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Some New Designs of 2-D Array for Matrix 
Multiplication and Transitive Closure 

Jong-Chuang Tsay and Pen-Yuang Chang 

Abstract-In this paper, we present some new regular iterative 
algorithms for matrix multiplication and transitive closure. With 
these algorithms, by spacetime mapping the 2-D arrays with 
2 N - 1 and [( 3 N - 1 )/21 execution times for matrix multiplication 
can be obtained. Meanwhile, we can derive a 2-D array with 4N - 
2 execution time for transitive closure based on the sequential 
Warshall-Floyd algorithm. All these new 2-D arrays for matrix 
multiplication and transitive closure have the advantages of faster 
and more regular than other previous designs. 

Index Terms-Algorithm mapping, matrix multiplication, mesh 
array, systolic array, spherical array, transitive closure, VLSI 
architecture. 

I. INTRODUCTION 

YSTOLIC ARRAY [ 11 has been proposed over a decade. S Roughly speaking, it is a special purpose parallel device 
composed of several processing elements (PE’s) whose in- 
terconnections have the properties of regularity and locality. 
With these properties, systolic architecture is very suitable for 
VLSI technology. 

In spacetime mapping design methodology, the first step is 
regularization [2], [3]. By regularization we mean to rewrite 
the sequential algorithm to a regular iterative algorithm, RIA 
[2] (or uniform recurrent equations, URE’s [4]). Dependence 
graph (DG) is a graphical representation of a RIA and the 
length of the longest path in this graph is the minimal 
execution time needed for executing the RIA. 

The next step of designing systolic array is to determine 
a proper schedule vector and its corresponding compatible 
processor assignment matrix to meet the constraints of data 
availability and processor availability. That is, a proper sched- 
ule must satisfy the precedence constraints imposed by the DG 
and must also ensure that no two different computations are 
executed at the same processor at the same time. 

The well-known schedules for array processors are linear 
schedule, uniform affine schedule and affine schedule [2]. 
A linear schedule is that all variables are with the same 
schedule vector. In addition to the same schedule vector, the 
uniform affine schedule can have different translation parts 
for variables. The affine schedule is more general. It can have 
different schedule vectors and translation parts for variables. 
If two indexes are executed at the same time, they are on the 
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same hyperplane. For the entire index space, we may draw 
several parallel iso-temporal hyperplanes. The schedule vector 
is in the direction normal to these hyperplanes. 

We use a transformation matrix (T) to represent the space- 
time mapping. The first row of this matrix is the schedule vec- 
tor ( A T )  and the remaining rows are the processor assignment 
matrix (ST) .  The result of multiplication of transformation 
matrix and dependence matrix ( D )  is a new dependence matrix 
(D’ = T * D )  in which the first row represents time delay and 
the remaining rows are the corresponding interconnections of 
an array processor. 

Now we tum our attention to the problem of matrix mul- 
tiplication (C = A x B). There are an intensive number of 
array processors designed for this problem in the literature. 
For example, the design of the linear arrays by Prasanna 
Kumar-Tsai [5]-[7] and Ramakrishnan-Varman [8], [9], the 
mesh arrays by S. Y. Kung [lo] and Melkemi-Tchuente [ l  11, 
the hexagonal arrays by H. T. Kung [l] ,  Quinton [4], and Li- 
Wah [12], the cylindrical array by Porter-Aravena [13], and 
the two-layered (or the multilayered) mesh array by Kak [14], 
[15]. Besides, Benaini-Robert [ 161 and Jagadish-Kailath [I71 
used Winograd algorithm for matrix multiplication to design 
their systolic arrays. 

Comparing these designs for matrix multiplication, we have: 
first, the mesh array has the good property of local connection, 
but its execution time (3N - 2) is greater than that (2n‘ - 1) 
of the cylindrical array, where ?i is the size of the matrices. 
Second, based on the Winograd algorithm, we have :jLV/2 
execution time [16], but this two-layered mesh array is not 
so regular. 

In Section 111-A, we design mesh arrays with 2 5  - 1 
execution time. In Section 111-B, we have a mesh array with 
r (3N - l ) /21 execution time. All of the above new designs of 
2-D arrays are based on the sequential matrix multiplication 
algorithm of C = -4 x B. 

