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Abstract—In IEEE 802.16, power management at the Mobile Subscriber Station (MSS) side is always an important issue. The

standard defines three types of power saving classes (PSCs). A PSC can bind one or multiple traffic flows. However, given multiple

flows in an MSS, the standard does not define how to form PSCs, how to organize the cooperation of multiple PSCs to obtain better

energy efficiency, and how to guarantee QoS of these flows. Given a set of flows and their QoS parameters, the objective of this paper

is to define multiple PSCs and their listen-and-sleep-related parameters and packet-scheduling policy such that the unavailability

intervals of the MSS can be maximized and the QoS of each flow can be guaranteed. To achieve this, we propose a novel fold-and-

demultiplex method for an IEEE 802.16 network with PSCs of types I and II together with an earliest-next-bandwidth-first packet

scheduler. Given a set of traffic flows in an MSS, the fold-and-demultiplex method first gives each flow a tentative PSC satisfying its

bandwidth requirement. Then we fold them together into one long series so as to calculate the total bandwidth requirement. Finally, we

demultiplex the series into multiple PSCs, each supporting one or multiple flows. It ends up with high energy efficiency of MSSs while

meets flows’ bandwidth requirements. Furthermore, our packet scheduler ensures that real-time flows’ delay constraints can be met.

To the best of our knowledge, this is the first result offering bounded packet delays under MSS’s sleep-and-listen behaviors.

Index Terms—IEEE 802.16, link protocol, MAC protocol, packet schedule, power management, WiMAX, wireless network.
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1 INTRODUCTION

IEEE 802.16/WiMAX [1] has been considered as a promis-
ing approach for supporting mobile and broadband

wireless access. Similar to most wireless systems, conser-
ving energy is a critical issue for Mobile Subscriber Stations
(MSSs). In IEEE 802.16, three types of Power Saving Classes
(PSCs) are defined to meet different traffic characteristics.
Each PSC consists of a sequence of interleaved listening and
sleep windows, and can support one or multiple traffic
flows in an MSS with similar characteristics. Type I is
designed for non-real-time traffic flows; it has exponentially
increasing sleep windows if no packet comes. Type II is
designed for real-time traffic flows; it has a fixed size of
sleep windows. Type III is designed for multicast connec-
tions or management operations. An MSS can turn off its
radio interface when all its PSCs are in their sleep windows,
but has to wake up when any PSC is in a listening window.
From an MSS’s point of view, the standard allows each of its
flows to be corresponded to a PSC. However, it does not
define how multiple flows can cooperate in a PSC and how

multiple PSCs can cooperate with each other for better
energy efficiency. At the same time, it needs to answer how
to determine the parameters of each PSC, such as start
frame, listening window size, and sleep window size, and
how to guarantee QoS of traffic flows when multiple PSCs
coexist. These motivate us to study the power saving class
management in IEEE 802.16 networks. (Recently, the IEEE
802.16m [2], [3] task group is developing an amendment as
an extension to 802.16-2009 to meet the 4G network
requirements. IEEE 802.16m also define similar sleep modes
and it is claimed that IEEE 802.16m will be backward
compatible with the original IEEE 802.16 [4].)

Several work [5], [6], [7], [8], [9] have conducted
performance modeling of 802.16’s power management.
These results have provided a potential guidance for setting
PSCs’ parameters. However, these schemes all assume non-
real-time traffics and most of them consider the arrival
patterns to be memoryless, which is not always true in the
real world. For PSCs of type I, the authors of [10] propose a
Longest-Virtual-Burst-First (LVBF) scheduling to improve the
energy efficiency of MSSs, while the authors of [11] present an
adaptive scheme to dynamically adjust the initial and the
maximum sleep window sizes. The authors of [12] show that
setting the initial sleep window to half of the last sleep
window can achieve better energy efficiency, while the
authors of [13] show how to decide the initial sleep window
depending on both the last initial sleep window and the
estimated packet interarrival time. Assuming that the
probability distribution function of the response packet
arrival time is known, [14] proposes that an MSS can stay
asleep until the expected response packets may arrive to
decrease unwanted listening time. For PSCs of type II, recent
papers [15], [16] show how to find the Maximum Unavailability
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Interval (MUI) by only adjusting PSCs’ start frames. However,
most of these papers assume that PSCs are already given.
They do not discuss a more basic problem: “given a set of
connections and their bandwidth and delay requirements,
how to form PSCs and how to relate these requirements to
PSCs’ listen-and-sleep parameters?” Considering real-time
connections, the authors in [17] and [18] propose a Periodic
On-Off Scheme (PS) to form one PSC of type II for all
connections, such that the lengths of sleep and listening
windows are constrained by delay and resource require-
ments. Since only one PSC is used, it may suffer from either
longer wake-up time or mismatch of bandwidth require-
ments. In [19], authors consider sleep scheduling for multiple
MSSs. However, for each MSS, the approach is similar to PS.
To enhance the work of [15], [16], the authors of [20]
incorporate PSC of type I and type II by arranging PSCs of
type I to wake up when any type II is awake. By this way, both
energy consumption of the MSS and the delay of non-real-
time packets can be reduced. However, this violates the
exponential sleep behavior of type I defined in the standard
[1]. To summarize, our work distinguishes from existing
work by considering both real-time and non-real-time
connections in an MSS to be served by multiple PSCs. Given
each connection’s QoS requirements, we need to answer how
to from PSCs and how to associate them with those PSCs to
meet their QoS requirements.

