
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 4, APRIL 1995 35 1

Some New Designs of 2-D Array for Matrix
Multiplication and Transitive Closure

Jong-Chuang Tsay and Pen-Yuang Chang

Abstract-In this paper, we present some new regular iterative
algorithms for matrix multiplication and transitive closure. With
these algorithms, by spacetime mapping the 2-D arrays with
2 N - 1 and [(3 N - 1)/21 execution times for matrix multiplication
can be obtained. Meanwhile, we can derive a 2-D array with 4N -
2 execution time for transitive closure based on the sequential
Warshall-Floyd algorithm. All these new 2-D arrays for matrix
multiplication and transitive closure have the advantages of faster
and more regular than other previous designs.

Index Terms-Algorithm mapping, matrix multiplication, mesh
array, systolic array, spherical array, transitive closure, VLSI
architecture.

I. INTRODUCTION

YSTOLIC ARRAY [11 has been proposed over a decade. S Roughly speaking, it is a special purpose parallel device
composed of several processing elements (PE’s) whose in-
terconnections have the properties of regularity and locality.
With these properties, systolic architecture is very suitable for
VLSI technology.

In spacetime mapping design methodology, the first step is
regularization [2], [3]. By regularization we mean to rewrite
the sequential algorithm to a regular iterative algorithm, RIA
[2] (or uniform recurrent equations, URE’s [4]). Dependence
graph (DG) is a graphical representation of a RIA and the
length of the longest path in this graph is the minimal
execution time needed for executing the RIA.

The next step of designing systolic array is to determine
a proper schedule vector and its corresponding compatible
processor assignment matrix to meet the constraints of data
availability and processor availability. That is, a proper sched-
ule must satisfy the precedence constraints imposed by the DG
and must also ensure that no two different computations are
executed at the same processor at the same time.

The well-known schedules for array processors are linear
schedule, uniform affine schedule and affine schedule [2].
A linear schedule is that all variables are with the same
schedule vector. In addition to the same schedule vector, the
uniform affine schedule can have different translation parts
for variables. The affine schedule is more general. It can have
different schedule vectors and translation parts for variables.
If two indexes are executed at the same time, they are on the

Manuscript received May 24, 1991; revised July 30, 1993 and June 30,
1994. This work was supported by the National Science Council of the R.O.C.
under Contract NSC-8 1 -0408-E-009-568.

The authors are with the Institute of Computer Science and Information En-
gineering, College of Engineering, National Chiao Tung University, Hsinchu,
Taiwan 30050, Republic of China.

IEEE Log Number 940933 1.

same hyperplane. For the entire index space, we may draw
several parallel iso-temporal hyperplanes. The schedule vector
is in the direction normal to these hyperplanes.

We use a transformation matrix (T) to represent the space-
time mapping. The first row of this matrix is the schedule vec-
tor (A T) and the remaining rows are the processor assignment
matrix (ST) . The result of multiplication of transformation
matrix and dependence matrix (D) is a new dependence matrix
(D’ = T * D) in which the first row represents time delay and
the remaining rows are the corresponding interconnections of
an array processor.

Now we tum our attention to the problem of matrix mul-
tiplication (C = A x B). There are an intensive number of
array processors designed for this problem in the literature.
For example, the design of the linear arrays by Prasanna
Kumar-Tsai [5]-[7] and Ramakrishnan-Varman [8], [9], the
mesh arrays by S. Y. Kung [lo] and Melkemi-Tchuente [l 11,
the hexagonal arrays by H. T. Kung [l] , Quinton [4], and Li-
Wah [12], the cylindrical array by Porter-Aravena [13], and
the two-layered (or the multilayered) mesh array by Kak [14],
[15]. Besides, Benaini-Robert [161 and Jagadish-Kailath [I71
used Winograd algorithm for matrix multiplication to design
their systolic arrays.

Comparing these designs for matrix multiplication, we have:
first, the mesh array has the good property of local connection,
but its execution time (3N - 2) is greater than that (2n‘ - 1)
of the cylindrical array, where ?i is the size of the matrices.
Second, based on the Winograd algorithm, we have :jLV/2
execution time [16], but this two-layered mesh array is not
so regular.

In Section 111-A, we design mesh arrays with 2 5 - 1
execution time. In Section 111-B, we have a mesh array with
r (3N - l) /21 execution time. All of the above new designs of
2-D arrays are based on the sequential matrix multiplication
algorithm of C = -4 x B.

