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AB STRACT

A family of multirate representation of a given signal is defined for data compression. This family of multirate
signals is constructed by polynomial interpolation of these direct decimated versions of a given signal. Interpo-
lated signal from decimated signal is used to predict the higher resolution signal The prediction error is the
difference between the interpolated signal from lower resolution and the higher resolution one. This kind of sig-
nal representation can be called as interpolation compensated signal prediction. A multiresolution interpolative
DPCM is then proposed to represent the prediction errors with a hierarchical multirate structure. This structure
possesses the advantages of both the pyramid structure and the DPCM structure.
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1 INTRODUCTION

A family of multiresolution signals is constructed by polynomial interpolation of the direct decimated version of
a given signal. Beginning form the lowest resolution, interpolated signal from the decimated signal with polynomial
interl)OlatiOn is used to predict the higher resolution signal. The prediction error is the difference between the
interpolated signal from lower resolution and the original higher resolution one. Based on this interpolation,
a scheme called as interpolation compensated signal prediction is developed. A multiresolution interpolative
DPCM is then proposed to represent the prediction errors with a hierarchical multirate structure. To derive
the discrete prediction algorithm, we begin by showing how polynomial interpolation can be implemented with
discrete iterative computation structure. From that, a new iterative polynomial interpolation is derived.

The characteristic of iterative interpolation is very suitable for rate conversion in multiresolution rel)resen-
tation. Iterative interpolation was first proposed by Dubuc8 and Dyn et al.9 Iii our approach, a timelimited
and symmetric self-similar cardinal function is chosen as the interpolation basis. Since the interpolation basis
is constrained to be symmetric, cardinal and timelimited, the corresponding interpolation filter is a symmetric
halfband FIR filter. With this filter used in the iterative interpolatioD, the interpolated sequence will converge to
the continuous function interpolated with the corresponding interpolation basis.

This inultiresolution interpolative DPCM has the following characteristics. The first is the use of interpolator
as the predictor. Similar to the Laplacian pyramid, the prediction is noncausal due to the nature of multiresolution
representation. The performance of such predictor is better than that of the traditional causal predictor commonly
used with DPCM.13 The second is the representation forms a multiresolution structure. It is possible to access
a given signal at different resolutions and support a progressive rendition structure for devices having different
resolutions, The third is the effect of error propagation is different from the traditional DPCM and depends on
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the resolution level where the error occurs. Due to the nature of multiresolution permutation and subsequent
interpolation, the error signal possesses unequal importance. The importance decreases from low resolution
prediction level to high resolution prediction level. Since high resolution prediction depend on the result of low
resolution prediction.

The organization of this paper is as follows. In section 2, iterative polynomial interpolation is defined. In
section 3, interpolation compensated signal prediction is introduced. The generation and reconstruction of the
multiresolution interpolative DPCM based on iterative polynomial interpolation is then described. In section
4, numerical experiments are used to show the efficiency of the multiresolution interpolative DPCM for data
compression. In section 5, a conclusion is made.

2 ITERATIVE POLYNOMIAL INTERPOLATION

Iterative polynomial interpolation is used to successively interpolate a polynomial from a set of data points.
In this section, the choice of timelimited and symmetric self-similar cardinal basis for iterative polynomial in-
terpolation is discussed. Based on the self-similar equation which defines the interpolation basis, interpolation
filter is derived. The corresponding characteristic of the interpolation filter used in iterative interpolation is then
discussed.

Consider the interpolated function I(t; f(.)) f()I(Wt — k) defi;ed on the real line R, where
f(T) denotes the sampled value of the function f(t) and W > 0 denotes the sampling rate. If the interpolation
basis J(t) is timelimited with timeliniit T, i.e. it vanishes outside the interval [—T, TJ, then the interpolated
function I(t; f(-)) can also be written as f(t; f()) = >IIk=w_Tj+1 f(*)1(Wt — k) where Lxi denotes the
largest integer which is smaller than or equal to x. The number of samples needed for the computation of the
interpolated function I(t; f()) at an arbitrary point is —L—2Tj, i.e. the smallest integer which is larger or equal
to 2T.