In this work, we consider PSCs of types I and II between
a pair of MSS and BS. Since the PSC of type III is mainly
designed for multicast (which means that multiple MSSs
need to be involved), it is out of the scope of this work.
Given a set of connections and their bandwidth and delay
requirements, managing PSCs needs to answer the follow-
ing questions: 1) How to form PSCs and how to translate
these requirements into the listen-and-sleep parameters of
PSCs? 2) When two or more connections are associated to
the same PSC, how they cooperate with each other to meet
their requirements? 3) When there are two or more PSCs,
how they cooperate with each other such that the sleep time
of the MSS is maximized? In this paper, we propose a novel
fold-and-demultiplex method together with an earliest-next-
bandwidth-first packet scheduler to address these issues.
Given a set of real-time traffic flows in an MSS and their
traffic demands and delay constraints, we first try to give
each flow a tentative PSC of type II satisfying its
requirements. Each PSC actually corresponds to a long
series of bandwidths available to the flow. Then we “fold”
these tentative PSCs of type II together into one long series
so as to calculate the overall bandwidth requirement of the
MSS. The fold series is in fact an imaginary PSC. Then we
“demultiplex” this imaginary PSC into multiple PSCs of
type II, each supporting one or multiple flows. Finally, we
include non-real-time flows by adding one PSC of type I.
After this novel folding and demultiplexing operations, a
set of PSCs of type I and type II are derived. During the
sleep mode, new coming real-time packets will be sched-
uled for transmission according to their associated PSCs
and allocated bandwidths. We show that, under our fold-
and-demultiplex method, such an earliest-next-bandwidth-
first scheduling rule always ensures packets’ delay con-
straints. The major contributions of this paper are two-fold.
First, the fold-and-demultiplex method trickily balances
MSS’s duty cycle and bandwidth requirements by well-
arranged PSCs. Second and to the best of our knowledge, it

is the first result that offers bounded delays considering
stations’ sleep-and-listen behaviors.

This paper is organized as follows: Backgrounds related
to our work are presented in Section 2. Section 3 presents
our fold-and-demultiplex method. A packet scheduler to
cooperate with our method for delay guarantee is presented
in Section 4. Section 5 gives our simulation results.
Conclusions are drawn in Section 6.

2 BACKGROUNDS

IEEE 802.16 defines three types of PSCs for an MSS. Type I is
to support BE (Best Effort) and NRT-VR (Non-Real-Time
Variable Rate) connections. Type II is to support UGS
(Unsolicited Grant Service), RT-VR (Real-Time Variable
Rate), and ERT-VR (Extended-Real-Time Variable Rate)
connections. When an MSS activates its sleep operation,
each PSC will switch between listening and sleep windows.
Each connection is bound to a PSC. During a sleep window,
the corresponding connections cannot send or receive
packets. So, when all PSCs of an MSS are in their sleep
windows, the MSS can turn off its air interface to save energy.
This period is called an unavailability interval of the MSS.

A PSC of type I is denoted by PI . (In the standard,
each PSC is associated with a number of parameters. In the
following we use programming language-like notations to
represent these parameters.) Its sleep windows are inter-
leaved with fixed-length listening windows, each of size
PI:TL. Its initial sleep window size is PI:TS init, and is
doubled each time, until reaching the maximum size,
PI:TS max, after which it remains the same. During a listening
window, the MSS will check if there are incoming packets for
PI . If not, PI will enter another sleep window; otherwise, it
will return to normal operation. A PSC of type II is denoted
by PII . Both its sleep windows and listening windows are
of fixed lengths PII:TS and PII:TL, respectively. However,
if there is any transmission/reception during a listening
window, it will not return to normal operation unless being
instructed. A PSC of type III has only one sleep window, after
which it will return to normal operation immediately. Fig. 1
illustrates these definitions. The unit of these window sizes is
the frame length, which is normally 5 ms [21]. A frame can be
divided into a downlink subframe and an uplink subframe.

The BS needs to allocate bandwidths to flows according to
their service types. For BE and NRT-VR, this is relatively
easier because they have no real-time constraints. For UGS,
RT-VR, and ERT-VR, we review three uplink scheduling
schemes in the standard. (Note that if PSCs are to be applied
to such flows, their setting has to follow these character-
istics.) UGS is designed for real-time services with periodical

1238 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

Fig. 1. Definitions of PSCs.



fixed-size packets, such as VoIP. So periodical fixed-size
grants will be allocated to a UGS connection. For RT-VR, such
as MPEG videos, rtPS (real-time Polling Service) can be used,
where periodical fixed uplink resources are allocated to a
connection. This allows the connection to ask for more
resources when it has burst traffics. For ERT-VR, a connec-
tion may have periodical fixed-size packets interleaved by
intermittent silence, such as VoIP connections with silence
suppression. Then ertPS (extended real-time Polling Service)
can be used. Initially, a connection has periodical fixed-size
grants. Once it has nothing to send, it will inform the BS to
reduce each grant size to the minimal one. When the
connection becomes active again, it can inform the BS to
restore its original allocation. These are controlled by the QoS
parameters: Minimum Reserved Traffic Rate (MRTR), Max-
imum Sustained Traffic Rate (MSTR), Maximum Latency,
Unsolicited Grant Interval (UGI), and Unsolicited Polling
Interval (UPI). Fig. 2 illustrates some examples.