For the problem of transitive closure, the orthogonal array 
designed by S. Y. Kung et al. [18] has the execution time of 
5N - 4. which is optimal in terms of pipelining rate, block 
pipelining rate, and the number of VO connections. According 
to the dependence graph (DG-3 in his paper) used by S. Y. 
Kung, the longest path in this graph is 5 N  - 4. Therefore, for 
this DG the design is optimal in execution time. It is interested 
that whether there is a DG for the transitive closure problem 
with a shorter length of the longest path. We will show in 
Section IV that it is true and present a new design of 2-D 
array for transitive closure, which has 4 N  - 2 execution time. 
Finally, the concluding remarks are presented in Section V. 
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11. PRELIMINARY DEFINITIONS 

In this section, we give some preliminary definitions as a 
basis for following sections. 

Dejinition 2.1: A left-shift sequence, L ( i ;  1, N)  = ( i  + 
l , i + 2 ; . . , N , 1 , 2 ; . . , i )  = ( l i ( l ) , l ~ ( 2 ) , . . . , ~ i ( ~ r ) ) ,  is a 
sequence of integers resulting from shifting the sequence 
(1 ,2 ,  . . . . X )  left cyclically i times, where 0 5 i 5 N - 1. 
The j th element in L is l i ( j )  = ( i  + j - 1)mod N + 1, where 
1 5 j 5 N .  

Dejinition 2.2: A right-shift sequence, R(i; 1, N )  = 
(N - i + 1 , N  - i + 2 , . . ‘ , N , 1 , 2 , ” ’ , N  - i )  = 
(ri  ( I ) ,  ri ( a ) ,  . . . , ri( N ) )  , is a sequence of integers resulting 
from shifting the sequence (1 ,2 ,  . .. , N)  right cyclically i 
times, where 0 5 i 5 N - 1. The j th element in R is 
ri(j) = ( j  - i + N - l ) m o d , ~  + 1, where 1 5 j 5 N .  

The following theorem shows the relationship between these 
two sequences. 

Theorem 2.1: /i(j) = k z fsr i (k)  = j ,  where 0 5 i 5 N - 1 
and 1 5 j , k  5 N. 

Pro08 (if part) 

case 1: i f i + j < N  

* 
case 2: if i + j 2 N 

l i ( j )  = ( i + j  - l ) m o d j v  + 1 = i + j  = k 
j = k - i  = ( k - i + N  - l ) m o d N  + 1 Q ( k )  

l i ( j )  = ( i + j  - l)modN + 1 = i + j  - N = k * j = k -  i +  N = ( k  - i +  N - l)modN + 1 = r i ( k )  

0 
The meaning behind this theorem is that if we want to know 

which position (say j )  the number k appears in the left-shift 
sequence L ( i ;  1, N ) ,  we can read j from the value of ri(IC). 
For example, if we want to know which position the number 
3 appears in the left-shift sequence L( 1; 1 ,3) ,  we have the 
position j = q ( 3 )  = 2. 

There are many criteria (e.g., execution time, pipelining 
period, array size, and YO channels) to measure performance 
of array processors. Since execution time is the most important 
criterion on designing real-time signalhmaging processing 
system, we pay our attention on execution time in this paper. 

Dejnition 2.3: The execution time (t,) of a systolic array 
is defined as the time interval between the time when the 
first operation is executed and the time when the last result 
is calculated. 

By computation domain (0) we mean the set of finite 
indexes used by a RIA. Let I and I’ be two indexes in the 
computation domain 0 of a RIA A.AT is a linear schedule 
in the first row of transformation matrix T.  Assuming that 
there is a unitary time increment, the execution time t ,  of a 

Fig. 1 .  
vector. (c) Propagation vector. 

(a) Multiple fan-in broadcast vector. (b) Multiple fan-out broadcast 

systolic array executing the RIA A by transformation matrix T 
is t ,  = maxI,I/Ee {AT(I-I’)}+l [19]. The actual meanings 
of the execution time of a RIA is the number of hyperplanes 
sweeping the index space. 

The multiple fan-in (Fig. l(a)) and multiple fan-out 
(Fig. 1 (b)) data dependence vectors are called broadcast 
vectors. All broadcast vectors can be systematically trans- 
formed into propagation vectors (e.g., Fig. l(c)). We use the 
term broadcast point (the dark node in Fig. l(c)) to denote 
the starting position for data propagation. A broadcast line 
is composed of several broadcast points. By aggregating 
broadcast lines, we obtain a broadcast plane. 

