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Abstract Studies on scheduling with learning considera-
tions have recently become important. Most studies focus
on single-machine settings. However, numerous complex
industrial problems can be modeled as flowshop scheduling
problems. This paper thus focuses on minimizing the
makespan in an m-machine permutation flowshop with
learning considerations. This paper proposes a dominance
theorem and a lower bound to accelerate the branch-and-
bound algorithm for seeking the optimal solution. This
paper also adapts four well-known existing heuristic
algorithms to yield the near-optimal solutions. Eventually,
the performances of all the algorithms proposed in this
paper are reported for small and large job-sized problems.
The computational experiments indicate that the branch-
and-bound algorithm can solve problems of up to 18 jobs
within a reasonable amount of time, and the heuristic
algorithms are quite accurate with a mean error percentage
of less than 0.1%.
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1 Introduction

In traditional scheduling problems, it is assumed that all the
job processing times are fixed and known (Pinedo [1];
Smith [2]). However, job processing times frequently
decline as workers gather working knowledge and experi-

ence. For example, processing similar tasks continuously
improves worker skills and helps workers perform their
jobs efficiently (Biskup [3]). This phenomenon is known as
the “learning effect.” The influence of learning on produc-
tivity for aircraft industry manufacturing was first observed
by Wright [4] and subsequently affirmed in numerous
industries such as the manufacturing and service industries
(Yelle [5]).

Biskup [3] introduced a learning effect scheduling model
in which the actual processing time of a job decreases when
the job is scheduled late. He examined the problems
associated with minimizing the deviation from a common
due date and the sum of flow times in a single-machine
environment, and demonstrated that the problems are
polynomially solvable. Subsequently, numerous studies
have considered this novel and extended region. Cheng et
al. [6] developed a model with learning effect in which
actual job processing time is based on the total normal job
processing time and the position of schedule on a single
machine. They then demonstrated that the makespan and
total completion time problems are polynomially solvable,
and demonstrated that the problems for minimizing weighted
completion time and maximum lateness are polynomially
solvable with certain agreeable conditions. Biskup [7]
presented a detailed review of scheduling problems with
learning effect. Particularly, he classified the existing models
into two distinct groups: the position-based learning and the
sum-of-processing-time-based learning. The position-based
learning is influenced by the number of jobs processed.
Meanwhile, the sum-of-processing-time-based learning con-
siders the processing time of the jobs processed to date.

In the position-based learning model, Wang et al. [8]
investigated a single-machine scheduling problem in which
the setup time and learning effect are considered, and the
setup times are past-sequence-dependent. They showed that
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the problems to minimize the sum of quadratic job
completion time, the total waiting time, the total absolute
differences in waiting time, and the sum of earliness
penalties subject to no tardy jobs, are polynomially
solvable. Wang et al. [9] studied a single-machine problem
with learning effect and discounted cost. They showed that
the shortest processing time first (SPT) rule is the optimal
policy for minimizing the discounted total completion time.
They then illustrated an example to demonstrate that the
discounted weighted shortest processing time first rule is
not the optimal policy for minimizing the discounted total
weighted completion time. Furthermore, Janiak and Rudek
[10] proposed a new learning effect model in which the
rigorous constraints of the position-dependent approach are
relaxed by assuming that each job creates a different
experience for the processor. They also described the shape
of the learning curve using a k-stepwise function. Hence,
the diversified learning functions can be fitted by a
mathematical model. Janiak and Rudek [11] proposed a
new experience-based learning model where the job
processing times are described by “S”-shaped functions
and are dependent on the experience of the processor. They
demonstrated that the makespan problem on a single
processor is NP-hard or strongly NP-hard and then
provided a number of polynomially solvable cases. In
addition, Toksari and Guner [12] considered a parallel
machine earliness/tardiness scheduling problem involving
different penalties under the effect of position-based
learning and deterioration, and demonstrated that the
optimal solution is a V-shaped schedule under certain
agreeable conditions. Eren and Güner [13] studied a
bicriteria scheduling problem with a learning effect in an
m-identical parallel machine environment, and the objective
function is to minimize the weighted sum of the total
completion time and total tardiness. They constructed a
mathematical programming model to solve the problem.

As for the sum-of-processing-time-based learning model,
Koulamas and Kyparisis [14] pointed out that employees
learn more when executing jobs with a longer processing
time. They introduced a sum-of-job-processing-time-based
learning effect scheduling model and demonstrated that the
makespan and the total completion time problems for the
single-machine and two-machine flowshops with ordered
job processing times are polynomially solvable. Wu et al.
[15] studied a total weighted completion time problem on a
single machine with learning effect and ready times. A
branch-and-bound algorithm was proposed to derive the
optimal solution, and the simulated annealing algorithm
was implemented to obtain the near-optimal solution.
Furthermore, Cheng et al. [16] introduced a learning effect
model on a single machine in which the actual job
processing time is derived from the sum of the logarithm

of the processing times of jobs already processed, and they
show that the makespan and total completion time problems
are polynomially solvable. Wang et al. [17] demonstrated
that, even with the effects of sum-of-processing-time-based
learning and deterioration on job processing times, the
single-machine makespan problem remains polynomially
solvable. Wang et al. [18] considered the weighted sum of
completion times and the maximum lateness problem with
the effect of learning and deterioration on a single machine
where job processing times are defined as functions of their
starting times and sequential positions.