3 FOLD-AND-DEMULTIPLEX METHOD

We consider an MSS with U non-real-time connections,
M real-time uplink connections,Ci; i¼1::M, andN real-time
downlink connections,Ci; i ¼M þ 1::M þN . Each real-time

connection Ci’s QoS parameters, i ¼ 1::M þN , are already
known to the MSS and are summarized as follows:

. Ci:Dmax: The delay constraint in milliseconds for
real-time connection Ci.

. Ci:MRTR: The minimum reserved traffic rate
(bits/sec).

. Ci:Id: The expected packet interarrival time.

. Ci:Ipol grt: For an uplink RT-VR/ERT-VR connection,
it is the UPI; for an uplink UGS connection, it is the
UGI. (This parameter is not used for downlink
connections.)

Note that to set up a real-time connection, the BS and the
corresponding MSS have to negotiate the bandwidth
requirements for the connection, such as MRTR and MSTR
(maximum sustained traffic rate). To guarantee the band-
width requirement of a real-time connection, we choose
MRTR as the main index for our scheme to calculate the
resource to be reserved. (However, other bandwidth indices,
such as MSTR can also be applied to our framework.) In this
work, we do not concern about non-real-time connections’
QoS since such traffics have the lowest priority. In Table 1,
we summarize all notations used in this paper.

In our method, all non-real-time connections are as-
signed to one PSC of type I and real-time ones are assigned
to one or multiple PSCs of type II. The former may overlap
with the latter to conserve energy. Our goal is to compute a
set of PSCs to maximize the unavailability intervals of the
MSS while meet all connections’ QoS requirements.
Specifically, for the PSC of type I, denoted by PI , the
following parameters will be determined:

. PI:TL: Size of a listening window.

. PI:TS init: Size of the initial sleep window.

. PI:TS max: Size of the maximum sleep window.
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For the ith PSC of type II, denoted by PII
i , the following

parameters will be determined:

. PII
i :TL: Size of a listening window.

. PII
i :TS : Size of a sleep window.

Our scheme consists of four steps. First, only real-time
connections are considered and one tentative PSC of type II
per connection is created. For each PSC PII

i , we call
PII
i :TL þ PII

i :TS the wake-up period of this PSC. We will pick
one PSC with the shortest wake-up period and enforce all
other PSCs’ wake-up periods to be integer multiples of the
shortest one. Second, we fold all these PSCs into one so as to
calculate the overall bandwidth requirement. Third, we
demultiplex the above result into multiple real PSCs. The
last step will include non-real-time connections.

3.1 Creating Tentative PSCs

In this step, only real-time connections are considered. It will
compute one tentative PSC for each connection and send the
result to the BS via a MOB_SLP-REQ (sleep request)
message, where a MOB_SLP-REQ message should contain
the PSCs suggested by the MSS and each PSC’s sleep
parameters and member connections. It includes three steps:
1) For each Ci; i ¼ 1::M þN , create a tentative PSC of type II
according to its QoS parameters. 2) To increase the over-
lapping of listening windows, adjust these PSCs such that
their wake-up periods are integer multiples of the smallest
one. 3) Adjust these connections’ QoS parameters to adapt to
their sleep behaviors.

1. For each Ci; i ¼ 1 � � �M þN , we define a tentative
PSC PII

i as follows:

PII
i :TL ¼

2; if Ci is of type uplink RT-VR;

1; otherwise;

�
ð1Þ

PII
i :TS ¼

Ci:Dmax

2� F

� �
� PII

i :TL: ð2Þ

Here F is the length of a frame. (Normally, the
length of an OFDM/OFDMA frame is 5 ms [21].) As
mentioned in Section 2, for an uplink RT-VR
connection, since it requires an additional frame to
send its bandwidth request to the BS, its listening
window should be two frames. For other types, we
assume that one frame is sufficient (later on, we will
relax this). We regard TL þ TS as the wake-up period
of a PSC. Equation (2) ensures that Ci’s wake-up
period is no more than 1

2 of its delay constraint
Ci:Dmax. Such setting guarantees bounded delay for
each packet of Ci (refer to Section 4).