For the problem of transitive closure, the orthogonal array
designed by S. Y. Kung et al. [18] has the execution time of
5N - 4. which is optimal in terms of pipelining rate, block
pipelining rate, and the number of VO connections. According
to the dependence graph (DG-3 in his paper) used by S. Y.
Kung, the longest path in this graph is 5 N - 4. Therefore, for
this DG the design is optimal in execution time. It is interested
that whether there is a DG for the transitive closure problem
with a shorter length of the longest path. We will show in
Section IV that it is true and present a new design of 2-D
array for transitive closure, which has 4 N - 2 execution time.
Finally, the concluding remarks are presented in Section V.

1045-9219/95$04.00 0 1995 IEEE

352 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 4, APRIL 1995

11. PRELIMINARY DEFINITIONS

In this section, we give some preliminary definitions as a
basis for following sections.

Dejinition 2.1: A left-shift sequence, L (i ; 1, N) = (i +
l , i + 2 ; . . , N , 1 , 2 ; . . , i) = (l i (l) , l ~ (2) , . . . , ~ i (~ r)) , is a
sequence of integers resulting from shifting the sequence
(1 ,2 , X) left cyclically i times, where 0 5 i 5 N - 1.
The j th element in L is l i (j) = (i + j - 1)mod N + 1, where
1 5 j 5 N .

Dejinition 2.2: A right-shift sequence, R(i; 1, N) =
(N - i + 1 , N - i + 2 , . . ‘ , N , 1 , 2 , ” ’ , N - i) =
(ri (I) , ri (a) , . . . , ri(N)) , is a sequence of integers resulting
from shifting the sequence (1 ,2 , . .. , N) right cyclically i
times, where 0 5 i 5 N - 1. The j th element in R is
ri(j) = (j - i + N - l) m o d , ~ + 1, where 1 5 j 5 N .

The following theorem shows the relationship between these
two sequences.

Theorem 2.1: /i(j) = k z fsr i (k) = j , where 0 5 i 5 N - 1
and 1 5 j , k 5 N.

Pro08 (if part)

case 1: i f i + j < N

*
case 2: if i + j 2 N

l i (j) = (i + j - l) m o d j v + 1 = i + j = k
j = k - i = (k - i + N - l) m o d N + 1 Q (k)

l i (j) = (i + j - l)modN + 1 = i + j - N = k * j = k - i + N = (k - i + N - l)modN + 1 = r i (k)

0
The meaning behind this theorem is that if we want to know

which position (say j) the number k appears in the left-shift
sequence L (i ; 1, N) , we can read j from the value of ri(IC).
For example, if we want to know which position the number
3 appears in the left-shift sequence L(1; 1 ,3) , we have the
position j = q (3) = 2.

There are many criteria (e.g., execution time, pipelining
period, array size, and YO channels) to measure performance
of array processors. Since execution time is the most important
criterion on designing real-time signalhmaging processing
system, we pay our attention on execution time in this paper.

Dejnition 2.3: The execution time (t,) of a systolic array
is defined as the time interval between the time when the
first operation is executed and the time when the last result
is calculated.

By computation domain (0) we mean the set of finite
indexes used by a RIA. Let I and I’ be two indexes in the
computation domain 0 of a RIA A.AT is a linear schedule
in the first row of transformation matrix T. Assuming that
there is a unitary time increment, the execution time t , of a

Fig. 1 .
vector. (c) Propagation vector.

(a) Multiple fan-in broadcast vector. (b) Multiple fan-out broadcast

systolic array executing the RIA A by transformation matrix T
is t , = maxI,I/Ee {AT(I-I’)}+l [19]. The actual meanings
of the execution time of a RIA is the number of hyperplanes
sweeping the index space.

The multiple fan-in (Fig. l(a)) and multiple fan-out
(Fig. 1 (b)) data dependence vectors are called broadcast
vectors. All broadcast vectors can be systematically trans-
formed into propagation vectors (e.g., Fig. l(c)). We use the
term broadcast point (the dark node in Fig. l(c)) to denote
the starting position for data propagation. A broadcast line
is composed of several broadcast points. By aggregating
broadcast lines, we obtain a broadcast plane.

111. DESIGN OF MESH ARRAYS FOR MATRIX MULTIPLICATION

The problem of matrix multiplication is to calculate matrix
C = A * B , where A and B are both matrices. Without loss
of generality, we assume that A , B , and C are all N x N
matrices. The matrix multiplication can be carried out in N
recursions as depicted in Algorithm 3.1.