In recent literature, the position-based and the sum-of-
processing-time-based learning have been discussed simul-
taneously. Yin et al. [19] examined some single-machine
and m-machine flowshop problems with learning consid-
erations where the learning effect is not only a function of
the total normal processing times of jobs already processed,
but also of the scheduled job position. Lee and Wu [20]
presented a general learning model that simultaneously
combines the position-based learning and sum-of-
processing-time-based learning models. They then demon-
strated that the single-machine makespan and the total
completion time problems are polynomially solvable and
provided polynomial-time optimal solutions for minimizing
the makespan and total completion time under certain
conditions in a flowshop environment.

The concept of learning effect in a flowshop environ-
ment has been relatively neglected. However, Wu et al. [21]
studied the maximum tardiness problem with the position-
based learning effect in a two-machine flowshop environ-
ment. They implemented a branch-and-bound algorithm to
obtain the optimal solution and a simulated annealing
algorithm to obtain the near-optimal solution. In addition,
Lee and Wu [22] considered a two-machine flowshop
problem with learning effect for minimizing the total
completion time. They utilized two lower bounds and
several dominance properties to construct a branch-and-
bound algorithm to obtain the optimal solution and
established a heuristic algorithm to obtain the near-
optimal solution. Chen et al. [23] considered a bicriteria
two-machine flowshop scheduling problem with the
position-based learning effect when the goal is to minimize
both the total completion time and the maximum tardiness.
They proposed a branch-and-bound algorithm and two
heuristic algorithms to obtain the optimal and near-optimal
solutions. Furthermore, Wang and Xia [24] studied flow-
shop problems with learning effect. They gave the worst-
case bound of the SPT algorithm for the makespan and the
total flow time problems and then illustrated examples to
show that the Johnson’s rule is not optimal for the
makespan problem in a two-machine environment with
learning consideration. Eventually, they demonstrated that
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two special cases remained polynomially solvable for the
makespan and total completion time problems. Additionally,
Wu and Lee [25] investigated a flowshop problem with
learning considerations to minimize total completion time.
They implemented a branch-and-bound algorithm and
heuristic algorithms to seek the optimal and near-optimal
solutions, respectively.

Since obtaining optimal solutions in scheduling prob-
lems within a flowshop environment is usually complicat-
ed, numerous works have focused on identifying efficient
near-optimal solutions. In the literature of multiple machine
flowshop without learning effect consideration, Nawaz et
al. [26] considered an m-machine flowshop problem for
minimizing the makespan and claimed that jobs with larger
total normal processing time should be prioritized over jobs
with smaller total normal processing times. They demon-
strated that their proposed algorithm performs particularly
well on large job-sized problems. Furthermore, Liu and
Ong [27] and Ruiz and Maroto [28] claimed that the
algorithm developed by Nawaz et al. [26] is superior to
other existing polynomial algorithms for the m-machine
flowshop makespan problem. Rajendran and Ziegler [29]
developed an algorithm for solving the weighted total
completion time minimization problem in an m-machines
flowshop environment. Their algorithm first generates m
sequences by assigning different weights to each machine.
The sequence with the minimal total weighted completion
time is then selected as the seed sequence, and an
improvement scheme is employed. Woo and Yim [30]
provided an algorithm for minimizing the mean flow time
in an m-machine flowshop environment. Their algorithm
selects a job among excluded jobs for insertion into the
current partial sequence. Whenever a new partial schedule
is constructed, their algorithm assesses all the possible
sequences by inserting an unscheduled job into one of all
slots in the current sequence at a time. The partial sequence
with the least mean flow time is selected. Framinan and
Leisten [31] considered an m-machine flowshop problem to
minimize the mean flow time. They proposed an efficient
constructive heuristic algorithm based on the concept of the
algorithm of Nawaz et al. [26]. They further performed a
general pairwise interchange movement to boost the quality
of the partial schedules in all the iterations.

In this paper, we examine the model of Biskup [3] in the
m-machine flowshop environment. Garey et al. [32]
demonstrated that the flowshop scheduling problem for
minimizing the makespan without learning effect is NP-
hard. Therefore, the branch-and-bound algorithm is a feasible
approach for deriving the optimal solution. In the literature
about the flowshop scheduling problem without learning
effect, Chung et al. [33] studied an m-machine flowshop
problem to minimize the total completion time. They

proposed a brand-and-bound algorithm that incorporates an
innovative lower bound and a dominance criterion to seek
the optimal solution. They then investigated the perform-
ances of the brand-and-bound algorithm using six data types.
Furthermore, Chung et al. [34] considered a total tardiness
scheduling problem in an m-machine flowshop environment.
They obtained the optimal solution by utilizing a branch-
and-bound algorithm and then compared the algorithm they
proposed with the best alternative existing algorithm.