2. We further adjust these PSCs to increase their
overlapping. Let pmin ¼ minfPII

i :TL þ PII
i :TSj i ¼

1::M þNg, i.e., the smallest wake-up period. We
adjust each Ci’s sleep window size as follows:

PII
i :TS ¼

PII
i :TL þ PII

i :TS
pmin

� �
� pmin � PII

i :TL: ð3Þ

This makes Ci’s wake-up period an integer multiple
of pmin. For example, if there are three PSCs with
PII

1 :TL¼1, PII
1 :TS¼3, PII

2 :TL¼1, PII
2 :TS¼4, PII

3 :TL¼1,
and PII

3 :TS ¼ 8, then pmin ¼ 4. After adjustment,
PII

2 :TS ¼ 3 and PII
3 :TS ¼ 7. Before the adjustment,

since the wake-up periods of the three PSCs are
coprimes, the sleep behavior of the MSS repeats per

180 frames. In each cycle, there will be 84 listening

frames. After the adjustment, there is one listening

frame per four frames.
3. Because of the MSS’s sleeping behavior, a flow may

need to deliver more traffic during a listening
window. So changing its QoS parameters may be
needed. Consider the connection in Fig. 3, where the
packet interarrival time is four frames but its wake-up
period is six frames. A listening window needs to
serve one or two packets each time. We need to reserve
sufficient bandwidth in each listening window to
serve the demand (in this example, it is the size of two
packets). Therefore, we suggest to change the MRTR
of each Ci as:

Ci:MRTR

¼ ½ðmax: no: of arrivals per wake-up periodÞ
� ðexpected size per arrivalÞ�
� ðno: of wake-up periods per secondÞ

¼
" �

PII
i :TL þ PII

i :TS
�
� F

Ci:Id

� �

� Ci:MRTRold �
Ci:Id
1000

	 
#

� 1000

ðPII
i :TL þ PII

i :TSÞ � F

	 


¼ ðPII
i :TL þ PII

i :TSÞ � F
Ci:Id

� �

� Ci:MRTRold � Ci:Id�
PII
i :TL þ PII

i :TS
�
� F

:

ð4Þ

Note that the new MRTR is larger than or equal to

the original MRTR (represented by Ci:MRTRold).
That is, in our scheme, the MSS may be reserved more

bandwidth than needed. Later, in Section 5, we will

evaluate the utilization of these reserved resources
for the MSS by our scheme and compare to other

previous schemes. Since PII
i :TS has changed, Ci’s

grant interval/polling interval should be changed to:

Ci:Ipol grt ¼
�
PII
i :TL þ PII

i :TS
�
� F: ð5Þ

These changes can be updated by DSC-REQ (dy-

namic service change request) messages, where a
DSC-REQ message should be sent to dynamically

change the parameters of an existing flow, such as

MRTR, MSTR, maximum latency, grant interval/
polling interval, etc. The effect is a slight increase of

bandwidth demand with reduction of the buffering

delay. In Fig. 3, we will allocate space to deliver 6
4

� �
¼

2 packets per listening window, so that the new
MRTR¼ 2�Ci:MRTR�20

6F ¼ 4
3�Ci:MRTR and the new

Ipol grt ¼ 6F .

3.2 Folding PSCs into a State Series

Next, we will fold the above PSCs into an infinite periodical

series of real numbers standing for bandwidth requirements.

1240 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011



Then depending on the available bandwidth per frame, the

real series is converted into a binary series, standing for the

active or sleeping state of each frame. Note that the series

does not meet the definition of PSC. Later on, we will

demultiplex it into actual PSCs. For ease of presentation, we

define Ti ¼ PII
i :TL þ PII

i :TS (Ci’s wake-up period) and

plcm ¼ lcmfTij i ¼ 1::M þNg (i.e., the least common multi-

plier of Ti; i ¼ 1::M þN).
We first define a series for each Ci. For Ci of type UGS/

ERT-VR, due to its sleeping behavior, the amount of data bi
that it has to transmit during a listening window is

bi ¼ Ci:MRTR�
�
PII
i :TL þ PII

i :TS
�
� F: ð6Þ

Assuming frame zero to be a listening window, Ci’s
bandwidth requirement in each frame can be represented
by a periodical series Suerti ðtÞ; t ¼ 0::1:

Suerti tð Þ ¼ bi; if t mod Tið Þ ¼ 0;
0; otherwise:

�

For Ci of type RT-VR, in each listening window, it requires
a fixed bandwidth % to submit its request in the first frame
and, if needed, a bandwidth of bi in the second frame. So, its
bandwidth requirement can be represented by

Srt�vri tð Þ ¼
%; if t mod Tið Þ ¼ 0;
bi; if t mod Tið Þ ¼ 1;
0; otherwise:

8<
:

In the following, whenever the context is needed, we may
use Suerti ðtÞ and Srt�vri ðtÞ to represent the bandwidth
requirement of a connection of type UGS/ERT-VR and
RT-VR, respectively. However, when these types are mixed,
we may simply use SiðtÞ.

Putting all these together, the bandwidth requirement of

the MSS in each frame can be written as a series:

Ŝ tð Þ ¼
X
t�0

Si tð Þ:

Note that the above discussion does not distinguish uplink
from downlink communications. In fact, ŜðtÞ should be
separated into two series, one for uplink and one for
downlink. With this understanding, we will still use ŜðtÞ for
simplicity. Since each SiðtÞ; i ¼ 1::M þN , has a period of Ti,
it also has a period of plcm. It follows that the summation of
them also has a period of plcm.

Lemma 3.1. ŜðtÞ is a periodical series with period plcm.

