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Bit-Error Bounds for Trellis-Coded
MPSK in Mixed Fading Channels

Wen-Chang Lin and Yu T. Suylember, IEEE

Abstract—Bit-error probability (BEP) bounds of trellis-coded ~ signal strength has a combined Rician/lognormal (shadowed
MPSK systems over two classes of mixed fading channels areRician) distribution. These propagation models are suitable for

studied. These two classes of channels have been proposed ; ; g ; ot
candidate models for mobile satellite communications. The first aépprommatlng short-term signal strength variations only. Two

class consists of slow and frequency-nonselective fading channeldlifférent approaches have been adopted to account for both
whose output field strengths follow a probability law character- short- (or small area) and long-term (or large area) fading
ized by a convex combination of Rician and Rayleigh/lognormal effects in a mobile satellite environment. The first approach
distributions. For the other class of fading channels, the received 555umes that the overall signal strength statistic follows a

signal amplitude has a convex combination of Rician and Ri- convex combination of a Rician probability density function
cian/lognormal distributions. We analyze performance bounds for P y y

trellis codes that belong to the class of either geometrically uni- (Pdf) and a Rayleigh/lognormal pdf [4]. Another approach [6]
form codes (GUC's) or quasi-regular codes (QRC's). Receivers uses a combination of a Rician r.v. and a Rician/lognormal

with either ideal channel state information (CSI) or no CSl at r .y, to model the received field strength. Both approaches use

all are considered. We examine asymptotic behaviors of these ; a2 meter called time-share factor or fraction of shadowing,
codes and identify key design parameters. Numerical results are .
provided to illustrate and compare the BEP performances of denoted byA,0 < A < 1, to account for the mobile
various codes and to validate the usefulness of the asymptotic environment in which the downlink receiver has a LOS view

analysis. of the satellite with a probability of — A.
Index Terms—Fading channels, satellite communication, trellis-  Performance bounds for a two-state TCM signal on a Rician
coded modulation. fading channel was presented by Divsalar and Simon [11].
Mckay et al. [2] evaluated performance bounds for a four-state
I. INTRODUCTION TCM system on both Rician and shadowed Rician channels.

AND MOBILE satellit icati ¢ h Benedettcet al. [13] have divided various TCM schemes into
salellite-communication Systems Navg, . ¢jasses. Ordered in increasing degrees of symmetry, they

emerged in recent years as an alternative to complemgpé called general codes (GC's), quasi-regular codes (QRC’s),

terrestrial mobile radio systems and to provide new services : . .
. . . . ref-gular codes, and geometrically uniform codes (GUC'’s). The
previously unavailable to land mobile users. As pointed oy

in [1], the constraint on the downlink flux density and th code studied in [11] belongs to the class of GUC, while

; s hat in [2] is a member of QRC. This paper extends the
requirement of a small receiving antenna aperture make a .
: : - works of [2] and [11] to the cases characterized by the two
mobile satellite channel power limited. On the other hand,. )
ixed channel models mentioned above. These two classes

to serve a large number of users in a given bandwidth, it i | fracti £ mobil ™ icati
inevitably band limited. For such an operation scenario, trelli§11COMPAss a farge Iraction of mobile satefiite communication

coded modulation (TCM) is a good candidate modulatio?hannels encountered in practice. Using appropriate values for
scheme [1], [2] for it is both power and bandwidth efficient_the related channel parameters, we can accurately describe

Experiments had been conducted to measure and model fiff. Communication environment under investigation. TCM
bile satellite communication channels [3]-[6]. In cases whepgrformance bounds in a mlxe_d channel characten_zed by Barts
a line-of-sight (LOS) path is available, e.g., when the mobif'd Stutzman [6] can be obtained from [2] by straightforward
is in an open terrain, the received signal amplitude is genera‘ﬂiftens'_on and suitable comblngtlons. But our derivations of
modeled as a Rician random variable (r.v.) [1]. MeasuremehoSe in the other class of mixed channels are new. Fur-
results also indicated that multipath and shadowing effedfiermore, we present asymptotical analysis for both classes
cause the mean received signal strength to vary with tABd obtain results that are similar to that shown in [1]. The
receiver location, and this mean strength can be descrig€§t of this paper is organized as follows. The next section
by a lognormal distribution [7]-[9]. Loo [5] proposed gprovides an equivalent baseband block diagram of the system
model, which assumes that the LOS component under fona@@d two probabilistic models of the mobile satellite channels
shadowing follows a lognormal distribution. The resulting® be studied. The basic analysis technique used in [2] and