The remainder of this paper is organized as follows.
Section 2 details the formulation of the problem. Section 3
then establishes a dominance theorem and a lower bound
and modifies four well-known heuristic algorithms to solve
the proposed problem. Section 4 conducts a computational
experiment to assess the performances of all proposed
algorithms. Conclusions are finally drawn in section 5.

2 Notations and problem statement

The notations used throughout this paper are summarized as
follows.

n Number of jobs.
m Number of machines.
N Set of jobs, i.e., N ={1,2,…,n}.
Mi ith machine, i=1,2,…,m.
pi,j Normal processing time of job j on Mi.
pi,j,r Actual processing time of job j on Mi if placed at

position r in a schedule.
a Learning index with a<0.
S Subset of N with s scheduled jobs.
U Subset of N with n−s unscheduled jobs.
σ A partial sequence of set S.
[] The symbol which signifies the order of jobs in a

schedule.
Ci; r½ � sð Þ Completion time of the job scheduled in the rth

position on Mi in sequence σ.
Gj (u, v) Total normal processing time of job j from Mu to

Mv, where u≤v, i.e., Gj u; vð Þ ¼ Pv
l¼u

pl;j.

Bi; r½ � Earliest starting time at rth position on Mi.
Fi; r½ � Earliest completion time at rth position on Mi.
LB The lower bound for the current node.

The problem formulation of the m-machine flowshop
environment with learning considerations is as follows.
Suppose that there are n jobs in set N, to be processed on
m-machines. Each job j comprises m operations O1,j, O2,j,
…, Om,j, where Oi,j has to be processed on Mi for i=1, 2,
…, m and j=1, 2,…, n. Processing of operation Oi+1,j must
start only after the completion of Oi,j. Furthermore, this
paper considers a permutation schedule in which the job
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sequence is identical on all the machines. The actual
processing time pi,j,r of job j on Mi is a function that
depends on its position r in a schedule, i.e.,

pi;j;r ¼ pi;jr
a;

where i=1,2,...,m, j,r=1,2,...,n.
This paper attempts to identify a schedule for minimiz-

ing the makespan, a widely used performance measure in
the scheduling literature. For a given schedule τ with n
jobs, the objective of this paper is to derive a schedule τ*

such that Cm n½ � t
»� � � Cm n½ � tð Þ for all schedules τ.

3 Algorithms

To facilitate the branch-and-bound algorithm, a dominance
theorem and a lower bound are proposed in this section.
Furthermore, four well-know heuristic algorithms are
modified to yield the near-optimal solution. Finally, the
detailed procedure of the proposed branch-and-bound
algorithm is represented.

3.1 Dominance theorem of branch-and-bound algorithm

The following theorem provides a criterion for discriminat-
ing dominance relationships between two different sequen-
ces which are made up of the same job set.

Theorem Let σ1 and σ2 denote two partial sequences with
s jobs of set S. If max

1�i�m
Ci; s½ � s1ð Þ � Ci; s½ � s2ð Þ� �

< 0, then σ1
dominates σ2.

Proof Let π denote a partial sequence with n−s jobs of set
U, and sequence π is scheduled immediately behind
sequence σ1 and σ2 into the sequence S1=(σ1, π) and S2=
(σ2, π), respectively. Then, for 1≤u≤m, we have the
completion time of the job scheduled in the nth position
on Mu in S1 and is

Cu; n½ � S1ð Þ ¼ max
1�v�u

Cv; n�1½ � S1ð Þ þ G n½ � v; uð Þ � na
� �

¼ Cv1; n�1½ � S1ð Þ þ G n½ � v1; uð Þ � na for some v1
where 1≤v1≤u.

Similarly, the completion time of the job scheduled in
the nth position on Mu in S2 is

Cu; n½ � S2ð Þ ¼ max
1�v�u

Cv; n�1½ � S2ð Þ þ G n½ � v; uð Þ � na
� �

¼ Cv2; n�1½ � S2ð Þ þ G n½ � v2; uð Þ � na for some v2
where 1≤v2≤u.

Then, we have Cu; n½ � S2ð Þ � Cv1; n�1½ � S2ð Þ þ G n½ � v1; uð Þ�
na for v1≠v2.

Therefore, we have

Cu; n½ � S1ð Þ � Cu; n½ � S2ð Þ � Cv1; n�1½ � S1ð Þ þ G n½ � v1; uð Þ � na
� �
� Cv1; n�1½ � S2ð Þ þ G n½ � v1; uð Þ � na
� �

� max
1�i�m

Ci; n�1½ � S1ð Þ � Ci; n�1½ � S2ð Þ� �
:

An induction argument is conducted. Then, we have

Cu;½n� S1ð Þ � C S2ð Þ � max
1�i�m

Ci; s½ � S1ð Þ � Ci; s½ � S2ð Þ� �
:

If max
1�i�m

Ci; s½ � S1ð Þ � Ci; s½ � S2ð Þ� �
< 0, then S1 dominates S2.