In this paper, the case of dyadic sampling rate with W = 2' , j Z, is considered. Let c3 denote the
sampled value of the function 1(t), i.e. = f(2ik), then the interpolated function I(t; c) is described as:

1(1; c) = >I:k cI(2it _ k). In order to satisfythe requirement that the interpolated function at points 2'k will
coincide with the sequence c , i.e. I(2 k; c) = c , cardinal functions are chosen as the interpolation bases. Besides
the timelimited property mentioned above, symmetric property is also considered. Timelimited and symmetric
properties will make the subsequent filter design easier. Further, since the interpolation I(t; c)depends on the
resolution of the sampled data c, vector space V as the interpolation 1 = {I(t; c')II(t; ) = >k
where (t) := F(2i1 — k)} is defined. In order to establish a hierarchical vector space relationship, that is
Vj C V_i, j e Z, the basis (t) is also constrained to be self-similar, that is (t) = kpk(2t — k), k E Z.5
The sequence Pk will be shown later to be the interpolation filter for discrete interpolation.

Now let us consider the computation of the interpolation I(i; c') by iterative inte;polation. Iterative interpo-
lation is a discrete implenientation of the polynomial interpolation. Each time, new point is interpolated between
the original points. The sanie process can be repeatedly applied until the final interpolated sequence converges
to the function I(t; c'k).

To derive the iterative interpolation, consider the interpolation

I(t;c'k) = ci(2't — k). (1)

Froin 1(1; c), the new sequence I(21k; c) can I)e obtained with sampling interval 2j1 With J(2k; c), a
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new interpolation P(t; c) can be written as

I'(t; c) = : I(2'k; )4(2_i+hj k). (2)

The purpose of iterative interpolation is to derive a computational formula such that I'(t; c)can be made to be
equivalent to 1(1; ci). From Eq.(1) and Eq.(2), we have

:cF(2t — k) = : I(21k;)21t — k). (3)

As can be seen from Eq.(3), the relationship between I(21k; c) and c is constrained by the interpolation basis.
From the self-similar property defined above, we have

I(2'1k;c) = >&nPk2n. (4)

This means that if c is given, according to the interpolation filter pk, the new sequence I(231k; c) can be ob-
tamed by Eq.(4). Ifthe process is repeated for 1 times, the sequence I(2'k; c) can be derived. The interpolation
I(t; c) can then be written as

I(t; c) = : I(2'k;)I(2t — k). (5)

When 1 approaches to infinity, the kernel (231) will converge to delta function 6(t) and I(2ik, c) =
I(t;c).

Now we consider the corresponding constraints of the interpolation filter if timelimited and symmetric self-
siimlar cardinal basis 1(t) is chosen. Since F(t) is symmetric and timelimited so that the filter pk will be symmetric
and finite in length. Let the odd term and the even term of the filter Pk be denoted as e =P2k and e = P2k+1
Hence, e and e) are called as the 0th and the 1st polyphase component Ofpk, respectively.15 Due to the cardinal
property of 4(t), the sequence Pk 4(k/2), k E Z, then P2k e = 6kO The z transform of the e, E°(z), is
equal to 1, and the z transform of pk, P(z), can be represented with its polyphase components as

P(z) = 1 + z1E1(z2), (6)

where E1(z) is the z transform of the e. From the above equation, we have the following result:

P(z)+P(-z)=2, (7)

or in the frequency domain,
P(eiw) + P(_eJW) = 2. (8)

This result means that the frequency response of the filter and its frequency translation version with amount ir
are mirror image symmetric about the frequency w = ir/2. This condition is called as the halfband condition. A
filter satisfies this condition is called as the halfband filter. From the above discussion, we cami see that the filter
needed for iterative polynomial interpolation is a halfband filter.

3 MULTIRES OLUTION INTERPOLATIVE DP CM

In this section, based on iterative polynomial interpolation, the structure of multiresolution interpolative
DPCM is introduced. In the first part, we introduce a family of multiresolution hierarchical representation of
a signal based on iterative polynomial interpolation. Then based on that representation, multiresolution inter-
polative DPCM is constructed. Multimesolution interpolative DPCM is a compact structure for multiresolution

526 ISPIE Vol. 2501

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms



representation of a given signal. It is composed of the difference between two consecutive resolution versions of a
signal.

As shown in section 2, J(t; c) represents the interpolated version of f(t) with c. A rnultirate representation
of f(t) is the family of functions I(t; c), where j = 0, . . . , J, with I(t; c) = 1(t). Multiresolution interpolative
DP(I'M is used to represent this family of functions with a very compact hierarchical structure.