[Algorithm 3.11

For i , j , k = 1 to

Ck?’ = Cik,i + U i , k * b k , j
3 J

with c:,~ = 0

final results e?’.
0

The broadcast data U i , k and b k , j in Algorithm 3.1 can be
removed by introducing propagation variables u (i , j , k) and
b (i , j , I C) , respectively. Now we have Algorithm 3.2 [2]. The
corresponding DG is shown in Fig. 2, where the bold line
denotes the longest path in this graph.

[Algorithm 3.21

For i , j , k = 1 to N

~ (i , j , k + 1) = ~ (i , j , k) + a (i , j , k) * b (i , j , I C)

u (i , j + 1 ,k) = u (i , j , k)

b (i + l , j , k) = b (i , j , k)

with c (i , j , 1) = 0

TSAY AND CHANG 2-D ARRAY FOR MATRIX MULTIPLICATION AND TRANSITNE CLOSURE 353

I

A

J B
,3 c 1-lpboc

c I=zplpnc

C31

C
Fig. 2. Dependence graph for Algorithm 3.2.

initial values a (i , 1,k) = a,,k
b(1, j , k) = bk,j

final results c i j = c (i , j , N + 1).
0

The dependence matrix D of Algorithm 3.2 is

By selecting transformation matrix T as follows:

T = 1 0 0 , [: ; :]
we have

D ' = T * D = 1 0 0 . [: : :I
Now we have the well-known mesh array as shown in

Fig. 3 and we call it Design nl. Since AT = [l 11,
the execution time of Design m l is t , = maxI,IIEe { A T (I -

1

1')) + 1 = (N + N + N) - (1 + 1 + 1) + 1 = 3N - 2 .

A. Mesh Arrays with 2 N - 1 Execution Eme
The execution time of a systolic array can be decomposed

into three parts. They are queuing time (tq) , waiting time (t,),
and operating time (to) as shown in Fig. 4. First, the queuing
time (t q) is the time from beginning execution to the position
labeled by a for datum b N p . Second, the waiting time (t,)
is the time from position a to position b. This time is due
to datum bN,N must wait to meet another datum at first PE.
Last, the operating time (t o) is the time from position b to
position c. This time results from datum bN,N will operate

b33

b31 bzz b13
bzi blz
bii

b32 b23

0

az3azza2i - ++-+ 21

Fig. 3. Mesh array of Design ml.

: + b

Fig. 4. t e = t , + tw + to.

with N of another data. We know t , = t , + t , + 1, =
(N - 1) + (N - 1) + (N) = 3N - 2 for datum bN,N in
Fig. 3, where N = 3.

Eliminating or lowering any part of these times can decrease
the execution time of a systolic array. That is, if we do
operation in each PE as soon as possible, we can obtain
a systolic array with less execution time. It can be carried
out by moving the broadcast planes of variables a and b to
(i = j)-plane. By using this broadcast plane, the algorithm
of matrix multiplication can be decomposed into two phases.
The first phase is i 5 j and the second phase is i 2 j . In the
first phase, the propagation vectors of variables a and b are
in 10 1 01 and [-1 0 01 directions, respectively. In the
second $aset the propagation vectors of variables 0 and b are
in [0 - 1 01 and [I 0 01 directions, respectively. Finally,
we have Algorithm 3.3 and its DG is shown in Fig. 5.

354

[Algorithm 3.31

[Phase I] : i 5 j

For i = 1 to N

IEEE TRANSACIlONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 4, APNL 1995

k

i

For j = i to N

For k = 1 to N

c(i , j , k + 1) = c(i , j , k) + a (i , j , k) * b (i , j , k)

u (i , j + 1, k) = a(i , j, k)

b(i - l , j] k) = b (i , j , k)

[Phase 21: i 2 j

For i = 1 to N

For j = 1 to i

For k = 1 to N

c (i , j , k + 1) = c(il j , k) + a(i , j , k) * b (i , j , k)

a (i , j - 1 , k) = u (i , j , k)

b (i + 1, j , k) = b (i , j , k)

Fig. 5. Dependence graph for Algorithm 3.3.

b3l
bzi
bii

Fig. 6. Mesh array of Design m2.

with c(i , j , 1) = 0
we get

initial values a(i , i, k) = ai,k
r l 1 11

final results ci,j = c(i, j , N + 1).

U
The dependence matrices Di, 1 5 i 5 2, with respect to

phase i are

-1 0 0 1 0 0

0 0 1 0 0 1
D 1 = [0 1 0 1 , D 2 = [U -1 0 1 .