The proof is completed.
In order to apply the above theorem in the proposed

branch-and-bound algorithm, the following corollary
requires considering two consecutive jobs, as presented
below.

Corollary Let Jx and Jy denote two jobs of set S, and σs−2
denote a sequence with s−2 jobs excluding Jx and Jy of set
S. If max

1�i�m
Ci; s½ � ss�2; Jx; Jy

� �� Ci; s½ � ss�2; Jy; Jx
� �� �

< 0, then

sequence (σs−2, Jx, Jy) dominates (σs−2, Jy, Jx).

3.2 The lower bound of branch-and-bound algorithm

For a given node in the branch-and-bound algorithm, the
lower bound is designed to underestimate the objective
function by utilizing the information of its unscheduled
jobs, and the lower bound is less than or equal to the
objective function of the optimal sequence based on the
node. Consequently, when the lower bound of a given node
is larger than the objective function of a known sequence,
the optimal sequence based on the node is dominated by the
known sequence, and the given node and its offspring are
not the candidates for the optimal solution.

In this subsection, we propose a lower bound for
eliminating nodes in the branching tree, and the lower
bound is evaluated by using the concept developed by
Chung et al. [33]. The lower bound for Chung et al. [33] is
a machine-based lower bound. The main idea of their lower
bound is assuming that the given machine has unit capacity
and the machines behind it have infinite capacity. Hence,
the procedure in Chung et al. [33] for estimating the
marginal lower bound based on the given machine is to
compute the earliest starting times for all remaining
positions on the machine at first, and to sum up these
starting times and all the processing times of the machine
and that behind the machine for unscheduled jobs. Finally,
the lower bound is determined as the maximal marginal
lower bound. Instead of the total completion time, we adapt
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the procedure in Chung et al. [33] which estimates the
earliest starting time with learning effect, when the
objective is to minimize the makespan. The proposed lower
bound is summarized as follows. Let pi,(j) represent the
normal processing times on Mi, which are based on non-
descending order of all pi,j from set U for j=1,2,…n−s, i.e.,
pi;ð1Þ � pi;ð2Þ � � � � � pi;ðn�sÞ, where i=1,2,…,m. G(1)(u,v)

denote the smallest total normal processing time between
Mu and Mv from set U. Let Ei,[s+1] denote the actual starting
time of s+1th job on Mi. By definition, we have

E1; sþ1½ � ¼ C1; s½ � sð Þ

and

Ei; sþ1½ � ¼ max max
1�u�i�1

Eu; sþ1½ � þ G sþ1½ � u; i� 1ð Þ � sþ 1ð Þa� �
;Ci; s½ � sð Þ

� 	
;

where i=2,3,…m.
For the first machine, the earliest starting time is the

same as the actual starting time of s+1th job (i.e.
B1; sþ1½ � ¼ E1; sþ1½ �). Then,

E2; sþ1½ � ¼ max B1; sþ1½ � þ p1; sþ1½ � � sþ 1ð Þa;C2; s½ � sð Þ� �

� maxfB1;½sþ1� þ p1;ð1Þ � ðsþ 1Þa;C2;½s�ðsÞg:
Therefore, B2,[s+1] is evaluated as maxfB1;½sþ1�þ

p1;ð1Þ � ðsþ 1Þa;C2;½s�ðsÞg. By induct ion, we have
Bi;½sþ1� ¼ maxf max

1�u�i�1
fBu;½sþ1� þ Gð1Þðu; i� 1Þ � ðsþ 1Þag;

Ci;½s�ðsÞg for i=2, 3,…m.

Since the learning effect is considered, we have

Fi; sþj½ � ¼ Bi; sþ1½ � þ
Pj
l¼1

pi;ðlÞ sþ lð Þa. For the first machine,

the earliest starting time of nth job is the earliest completion
time of (n−1)th job (i.e., B1; n½ � ¼ F1; n�1½ �). In the context of
Chung et al. [33] for unscheduled jobs, besides (s+1)th job
on the second to the final machine, the procedure of
computing the earliest starting time only considers the
earliest completion time on the current machine and that
immediately ahead of the machine (i.e., Ei; sþj½ � ¼
max Fi; sþj�1½ �;Fi�1; sþj½ �

� �
). However, it may have the

contradiction that the earliest starting time on the current
machine is smaller than that on the preceding machines for
the third and late machine. Therefore, to overcome the
contradiction, we have

Bi; n½ � ¼
max Fi; n�1½ �;Fi�1; n½ �

� �
;where i ¼ 2

max Fi; n�1½ �;Fi�1; n½ �;Bi�1; n½ � þ pi�1;ð1Þ � na
� �

;where i ¼ 3; 4; . . . ;m:

(

Then, the marginal lower bound is evaluated as
Bi; n½ � þ Gð1Þ i;mð Þ � na. Eventually, the lower bound
in this paper is represented as maxfmax

1�i�m
fBi; n½ �þ

Gð1Þ i;mð Þ � nag;Fm; n½ �g, and the detailed procedure
for estimating the lower bound is presented as
follows;

Step 1: Set i=1, B1; sþ1½ � ¼ C1; s½ � sð Þ, and go to Step 3.