111. DESIGN OF MESH ARRAYS FOR MATRIX MULTIPLICATION 

The problem of matrix multiplication is to calculate matrix 
C = A * B ,  where A and B are both matrices. Without loss 
of generality, we assume that A ,  B ,  and C are all N x N 
matrices. The matrix multiplication can be carried out in N 
recursions as depicted in Algorithm 3.1. 

[Algorithm 3.11 

For i , j ,  k = 1 to 

Ck?’ = Cik,i + U i , k  * b k , j  
3 J  

with c:,~ = 0 

final results e?’. 
0 

The broadcast data U i , k  and b k , j  in Algorithm 3.1 can be 
removed by introducing propagation variables u ( i ,  j ,  k )  and 
b ( i ,  j ,  I C ) ,  respectively. Now we have Algorithm 3.2 [2]. The 
corresponding DG is shown in Fig. 2, where the bold line 
denotes the longest path in this graph. 

[Algorithm 3.21 

For i , j , k  = 1 to N 

~ ( i ,  j ,  k + 1) = ~ ( i ,  j ,  k )  + a ( i ,  j ,  k )  * b ( i , j ,  I C )  

u ( i , j  + 1 ,k )  = u ( i , j , k )  

b ( i +  l , j , k )  = b ( i , j , k )  

with c ( i , j ,  1) = 0 
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Fig. 2. Dependence graph for Algorithm 3.2. 

initial values a ( i ,  1,k) = a,,k 
b(1,  j ,  k) = bk,j 

final results c i j  = c ( i , j ,  N + 1). 
0 

The dependence matrix D of Algorithm 3.2 is 

By selecting transformation matrix T as follows: 

T = 1 0 0 ,  [: ; :] 
we have 

D ' = T * D =  1 0 0 . [: : :I 
Now we have the well-known mesh array as shown in 

Fig. 3 and we call it Design nl. Since AT = [l 11, 
the execution time of Design m l  is t ,  = maxI,IIEe { A T ( I  - 

1 

1')) + 1 = ( N +  N +  N )  - (1 + 1 +  1) + 1 = 3N - 2 .  

A. Mesh Arrays with 2 N  - 1 Execution Eme 
The execution time of a systolic array can be decomposed 

into three parts. They are queuing time ( tq ) ,  waiting time (t,), 
and operating time ( to)  as shown in Fig. 4. First, the queuing 
time ( t q )  is the time from beginning execution to the position 
labeled by a for datum b N p .  Second, the waiting time (t,) 
is the time from position a to position b. This time is due 
to datum bN,N must wait to meet another datum at first PE. 
Last, the operating time ( t o )  is the time from position b to 
position c. This time results from datum bN,N will operate 

b33 

b31 bzz b13 
bzi blz 
bii 

b32 b23 

0 

az3azza2i - ++-+ 21 

Fig. 3. Mesh array of Design ml.  

: + b  

Fig. 4. t e  = t ,  + tw  + to. 

with N of another data. We know t ,  = t ,  + t ,  + 1, = 
( N  - 1) + ( N  - 1) + ( N )  = 3N - 2 for datum bN,N in 
Fig. 3, where N = 3. 

Eliminating or lowering any part of these times can decrease 
the execution time of a systolic array. That is, if we do 
operation in each PE as soon as possible, we can obtain 
a systolic array with less execution time. It can be carried 
out by moving the broadcast planes of variables a and b to 
(i = j)-plane. By using this broadcast plane, the algorithm 
of matrix multiplication can be decomposed into two phases. 
The first phase is i 5 j and the second phase is i 2 j .  In the 
first phase, the propagation vectors of variables a and b are 
in 10 1 01 and [-1 0 01 directions, respectively. In the 
second $aset the propagation vectors of variables 0 and b are 
in [0 - 1 01 and [I 0 01 directions, respectively. Finally, 
we have Algorithm 3.3 and its DG is shown in Fig. 5.  
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[Algorithm 3.31 