By selecting transformation matrices 37, 1 5 i
as follows

2, for Di

-1 1 1 1 -1 1
TI= [o 1 0 1 , 1 1 0 ?i=[: : 4

D i = T i * D l = -1 0 0 , L 1 0 1

D i = T 2 * D 2 = 1 0 0 . [: Ij I]
Hence, we have a new design of mesh array for matrix
multiplication by composing these two phases in broadcast
plane, as shown in Fig. 6. We call it Design m2. Notice that,
we assume that the data can be inputted on the diagonal PE's.
If the array restricts that data must be fed on the boundary
PE's, then the data preloading is necessary.

This new mesh array not only has the same execution time
as the cylindrical array [13] but also eliminates the spiral
arcs in the cylindrical array. In this design, two phases have
different schedule vectors. We call it two-phase schedule and
this schedule can be generalized into an m-phase schedule.
There are three different types of m-phase schedule. They are
m-phase linear schedule, m-phase uniform affine schedule and
m-phase affine schedule. In this paper, the first two schedules
are used to design 2-D arrays for multiphase RIA'S. Therefore,
we give formal definitions to these two types of m-phase
schedule as follows:

Dejinition 3.1: m-phase linear schedule: rIi(I i) = AT Ii ,
where AT is the first row of transformation matrix Ti and Ii is
an index in the computation domain Oi of phase i , 1 5 i 5 m.

Dejinition 3.2: m-phase uniform affine schedule :
r I i , z (I i) = ATIi + vi,z, where AT is the first row of
transformation matrix Ti and Ii is an index in the computation
domain Oi of phase i . is a constant value for variable
2 in phase i to denote the translation part of II,,,, where
l < i < m .

If all variables have the same translation part in each phase,
then vi is short for vi+ for an m-phase uniform affine schedule.
Since the execution time of a RIA is the number of hyperplanes
sweeping the index space, we have the execution time t , =
maxl,,r:Ee, {AT(& - I :)+ 1) for an m-phase linear schedule
and t , = maxI,,I:Ea, {(ATIi + vi,z) - (ATI: + vi,y) + l} for
an m-phase uniform affine schedule, where 1 < i 5 m .

The two-phase linear schedule for Design m2 is

I I I (I 1) =[-1 1 1111
rIZ(I2) =[1 -1 1]12.

Notice that phase 1 and phase 2 begin execution at the same
time in Design m2. Since nodes (i , i , k) belong to both phases,
and

The execution time of Design m2 is

t , = m a x { (- l + N + N) - (- i + i + l) + l , f o r p h a s e l
(N - 1 + N) - (i - i + 1) + 1) for phase 2

= 2 N - 1

Recalling the execution time of a systolic array can be
interpreted as t , = t , +t, + to. The queuing time (t 4) can't be
lowered if we input variables a and b side by side. Therefore,
there are two ways to decrease the execution time. One is
to reduce the waiting time (t u) as in Design m2. The other
is to try to decrease the operating time (to) and this can be
accomplished by inputting variables a and b in (j = [N/21)-
plane and (i = [N/2l)-plane, respectively. With these two
broadcast planes, the algorithm of matrix multiplication can be
decomposed into four phases. The first phase is i I: [N/2] and
j 5 [N/21, the second phase is i 5 [N/21 and j 2 [N/21,
the third phase is i >_ [N/21 and j 2 [N/21, and the last
phase is i 2 [N/2l and j I: [N/21. In the first phase, the
propagation vectors of variables a and b are in [0 - 1 01 and
[-1 0 01, respectively. In the second phase, the propagation
vectors of variables a and b are in [0 1 01 and [-1 0 01,
respectively. In the third phase, the propagation vectors of
variables a and b are in [0 1 01 and [l 0 01, respectively.
In the last phase, the propagation vectors of variables a and
b are in [0 -1 01 and [l 0 01, respectively. Finally, we
have the following Algorithm 3.4 and its DG is shown in

TSAY AND CHANG: 2-D ARRAY FOR MATRIX MULITPLICATION AND TRANSITIVE CLOSURE

Fig. 7. \ , " , ,

[Algorithm 3.41

[Phase I]: i 5 [N / 2 l , j 5 [N/21

For i = 1 to [N/21

For j = 1 to [N/21

For k = 1 to N

c (i , j , IC + 1) = c (i , j , I C) + a (i , j , k) * q i , j , k)

a (i , j - 1 , k) = a(i , j ,IC)

b (i A , j , k) = b (i , j , I C)

[Phase 21: i 5 [N / 2 l , j 2 [N/21

For i = 1 to [N/21

For j = [N/21 to N

For k = 1 to N

c (i , j , IC + 1) = c (i , j , I C) + a (i , j , k) * b (i , j , I C)

a (i , j + 1 , k) = a (i , j , k)

b (i - l , j , k) = b (i , j , k)