Assume 1(t) Vo, the signal 1(t) can be represented as

1(t) = J(t;c)
= I(t;cj)+Qif(t) (9)

where Q1f(t) := I(t; c) — I(t; ci). Q1f(t) represents the prediction error in predicting I(t; c) from the signal
I(t; cL). This scheme is called as interpolation compensated signal prediction. This representation shows that
the signal 1(t) can be regarded as the combination of the coarser scale structure I(t; c) and an error structure
Qif(1). In fact, the coarser scale ofthe signal can be repeatedly decomposed with the same way until the coarsest
resolution J is reached. then we have

1(t) = I(t;c) + Q1(
where Q,f(t) = I(t; 7_1) I(t; c) representing the prediction error in predicting f(t) from resolution j to j — 1.

For the discrete domain description , we define two dyadic grids to represent the sampling positions. A set of
the dyadic nested grids Qi(k) is defined as 1i(k) := {2k;j, k E Z} where j denotes the resolution level and k
denotes the coordinate index ofthe grid 1.23(k). For each ofthe grids 1(k), a sampled versionofthe signal f(t), i.e.
c, can be obtained. Another set of the dyadic nested grids &(k) is defined as i'(k) := {221(2k. + 1); j, k E Z}.
It can be regarded as the complemental grid of Q3(k). We can see that the union of the grids &(k) and Q'(k)
is the grid çi—l(k)

Consider the sampled data of a signal at grid Q31(k), we have

c_1 = I(2'k;) + (c1 — I(2''k;)). (11)

I(231k; c') is the iiiterpolated data at the grid Qi1(k) given the data c. at the grid 13(k) with discrete
interpolation. The interpolated data I(21k; ) can be seen as the prediction of the original data c' from

7—-I •__1 1 . . . . j—1 . i—i 7 j—1The term k I(2J k; c) is the prediction error and isdefined as dk . Since ck = c we have d2k 0.

Therefore, a new error sequence can be defined as d := d'1. Note that the length of the sequence d is half
of the length of the sequence d._i and is also defined as the sampled value of the error signal Qf(t) at the grid
&(k). d is the prediction error when using the interpolation procedure I to predict from the knowledge of

In discrete implementation, the prediction process can be viewed as the prediction of points at the cornple-
mental grid z'(k) from the points at the grid 1'(k) with a discrete interpolator. Let us define the discrete
interpolator B in terms of the interpolation I as

B Q' &, B(c) = I(2''(2k + 1); ci). (12)

As shown in Eq.(4), I(2)_ik; r) at the grid }'1(k) can be derived from c at the grid 7(k) with the filter Pk.
Since = c, only at the grid &(k) needed to be predicted. Therefore, the prediction can be described

B(c) = :i: CP2(k....7i)+i = €)_,1, (13)
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where e is the 1st polyphase component of the filter Pk• The purpose of B is to predict the sampled values of
function f at the grid & (k) when the sampled values of function f at the grid Q (k) are given. This polyphase
algorithm provides a fast arid convenient way to predict the points at the grid '(k) with e. This multirate
signal prediction procedure serves as the fundamental structure for the proposed multiresolution interpolative
DPCM.

With the above prediction procedure, the original sampled sequence can be decomposed into the sequences
of prediction errors at various resolutions, (d , , . . . , di). The decomposition procedure is, for j = 1 ' J,

(14)

= c1 - B(c). (15)

For reconstruction, c can be successively predicted from its low resolution version with the knowledge of
prediction error. Exact reconstruction can be obtained as the sum of the predicted sequences and the prediction
errors at various resolution levels, (d , , . . . di). The reconstruction procedure is, for j = J 1,

(16)

c1 = B(c)+d'. (17)

For implementation, a direct form consisting of decimator, expander and interpolation filter is shown in Fig.1.
From the original sequence c as showii in Fig.1(a), the coarser sequence c is obtained by downsampling the
sequence c. The process to interpolate the sequence I(k; c)consists ofupsarnplingand filtering with the halfband
interpolation filter Pk as shown in Fig.1(a). The error sequence d is then obtained by subtracting I(k; 4) from
the origiiial sequence c . Since dk = 0, the l)redictiOfl error d is then obtained by downsampling the sequence
4 as shown in Fig.l(a). This structure can be cascaded to calculate the prediction errors (d2, . . . , di). For
reconstruction, a direct form implementation structure is shown in Fig.1(b).