_ _ _ [11], which is the starting point of our derivation, is also
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input | rate n/n+1
bits convolutional |Xk |  block _ MPSK
g encoder interleaver signal mapping
channel induced distortion
Y
channel noise ——»Eé
output - Yk ‘ t?lock1
bits Viterbi e-1nterleaver
D decoder Pk channel
estimator
Fig. 1. Baseband model for a trellis-coded MPSK system.
[I. SYSTEM AND CHANNEL MODELS Pra(z;a,b) = 20
AND PERFORMANCE BOUNDS bln 10V 27z
(20log z — a)?
A. Baseband System Model X exp {_ on? - (20)

An equivalent baseband block diagram for the system underThis model degenerates to a pure Rician fading model when

investigation is shown in Fig. 1. The data stream entersAal . .
. . = 0. For this special case, we have a more compact
rate n/n + 1 binary convolutional encoder. The encodert

output symbols are then block interleaved and mapped into qpression

MPSK signal according to a predetermined set partitioning rule P(S) = Pov (25: 0 /25. 1.9/

[1]. The transmitted signals are impaired by amplitude/phase (8) = Phice(253 €0/28,1,2V'5)

distortions and additive white Gaussian noise. The received = coexp [—co(S + 1)) o(2c0V'S). 3)

samples are deinterleaved before being fed into the Viterbi ) ) i )
convolutional decoder. CSI can be derived from the receiv&d/rthermore, it be_comgs a R2ayle|gh fading channel if we make
waveform to help the convolutional decoder in improving it§€ change of variabl= = +=(1+¢o/co) and set bothi and
performance. Of course, the decoding metric used when ¢8| 0 Zero. _

is available is different from that without CSI. Subsequent '€ Barts and Stutzman model [6] is the s'econd_cla_ss of
discussion, like the analysis presented in [2] and [11], assumib¢erest. In this model, the received amplitude’s pdf is given
1) interleaving and deinterleaving is such that the “chann
between the interleaver and deinterleaver is memoryless; 2)

the communication channel suffers from slow and frequency- Pv) =1 = A)Price(v; 5, 1, \/é)

nonselective fading; 3) perfect coherent detection is achieved; + A/Oo Price(v; k, 1, 2) Pra(z;m, bo) dz. (4)
and 4) an infinite decoding delay in the Viterbi decoding 0
process.

This model reduces to the one proposed by Loo [5] wHen
B. Channel Models 1. For convenience of comparison, we use normalizations such
' that the mean-squared value of the received signal amplitude

Two classes of channel models are considered. The figgfuals one. This can be accomplished by lettfhg= hip?
class models the received signal power as a r.v. whose p@d v = p.hy, where

is a convex combination of Rician and Rayleigh/lognormal

distributions [4] hy =v/(1 = A)hyy + Ahyo (5a)
P(S) = (1 — A)Price(2S5; ¢0/25,1,2V/5) hy =\/(1 = A)hgy + Aha; (5b)
o0 1 + Co
4+ A / Prtay(5150) PS03 2010, 20) dSo (1) P ==~
0 , )
wherec, in the Rician part represents the direct to multipath hiy = exp | <ln 10) + 1o In10
signal power ratio 2\ 10 10
Price(w; 0, b, ¢) = ab®z exp [—a(b?z? + ¢*) /2] hop = 2(1 + k)
x Io(abex) (2a) K ,
1 By — 2 n @ In10 n In10
Pray(5]50) = 5 exp (=5/5) (2b) 2T 10 "0 )
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The pdf's for the normalized amplitudes corresponding to (1) A 612 S
and (4) become 2‘}\ 1 8; L Sy 02
Pi(p1) =(1 — A)Price(p1; 2c0, b1, 1) 5, fgf R
+ A@H) [ Py (47150) PS5 210, 20) 0
- dSo " 6a) 3 5 S 1341
and @ (b)
Py(p2) = (1 — A) Price(p2; ki, h2, V2) Ia
+ Ahs /OO Price(p2; b, ha, 2) Prn(z3m, bo) dz. '
0 (6b) @) )
An advantage of such normalizations can be noticed by ©

comparing the Rician parts of (1) and (6a). Now there is onfyg. 2. (a) Signal constellation and squared Euclidean distance of a two-state
one parameter in (6a) that has to do with the random amplitu&%ﬁ g\rip‘:]PSK code. (b) The trellis diagram. (c) The corresponding signal
while there are three in (1). Note that in normalizing the Rician

parts of (1) and (4), we have invoked the identity ) . .
is the decoding metric. The BEP, denoté}, can then be