[Phase I ] :  i 5 j 

For i = 1 to N 
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k 

i 

For j = i to N 

For k = 1 to N 

c( i ,  j ,  k + 1) = c(i ,  j ,  k )  + a ( i ,  j ,  k )  * b ( i ,  j ,  k )  

u ( i , j  + 1, k )  = a( i ,  j, k )  

b(i - l , j ] k )  = b ( i , j , k )  

[Phase 21: i 2 j 

For i = 1 to N 

For j = 1 to i 

For k = 1 to N 

c ( i ,  j ,  k + 1) = c(il  j ,  k )  + a( i ,  j ,  k )  * b ( i ,  j ,  k) 

a ( i , j  - 1 , k )  = u ( i , j , k )  

b ( i  + 1, j ,  k )  = b ( i ,  j ,  k )  

Fig. 5. Dependence graph for Algorithm 3.3. 

b3l 
bzi 
bii 

Fig. 6. Mesh array of Design m2. 

with c( i , j ,  1) = 0 
we get 

initial values a( i ,  i, k )  = ai,k 
r l  1 11 

final results ci,j = c( i, j ,  N + 1). 

U 
The dependence matrices Di,  1 5 i 5 2, with respect to 

phase i are 

-1 0 0 1 0 0  

0 0 1  0 0 1  
D 1 =  [ 0 1 0 1 ,  D 2 =  [U -1 0 1 .  

By selecting transformation matrices 37, 1 5 i 
as follows 

2, for Di 

-1 1 1 1 -1 1 
TI= [ o  1 0 1 , 1 1  0 ?i=[: : 4 

D i = T i * D l =  -1 0 0 , L 1 0 1  

D i = T 2 * D 2 =  1 0 0 . [: Ij I] 
Hence, we have a new design of mesh array for matrix 
multiplication by composing these two phases in broadcast 
plane, as shown in Fig. 6. We call it Design m2. Notice that, 
we assume that the data can be inputted on the diagonal PE's. 
If the array restricts that data must be fed on the boundary 
PE's, then the data preloading is necessary. 

This new mesh array not only has the same execution time 
as the cylindrical array [13] but also eliminates the spiral 
arcs in the cylindrical array. In this design, two phases have 
different schedule vectors. We call it two-phase schedule and 
this schedule can be generalized into an m-phase schedule. 
There are three different types of m-phase schedule. They are 
m-phase linear schedule, m-phase uniform affine schedule and 
m-phase affine schedule. In this paper, the first two schedules 
are used to design 2-D arrays for multiphase RIA'S. Therefore, 
we give formal definitions to these two types of m-phase 
schedule as follows: 



Dejinition 3.1: m-phase linear schedule: rIi( I i )  = AT Ii , 
where AT is the first row of transformation matrix Ti and Ii is 
an index in the computation domain Oi of phase i ,  1 5 i 5 m. 

Dejinition 3.2: m-phase uniform affine schedule : 
r I i , z ( I i )  = ATIi + vi,z, where AT is the first row of 
transformation matrix Ti and Ii is an index in the computation 
domain Oi of phase i .  is a constant value for variable 
2 in phase i to denote the translation part of II,,,, where 
l < i < m .  

If all variables have the same translation part in each phase, 
then vi is short for vi+ for an m-phase uniform affine schedule. 
Since the execution time of a RIA is the number of hyperplanes 
sweeping the index space, we have the execution time t ,  = 
maxl,,r:Ee, {AT(& - I : )+ 1) for an m-phase linear schedule 
and t ,  = maxI,,I:Ea, {(ATIi + vi,z) - (ATI: + vi,y) + l} for 
an m-phase uniform affine schedule, where 1 < i 5 m .  

The two-phase linear schedule for Design m2 is 

I I I ( I 1 )  =[-1 1 1111 
rIZ(I2) =[1 -1 1]12. 