The direct form implementation is conceptually very easy to understand. However, many operations can be
combined to make the implementation more compact. First, the shifter z and the decimator after the subtracter
in Fig.l(a) can be moved inside the loop. Consider the structure on the left side of Fig.2(a). The structure is a
cascade ofan expander followed by the filter zP(z) and a decimator. This structure on the right side of Fig.2(a) is
the discrete interpolator B where E1(z) is the ith polyphase component of P(z). The polyphase implementation
structure for the generation and reconstruction of the multiresolution DPCM is shown in Fig.2(b) and 2(c)
respectively. In fact, it is easy to check that the structure shown in Fig.2(b) acually realizes the generation
algorithm of Eq.(14)(15) and the structure shown in Fig.2(c) actually realizes the reconstruction algorithm of
Eq.(16)(17). Note that in the direct form and polyphase implementations, sequences c,j 1 J, can be
obtained simultaneously when sequence c is given, so all the prediction errors d,j 1 J, can be computed
parallelly.

Now, if we view the generation of the error signal as a separate process, a filter bank structure can be derived.
Consider the generation of d'k from c as shown in Fig.3(a). This is done by moving the downsarnplers in
Fig.2(b) to after the subtracter. According to the noble identity of multirate system,15 the structure as shown
in Fig.3(a) can be derived. Since z — E1(z2) = zP(—z), the upper and the lower branches of Fig.3(a) can be
combined to form a single filter as shown in Fig.3(b). With this, the filter bank implementation structure for
the generation and reconstruction is shown in Fig.3(c). This structure provides a more clear way to inspect the
generation of the error signals. From this structure, it is easy to see that the values of the prediction error d'
are controlled by the operation C(z)P(—z) where C(z) is the z transforrri of c. Since P(z) is usually a lowpass
filter, the prediction error can be viewed as the high frequency component of the input signal c shaped by
P(-z).
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4 NUMERICAL EXPERIMENT

In the first part of the numerical experiment, a polynomial signal is used. The test signal used is the following
cubic polynomial:

f(t)=1Ot3—2Ot2+1O, o<i<i.

In the second part of the numerical experiment, the more complicated image signal is used. The test image used
is the 256 x 256 standard image "Lena".

Let us investigate the effect of different interpolation filters on the prediction errors of multiresolution DPCM.
The interpolation filters used are the maximally flat filters with length L =3, 7 and 11.11 The test signal is the
uniform sampled sequence of the cubic polynomial 1(t) and is shown in Table.!. In the secon(l column,
is represented with rnultirate structure. The multiresolution DPCM of c generated with these maximally fiat
filters are shown in the 3th, 4th and 5th columns ofTable.1. Initially, the first level ofprediction errors at the grid
z4(k) are relatively large. From the second level, the prediction errors at the more finer grids &(k),j =3 1

become small. For the case of L = 7, the errors are almost zero except these boundary points at the grids
&(k),j = 3 '- 1. The errors at the boundary points are mainly due to the discontinuity at the boundary of
signal. For the case of L = 11 the result is similar. For cubic polynomial, it can be found that the maximally
flat filters with length 7 and 1 1 can predict the sampled signal very well. The prediction errors at resolution
j + 1 depend on the product C(z)P(—z) as discussed in section 2. C(z) is the rnultirate spectrum of the signal
c and P(z) is the spectrum of filter Pk. Therefore, the errors depend on the resolution level and the frequency
response of the filter. In the beginning, when only a few samples are used for prediction, the product of C (z) and
P(—z) is large, so the initial prediction errors are large. When sufficient data is used for prediction, the product
of (73(z) and P(—z) becomes small and the errors will reduce. This fact can be seen in Table.1, the prediction
errors decrease from top to bottom with increasing resolution.

Now, let us examine the application of this multiresolution DPCM for image signal. For the image "Lena"
with size 256 x 256, the histogram of this image is shown in Fig.4(a) and the histogram of the prediction errors
with the 7-tap maximally flat filter is shown in Fig.4(b). As can be seen from the histogram, the values of the
prediction errors are small and are close to zero. The mean of this histogram is 0.751 and the standard deviation
is 16.763. The histograms of the prediction errors with different filters are all very similar. The means and
standard deviations with filters of different length are shown in Table.2. The length of the filters used are 3, 7,
1 1 and 15, respectively. From these data, we can see that multiresolution DPCM is quite robust with respect
to the filter used. Although the prediction errors depend on the filter used, the dependency is not strong. For
comparison, the distribution of prediction errors of the traditional DPCM is also shown. The predictor used is
i,j = p . i + p . c._ , — p2 . c_ , _ i , where c and Care the original and the predicted image, respectively, and
p is the 1)arameter ofthe pre(hctor. The means and the standard deviations ofthe prediction errors with different
p values are shown in Table.3. As can be seen from Table.3, the performance of the proposed multiresolution
interpolative DPCM is comparable with that of the traditional DPCM. Therefore, for data representation, the
efficiency is about the same. The advantage of multiresolution interpolative DPCM is its space scalability. The
advantage can be very useful in recent video transmission application.