Step 2: Compute Bi; sþ1½ � ¼ max max
1�u�i�1

Bu;½sþ1� þ Gð1Þ u; i� 1ð Þ�n
� sþ 1ð Þag;Ci; s½ � sð Þg

Step 3: Compute Fi; sþj½ � ¼ Bi; sþ1½ � þ
Pj
l¼1

pi;ðlÞ sþ lð Þa for
j= n−s−1 and n−s.

Step 4: If i=1, set B1;½n� ¼ F1;½n�1� and go to Step 6.
Otherwise, go to Step 5.

Step 5: If i=2, set Bi; n½ � ¼ max Fi; n�1½ �;Fi�1; n½ �
� �

. Other-
wise, set Bi; n½ � ¼ max Fi; n�1½ �;Fi�1; n½ �;Bi�1; n½ �þ

�
pi�1;ð1Þ � nag:

Step 6: If i<m, set i = i+1and go to Step 2. Otherwise, go
to Step 7.

Step 7: Set LB ¼ max max
1�i�m

Bi; n½ � þ Gð1Þ i;mð Þ � na
� �

;
n

Fm; n½ �g.
Step 8: The lower bound of the makespan for sequence σ

is obtained as LB.

3.3 Heuristic algorithms

Seeking for the optimal sequence of a scheduling problem
generally requires considerable computational time and
memory for larger job-sized problems. Thus, this paper
also focuses on assessing the performances of efficiency
when applying economical heuristic algorithms with learn-
ing considerations to solve the scheduling problem.

The first algorithm is denoted as NEH. NEH is
constructed by considering the learning effect to the
algorithm proposed by Nawaz et al. [26]. The second
algorithm is named as RZ in this paper. RZ modifies the
algorithm which Rajendran and Ziegler [29] proposed by
assuming the weights for all the jobs are equal, and we
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replace the total completion time by the makespan. The
effect of learning is also considered in RZ. The third and
final algorithms are denoted as WY and FL. WY and FL,
respectively, modify the algorithm proposed by Woo and
Yim [30] and Framinan and Leisten [31] by replacing the
mean flow time by the makespan with the learning effect.

3.4 The procedure of the branch-and-bound algorithm

The branching procedure proposed in this paper adopts the
depth-first search and assigns jobs in a forward manner
starting from the first position. In the branching tree, the nodes

Apply heuristic algorithms 
to get an initial sequence 

and solution.

Expand a new 
node.

Is the node a 
complete sequence?

Is the solution for the 
complete sequence smaller 

than initial solution?

Replace the complete 
sequence and solution.

Is there any node 
to be expanded?

Output the sequence 
and solution. 

Is the node can be 
dominated by applying 

the corollary?

Is the lower bound
larger than  the initial 

solution ?

Eliminate the node 
and its offspring.

Yes

No

No

No

No

Yes
Yes

Yes

Yes

Compute the 
lower bound.

No

Fig. 1 The flowchart of the
proposed branch-and-bound
algorithm

Table 1 The normal processing times for the demonstrated example

pi,j j Values

1 2 3 4

i 1 62 56 75 13

2 18 30 4 100

3 9 81 52 70
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are eliminated by the corollary or evaluating the lower bound.
The detailed procedure is described as follows.

Step 1: Select the best schedule among the four heuristic
algorithms as the initial solution.

Step 2: Expand the branching tree from node (–, –, …, –)
to node (1, –, …, –), then to node (1, 2, –, …, –),
and finally to node (n, n–1, …, 1) .

Step 3: Apply the corollary to check the node. If it is a
dominated sequence, then eliminate the node.

Step 4: Evaluate the lower bound of the makespan for the
current node or compute the makespan for the
complete sequences. If the lower bound for the
current node is larger than the initial solution,
eliminate the node and all nodes beyond it in the
branching tree. If the value of the complete sequence
is smaller than the initial solution, then replace it as
the new solution. Otherwise, eliminate it.

Step 5: Repeat Steps 2 to Step 4 until no more node can
be expanded and the final initial solution is the
optimal solution.

Furthermore, a flowchart is drawn in Fig. 1 to illustrate
the detailed procedure of the branch-and-bound algorithm.
Eventually, an illustrated example with four jobs and three
machines is represented. The data are given in Table 1, and
the steps are recorded in Table 2.