Ji(h, z,y) upperbounded by [13]
def e 3 ;92 .’L’(h22’2 + y2) 1
= 5 —_— I 7 |] 2 2 el / /
/0 z°zh” exp [ > o(zhyz)dz b < 5 Z P(x) Z: al(z,zYP(z — z') (12)
_ 2 2 = £
- W(l +ay/2) (7) wherea(z, z') is the Hamming distance betwegrandz’ and

which can easily be derived from [14, (11.4.28) and (13.1.270th summations are performed over all possible code words
of all lengths). Furthermore, if we denakf, as the average bit

signal energy/Vy the one-sided noise power spectral density,
c. BI_EP Perlforma.nce . . . 7 the set of allk’s for which the correspondingth transmitted
This section gives a brief review of the basic analysisymbol z,, is incorrectly decoded (i.ex;, # 1), and let)

procedure used in evaluating the BEP bound of a TCM systepa a nonnegative number, we can show [11] that the pairwise
For more detailed presentation, readers may refer to [1] agffor probability is bounded by

[13]. Let the coded sequence ke= (zy,z2,---,2;), Where 2 ,
x3'S are complex numbers representing the MPSK signals. AlP(z — 2') < E[D(ﬂ@,g')] = E{exp {M} } (13)

the receiving end, the deinterleaved sample sequence can be 80?
expressed ag = (y1,¥2, -+, %), Where whereo? = (2nE,/No)~* and
Yk = PRy + Nk (8) Zpﬂxk — 2} )2 ideal CSI
px is a real r.v. representing the effect of channel fading on the d*(z,z') = ken Lo
received amplitude and,;, is an additive complex Gaussian 24)‘(”‘ = Al — @[, no CSI.
r.v. with zero mean and varianced. Note that as a result kecn
of the perfect coherent detection assumption, phase distortion (14)

does not appear in (8). Furthermore, the perfect interleav—USing the transfer function method [13], we can show that

ing/deinterleaving assumption makes all,k = 1,2,---,7  p for the two-state code analyzed in [11] is upperbounded by
independent. The probability that is the decoded sequence, ;
a

while z # 2/ is the transmitted sequence, denafe@d — '), P, < 1 .91(D, 1)

= o o 15
'S 2n Ol |, 2(1-a)? (15)
P(l — Q’) = _P,(ﬂ],(g7 £/) > m(g7£)|£) (9) where "
a
where T(D,I) = - (163)
: E(Dr*%) ideal CSI

= 252 2 16b
my.z) = > mlye ) (10) ¢ { DY B(D4WE) no CS| (16b)
- b= E(Dr%), ideal CSI 169

and T\ D-WEB(D%), no CSI

e, 1) = { —lyx — Pk372k|27 with ideal CSI- 14y §2 = 2,63 = 4 are the squared Euclidean distances between
—|yx — z1|?, without CSI different pairs of signal points [see Fig. 2(a)] apds a r.v.,
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andé? = 2—+/2, §7 = 2++/2 are two other (besideg andés)

(1) ~(0)

- 0 01 . T C:"Oi" squared Euclidean distances between candidate signal points.

" N‘ 1, A BEP upperbound for QRC can also be obtained in a manner

l—»[ﬂ—»é—» co 82 o similar to the GUC case. In summary, the BEP performance
Nl 5.2 of both GUC and QRC can be evaluated by using either the

. 1 52 =4 transfer function or the modified transfer function associated

1 10 with these codes. The effect of the channel characteristic

@ (b) is reflected in the parametersd, defined in (16b), (16c),

(21a), and (21b), respectively. Therefore, to calculate the BEP
upperbound for either GUC or QRC, we need only to compute
the values of these parameters.

Cr(xl)C,EO)
(00) (10) So

S
(01 11 = IIl. BEP BOUNDS

Equation (7) and the following two identities are needed in
the calculation of BEP bounds for the trellis codes discussed

(10) (00) 52

1y on 5 in Section I
(@] (d) Jg(a,h,a:,y)
Fig. 3. (a) Encoder of four states, rate 1/2, and 4PSK code. (b) Signal det [ 5 a:(h222 _|_y2)
constellation and squared Euclidean distance. (c) Trellis diagram of four states = / xh*zexp {— {az + 4} }
and (d) the corresponding signal flow graph. 0 2
x Io(zhyz)dz

which has the same distribution ag of (8). For the four- _ 1 exp <_ ay®/h? ) (22)
state rate 1/2 4PSK GUC code shown in Fig. 3(a)—(c), the 1+ 2a/(xh?) 1+ 2a/(xh?)
corresponding transfer function is given by Jz(a, h,z,y)

2 | 7232 o0 z(h?2? + y?)