Notice that phase 1 and phase 2 begin execution at the same 
time in Design m2. Since nodes ( i ,  i ,  k )  belong to both phases, 
and 

The execution time of Design m2 is 

t ,  = m a x { ( - l + N + N ) - ( - i + i + l ) + l , f o r p h a s e l  
( N  - 1 + N )  - ( i  - i + 1) + 1) for phase 2 

= 2 N  - 1 

Recalling the execution time of a systolic array can be 
interpreted as t ,  = t ,  +t, + to.  The queuing time ( t 4 )  can't be 
lowered if we input variables a and b side by side. Therefore, 
there are two ways to decrease the execution time. One is 
to reduce the waiting time ( t u )  as in Design m2. The other 
is to try to decrease the operating time ( to)  and this can be 
accomplished by inputting variables a and b in ( j  = [N/21)- 
plane and ( i  = [N/2l)-plane, respectively. With these two 
broadcast planes, the algorithm of matrix multiplication can be 
decomposed into four phases. The first phase is i I: [N/2] and 
j 5 [N/21, the second phase is i 5 [N/21 and j 2 [N/21, 
the third phase is i >_ [N/21 and j 2 [N/21, and the last 
phase is i 2 [N/2l and j I: [N/21. In the first phase, the 
propagation vectors of variables a and b are in [0 - 1 01 and 
[-1 0 01, respectively. In the second phase, the propagation 
vectors of variables a and b are in [0 1 01 and [-1 0 01, 
respectively. In the third phase, the propagation vectors of 
variables a and b are in [0 1 01 and [l 0 01, respectively. 
In the last phase, the propagation vectors of variables a and 
b are in [0 -1 01 and [l 0 01, respectively. Finally, we 
have the following Algorithm 3.4 and its DG is shown in 
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Fig. 7. \ , " ,  , 

[Algorithm 3.41 

[Phase I]: i 5 [ N / 2 l , j  5 [N/21 

For i = 1 to [N/21 

For j = 1 to [N/21 

For k = 1 to N 

c ( i , j ,  IC + 1) = c ( i ,  j ,  I C )  + a ( i ,  j ,  k )  * q i ,  j ,  k )  

a ( i , j  - 1 , k )  = a(i , j ,IC) 

b ( i  A , j , k )  = b ( i , j , I C )  

[Phase 21: i 5 [ N / 2 l , j  2 [N/21 

For i = 1 to [N/21 

For j = [N/21 to N 

For k = 1 to N 

c ( i ,  j ,  IC + 1) = c ( i , j ,  I C )  + a ( i , j ,  k )  * b ( i , j ,  I C )  

a ( i , j  + 1 , k )  = a ( i , j , k )  

b ( i  - l , j , k )  = b ( i , j , k )  

[Phase 31: i 2 [N/21, j  >_ [N/21 

For i = [N/21 

to N 
For j = [N/21 

to N 
For le = 1 to N 

c( i ,  j ,  IC + 1) = c ( i ,  j ,  k )  + a( i ,  j ,  k )  * b ( i , j ,  k )  

a ( i , j  + 1 , k )  = a ( i , j , k )  

b ( i  + 1 , j , k )  = b ( i , j , I C )  

[Phase 41: i >_ [ N / 2 l , j  5 [N/21 

For i = [N/21 to N 
For j = 1 to [N/21 

For k = 1 to N 

c ( i ,  j ,  IC + 1) = c(i, j ,  a) + a ( i ,  j ,  I C )  * b ( i , j ,  I C )  

a ( i , j  - 1,IC) = a ( i , j , k )  

b ( i  + 1, j ,  k )  = b ( i ,  j ,  I C )  

with c ( i ,  i .  1) = 0 

355 
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k 

i 

Fig. 7. Dependence graph for Algorithm 3.4. 

initial values a( i ,  rN/21, k )  = ai,k 

final results c,,j = c ( i , j ,  N + 1). 

The dependence matrices Di ,  1 5 i 5 4, with respect to 
phase i are 

By selecting transformation matrices Ti,  1 5 i 5 4, for Di 
as follows 

-1 -1 0 -1 1 1 

we get 

Hence, we have an another new design of mesh array for 
matrix multiplication by composing these four phases in 
broadcast planes as shown in Fig. 8. We call it Design m3. 

Fig. 8. Mesh array of design m3. 