[Phase 31: i 2 [N/21, j >_ [N/21

For i = [N/21

to N
For j = [N/21

to N
For le = 1 to N

c(i , j , IC + 1) = c (i , j , k) + a(i , j , k) * b (i , j , k)

a (i , j + 1 , k) = a (i , j , k)

b (i + 1 , j , k) = b (i , j , I C)

[Phase 41: i >_ [N / 2 l , j 5 [N/21

For i = [N/21 to N
For j = 1 to [N/21

For k = 1 to N

c (i , j , IC + 1) = c(i, j , a) + a (i , j , I C) * b (i , j , I C)

a (i , j - 1,IC) = a (i , j , k)

b (i + 1, j , k) = b (i , j , I C)

with c (i , i . 1) = 0

355

356 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 4, APRIL 1995

k

i

Fig. 7. Dependence graph for Algorithm 3.4.

initial values a(i , rN/21, k) = ai,k

final results c,,j = c (i , j , N + 1).

The dependence matrices Di , 1 5 i 5 4, with respect to
phase i are

By selecting transformation matrices Ti, 1 5 i 5 4, for Di
as follows

-1 -1 0 -1 1 1

we get

Hence, we have an another new design of mesh array for
matrix multiplication by composing these four phases in
broadcast planes as shown in Fig. 8. We call it Design m3.

Fig. 8. Mesh array of design m3.

We use four-phase uniform affine schedule to let these four
phases begin execution at the same time. Note that here we
let every variable with the same translation part in each phase.
That is, vi = = vi,b = vi,e, where 1 5 i 5 4. The
schedule for these four phases is

II,(I~) =hTil + V1 = [-I -1 ill1 + v1
I I ~ (I ~) = A ; I ~ + vZ = [-I 1 111~ + vZ
n3(13) =A:13 + V 3 = [1 1 1111 + V3

I I ~ (I ~) = A T I ~ + v4 = [I -1 1111 + v4

Since nodes ([N / 2 1 , rN/21, k) belong to all four phases, we
have

Let y = 0, we have

v 2 = u 4 = 2 [;] = { N
if N is even
if N is odd N + 1

v1=4[;] = { 2 N
if N is even
if N is odd 2N + 2

Hence

rI,(I,) = [-1 -1 1111 + 4[;]

Kl
II4(14) = [l -1 1114 + 2 [;I
I I Z (1 2) = [-1 1 1112 + 2 -

n3(13) =[I 1 1113

The execution time of m3 is

2N - 1
if N is even
i f N is odd.

Since (see the equation at the bottom of the next page).

TSAY AND CHANG: 2-D ARRAY FOR MATRIX MULTIPLICATION AND TRANSITIVE CLOSURE 351

The execution time of this design can be interpreted as

I if N is odd

Comparing with the previous Design m2, Design m3 results
in the waiting time increasing to r(N - 1) /2] , though we halve
the operating time. Therefore, it has the same execution time
as Design m2. The interesting problem is how we can decrease
the operating time without increasing the waiting time. This
problem will be tackled by adding delays to some PE's.

B. Mesh Array with t , = r(3N - 1)/21 Execution Eme
In this section, we will show how to eliminate the waiting

time in a mesh array by adding delays to some PE's. We
know that the relative data must meet on the same place at
the same time in a systolic array. For example, in Fig. 8,
a2,1 and b1,3 must meet at the same time at PE23, so b1,3

should wait one time step to meet u2,1. Nevertheless, adding
one delay to PE23 for variable b will eliminate this waiting
time. In other words, b1,3 goes into self loop in PE23 and
in [-1 01 direction to PE13 at the same time, then b1,3 can
operate simultaneously with u2,1 at PE23 and with a1,l at PE13
at the next time step. Using this method, we can eliminate the
waiting time in Design m3 and get an another new design of
mesh array for matrix multiplication with execution time of
r(3N - 1)/21. We call this mesh array Design m4 as shown
in Fig. 9. It can be verified that the P&j should add delays
d = I I ~ - r w i I - 1.i - w 2 i 1 1 .

Iv. DESIGN OF A 2-D ARRAY FOR TRANSITIVE CLOSURE

In this section, we consider the transitive closure problem
based on the sequential Warshall-Floyd algorithm. In this
problem a directed graph, G = (V, E), with N vertices is

b31 4

Fig. 9. Mesh array of Design m4.

given. Let C be an adjacency matrix for G, where

1

0 otherwise

if there is an edge from vertex i to vertex j
o r i = j

The objective is to compute the transitive closure matrix
C+ , where

1 if there is a path of length 2 0 from vertex i
to vertex j { 0 otherwise

c+.
a21

The well-known sequential Warshall-Floyd algorithm can
be written as Algorithm 4.1.