5 CONCLUSION

A multiresolution interpolative DPCM has been proposed for compact multiresolution signal representation.
In this representation, iterative polynomial interpolation is used for signal prediction. To derive the prediction
algorithm, we begin by showing how polynomial interpolation can be implemented with discrete iterative poly-
nomial interpolation in discrete domain. This iterative computation structure is then applie(l for niultiresolution
signal prediction. Based on the rriultirate signal prediction, the multiresolution DPCM is then built tn reprEsent
the multirate prediction error. The advantage of such representation is that the prediction error can be computed
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parallelly. The performance of such representation is shown to be as efficient as that of the traditional DPCM.
Also, the representation allows for space scalability reconstruction which is very useful in recent progressive
transmission application.
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Figure 1: Direct form implementation of multiresolution interpolative DPCM. (a) Generation
structure. (b) Reconstruction structure.
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Figure 2: Polyphase implementation of multiresolution interpolative DPCM (a) Polyphase
implementation of predictor. (b) Generation structure. (c) Reconstruction structure
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Figure 3: Filter bank implementation of multiresolution interpolative DPCM. (a) The structure to
generate the prediction error d1. (b) Equivalent structure of (a). (c) Filter bank implenientation
structure.
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Figure 4: (a) The histogram of the original image "Lena". (b) The histogram of the prediction errors with
7-tap maximally flat filter.
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k c L=3 L=7 L=11
2 x 0 0.000 0.000 0.000 0.000
2 x 1 1.250 1.250 1.250 1.250
2 x 1 1.406 0.781 0.703 0.674
2 x 3 0.469 -0.156 -0.234 -0.264
22 x 1 0.957 0.254 0.244 0.250
22 x 3 1.465 0.137 0.000 0.046
22 x 5 0.879 0.020 0.000 0.009
22 x 7 0.137 -0.098 -0.049 -0.032
21 x 1 0.549 0.071 0.099 0.109
21 x 3 1.238 0.056 0.000 -0.018
21 x 5 1.477 0.042 0.000 0.000
21 x 7 1.384 0.027 0.000 0.000
2 x 9 1.077 0.012 0.000 0.000
21 x 11 0.671 -0.002 0.000 0.000
21 x 13 0.286 -0.017 0.000 0.002
2' x 15 0.037 -0.032 -0.011 -0.008
2° x 1 0.293 0.019 0.044 0.050
2° x 3 0.770 0.017 0.000 -0.008
2° x 5 1.112 0.015 0.000 0.000

2° x 7 1.335 0.013 0.000 0.000
2° x 9 1.453 0.011 0.000 0.000
2° x 11 1.480 0.009 0000 0.000

2° x 13 1.432 0.008 0.000 0.000

2° x 15 1.323 0.006 0.000 0.000

2° x 17 1.167 0.004 0.000 0.000
2° x 19 0.980 0.002 0.000 0.000

2° x 21 0.775 0.000 0.000 0.000
2° x 23 0.569 -0.002 0.000 0.000
2° x 25 0.374 -0.003 0.000 0.000
2° x 27 0.206 -0.005 0.000 0.000
2° x 29 0.080 -0.007 0.000 0.001
2° x 31 0.009 -0.009 -0.003 -0.002

Table 1: Multiresolution interpolative DPCM of c with different length of interpolation filter:L=3, L=7 and
L=11

,
length 3 7 11 15

: mean 1.025 0.794 0.751 0.733

(
standard deviation 16.672 16.763 16.972 17.136

Table 2: Mean and standard deviation of miiltiresolution interpolative DPCM wilh maximally flat filters of
different length.

p 0.95 0.90 0.85 0.80 0.75 0.70
.

mean 0.355 1.321 2.901 5.092 7.896 11.313

I standard deviation 15.684 15.009 14.445 14.020 13.772 13.748

Table 3: Mean and standard deviation of traditional two dimensional DPCM.
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