Next, we convert the real series ŜðtÞ to a binary state

series ~SðtÞ, where 1 and 0 mean active and sleeping states,

respectively:

~S tð Þ ¼ 1; if a tð Þ > 0;
0; otherwise;

�
ð7Þ

where aðtÞ ¼ minf
Pt

k¼0 ŜðkÞ �
Pt�1

k¼0 aðkÞ; Bg is the band-
width to be allocated to the MSS in the tth frame and B is
the maximum bandwidth that can be allocated to the MSS
in a frame (this is decided by the BS). Intuitively,

Pt
k¼0 ŜðkÞ

is the total bandwidth required up to the tth frame andPt�1
k¼0 aðkÞ is the actual bandwidth consumed by the MSS up

to the ðt� 1Þth frame. So the first term in minðÞ is the actual
bandwidth required in the tth frame; however, the actual
allocation should be bounded by B. If aðtÞ > 0, the MSS
should be active in the tth frame, enforcing ~SðtÞ ¼ 1;
otherwise, it can go to sleep, making ~SðtÞ ¼ 0.

Fig. 4 is an example. Fig. 4a shows the total bandwidth
requirement per frame from three connections (i.e., ŜðtÞ).
Fig. 4b shows the actual resource allocation in each frame
(i.e., aðtÞ). Fig. 4c is the state series ~SðtÞ of the MSS.

Lemma 3.2. ~SðtÞ is a periodical binary series with period plcm.

Proof. ~SðtÞ is a binary series which alternates between
continuous 1s and continuous 0s infinitely. Consider
each group of continuous 1s in ~SðtÞ; let it start from
position tst and end at position tend. Let us define C as the
set of connections, each of which has a nonzero
bandwidth requirement during the interval ½tst : tend�,
i.e., C ¼ fCij

Ptend
j¼tst SiðjÞ > 0g. Intuitively, each connec-

tion in C contributes to the wake-up behavior (contin-
uous 1s) during the interval ½tst : tend�. Since each SiðjÞ
corresponding to Ci 2 Sc is periodical, the same band-
width requirements from C occurring during the interval
½tst : tend� must occur again in interval ½tst þ i� plcm :

tend þ i� plcm�, where i 2 Z. Therefore, ~SðtÞ must contain
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Fig. 3. A mismatch example between the packet arrival time of a flow
and its wake-up period.

Fig. 4. Example of the state series construction. (a) Resource
requirement series ŜðtÞ. (b) Resource allocation series aðtÞ. (c) State
series ~SðtÞ.



all 1s in interval ½tst þ i� plcm; tend þ i� plcm� for each
i 2 Z. It follows that the theorem is true. tu

3.3 Demultiplexing the State Series into PSCs

Although ~SðtÞ is periodical (Lemma 3.2), if we look at any
subsequence of length plcm in ~SðtÞ, it may contain multiple
groups of continuous 1s interleaved by 0s and thus does not
fit into the definition of PSC. Below, we show how to
demultiplex ~SðtÞ into multiple state series, each meeting the
definition of PSC. By Lemma 3.2, a straightforward
approach is to pick the first plcm bits of ~SðtÞ and let each
group of continuous 1s be a PSC (this is in fact how the
proof of Lemma 3.2 works). However, this may generate too
many PSCs. Still, using the first plcm bits of ~SðtÞ, we propose
a scheme based on folding ~SðtÞ to put duplicate continuous
1s together. This may result in less PSCs.

1. Denote the first plcm bits of ~SðtÞ by ~S½0 : plcm � 1�. Our
goal is to construct a set C of PSCs. Initially, let
C ¼ ;.

2. For i ¼ 1 to plcm
pmin

do

a. If plcm is not divisible by i� pmin, skip this i and go

back to step 2. Otherwise, cut ~S½0 : plcm � 1� into
plcm
i�pmin segments, each of length i� pmin and then

fold them together by the bitwise-AND operator

into a ði� pminÞ-bit string T ½0 : i� pmin � 1�, i.e.,

T ½j� ¼ ~SðjÞ ^ ~S jþ i� pminð Þ
^ ~S jþ 2i� pminð Þ ^ . . . ;

for j ¼ 0::i� pmin � 1.
b. Scan string T ½0 : i� pmin � 1� from left to right

and consider each group of 1s in the string.
Suppose that there is a group of 1s starting from
the xth bit to the yth bit. Let T 0½0 : i� pmin � 1�
be a binary string which has all 1s from the xth
bit to the yth bit and all 0s in the other places.
We try to form a PSC from T 0½0 : i� pmin � 1� as
follows:

i. Check if T 0½0 : i� pmin � 1� is redundant by
calling the procedure Check RedundancyðC; T 0
½0 : i� pmin � 1�Þ.

ii. If the response is negative (i.e., not redun-
dant), then add the string T 0½0 : i� pmin � 1�
to C.

3. For each string str in C, we generate a PSC of type II.
Let str have 1s from the xth bit to the yth bit. The
PSC can be defined by setting TL ¼ y� xþ 1 and
TS ¼ jstrj � TL.