4 Computational results

We conduct a computational experiment in this section to
assess the performance of the branch-and-bound algorithm
and the four heuristic algorithms proposed in this paper. All
the algorithms are coded in Fortran 90 and run on a
Pentium 4 personal computer. The normal processing time

Table 2 The procedure to seek the optimal solution for the demonstrated example

Process Node Action Reason

1 None Apply heuristic algorithms to get an initial sequence and solution as (4,1,3,2) and 300.71 –

2 (1,−,−,−) Eliminate the node LB=304.75>300.71

3 (2,−,−,−) None –

4 (2,1,−,−) None –

5 (2,1,3,4) Eliminate the node Solution is 323.50>300.71

6 (2,1,4,3) Eliminate the node Solution is 313.98>300.71

7 (2,3,−,−) None –

8 (2,3,1,4) Eliminate the node Solution is 328.90>300.71

9 (2,3,4,1) Replace (2,3,4,1) and 285.65 as the initial sequence and solution Solution is 285.65<300.71

10 (2,4,−,−) Eliminate the node LB=288.74>285.65

11 (3,−,−,−) None –

12 (3,1,−,−) Eliminate the node LB=328.42>285.65

13 (3,2,−,−) Eliminate the node Dominated by (2,3,−,−)
14 (3,4,−,−) Eliminate the node Dominated by (4,3,−,−)
15 (4,−,−,−) Eliminate the node LB=300.71>285.65

16 None Output sequence (2,3,4,1) and 285.65 as the optimal sequence and solution No node can be expanded

Table 3 The performance of the corollary and the lower bound for the branch-and-bound algorithm

m Value a (%) Number of mean nodes Mean CPU times

B_C B_L B_C+L B_C B_L B_C+L Enumeration

3 90% 257236.9 917.7 450.4 4.234 0.031 0.017 15.504

80% 183932.9 162.6 129.6 3.083 0.007 0.006 15.421

70% 111829.0 92.7 78.2 1.949 0.005 0.004 15.379

5 90% 368537.7 945.1 771.2 10.067 0.067 0.056 25.148

80% 250310.5 350.0 310.5 6.892 0.027 0.027 25.051

70% 146816.5 134.3 122.3 4.031 0.012 0.012 24.806
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of all jobs are generated from a discrete uniform distribu-
tion over 1 to 100.

4.1 Performance of the algorithms for small job-sized problems

In order to test the efficiency of the proposed corollary and
the lower bound, a computational experiment is imple-
mented with fixed job size at 10, two different machine
sizes at 3 and 5, 100 replications, and three different levels
of learning effects at 90%, 80%, and 70% (which
correspond to a=−0.152, a=−0.322, and a=−0.515.). The
results are listed in Table 3, in which B_C denotes the
branch-and-bound algorithm with only the corollary, B_L
denotes the branch-and-bound algorithm with only the
lower bound, and B_C+L denotes the branch-and-bound
algorithm with both the corollary and the lower bound. In
addition, the mean number of nodes and the mean
execution time are recorded. Meanwhile, the mean execu-
tion time for the enumeration method is also recorded. As
shown in Table 3, the efficiency of the corollary and the
lower bound in the branch-and-bound algorithm are
significant in terms of the mean execution time by
comparison with the enumeration method. Furthermore,
the lower bound is more effective than the corollary in
terms of the mean number of nodes and the mean execution
time, and the phenomenon is notable when the learning
effect is stronger. However, the most efficient performance
is exhibited when B_C+L is implemented in terms of the
mean number of nodes and the mean execution time.
Therefore, the branch-and-bound algorithm with both the
corollary and the lower bounds is recommended for the
succeeding computational experiment in this paper.

We use five job sizes (n=10, 12, 14, 16, and 18) and two
different machine sizes (m=3 and 5) to yield the optimal
solution and test the accuracy of all the proposed heuristic
algorithms. Furthermore, to examine the influence of
learning effects, the learning effects are taken to be 90%,
80%, and 70%. Consequently, 30 experimental conditions
are examined, and 100 replications are randomly generated
for each condition. A total of 3,000 instances are generated,
and the results are listed in Table 4. The mean and the
standard deviation of the number of nodes and of the
execution time for the proposed branch-and-bound algo-
rithm are recorded. In addition, the mean and standard
deviation of the error percentages for the four heuristic
algorithms are also recorded. For each instance, the error
percentage of the given heuristic algorithm is calculated as

V � V
»


 �
V

»
.

� 100%;

where V denotes the value of the makespan generated by
the heuristic algorithm and V* denotes the optimal make-
span obtained by the branch-and-bound algorithm.

It is observed that the four heuristic algorithms proposed
in this paper are quite accurate since all the mean error
percentages are less than 0.1%. Furthermore, FL has the
best performance and RZ has the worst performance. From
the results of the branch-and-bound algorithm, it reveals
that, for the problem proposed in this paper, it is easier to
obtain the optimal solution in terms of the mean number of
nodes when the learning effect strengthens. However, the
standard deviation of the number of nodes exceeds its mean
for all the cases, which implies that there are worst cases
with a tremendous number of nodes. Therefore, the quartile
of 25%, 50%, and 75% for the number of nodes is
evaluated and recorded as Q1, Q2, and Q3. The observa-
tions show that the distribution for the number of nodes is
right skewed because most of the mean numbers of nodes
are relatively large to Q3, and it implies that most of the
instances have fewer nodes. For the same instances, the
box-plot of logarithm scale for the number of nodes with
different parameters for the learning effect as 90%, 80%,
and 70% is shown in Figs. 2, 3, and 4, respectively. The
figures illustrate that the number of nodes and the execution
time grow exponentially with an increasing number of jobs.