We use four-phase uniform affine schedule to let these four 
phases begin execution at the same time. Note that here we 
let every variable with the same translation part in each phase. 
That is, vi = = vi,b = vi,e, where 1 5 i 5 4. The 
schedule for these four phases is 

II,(I~) =hTil + V1 = [-I -1 ill1 + v1 
I I ~ ( I ~ )  = A ; I ~  + vZ = [-I 1 111~ + vZ 
n3(13) =A:13 + V 3  = [1 1 1111 + V3 

I I ~ ( I ~ )  = A T I ~  + v4 = [I -1 1111 + v4 

Since nodes ( [ N / 2 1 ,  rN/21, k) belong to all four phases, we 
have 

Let y = 0, we have 

v 2 = u 4 = 2 [ ; ]  = { N  
if N is even 
if N is odd N + 1 

v1=4[;] = { 2 N  
if N is even 
if N is odd 2N + 2 

Hence 

rI,(I,) = [-1 -1 1111 + 4[;] 

Kl 
II4(14) = [l -1 1114 + 2 [;I 
I I Z ( 1 2 )  = [ -1  1 1112 + 2  - 

n3(13) =[I  1 1113 

The execution time of m3 is 

2N - 1 
if N is even 
i f  N is odd. 

Since (see the equation at the bottom of the next page). 
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The execution time of this design can be interpreted as 

I if N is odd 

Comparing with the previous Design m2, Design m3 results 
in the waiting time increasing to r( N - 1) /2] , though we halve 
the operating time. Therefore, it has the same execution time 
as Design m2. The interesting problem is how we can decrease 
the operating time without increasing the waiting time. This 
problem will be tackled by adding delays to some PE's. 

B. Mesh Array with t ,  = r(3N - 1)/21 Execution Eme 
In this section, we will show how to eliminate the waiting 

time in a mesh array by adding delays to some PE's. We 
know that the relative data must meet on the same place at 
the same time in a systolic array. For example, in Fig. 8, 
a2,1 and b1,3 must meet at the same time at PE23, so b1,3 

should wait one time step to meet u2,1. Nevertheless, adding 
one delay to PE23 for variable b will eliminate this waiting 
time. In other words, b1,3 goes into self loop in PE23 and 
in [-1 01 direction to PE13 at the same time, then b1,3 can 
operate simultaneously with u2,1 at PE23 and with a1,l at PE13 
at the next time step. Using this method, we can eliminate the 
waiting time in Design m3 and get an another new design of 
mesh array for matrix multiplication with execution time of 
r(3N - 1)/21. We call this mesh array Design m4 as shown 
in Fig. 9. It can be verified that the P&j should add delays 
d = I I ~  - r w i  I - 1.i - w 2 i  1 1 .  

Iv. DESIGN OF A 2-D ARRAY FOR TRANSITIVE CLOSURE 

In this section, we consider the transitive closure problem 
based on the sequential Warshall-Floyd algorithm. In this 
problem a directed graph, G = (V, E), with N vertices is 

b31 4 

Fig. 9. Mesh array of Design m4. 

given. Let C be an adjacency matrix for G, where 

1 

0 otherwise 

if there is an edge from vertex i to vertex j 
o r i = j  

The objective is to compute the transitive closure matrix 
C+ , where 

1 if there is a path of length 2 0  from vertex i 
to vertex j { 0 otherwise 

c+. 
a21 

The well-known sequential Warshall-Floyd algorithm can 
be written as Algorithm 4.1. 

[Algorithm 4.11 

For i , j ,  k = 1 to N 

initial values c:,~ = Ci,j 

final results cZj = cr?'. 
0 

In the case of transitive closure problem, the operator f 
performs boolean OR operation and * performs boolean AND 
operation. The same algorithm can be used to solve the all pairs 
shortest path problem if matrix C is the cost adjacency matrix 
with Ci,i = 0 , l  5 i 5 N ,  + performs minimum operation, 

$1, forphase l '  

for phase 3 
t ,  = max 

( N  + N + N )  - 

if N is even 
if N is odd. = { - 1 



358 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6 ,  NO. 4, APRIL 1995 

* performs addition operation, and output matrix Ct is the 
shortest path matrix. 

Since dependencies are not localized in Algorithm 4.1, we 
can add propagation variables a and b to remove broadcast 
dependencies, then we have Algorithm 4.2. The corresponding 
DG is shown in Fig. 10 for the N = 5 case with each constant 
k-plane drawn separately. The 3-D DG can be drawn by adding 
lines from c ( i ,  j ,  k )  to c(i, j, k +  1) in the k-direction. The bold 
lines in the DG of transitive closure problem is to represent 
the broadcast lines. We can aggregate these lines in the k-  
direction to construct broadcast planes. The actual meaning of 
broadcast planes here is that the propagation variables a and 
b get their values of c in these planes. The vertical broadcast 
line and the horizontal broadcast line are for variables a and 
b, respectively. Comparing Algorithm 4.2 with Algorithm 4.1, 
we know that c:,~ in Algorithm 4.1 corresponds to c ( i , j ,  k )  
in Algorithm 4.2 and it is computed at node ( i , j , k )  in 
Fig. 10. 

