

The second equation in the above derivation is obtained by
the change of variable Using the expansions

for

for

(27)

and the change of variable , we can show

(28)

where

This series expansion is very useful for it provides a computing
algorithm that is more efficient than that of (26). Using the
rational Chebyshev approximation proposed by Cody [15], we
can accurately and efficiently compute the terms
Numerical results indicate that for all cases of interest, less
than 20 terms are needed in the above expansion in order to
obtain the required accuracy.

2) Mixed Model of the Second Kind:Similar to the previ-
ous case, we have the decomposition

(29)

in which

(30)

and

(31)

is the expectation of taken with respect to the
Rician/lognormal part of (6b). Substituting or

in the appropriate Chernoff bound equations derived
above, we then obtain the associated BEP upperbounds.

B. Performance without CSI

1) Mixed Model of the First Kind:As with the perfect CSI
case, we have the decomposition

(32)

It can be shown that

(33)

where

and

(34)

The last equation can be further simplified to

(35)

where
2) Mixed Model of the Second Kind:For the decomposi-

tion

(36)
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the first term on the right-hand side is given by

(37)

The substitution and leads to

(38)

IV. A SYMPTOTIC ANALYSIS AND DESIGN CRITERIA

In this section, we study the asymptotic BEP behaviors of
TCM/MPSK systems. The usefulness of asymptotic analysis
lies in the fact that it can tell us which parameter(s) of the code
used dominate the system performance when becomes
sufficiently large. Thus, a judicious choice of the trellis code
to be used is made possible. In [1], it was shown that in a
Rician fading environment

(39)

where is a constant, is a function of the weight distribution
of the code, is the ratio of the power in LOS plus specular
component to that in the diffuse component, andis the
length of the shortest error-event path, defined as [12] the
error-event path whose Hamming distance to the correct path
is the smallest amongst all possible error events. We shall show
that similar asymptotic performance bounds for the two mixed
channels under consideration also exist. For all the derivation
in this section, is assumed. Let us consider the mixed
model of the first kind to begin with. For a TCM/MPSK
scheme to operate in such a channel with ideal CSI reception,
we have from (25)

(40)

and from (26)

(41)

Defining

(42)

we can write

(43)

When CSI is not available, in (33) approaches
as becomes sufficiently large. Invoking the asymptotic
expansion

we obtain

(44)

Note that is negligibly small when is close to
zero, and, therefore, errors incurred by approximating other
parts of the integrand in the small region contribute very
little to the integration. This observation and the asymptotic
expansion of lead to

(45)

From (44) and (45), we have

(46)

where

(47)

Next, let us consider the mixed model of the second kind. For
the ideal CSI case, we have

(48)

where

(49)

The corresponding aymptotic form when there is no CSI is

(50)
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where

(51)

Summarizing, we conclude that

ideal CSI (52)

and

no CSI (53)

From (13) and (14), the pairwise error probability is thus
bounded by

ideal CSI

no CSI

(54)

where is the set of all for which Substituting (54)
into (12) and taking into account the fact that , we obtain

ideal CSI

no CSI

(55a)

where

(55b)

(55c)

and is a transmitted code word of
length and is any other length
code word, where and are MPSK signals. Furthermore

(56a)

(56b)

Note that for the no-CSI case, the corresponding Chernoff
bound is to be obtained by minimizing over It can
be shown that the optimal values forare in proportion to

, and, therefore, ’s are proportional to for both
CSI and no-CSI cases.

From the above discussion, we know that the BEP bound
is inversely proportional to Furthermore, the BEP is

TABLE I
CHANNEL PARAMETERS FOR THEMIXED MODEL OF THE FIRST KIND

TABLE II
CHANNEL PARAMETERS FOR THEMIXED MODEL OF THE SECOND KIND

Fig. 4. BEP bounds for receivers with ideal CSI in various mixed channels
of the first kind; asymptotic bounds are represented by boldface lines.

dominated by two factors: 1) the length of the shortest error-
event path and 2) the product of all the squared Euclidean
distances between paths with this (Hamming) length and the
correct path, or equivalently, the number of nearest neighbors.
The code rate also plays a role in the asymptotic
bounds.

V. NUMERICAL RESULTS AND DISCUSSIONS

We will refer to the two-state rate 1/2, 4PSK code mentioned
in Section II as Code 1, the four-state rate 1/2 4PSK code as
Code 2, and the four-state rate 2/3 8PSK code as Code 3. The
channel parameters used in our simulation are listed in Tables
I and II, respectively. Table I provides the parameter values
for the mixed channel of the first kind, and Table II are those
for the Barts and Stutzman model.