_g22 0—a +1I déf/ thZeXp{—|:4OéZ+(7y:|}
T(D,I)=I"a T~ 20+ a2 I ann o 2
and the BEP is upperbounded by x lo(zhyz) dz
2 1 Tz 2
—e /2] - — L tgyers (0)/2
p,< DD Kl 18) e - ARTETCE
2n O  |;_; 2(1-2a+a%-102)
where < ate [Va2f (9]0} @)
fi(a,b) =20 — 6a* + 6a° — 2a° + 4a2b? — 8a®V? 4 4a*b?
— 9025t where f(8) = 4a/(xh) — y cos §. The last equation is derived

in the Appendix, and/; follows directly from [14, (11.4.29)].
For QRC's, we can use the modified transfer function method

to obtain similar BEP upperbounds [13] [2]. The four-stalg ' pe formance with Ideal Channel State Information (CSI)
rate 2/3 8PSK code analyzed in [2] is an example of QRC.

It can be shown that the associated modified transfer functiont) Mixed Model of the First Kind:For the case when the
is given by received amplitude has a pdf given by (6a), the corresponding

parametersi— can be computed via

(D, I)
_ fQ(Iv avbvcv d) EPI(DP?@) :(1 - A)ERice(DP§’8;2CO,h1,1)
1-12¢c—Ia—1d—12d—13c2/2 4+ 2ad + 13d2%/2 +AERay/Ln(DP§'8) (24)
(19)
where where 3 represents one of the squared Euclidean dis-
tances (i.e.,67,63,6%, and 6%) defined in the last section,
fo(1,a,b,¢,d) Erice(z(p); a,b,c) represents the expectation ofp) taken
= I*ac+ Ibc + I*ad + Iab + IPac® — I3bc? /2 with respect to the pdPrice(p; a, b, ¢), and B,y /1) is the
— Pabe + I*6%¢/2 — IPad® — I2abd + 13d%b/2 expectation ofy taken with respect to the Rayleigh/lognormal
2,2 4929 o4 o part of (6a). We can easily show that the first expectation on
+€ 2b d/2 = I"a”c” + I"ac’d (20)  the right-hand side of the above equation is
e { E(Dr %), ideal CSI (21a)
D—4)\26§E(D4)\p6§)7 no CSl ERice(Dpia; 2607 h17 1)

d

{E(D”zéi), ideal CSI 1 [ —gB/h?

b Lt A0 S
(210) ¥ 98/ (el

22 2 = 5 < 25
D=5 B(DW), no CSI 1+ gB/(coh?) P } (25)



904 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 46, NO. 4, NOVEMBER 1997

whereg = nE,/4N,. The other expectation can be evaluatednd

as follows:
2 E ice/Ln Dﬂz
Eray/1a(D717) Rice/Ln(D"7) o
- 2 tol . 303) =2 Lo(Fph
:/ exp(—gﬁp%)/ Q}Tg;plexp <_%> / / exp ( Q/PQ) b o(kphyz)
0 0 0 0 _ 2 272
X PLH(S()) dSo dpl X exp |:_ (20 log2(z;2 ) _ /{;( h§—|— z ):| dz dp
= —————— P1.n(S0) dS, oo sz — m)2
/0 1+ BSog/R2" " (S0) dSo _ b8.65;6 I {_(2010222 m) }
RV z
10 In 10v2ro? / ><0J (Wﬁ (;L A 0 a
- /9 L B2/(84 Z)dz.
oln10v27 10 So+h2/(/jg) 280G, 2, K,
(101og So — 110)? ERice/Ln(z) is the expectation of taken with respect to the
TP T e dSo (26)  Rician/lognormal part of (6b). Substitutingy= 2,4, 2—+/2 or

2 + /2 in the appropriate Chernoff bound equations derived
The second equation in the above derivation is obtained Ajove, we then obtain the associated BEP upperbounds.
the change of variablg?p? /S, = t2. Using the expansions

i UNT ” B. Performance without CSI
v—lz(——) , for‘—‘<1
hur AN v 1) Mixed Model of the First Kind:As with the perfect CSI

—1 _
(uto)™ = © (27)  case, we have the decomposition
u—lz(——) , for |4]>1
i E, (D) = (1 = A)Erice (D™ 20, h1,1)
and the change of variabllog Sy = x, we can show + AERay n(D*MP). (32)
r18
Eray/La(D"7) , It can be shown that
1 50 h?
—1—Cexp |22 _ \/O_log -1 ERice (D™ 2¢0, hy, 1)
2 V2o o By
= J3(g)‘/37 hi, 2co, 1)
X Z{ "lexp (22) exfe (z,) + exp (2 ) erfe (y,,)]} =% [1 - % / \/%916‘:09f erfc (\/cob1) df
n=0 Y 0
(28) (33)
where where
101 h? 5 In10
8 By ARAT? 61 = 2gA3/(cohy) — cos b
Tn = /7
20 B and
+o(n+ 1) _ 1010 < )
- Ho ( ) 10 og Bg ERay/Ln D4)\ﬁp1)
" \/50' pl h2p2
. . o . . . exp ( 4Ag[3p1) 1 exp | ——1
This series expansion is very useful for it provides a computing So
algorithm that is more efficient than that of (26). Using the « an So)dpl dSo
rational Chebyshev approximation proposed by Cody [15], we o0 9
can accurately and efficiently compute the temhserfc (z). = / Js <g)\/37 h1, 5—7()) Prn(So) dSo. (34)
0 0

Numerical results indicate that for all cases of interest, less
than 20 terms are needed in the above expansion in orderri |ast equation can be further simplified to
obtain the required accuracy.