[Algorithm 4.21 

For i , j , k  = 1 to N 

c(i, k, k) if j = k 

a(i,j+l,k) i f j < k  
a ( i , j - l , k )  i f j > k  

c ( k ,  j, k )  if i = k 
b ( i , j , k )  = b ( i - l , j , k )  i f i > k  { b ( i + l , j , k )  i f i < k  
initial values c(i,j, 1)  = ci,j 

final results c& = c(i, j ,  N + 1) .  
U 

Although the variable c propagating in the k-direction is 
regular in Algorithm 4.2, the propagation vectors of variables 
a and b are irregular in each k-plane. This irregularity can be 
eliminated by reindexing (i and j) in every k-plane as S. Y. 
Kung et al. did in [ 181. 

Now we will show how to get a spherical array with 
execution time of 4N - 2 (if N is even, 4N - 3 if N is 
odd) by moving respectively the broadcast planes of variables 
a and b to the center of the DG in the j- and i-directions. The 
DG is shown in Fig. 11. And we have the following algorithm. 

[Algorithm 4.31 

For k = 1 to N 

F o r i  = 1 to [:] 
For j = 1 to 

15 

25 

35 

45 

51 52 53 54 55 SI 5 2  53 54 55 

k= I k=4 

31 32 33 34 35 

k=2 k-5 

k - 3  

Fig. 10. Dependence graph for Algonthm 4.2. 

a ( i , j  - 1 , k )  = a ( i , j , k )  

b(i - l , j , k )  = b ( i , j , k )  

For k = 1 to N 

F o r i  = 1 to 

For j = to N 

~ ( i  - 1, j - 1 ,  k + 1) = ~ ( i ,  j ,  k) + ~ ( i ,  j ,  k) * b(i, j ,  k) 

a ( i , j  + 1 , k )  = a ( i , j , k )  

b(i - l , j , k )  = b ( i , j , k )  

[Phase 31: i 2 , j  2 [$I 
For k = 1 to N 

For i = to N 

For j = to N 

c(i- 1 , j -  I l k +  1) = c ( i , j , k ) + u ( i , j , k ) * b ( i , j , k )  
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u ( i , j  + 1, k) = U ( i , j ,  k) 

b(i + 1, j ,  k) = b ( i ,  j ,  I C )  

[Phase 41: i 2 
, j  5 [;] 

For k = 1 to N 

For i = [;] to N 

For j = 1 to 

c(i - 1 , j  - l , k +  1) = c ( i , j , k )  + a( i , j ,  k) * b ( i , j ,  k) 

u ( i , j  - 1,k) = U ( i , j , k )  

b ( i  + 1, j ,  k) = 6 ( i ,  j ,  I C )  

In broadcast plane a ( i, [;I 1 k) = c ( i ,  [;I 1 k) 

Intraphase dependencies between 
1) phase 2 and phase 1 

~ ( i  - 1, N ,  k + 1) = ~ ( i ,  1, k) + a ( i ,  1, k) * b ( i ,  1, k) 

2) phase 3 and phase 4 

c (  I;], N , k +  1) = c (  + 1,1,k) 

3) phase 2 and phase 4 

4) phase 4 and phase 1 
c ( N , j  - 1, IC + 1) = ~ ( 1 ,  j ,  k) + ~ ( l , j ,  k) * b ( l , j ,  k) 

5 )  phase 3 and phase 2 
c ( N , j -  1,k+1) = ~ ( 1 , j , ~ ) + ~ ( l , j , ~ ) * b ( l , j , ~  

6) phase 4 and phase 2 

initial values c(i, j ,  1) = cil,jt 

where i’ = T L ( N - I ) p J ( i )  

-/ 

34 35 31 32 33 I2 l3 l4 l5 
k= I k = l  

k=2 k=5 

5 

5 

5 

5 

5 

k=3 

Fig. 11. Dependence graph for Algorithm 4.3. 