Procedure Check RedundancyðÞ is shown below. The
binary string Tested Str, which stands for a potential PSC,
is redundant if each of its 1s already appears in a PSC in C.
The PSCs in C are converted to a string W ½0 : plcm � 1� by
“bitwise-OR” the strings of all PSCs. Similarly, string
Tested Str is converted to a string W 0½0 : plcm � 1�. Then
we compare W ½ � and W 0½ � to see if Tested Str is redundant.
ProcedureCheck RedundancyðC; Tested StrÞ:

1. Let W ½0 : plcm � 1� and W 0½0 : plcm � 1� be two binary
arrays. For j ¼ 0 to plcm � 1, we define

W ½j� ¼ _Str2CStr½j mod jStrj�;

W 0½j� ¼
1; if Tested Str j mod jTested Strj½ � ¼ 1;

0; otherwise:

�

2. If W 0½j� ¼ 1 implies W ½j� ¼ 1 for all j ¼ 0::plcm � 1,
then a “positive” response is returned; otherwise, a
“negative” response is returned.

The new definitions of PSCs can be notified to the MSS
by MOB_SLP-RSPs (sleep response) message, where a
MOB_SLP-RSP message should contain the definitions of
PSCs for the MSS and each PSC’s member connections. For
example, Fig. 5a shows a state series ~SðtÞ with plcm ¼ 18 and
pmin ¼ 3. In Fig. 5b, ~SðtÞ is cut into segments, each of 3 bits.
By “bitwise-AND” these segments, we get a string T ½0 :
2� ¼ 100 and then retrieve a T 0 string 100. Since C ¼ ;
(empty set), Check RedundancyðÞ returns a “negative” and a
PSC of type II with TL ¼ 1 and TS ¼ 2 is added to C. In the
next iteration, ~SðtÞ is cut into segments, each of 6 bits. By
“bitwise-AND” these segments, we have T ½0 : 5� ¼ 100100.
Then we retrieve two T 0 strings, 100000 and 000100, and call
Check RedundancyðÞ twice. Both strings are redundant
because their active patterns have already been covered
by string 100. Next, ~SðtÞ is cut into segments, each of 9 bits.
A binary string T ½0 : 8� ¼ 111110100 is obtained, from which
two T 0 strings, 111110000 and 000000100, can be retrieved.
By calling Check RedundancyðÞ, we know the former is not
redundant but the latter is, so one more PSC of type II with
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Fig. 5. Example of the PSC demultiplexing procedure.



TL ¼ 5 and TS ¼ 4 is added to C. In the last iteration, the

string ~S½0 : plcm � 1� does not add any new PSC. The two

final PSCs are shown in Fig. 5c.

3.4 Including a PSC of Type I for Non-Real-Time
Connections

For non-real-time connections, we will define only one PSC

of type I, PI , for all of them. Whenever PI enters a listening

window, the BS will send the MSS a broadcasting

MOB_TRF-IND message containing a bitmap to indicate

whether there are packets buffered at the BS. If there are

packets for the MSS, PI will be deactivated until all packets

are transmitted. Then PI will be reactivated from the initial

sleep window.
Recall that we already construct a set C of PSCs of type II

with a basic wake-up period of pmin frames. Assuming that

PI is more likely to enter the maximum sleep window of

TS max (considering that these are non-real-time traffics), we

will try to schedule the reactivation time of PI such that the

periodical (maximum) listening windows of PI will align

with the listening windows controlled by pmin. More

specifically, we will tune the parameters of PI such that

PI:TS max þ PI:TL is an integer multiple of pmin.
The problem is formulated as follows: We are given the

initial values of TL; TS init, and TS max. We assume that

TS max � pmin (it is unlikely that TS max < pmin considering

that these are non-real-time traffics). Without loss of general-

ity, assume that the PSCs in C have common active frames

appearing at integer multiples of pmin and at frame t the MSS

intends to reactivate its PI . Our goal is to find a waiting

interval �t and modified parameters T 0S init; T
0
S max, and T 0L

such that PI will actually enter its sleep window at frame

ðtþ�tÞ and when PI ’s sleep window size reaches T 0S max, its

listening windows will appear at frame numbers that are

integer multiples of pmin. To achieve this goal, we first set

T 0S init ¼ TS init; ð8Þ
T 0L ¼ 1; ð9Þ

T 0S max ¼
TS max

pmin

� �
� pmin � T 0L: ð10Þ

So T 0S max þ T 0L is divisible by pmin. Now, if there is no packet

arrival, PI will enter its first sleep window at frame ðtþ�tÞ,
sleep for T 0S init frames, wake up for one frame, sleep for

2� T 0S init frames, wake up for one frame, sleep for 4� T 0S init

frames, � � � , until reaching the maximum sleep window size

of T 0S max. If so, the first listening window after the first

maximum sleep window will appear at frame number

tflw ¼ tþ PI:T 0S init þ 1þ 2� PI:T 0S init

þ 1þ � � � þ PI:T 0S max þ 1:
ð11Þ

So �t can be set to the smallest number such that tflw þ�t

is divisible by pmin. The above concept is illustrated in Fig. 6.
An alternative is to not always start with T 0S init, but

instead start with a larger 2j � T 0S init for some j. We can

easily rewrite (11) to identify a new �t0 with the same

alignment property.