2) Mixed Model of the Second KindSimilar to the previ- ERay tn(D*P)

ous case, we have the decomposition /e 009 6 ot ) PLu(Se) 450 (35)
2 2 =1- 7r/ e’z erfc Py 5
E/’z (DPZ’B) :(1 - A)ERice(Dpzya;kthv\/i) 0 2 2L 0 0

28
+ ABRice/1n (D7) (29)  where 6, = \3v/So2g/h1.
in which 2) Mixed Model of the Second Kindzor the decomposi-
2 tion
ERice(Dpzya; ka h27 \/5)
1 —29/3/h3 E,,(D*9r2) = (1 = A)Egice(D* 72 k, ho, V/2)
= T T oaan P\ 5 2o (30) SY:
1+2g8/(kh3) 1+2g8/(kh3) + AERjce/La(D*7?) (36)
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the first term on the right-hand side is given by
ERice(D4)\’8p2; k? h27 \/5)
— [ kmabexp(=4gABp) exp (1 + 5313)
0

x Io(V2kpahs) dps

= J3(gA\B, ha, k. V2). (37)

The substitution = hy, = k, andy = z leads to

-ERice/Ln(‘DLL)\IBP2 )
> 8.686kpah’
= —4gAfBpr)—————=
/0 exp (—4gABp2) W
oo N2 T 282 1 L2
></ lexp {_(2010222 m)? k(p2h§+z )}
0 0

z

x Io(kpazha) dz dps
=) NV 2
:/ 8.686 exp [_ (2010g,z2 m) }
0 bo 2Tz 2b0
x J3(g\B3, ha, k, 2) dz. (38)

IV. ASYMPTOTIC ANALYSIS AND DESIGN CRITERIA

In this section, we study the asymptotic BEP behaviors ﬁﬁll
TCM/MPSK systems. The usefulness of asymptotic analy
lies in the fact that it can tell us which parameter(s) of the co
used dominate the system performance whgpN, becomes
sufficiently large. Thus, a judicious choice of the trellis code
to be used is made possible. In [1], it was shown that in a

Rician fading environment

905

Defining

c1 =(1— A)e ™ ¢coh? + Ah?

o2 (In10\? In 10
PS5\ 0 ) T

(42)

we can write

E, (DFify ~ L

ap

When CSl is not availablé); in (33) approache3gA\j5/(cohq)
as g becomes sufficiently large. Invoking the asymptotic
expansion

(43)

P1

e 1
erfc (o) ~ Jra <1 - ﬁ)

we obtain

e~ coh?

ERice(D*PP152¢, by, 1) =~ SN

(44)
Note that Pr,(So) is negligibly small whenS, is close to
zero, and, therefore, errors incurred by approximating other
rts of the integrand in the smafl, region contribute very

e to the integration. This observation and the asymptotic

§§pansion oferfc (o) lead to

E(D4)\’8m )Ray/Ln

h2 02 (In10\®  In10
e == ) —p—=]- 4
sxzpzgz P [2 < 10 ) #10 (45)

-\ T From (44) and (45), we have
Py~ %c<—(1 %I/(])VC ) . EJNo>K  (39) (44) and (45) /
ke 0 Ep1 (D4)\,@P1) ~ QC; 5 (46)

whereb is a constant(” is a function of the weight distribution peg*A
of the code K is the ratio of the power in LOS plus speculagyhere
component to that in the diffuse component, ahds the . ) )
length of the shortest error-event path, defined as [12] the d = (1 = A)e™* cohy Ahy
error-event path whose Hamming distance to the correct path 8 8
is the smallest amongst all possible error events. We shall show o2 (In10\? In 10
that similar asymptotic performance bounds for the two mixed " eXp ?( 10 ) —H 10 ] ’ (47)

channels under consideration also exist. For all the derivation

in this sectiong > 1 is assumed. Let us consider the mixetlext, let us consider the mixed model of the second kind. For
model of the first kind to begin with. For a TCM/MPSKthe ideal CSI case, we have

scheme to operate in such a channel with ideal CSI reception,

we have from (25)