[Algorithm 4.11

For i , j , k = 1 to N

initial values c:,~ = Ci,j

final results cZj = cr?'.
0

In the case of transitive closure problem, the operator f
performs boolean OR operation and * performs boolean AND
operation. The same algorithm can be used to solve the all pairs
shortest path problem if matrix C is the cost adjacency matrix
with Ci,i = 0 , l 5 i 5 N , + performs minimum operation,

$1, forphase l '

for phase 3
t , = max

(N + N + N) -

if N is even
if N is odd. = { - 1

358 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6 , NO. 4, APRIL 1995

* performs addition operation, and output matrix Ct is the
shortest path matrix.

Since dependencies are not localized in Algorithm 4.1, we
can add propagation variables a and b to remove broadcast
dependencies, then we have Algorithm 4.2. The corresponding
DG is shown in Fig. 10 for the N = 5 case with each constant
k-plane drawn separately. The 3-D DG can be drawn by adding
lines from c (i , j , k) to c(i, j, k + 1) in the k-direction. The bold
lines in the DG of transitive closure problem is to represent
the broadcast lines. We can aggregate these lines in the k-
direction to construct broadcast planes. The actual meaning of
broadcast planes here is that the propagation variables a and
b get their values of c in these planes. The vertical broadcast
line and the horizontal broadcast line are for variables a and
b, respectively. Comparing Algorithm 4.2 with Algorithm 4.1,
we know that c:,~ in Algorithm 4.1 corresponds to c (i , j , k)
in Algorithm 4.2 and it is computed at node (i , j , k) in
Fig. 10.

[Algorithm 4.21

For i , j , k = 1 to N

c(i, k, k) if j = k

a(i,j+l,k) i f j < k
a (i , j - l , k) i f j > k

c (k , j, k) if i = k
b (i , j , k) = b (i - l , j , k) i f i > k { b (i + l , j , k) i f i < k
initial values c(i,j, 1) = ci,j

final results c& = c(i, j , N + 1) .
U

Although the variable c propagating in the k-direction is
regular in Algorithm 4.2, the propagation vectors of variables
a and b are irregular in each k-plane. This irregularity can be
eliminated by reindexing (i and j) in every k-plane as S. Y.
Kung et al. did in [181.

Now we will show how to get a spherical array with
execution time of 4N - 2 (if N is even, 4N - 3 if N is
odd) by moving respectively the broadcast planes of variables
a and b to the center of the DG in the j- and i-directions. The
DG is shown in Fig. 11. And we have the following algorithm.

[Algorithm 4.31

For k = 1 to N

F o r i = 1 to [:]
For j = 1 to

15

25

35

45

51 52 53 54 55 SI 5 2 53 54 55

k= I k=4

31 32 33 34 35

k=2 k-5

k - 3

Fig. 10. Dependence graph for Algonthm 4.2.

a (i , j - 1 , k) = a (i , j , k)

b(i - l , j , k) = b (i , j , k)

For k = 1 to N

F o r i = 1 to

For j = to N

~ (i - 1, j - 1 , k + 1) = ~ (i , j , k) + ~ (i , j , k) * b(i, j , k)

a (i , j + 1 , k) = a (i , j , k)

b(i - l , j , k) = b (i , j , k)

[Phase 31: i 2 , j 2 [$I
For k = 1 to N

For i = to N

For j = to N

c(i- 1 , j - I l k + 1) = c (i , j , k) + u (i , j , k) * b (i , j , k)

TSAY AND CHANG: 2-D ARRAY FOR MATRIX MULTIPLICATION AND TRANSITIVE CLOSURE 359

u (i , j + 1, k) = U (i , j , k)

b(i + 1, j , k) = b (i , j , I C)

[Phase 41: i 2
, j 5 [;]

For k = 1 to N

For i = [;] to N

For j = 1 to

c(i - 1 , j - l , k + 1) = c (i , j , k) + a(i , j , k) * b (i , j , k)

u (i , j - 1,k) = U (i , j , k)

b (i + 1, j , k) = 6 (i , j , I C)

In broadcast plane a (i, [;I 1 k) = c (i , [;I 1 k)

Intraphase dependencies between
1) phase 2 and phase 1

~ (i - 1, N , k + 1) = ~ (i , 1, k) + a (i , 1, k) * b (i , 1, k)