In order to investigate the influence of outliers, the
number of outliers for each experimental condition is listed
in Table 1, where the number of nodes for given instance
which exceeds the value of Q3+1.5(Q3–Q1) is recorded as
the outlier. The outliers are eliminated, and the performance
of the branch-and-bound algorithm is shown in Table 5.

Table 5 illustrates that the means and the standard
deviations for the number of nodes and execution time are
all reduced by a wide margin after eliminating the outliers.
Eventually, since the quantity of outliers is less than 20% of
all instances for each experimental condition in this paper,
we recommend to conduct the proposed branch-and-bound
algorithm for obtaining the optimal solution within a
reasonable amount of time, or conduct the proposed
heuristic algorithms for obtaining near-optimal solutions
when the number of jobs is larger than 18.
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4.2 Performance of the algorithms for large job-sized
problems

To indicate the performance of the proposed heuristic
algorithms for large job-sized problems with learning
considerations, we use three different job sizes (n=50,
100, and 150), four different machine sizes (m=5, 10, 15,
and 20) and three learning effects (90%, 80%, and 70%) to
yield the near-optimal solutions. The mean and the standard
deviation of relative percentage deviation (RPD) are reported
for each heuristic algorithm. For each instance, the RPD is
obtained with respect to the best one of all near-optimal
solutions generated by the four heuristic algorithms, i.e.,
RPD=V/Vmin, where V denotes the value of the makespan
generated by the given heuristic algorithm and Vmin denotes
the minimal one among the values of the makespan generated
by the four heuristic algorithms. Consequently, 36 experi-
mental conditions are examined, and 100 replications are
randomly generated for each condition. A total of 3,600
instances are generated, and the results are listed in Table 6.

In Table 6, the value of RPD from FL is the minimal one
among four heuristic algorithms for every experiment

condition. The observation shows that FL is more accurate
than the other three heuristic algorithms. However, as all
the RPD values are greater than 1, there is no algorithm
which completely dominates the others. From the values of
RPD for the four heuristic algorithms, one-way analysis of
variance (ANOVA) with a significance of 5% is applied to
test that the mean values of RPD are all the same among
four algorithms or whether at least one differs from the
others. The results are given in Table 7.

Since the p value is below the significance level, it
implies that the mean values of RPD are not all identical.
Therefore, the efficiency among the four heuristic algo-

Table 5 The performance of branch-and-bound algorithm of different
parameters after outliers elimination

n Value m Value a (%) Branch-and-bound algorithm

Number of nodes CPU times

Mean SD Mean SD

10 3 90% 89.7 80.5 0.005 0.007

80% 78.5 75.1 0.004 0.007

70% 70.8 64.2 0.003 0.007

5 90% 337.5 365.4 0.028 0.026

80% 164.0 143.5 0.016 0.014

70% 85.8 75.5 0.009 0.010

12 3 90% 355.9 435.2 0.022 0.026

80% 307.0 298.7 0.021 0.022

70% 268.7 252.9 0.019 0.018

5 90% 1912.0 2334.1 0.204 0.237

80% 761.0 858.6 0.090 0.089

70% 287.0 317.0 0.036 0.040

14 3 90% 2431.5 3104.2 0.195 0.234

80% 2605.9 3474.3 0.210 0.272

70% 801.0 964.7 0.075 0.084

5 90% 5655.6 6874.0 0.853 0.946

80% 2009.5 2020.1 0.328 0.307

70% 1800.1 1840.8 0.317 0.319

16 3 90% 7586.8 10851.7 0.771 1.032

80% 6814.2 9770.4 0.712 0.981

70% 3646.5 5035.8 0.426 0.568

5 90% 33524.6 49524.8 6.176 8.746

80% 10837.8 12194.7 2.415 2.769

70% 5519.6 6149.3 1.198 1.251

18 3 90% 115505.8 174775.7 11.263 16.210

80% 36878.3 51417.1 4.025 5.316

70% 18440.8 23462.5 2.079 2.605

5 90% 566117.6 1071722.1 82.906 144.164

80% 67915.4 82120.5 14.043 16.320

70% 20391.9 28773.9 4.521 5.776
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Fig. 4 Box-plot for logarithm scale with learning effect as 90%
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rithms should be considered. Furthermore, the Tukey's test
with a significance of 5% is implemented to compare the
values of RPD among the four heuristic algorithms. The
results of Tukey's test are summarized in Table 8.