4 QOS-GUARANTEED PACKET SCHEDULER

The above fold-and-demultiplex method can form a set C of

PSCs that reserve sufficient bandwidths for connections

while achieving energy efficiency. However, when packets

from multiple connections arrive at the same time, it is still

unclear how to schedule their transmissions to ensure their

delay constraints. In this section, we propose a packet

scheduler that can guarantee bounded delays for packets

under the fold-and-demultipex method.
Recall that our method will create two tentative series

ŜðtÞ and ~SðtÞ to represent the MSS’s bandwidth require-

ment and listening windows. We will prove our result

through these two series. Consider the ŜðtÞ in Fig. 7.

Suppose a packet Datai of connection Ci arriving at frame

ta. To analyze the delay that Datai may experience, consider

Ci’s bandwidth requirement series SiðtÞ. Let tb be the first

frame after ta such that SiðtbÞ 6¼ 0. Conceptually, an amount

of SiðtbÞ bandwidth will be allocated to Ci at frame tb to

deliver Datai (refer to Fig. 7). However, it is clear from our

method that the aggregated bandwidth requirement ŜðtbÞ
may exceed the capacity B, so it may take several frames to

serve SiðtbÞ. Let �t be the number of frames that the request

SiðtbÞ is served. Then the total delay experienced by Datai
is ððtb � taÞ þ�tÞ frames. The first part ðtb � taÞ can be

bounded, while the second part ð�tÞ actually depends on
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Fig. 6. Inserting a waiting interval �t such that, after PI reaching T 0S max, the listening windows of PI will align with the listening windows of PSCs in C.

Fig. 7. Illustration of packet delay analysis.



the scheduler. Below, we will propose a scheduler that
ensures ððtb � taÞ þ�tÞF � Ci:Dmax.

The proposed scheduler schedules data for transmission
following an earliest-next-bandwidth-first policy. For any
Datai of Ci arriving at frame ta, let tb be the first frame after
ta such that SiðtbÞ > 0. We assign a priority ptyðDataiÞ ¼
tb þ Ti to Datai. Recall that Ti is the period of the tentative
PSC of type II of Ci. Also note that tb þ Ti is the next frame
such that Siðtb þ TiÞ > 0. Here a lower number means a
higher priority. Then the scheduler simply schedules data for
transmission in each active frame according to their
priorities. Such a scheduling guarantees that Datai can be
completely delivered before frame tb þ Ti. Combining the
following theorem and the fact that Ci:Dmax � 2Ti � F (refer
to (2)), our scheme ensures each packet’s delay bound.

Theorem 4.1. Under the fold-and-demultiplex method, the
earliest-next-bandwidth-first policy guarantees that if data
all arrives as planned, then each packet’s delay is bounded by
2Ti frames, where Ti is the wake-up period of the correspond-
ing PSC PII

i .

Proof. We use the scenario in Fig. 7 to develop our proof.
Since tb is the first frame after ta such that SiðtbÞ > 0, it is
clear that tb � ta � Ti. So we only need to prove that
�t � Ti. We develop an “imaginary” scheduling that
guarantees �t � Ti and then show that our policy cannot
do worse than it, so our policy also ensures �t � Ti. The
imaginary scheduler assumes that data is infinitely
divisible, so all data of Ci associated to SiðtbÞ can be
evenly served by frames tb; tb þ 1; . . . ; tb þ Ti � 1. For
example, Fig. 8a shows how it works to serve each Ci’s
data by enforcing each frame to share the same amount

of data SiðtbÞ
Ti

for Ci. Clearly, such a scheduling is feasible
because the total load in each frame cannot exceed B

(otherwise, the BS will be overloaded) and the delay of
Datai is exactly Ti frames.

Now, with our earliest-next-bandwidth-first policy,
there are two possible changes: 1) data may be moved to
the free space of an earlier frame but cannot be earlier than
its associated bandwidth requirement SiðtÞ and 2) data
with a higher priority may squeeze into the space of data
with a lower priority. The former has no impact on delay
bound. The latter has impact on those with lower
priorities. However, if the space of lower priority data is
exchanged with the space of higher priority data, the
former can still make the requested delay bound because
the latter is already bounded by a tighter delay bound
(this is what “earliest-next-bandwidth” means). Fig. 8b
illustrates the ideas. The arrows on the left-hand side
indicate the data movement directions (item (i)). Note that
these data are moved toward their earlier free spaces, but
cannot cross the locations of their associated require-
ments. Arrows on the right-hand side are the data
exchanges due to their priorities (item (ii)). In this
example, high-priority Datak at frame tb þ 1 with
ptyðDatakÞ ¼ tb þ Tk is exchanged with low-priority
Datai at frame tb with ptyðDataiÞ ¼ tb þ Ti. Datai can still
make its deadline because the space of Datak already
meets a deadline, which is earlier than Datai’s. It follows
that �t � Ti for all Cis. tu