2) phase 3 and phase 4

c (I;], N , k + 1) = c (+ 1,1,k)

3) phase 2 and phase 4

4) phase 4 and phase 1
c (N , j - 1, IC + 1) = ~ (1 , j , k) + ~ (l , j , k) * b (l , j , k)

5) phase 3 and phase 2
c (N , j - 1,k+1) = ~ (1 , j , ~) + ~ (l , j , ~) * b (l , j , ~

6) phase 4 and phase 2

initial values c(i, j , 1) = cil,jt

where i’ = T L (N - I) p J (i)

-/

34 35 31 32 33 I2 l3 l4 l5
k= I k = l

k=2 k=5

5

5

5

5

5

k=3

Fig. 11. Dependence graph for Algorithm 4.3.

where i = / L (N - l) / 2 J (i ’)

0
The dependence matrices D i , 1 5 i 5 4, of phase i in

Algorithm 4.3 are

. I = [: -1 ;l:i], 0 D 2 = [0 -1 0 1 - 1 1 , -1
0 0 1

By selecting transformation matrices T i , 1 5 i 5 4, for Di
as follows

-1 -1 3 -1 1 3

1 -1 3

T 3 = [1 i E] , T 4 = [A ; 001,
we have

360 I= TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 4, APRIL 1995

[; p '4
[: : ; I .
0 -1 -1

We use four-phase uniform affine schedule to let these four
phases begin execution at the same time. The schedule for
these four phases is

Since nodes:(rN/21, rN/21, k) belong to d l four phases, we
have

= [1 1 31[lq + v 3 = [1 -1 31[l!l] +v4

k k

* - 2 - + v 1 = v 2 = 2 - +v3=v4. Kl Kl

1) ~ (i - 1, N, k + 1) = ~ (i , 1, k) + ~ (i , 1, k) * b (i , 1, k)

- i + l + N + 3 k + 3 + 2

5 if N is even
= { 4 if N is odd.

2) c(i - 1, N, k + 1) = c (i , 1, k) + u (i , 1, k) * b (i , 1, k)

i - l + N + 3 k + 3 = i - l + 3 k + 2

3 if N is even
2 if N is odd.

3 if N is even
2 if N is odd.

Let v3 = 0, we have

Hence

With this four-phase uniform affine schedule, it is easy to
determine the interconnection delays for mapping intraphase
dependencies.

N - j + 1 + 3k + 3 + 2 - El
= - 1 - j + 3 k + 4

5 if N is even = { 4 if N is odd.

5) c (N , j - 1, k + 1) = c (l , j , k) + u(l,j, k) * b (l , j , k)

3 if N is even
2 if N is odd.

TSAY AND CHANG: 2-D ARRAY FOR MATRIX MULTIPLICATION AND TRANSITIVE CLOSURE 361

3 if N is even
2 if N is odd.

The interconnections of array processor for intraphase depen-
dencies can be gotten from the first equation shown at the
bottom of the page.

These interconnections represent spiral arcs as shown in
Fig. 12. We call it Design t .

The reason why we pick out ST = [i : i] rather
than [: i] is if the latter is selected, we will face
the problem of executing two multiply-add operations in a
PE simultaneously. Since Sr = [i :I1 we assume
adjacency matrix, cit,jt, in each PEif initially.

The execution time of Design t is

4N - 2
4N - 3

if N is even
if N is odd. t e = {

Fig. 12. Sphencal array of Design t .

of the m-phase schedule to help us on mapping multiphase
algorithms onto array processors. They are the m-phase linear
schedule and the m-phase uniform affine schedule.

Furthermore, it is easily to extend the definitions of these
two types of m-phase schedule to the m-phase affine schedule
and may apply it to map nonsystolic RIA’S onto array pro-
cessors. These new m-phase schedules can actually map an
algorithm that fails by other schedules and design 2-D arrays
that can not be obtained by other methodologies we know.

The idea of- moving broadcast planes and decomposing
algorithms by the broadcast planes can help us on designing Since (see the second equation at the bottom of the page).

a DG with a shorter length of the longest path. Its penalty is
that the control complexity will be increased somewhat. We
can apply the method proposed in this paper to many other
problems to design some even faster VLSI array processors to
cater for the requirements of real-time applications.