The test results imply that FL is the best among the four
algorithms, follows by WY and NEH, and finally RZ. Thus,
the algorithm adapted from Framinan and Leisten [31] is
recommended to obtain the near-optimal solution for the

Table 6 The relative percentage deviation of heuristic algorithms

n Value m Value a (%) Relative percentage deviation (RPD)

NEH RZ WY FL

Mean SD Mean SD Mean SD Mean SD

50 5 90% 1.0142 0.0074 1.0479 0.0268 1.0133 0.0100 1.0009 0.0029

80% 1.0379 0.0130 1.0493 0.0167 1.0172 0.0117 1.0000 0.0004

70% 1.0654 0.0194 1.0720 0.0254 1.0195 0.0166 1.0005 0.0023

10 90% 1.0179 0.0113 1.0877 0.0322 1.0138 0.0109 1.0010 0.0027

80% 1.0413 0.0159 1.0677 0.0279 1.0151 0.0111 1.0003 0.0015

70% 1.0610 0.0250 1.0787 0.0235 1.0126 0.0112 1.0010 0.0038

15 90% 1.0185 0.0130 1.0975 0.0243 1.0161 0.0122 1.0012 0.0034

80% 1.0429 0.0188 1.0694 0.0247 1.0130 0.0096 1.0006 0.0022

70% 1.0584 0.0171 1.0766 0.0217 1.0117 0.0112 1.0010 0.0028

20 90% 1.0204 0.0145 1.1013 0.0243 1.0182 0.0121 1.0006 0.0020

80% 1.0432 0.0184 1.0689 0.0212 1.0125 0.0112 1.0003 0.0015

70% 1.0587 0.0200 1.0727 0.0203 1.0079 0.0086 1.0007 0.0020

100 5 90% 1.0175 0.0052 1.0350 0.0159 1.0106 0.0067 1.0004 0.0016

80% 1.0437 0.0107 1.0524 0.0175 1.0144 0.0091 1.0001 0.0012

70% 1.0747 0.0178 1.0832 0.0234 1.0184 0.0115 1.0001 0.0012

10 90% 1.0165 0.0079 1.0750 0.0243 1.0127 0.0082 1.0003 0.0011

80% 1.0466 0.0128 1.0662 0.0204 1.0158 0.0083 1.0000 0.0003

70% 1.0731 0.0197 1.0932 0.0193 1.0135 0.0098 1.0003 0.0016

15 90% 1.0182 0.0090 1.0956 0.0266 1.0122 0.0086 1.0001 0.0008

80% 1.0481 0.0166 1.0734 0.0210 1.0132 0.0082 1.0002 0.0011

70% 1.0665 0.0163 1.0916 0.0179 1.0117 0.0091 1.0004 0.0015

20 90% 1.0183 0.0097 1.1036 0.0200 1.0117 0.0083 1.0003 0.0010

80% 1.0501 0.0154 1.0760 0.0212 1.0121 0.0077 1.0001 0.0010

70% 1.0655 0.0193 1.0871 0.0201 1.0068 0.0076 1.0017 0.0046

150 5 90% 1.0197 0.0052 1.0291 0.0132 1.0082 0.0058 1.0005 0.0024

80% 1.0477 0.0090 1.0448 0.0136 1.0122 0.0084 1.0006 0.0030

70% 1.0774 0.0155 1.0894 0.0252 1.0164 0.0086 1.0001 0.0005

10 90% 1.0180 0.0065 1.0655 0.0200 1.0101 0.0065 1.0002 0.0007

80% 1.0497 0.0119 1.0653 0.0175 1.0121 0.0061 1.0001 0.0009

70% 1.0782 0.0175 1.1006 0.0162 1.0141 0.0117 1.0002 0.0011

15 90% 1.0187 0.0064 1.0902 0.0208 1.0098 0.0063 1.0001 0.0010

80% 1.0495 0.0147 1.0721 0.0180 1.0119 0.0065 1.0001 0.0006

70% 1.0698 0.0189 1.0978 0.0156 1.0113 0.0082 1.0006 0.0017

20 90% 1.0180 0.0068 1.0992 0.0195 1.0098 0.0062 1.0002 0.0009

80% 1.0515 0.0142 1.0739 0.0177 1.0116 0.0067 1.0000 0.0004

70% 1.0696 0.0200 1.0940 0.0175 1.0101 0.0082 1.0002 0.0007

Table 7 One-way ANOVA for RPD of four heuristics

Source DF SS MS F p Value

Factor 3 0.124511 0.041504 199.66 0.000

Error 140 0.029101 0.000208

Total 143 0.153612
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makespan problem with learning considerations in flow-
shop setting.

5 Conclusion

This paper examines an m-machine permutation flowshop
problem with learning considerations where the aim is to
minimize the makespan. A dominance theorem and a lower
bound are proposed to conduct a branch-and-bound
procedure for optimizing the solution. In addition, this
paper also introduces learning effects to four well-known
existing heuristic algorithms and adapts them to solve the
scheduling problem. The computational results show that
the branch-and-bound algorithm can solve problems of up
to 18 jobs within a reasonable amount of time and
demonstrate that FL performs best for small job-sized
problems. Meanwhile, for large job-sized problems, FL also
has identical performance. Therefore, we recommend the
heuristic algorithm adapted from Framinan and Leisten [31]
to obtain the approximate solution. Eventually, since the
heuristic algorithms for the position-based learning pro-
posed in this paper are not affected by different learning
index, the discussion for sum-of-processing-time-based
learning is attractive in future research.
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