Erice(D"1%; 2c0, h 1)~e—coﬁ (40)
Rice s 400, 11, — 9/3
and from (26)
ERay/Ln(DP?B)

~ P, (So) dS
o BSog! A
h2 02 (In10\®>  In10

=1 — =) - @
/JgeXpl2<1O> #0710 (41)

E, (Dr3f) ~ 2 (48)
where
ke*h2 khZ [ 8.686 >
=(1-A 2 A—Q{ X / =
o2 =( )3 2 (Voo Jo =

20log z — m)? =7
exp _M exp (<52 Yzl (a9)
202 2

The corresponding aymptotic form when there is no CSl is

/
By, (D) = 22

~ (50)
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where TABLE |
h 2 © g 686 CHANNEL PARAMETERS FOR THEMIXED MODEL OF THE FIRST KIND
p=(=2 - k4 Ak OO
€2 = < 4 ) [(1 Ayke™ + Ak /0 bov 27z case | environment 4 | C{dB) | uy(dB) | o(dB)
. _ 2 _
X exp {_(201082#}6(_“2/2) dz:|. (51) lul | highway 0.002 | 173 | -13.8 2
0
Summarizing, we conclude that lu2 | highway 0.19 | 174 8.1 42

G

E, (D”w )~ P i=1,2, (ideal CS) (52) CABLE |
and CHANNEL PARAMETERS FOR THEMIXED MODEL OF THE SECOND KIND
& case | 4 m
B, (D™= o =12 (noCS). (59) Ky | Kam) | @By | bo am)
g
stl |0.67 | 20 20 -3.1 0.9
From (13) and (14), the pairwise error probability is thus -
bounded by stz | 06 10 20 |-9.93 1.36
Pz — 2') lo 1 - 12 -34 7
Hm ideal CSI
< 2 /12 102 ¢
> c; exp (dngA*|z; — xi|*)
I AN gt M0 CS :
i€n 10° |
(54)
wheren is the set of all for which z; # «.. Substituting (54) o 10
into (12) and taking into account the fact that> 1, we obtain §
L @ 10° ¢
1 i . &
5 <c ) M, ideal CSI 0 .
B, < 1” , (55a) 0%
c/.
o <—12> [miny~o N(A)], no CSI . [A: Code 1
N9 10 £0: Code 2
where ¥: Code 3
108 : : :
alzp,zL’) 5 10 15 20 2
M=) Plzp)y —=—=% (55b) >
; — ;_L: L(zp,zr') Es/No
1 Fig. 4. BEP bounds for receivers with ideal CSI in various mixed channels
N()‘) = )\W Z P(xL) of the first kind; asymptotic bounds are represented by boldface lines.

X Z a(x—Li’x—Lll) exp (4ng\2ly(xr, xr'))  (55C) dominated by two factors: 1) the length of the shortest error-

zL') event path and 2) the product of all the squared Euclidean
distances between paths with this (Hamming) length and the
and rp = (371,372, -+,zr) is a transmitted code word of correct path, or equivalently, the number of nearest neighbors.
length L and z1" = (37173727" ,x7,) is any other lengthl.  The code ratex/n 4 1 also plays a role in the asymptotic
code word, where;; andz} are MPSK signals. Furthermore pounds.

1(zr,zL") Z |z; — k| (56a) V. NUMERICAL RESULTS AND DISCUSSIONS

We will refer to the two-state rate 1/2, 4PSK code mentioned

2 in Section Il as Code 1, the four-state rate 1/2 4PSK code as

2z, 2L H i — il (56b)  code 2, and the four-state rate 2/3 8PSK code as Code 3. The

channel parameters used in our simulation are listed in Tables

Note that for the no-CSI case, the corresponding Cherndfand Il, respectively. Table | provides the parameter values
bound is to be obtained by minimiziny(\) over A. It can for the mixed channel of the first kind, and Table Il are those

be shown that the optimal values farare in proportion to for the Barts and Stutzman model.