where i = / L ( N - l ) / 2 J ( i ’ )  

0 
The dependence matrices D i  , 1 5 i 5 4, of phase i in 

Algorithm 4.3 are 

. I = [ :  -1 ;l:i], 0 D 2 = [ 0  -1 0 1 - 1 1 ,  -1 
0 0 1  

By selecting transformation matrices T i ,  1 5 i 5 4, for Di 
as follows 

-1 -1 3 -1 1 3 

1 -1 3 

T 3 = [ 1  i E ] ,  T 4 =  [A ; 001, 
we have 
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[; p '4 
[: : ; I .  
0 -1 -1 

We use four-phase uniform affine schedule to let these four 
phases begin execution at the same time. The schedule for 
these four phases is 

Since nodes:( rN/21, rN/21, k) belong to d l  four phases, we 
have 

= [1  1 31[lq + v 3 = [ 1  -1 31[l!l] +v4 

k k 

* - 2  - + v 1 = v 2 = 2  - +v3=v4. Kl Kl  

1) ~ ( i  - 1, N, k + 1) = ~ ( i ,  1, k) + ~ ( i ,  1, k) * b ( i ,  1, k)  

- i + l + N + 3 k + 3 + 2  

5 if N is even 
= {  4 if N is odd. 

2) c(i - 1, N, k + 1) = c ( i ,  1, k) + u ( i ,  1, k) * b ( i ,  1, k)  

i - l + N + 3 k + 3 = i - l + 3 k + 2  

3 if N is even 
2 if N is odd. 

3 if N is even 
2 if N is odd. 

Let v3 = 0, we have 

Hence 

With this four-phase uniform affine schedule, it is easy to 
determine the interconnection delays for mapping intraphase 
dependencies. 

N - j + 1 + 3k + 3 + 2 - El 
= - 1 - j + 3 k + 4  

5 if N is even = {  4 if N is odd. 

5 )  c ( N ,  j - 1, k + 1) = c ( l , j ,  k) + u(l,j, k) * b ( l , j ,  k) 

3 if N is even 
2 if N is odd. 
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3 if N is even 
2 if N is odd. 

The interconnections of array processor for intraphase depen- 
dencies can be gotten from the first equation shown at the 
bottom of the page. 

These interconnections represent spiral arcs as shown in 
Fig. 12. We call it Design t .  

The reason why we pick out ST = [i : i] rather 
than [: i] is if the latter is selected, we will face 
the problem of executing two multiply-add operations in a 
PE simultaneously. Since Sr = [i :I1 we assume 
adjacency matrix, cit,jt, in each PEif initially. 

The execution time of Design t is 

4N - 2 
4N - 3 

if N is even 
if N is odd. t e  = { 

Fig. 12. Sphencal array of Design t .  

of the m-phase schedule to help us on mapping multiphase 
algorithms onto array processors. They are the m-phase linear 
schedule and the m-phase uniform affine schedule. 

Furthermore, it is easily to extend the definitions of these 
two types of m-phase schedule to the m-phase affine schedule 
and may apply it to map nonsystolic RIA’S onto array pro- 
cessors. These new m-phase schedules can actually map an 
algorithm that fails by other schedules and design 2-D arrays 
that can not be obtained by other methodologies we know. 

The idea of- moving broadcast planes and decomposing 
algorithms by the broadcast planes can help us on designing Since (see the second equation at the bottom of the page). 

a DG with a shorter length of the longest path. Its penalty is 
that the control complexity will be increased somewhat. We 
can apply the method proposed in this paper to many other 
problems to design some even faster VLSI array processors to 
cater for the requirements of real-time applications. 

V. CONCLUSIONS 
In this paper, we have presented several new 2-D arrays for 

the problems of matrix multiplication and transitive closure. 
Besides these new designs, we have also proposed two types 

-1 -1 N - 1  N - 1  N - 1  

1 1 1 
-1 -1 -1 N - 1  N - 1  N - 1  

1 
N - 1  -1 -1  

N - 1  N - 1  N - 1  -1 -1 -1  

) $ 1 ,  

1) 
+ 1  

for phase 1 

for phase 2 

for phase 3 

for phase 4 

4N - 2 
4N - 3 

if N is even 
if N is odd. 
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