Figs. 4–5(b) show the BEP bounds with ideal CSI, while
Figs. 6–7(b) depict those without CSI. As expected, the re-
ceiver with ideal CSI outperforms that without. The extent
of the improvement depends on channel condition and the
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(a)

(b)

Fig. 5. (a) BEP bounds for receivers with ideal CSI in various mixed
channels of the second kind; asymptotic bounds are represented by boldface
lines. (b) BEP bounds for receivers with ideal CSI in various mixed channels
of the second kind; asymptotic bounds are represented by boldface lines.

trellis code used. The better the channel condition and the
trellis code used are, the less the improvement becomes.
When Code 2 is used in the mixed channel labeled as “st1,”
the improvement is less than 1 dB when the BEP bound

On the other hand, for Code 3 and channel condition
“st2,” the improvement brought about by perfect CSI is 2.5
dB when BEP bound On the average, the
improvement of is about 1.5 dB when ideal CSI is
provided. Substituting (52) and (53) into the defining equations
for – and then the BEP bounds for and
gives the corresponding asymptotic performance formula. We
depict some of these curves in Figs. 4–7 for the purpose of
comparison. These asymptotic performance curves indicate
that the analysis presented in the last section is indeed valid.

Recall that we have found that the BEP bounds are domi-
nated by three factors when signal-to-noise ratio is sufficiently
high. Let us examine more closely how these three factors
affect the asymptotic behavior of the three codes we have

Fig. 6. BEP bounds for receivers without ideal CSI in various mixed
channels of the first kind; asymptotic bounds are represented by boldface
lines.

selected. Applying long division on the BEP bounds for’s,
followed by some algebraic manipulations, we obtain

higher order terms (57a)

higher order terms (57b)

and

higher order terms (57c)

where the order of a given term is defined as the sum of the
exponents for , , , or appearing in that term. The order
of the lowest order term in a BEP bound equation is equal
to the length of the shortest error-event path. The above three
inequalities indicate that Code 2 will outperform the other two
codes asymptotically since the lowest order term in its BEP
bound equation has the largest exponent among the three BEP
bounds. Our simulation confirms this observation. Substituting
the values of , , , and we have obtained in the above
inequalities and neglecting the higher order terms, we find that

ideal CSI

no CSI
(58a)

ideal CSI

no CSI
(58b)

ideal CSI

no CSI.

(58c)
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(a)

(b)

Fig. 7. (a) BEP bounds for receivers without ideal CSI in various mixed
channels of the second kind; asymptotic bounds are represented by boldface
lines. (b) BEP bounds for receivers without ideal CSI in various mixed
channels of the second kind; asymptotic bounds are represented by boldface
lines.

Solving the ’s that satisfy the Chernoff bound condition
leads to and for Codes 1,
2, and 3, respectively. The BEP bounds for the no-CSI case
become

(59a)

(59b)

(59c)

where The corresponding values for ’s
can be calculated once the channel parameters are known.
Substituting ’s into the above inequalities, we have the
logarithmic slopes
and This is consistent with what (55a) and (55b) have
predicted. Similarly, it is found that the asymptotic coding gain
of Code 1 with respect to Code 2 is dB
for the ideal CSI case and dB

for the no-CSI case. Our simulation results indicate that these
estimations are very reliable when is above 30 dB.

VI. CONCLUSION

We have presented the BEP bounds for trellis-coded MPSK
systems over two classes of mobile satellite fading channels.
As mentioned before, these two classes encompass a large
fraction of mobile satellite communication channels encoun-
tered in practice. One can use appropriate parameter values
and accurately describe the channel under which the designed
system is supposed to operate. The trellis codes analyzed here
are members of GUC or QRC. They have low implementation
complexity, modest error-correcting capability, and are suit-
able for use in a mobile satellite environments. Asymptotic
BEP bounds are found, and numerical validation is provided.
These bounds are similar to those obtained in simpler (Rician
or Rayleigh) fading models. In other words, the key parameters
that dominate the BEP behavior are the length of the shortest
error-event path and the product of the squared Euclidean
distance between the correct path and all the corresponding
shortest-Hamming-length error-event paths.

APPENDIX

DERIVATION OF (23)

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)
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(A.7)

(A.8)

where In deriving (A.4), we have used
the definition (A.5) is obtained by the
change of variable The usefulness of
this identity is threefold: 1) the integration interval is reduced
from to ; 2) as mentioned in Section III-A-1, the
integrand can be very accurately and efficiently
computed [15]; and 3) a simple expression of an asymptotic
BEP bound can easily be derived by using the asymptotic
formula for
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