1/./g, and, thereforep,,’s are proportional tgy—% for both Figs. 4-5(b) show the BEP bounds with ideal CSI, while
CSI and no-CSl cases. Figs. 6—7(b) depict those without CSI. As expected, the re-
From the above discussion, we know that the BEP bouwdiver with ideal CSI outperforms that without. The extent
is inversely proportional tog”. Furthermore, the BEP is of the improvement depends on channel condition and the
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107 ¢ 107 ¢
103 o 10° |
2 10 Ut
g 10 g 104 LU )
[o] Q
m m
o o
@ 10° b @ 10°}
A: Code 1
0: Code 2
10% | 7 10® A: Code 1
, + Code 3 - 0: Code 2
V: Code 3
10-7 L L . P s I 1077 . - N L
5 10 15 20 25 5 10 15 20 25
En/Ng En/No
(@) Fig. 6. BEP bounds for receivers without ideal CSI in various mixed
channels of the first kind; asymptotic bounds are represented by boldface
102 lines.
103 | selected. Applying long division on the BEP bounds foy’s,
— followed by some algebraic manipulations, we obtain
g 10 P, <(ab+ higher order termg'2 (57a)
é P,, <(2a® + higher order termg'2 (57b)
@ 10°
- . and
10¢ - A: Code 1 Py, < (2ac + be + 2ad + ab + higher order termg'4 (57¢)
0: Code 2
V: Code 3 where the order of a given term is defined as the sum of the
107 S : exponents for, b, ¢, or d appearing in that term. The order
5 o120 25 0 of the lowest order term in a BEP bound equation is equal
Ev/No to the length of the shortest error-event path. The above three
(b) inequalities indicate that Code 2 will outperform the other two

Fig. 5. (a) BEP bounds for receivers with ideal CSI in various mixeé?c'des aSymptOt'Ca"y since the lowest order term in its BEP
channels of the second kind; asymptotic bounds are represented by boldfaceind equation has the largest exponent among the three BEP
lines. (b) BEP bounds for receivers with ideal CSl in various mixed channgyunds. Our simulation confirms this observation. Substituting
of the second kind; asymptotic bounds are represented by boldface lines. . .
the values ofa, b, ¢, andd we have obtained in the above
inequalities and neglecting the higher order terms, we find that

trellis code used. The better the channel condition and the )

trellis code used are, the less the improvement becomes. (¢ ideal CSI
When Code 2 is used in the mixed channel labeled as “st1,, g7’ (58a)
the improvement is less than 1 dB when the BEP bound™ = | 2¢7 exp (691\?) 16 CS|
= 10~7. On the other hand, for Code 3 and channel condition L girt ’
“st2,” the improvement brought about by perfect CSl is 2.5 ( 8¢3 )
dB when BEP bound= 1.1 x 10~°. On the average, the g—§7 ideal CSlI
improvement ofE, /N, is about 1.5 dB when ideal CSI is h. <{ 43 exp (6g11) (58b)
provided. Substituting (52) and (53) into the defining equations ]6—)\6, no CSlI
for a—d and then the BEP bounds fdf,,, P,, and P, ) 91
gives the corresponding asymptotic performance formula. We C_ZQ 19+v2 ideal CSI
depict some of these curves in Figs. 4-7 for the purpose of g3 g8
comparison. These asymptotic performance curves indicate 42 [ Lo X (a=vD] 201X (6=V2)]
that the analysis presented in the last section is indeed validbs < girt| 42— v2)2 + 16(2 — v/2)?

Recall that we have found that the BEP bounds are domi- (291 A2 (4-4v/2)] (121A2)

. . .. .. e c

nated by three factors when signal-to-noise ratio is sufficiently + , no CSI.
high. Let us examine more closely how these three factors L 42 +V/2)? 64

affect the asymptotic behavior of the three codes we have (58¢)
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for the no-CSl case. Our simulation results indicate that these

estimations are very reliable wher, /N, is above 30 dB.
VI. CONCLUSION
We have presented the BEP bounds for trellis-coded MPSK
systems over two classes of mobile satellite fading channels.
As mentioned before, these two classes encompass a large
fraction of mobile satellite communication channels encoun-
_ tered in practice. One can use appropriate parameter values
3; 8oge ; and accurately describe the channel under which the designed
v ngz 3 system is supposed to operate. The trellis codes analyzed here
' are members of GUC or QRC. They have low implementation
complexity, modest error-correcting capability, and are suit-
! ‘ b able for use in a mobile satellite environments. Asymptotic
5 10 15 20 25 BEP bounds are found, and numerical validation is provided.
En/No These bounds are similar to those obtained in simpler (Rician
() or Rayleigh) fading models. In other words, the key parameters
that dominate the BEP behavior are the length of the shortest
error-event path and the product of the squared Euclidean
distance between the correct path and all the corresponding
shortest-Hamming-length error-event paths.
APPENDIX
- DERIVATION OF (23)
J3(a7 h’7 xz, y)
, B xh?2?
A Code 1 = w/o xh*zexp [—4042 - }Io(a:hzy) dz
0: Code 2 (A1)
V: Code 3 ™ th oo
[
5 10 30 o T Jo
Es/N h2 2
o/ R0 X exp [ — 4oz + xhyz cos 9} dz dbf (A.2)
(b)
(a) BEP bounds for receivers without ideal CSI in various mixed 4o ycos 2
channels of the second kind; asymptotic bounds are represented by boldface — W 7exp -zt P
lines. (b) BEP bounds for receivers without ideal CSI in various mixed
channels of the second kind; asymptotic bounds are represented by boldface 2 2
+ﬂ Ao _yeosONT L
2 \zh2™ & *
Solving the X's that satisfy the Chernoff bound condition nop2 oo (A-3)
leads toX = 1//3¢:, 1/v/2g1, and.535/,/g1 for Codes 1, _ w/ 37_/ 2exp [_f(thrf(e))Q n fo(e)}
2, and 3, respectively. The BEP bounds for the no-CSI case o T Jo 2 2
-dzdf (A.4)
™ o> 2
P, <133¢2/g} (59a)  —u / e / <\P _ f(9)>
x
P, <10283.8¢3 /g (59b) 0 T I/2f )
2
by, < 505-503'2/9% (59c¢) X exp {—72 + m} \/ng de (A.5)