V. CONCLUSIONS
In this paper, we have presented several new 2-D arrays for

the problems of matrix multiplication and transitive closure.
Besides these new designs, we have also proposed two types

-1 -1 N - 1 N - 1 N - 1

1 1 1
-1 -1 -1 N - 1 N - 1 N - 1

1
N - 1 -1 -1

N - 1 N - 1 N - 1 -1 -1 -1

) $ 1 ,

1)
+ 1

for phase 1

for phase 2

for phase 3

for phase 4

4N - 2
4N - 3

if N is even
if N is odd.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 4, APRIL 1995

REFERENCES

H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in Proc.
Sparse Matrix Symp., Soc. Indust. Appli. Math., 1978, pp. 256282.
S. K. Rao, “Regular iterative algorithms and their implementations on
processor arrays,” Ph.D. dissertation, Standford Univ., 1985.
V. Van Dongen and P. Quinton, “Uniformization of linear recurrence
equations: A step towards the automatic synthesis of systolic arrays,’’ in
Proc. Int. Con$ Systolic Array, 1988, pp. 473482.
P. Quinton, “Automatic synthesis of systolic arrays from uniform
recurrent equations,” in Proc. Inf. Symp. Compuf. Archifeciure, 1984,
pp. 208-214.
V. K. Prasanna Kumar and Y. C. Tsai, “Designing linear systolic arrays,”
J. Parallel Distribut. Comput., vol. 7, pp. 441463, 1989.
-, “Mapping two dimensional systolic arrays to one dimensional
arrays and applications,’’ in Proc. Int. Con5 Parallel Processing, 1988,
pp. 3 9 4 6 .
-, “Synthesizing optimal family of linear systolic arrays for matrix
computations,” in Proc. Inf . Conf Systolic Array, 1988, pp. 5 1-60,
P. J. Varman and I. V. Ramakrishnan, “Synthesis of an optimal family of
matrix multiplication algorithms on linear arrays,” IEEE Trans. Comput.,
vol. C-35, pp. 989-996, Nov. 1986.
-, “Modular matrix multiplication on a linear array,” IEEE Trans.
Comput., vol. C-33, pp. 952-958, Nov. 1984.
S. Y. Kung, VLSI Array Processor. Englewood Cliffs, NJ: Prentice-
Hall, 1988.
L. Melkemi and M. Tchuente, “Complex of matrix product on a class
of orthogonally connected systolic arrays,” IEEE Trans. Compuf., vol.
C-36, pp. 615-619, May 1987.
G. J. Li and B. W. Wah, “The design of optimal systolic arrays,” IEEE
Trans. Compuf., vol. C-34, pp. 6 6 7 7 , Jan. 1985.
W. A. Porter and J. L. Aravena, “Cylindrical arrays for matrix multipli-
cation,” in Proc. 24th Annu. Allerton Conf Commun., Control Comput.,
Mar. 1988, pp. 595-602.
S. C. Kak, “Multilayered array computing,” in Proc. 1985 Annu. Conf
Inform. Sci. Syst., Mar. 1984, pp. 4.364.41.
-, “A two-layered mesh array for matrix multiplication,” Parallel
Compui., vol. 6, pp. 383-385, 1988.

A. Benaini and Y. Robert, “An even faster systolic array for matrix
multiplication,” Parallel Comput., vol. 12, pp. 249-254, 1989.
H. V. Jagadish and T. Kailath, “A family of new efficient arrays for
matrix multiplication,” IEEE Trans. Compuf., vol. C-38, pp. 149-155,
Jan. 1989.
S. Y. Kung, S. C. Lo, and P. S. Lewis, “Optimal systolic design for the
transitive closure and the shortest path problems,” IEEE Trans. Compuf.,
vol. C-36, pp. 603-614, May 1987.
D. I. Moldovan and J. A. B. Fortes, “Partitioning and mapping algo-
rithms into fixed size systolic arrays,” IEEE Trans. Compuf., vol. C-35,
pp. 1-12, Jan. 1986.

Jong-Chuang Tsay was born in Taipei, R.O.C., in 1943. He received the M.S.
and Ph.D. degrees in computer science from National Chiao-Tung University
in 1968 and 1975, respectively.

Since 1968, he has been with the Faculty of the Department of Computer
Engineering, Chiao-Tung University. Currently, he is a Professor of the
Department of Computer Science and Information Engineering. His current
research interests include systolic algorithm design, parallel computations,
and computer-aided typesetting.

Pen-Yuang Chang was born in Kaohsiung, R.O.C., in 1962. He received
the M.S. degree from the Department of Computer Engineering, Chiao-Tung
University in 1986.

Since 1987, he has been an Associate Researcher in Telecommunication
Laboratories, Ministry of Communications. Currently, he is a Ph.D. candidate
with the Institute of Computer Science and Information Engineering, National
Chiao-Tung University. His research interests are in design of systolic
algorithm and computer network.