where ¢;

E,/Ny. The corresponding values for;'s

can be calculated once the channel parameters are known.zw{ / / \/: €xp { B
Substituting ¢;’s into the above inequalities, we have the V#/25(8)

logarithmic slopes-log (P,,)/10log (E}/No) ~ 2(i = 1,3)
and3(i = 2). This is consistent with what (55a) and (55b) have
predicted. Similarly, it is found that the asymptotic coding gain
of Code 1 with respect to Code 23dog (194-1/2)/8 = 2 dB

for the ideal CSl case ariilog (505.

5)—log (133)] = 2.89 dB

2R )}

x \/; dr d — ; /0 /mﬂe) £(0)
7+ @} \/g dr d9}

% exp {_7 (A.6)
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—w %/Owexp <@) /(:2)f2(0) exp (—t) dt df
V2 / I <xf2( ))
X /\/mf(e)exp(— )dr df (A7)
X erfe <\/§ f(9)> de} A8)

wherew = exp (—(zy?/2)). In deriving (A.4), we have used

(8l
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this identity is threefold: 1) the integration interval is reduced

from (0, c0) to (0,); 2) as mentioned in Section IlI-A-1, the
integrande’”2 erfc (z) can be very accurately and efficiently
computed [15]; and 3) a simple expression of an asympto
BEP bound can easily be derived by using the asympto
formula for erfc (z).

REFERENCES

[1] E. Biglieri, D. Divsalar, P. J. McLane, and M. K. Simomtroduction

to Trellis-Coded Modulation with Applications New York: Macmillan,

1991.

R. G. McKay, P. J. McLane, and E. Biglieri, “Error bounds for

trellis-coded MPSK on a fading mobile satellite chann&EEE Trans.

Commun,. vol. 39, pp. 1750-1761, Dec. 1991.

[3] J. Goldhirsh and W. J. \Volgel,

satellite systems: Overview of experimental and modeling results

NASA Reference Publication 1274, 1992.

E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, and W. Papke, “The

land mobile satellite communication channel-recording, statistics, al

channel model,IEEE Tran. Veh. Technglvol. 40, no. 2, pp. 375-385,

1991.

[5] C. Loo, “A statistical model for a land mobile satellite link|EEE
Trans. Veh. Technolvol. VT-34, pp. 122-127, Aug. 1985.

[6] R. M. Barts and W. L. Stutzman, “Modeling and simulation of mobile

satellite propagation,TEEE Trans. Antennas Propagatol. 40 no. 4,

pp. 375-382 1992.

F. 1. Meno, “Mobile radio fading in Scandinavian terrailEEE Trans.

Veh. Techno].vol. VT-26, no. 4, pp. 335-340, 1977.

(2]

(4]

(7]

“Propagation effects for land mobile

Math. Comput.vol. 23, no. 107, pp. 631-637, July 1969.

Wen-Chang Lin was born in Yuanlin, Taiwan, on
June 22, 1957. He received the B.S., M.S., and Ph.D.
degrees in electronics engineering from the National
Chiao Tung University, Hsinchu, Taiwan, in 1980,
1982, and 1997, respectively.

Since 1985, he has been with the Industrial Tech-
nology Research Institute (ITRI), Hsinchu, where
he is engaged in several activities in the field of
digital modulation and demodulation. His current
research interests are in CDMA cellular systems and
the DECT system.

Yu T. Su (S'81-M'83) received the B.S.E.E. degree
from Tatung Institute of Technology, Taipei, Tai-
wan, in 1974 and the M.S. and Ph.D. degrees from
the University of Southern California, Los Angeles,
in 1983.

From May 1983 to September 1989, he was with
LinCom Corporation, Los Angeles. He is currently
a Faculty Member in the Department of Communi-
cation Engineering and the Microelectronic and In-
formation System Research Center, National Chiao

b Tung University, Hsinchu, Taiwan. His present re-

search interests are in the areas of communication theory and statistical signal
processing.