5 SIMULATION RESULTS

We have developed a simulator in C to evaluate the
performance of the proposed scheme. In our simulation,
the frame length F ¼ 5 ms and the resource B that can be
allocated per frame is a fixed amount in each simulation
round. Between the BS and the MSS, we define six real-time
flow types with different QoS parameters, where the six
types of real-time flows are shown in Table 2 (these
parameters are set according to [17]). The directions of
flows of types III-VI are randomly decided as down or up.
Types I and II have the same QoS parameters and differ in
their directions. For non-real-time flows, we assume their
packet arrival following the poisson distribution. We
compare our (FD) scheme against the scheme in the
standard [1] and the scheme in [18] (denoted as STD and
PS, respectively). Note that PS uses one single PSC of type II
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Fig. 8. Proof of Theorem 4.1. (a) The imaginary scheduling and (b) two
changes to the imaginary scheduling by our earliest-next-bandwidth-first
scheduling.

TABLE 2
Six Types of Real-Time Flows Used in the Simulation



to serve all real-time flows and the wake-up period of this
PSC is enforced to be smaller than or equal to the minimum
delay constraint of all flows to guarantee their delay
constraints. Moreover, the length of the listening window
of the PSC in PS is decided by the maximum possible arrival
data during a wake-up period of the PSC. As to performance
metrics, we use sleep ratio (rs), resource utilization (U , i.e., the
ratio of the amount of bandwidth consumed by the MSS to
the total amount of bandwidth allocated to it), average
delay, and jitter to make comparisons. For non-real-time
traffic, only sleep ratio and response time are considered.
Below, we define one real-time flow set as six flows containing
one from each of types I-VI.

5.1 Impact of B and Traffic Load

Fig. 9a and Fig. 9b plot sleep ratio rs against B for STD, PS,
and FD schemes with two and three real-time flow sets,
respectively. As B increases, sleep ratio rs increases for both
PS and FD. FD always performs the best, followed by PS. This
is because FD uses multiple PSCs to manage the sleeping
behavior of the MSS while PS uses one PSC. This is
particularly important when flows have different QoS
characteristics. Since PS uses only one PSC, it has to reserve
the maximum required resource in each cycle, thus wasting
lots of resources sometimes. STD uses too many PSCs, which
are not synchronized, leading to very low sleep ratio rs. By
varying the number of real-time flow sets and fixing B ¼
1;250 (respectively, B ¼ 2;000) byte/frame, Fig. 10a (respec-
tively, Fig. 10b) shows the obtained sleep ratio rs. Naturally,
sleep ratio rs decreases as the number of real-time flow sets
increases. FD can sustain up to 3 (respectively, 5) sets when
B ¼ 1;250 (respectively, B ¼ 2;000). On the contrary, with 3
(respectively, 4) sets, PS will keep the MSS always awake
when B ¼ 1;250 (respectively, B ¼ 2;000). This is because PS
overestimates the potential traffic in some frames. Such an
effect is even more serious when there exist larger differences
among flows’ delay constraints and interarrival times.

Fig. 11a and Fig. 11b illustrate the resource utilization U
by varying B when there are 2 and 3 real-time flow sets,

respectively. We see that FD always outperforms PS, due to

PS’s overestimation on resource demands, except at the

point B ¼ 750 in Fig. 11a and at the point B ¼ 1;250 in

Fig. 11b. Note that when B � 750 and B � 1;250 in Fig. 11a

and Fig. 11b, respectively, PS will become invalid and will

not allow the MSS to enter sleep mode (this fact has been

reflected in Fig. 9). Since we assume that an MSS in the

normal mode can always request the exact amount of

resources that it actually needs, the resource utilization U of

the MSS will be 100 percent (note that this is at the cost of

the MSS always staying awake). That’s why PS looks like

showing a better resource utilization than FD at these two

situations. By assuming a perfect network environment,

Fig. 12a and Fig. 12b plot average delay and jitter against B,

respectively, where jitter is defined as the standard

deviation of packet delivery delay. We see that FD causes

higher average delay and jitter in all cases. This is the cost of

our scheduling because it will buffer packets with larger

delay constraints for future delivery. However, as has been

proved in Theorem 4.1, this is acceptable because no packet

will violate its specified delay constraint.1 In both Fig. 12a

and Fig. 12b, we can see a jump as B is increased to

2,000 bytes/frame. This is because the number of sleep

frames of the MSS are suddenly increased as B reaches

2,000 bytes/frame (which can be observed in Fig. 9a) such

that the arriving packets during the sleep frames of the MSS

have to wait for more frames until the MSS is awake. After

B � 2;000, we can see that both the average delay and jitter

of the MSS decrease as B increases. This is because, as B is

larger, more buffered packets accumulated during the sleep

window of the MSS can be delivered per active frame. So

the delays of these buffered packets will be reduced.
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Fig. 9. sleep ratio rs versusBwith (a) two real-time flow sets and (b) three
real-time flow sets.

Fig. 10. sleep ratio rs versus number of real-time flow sets with (a) B ¼
1;250 byte/frame and (b) B ¼ 2;000 byte/frame.

Fig. 11. resource utilization U versus B with (a) two real-time flow sets

and (b) three real-time flow sets.

Fig. 12. (a) Average delay versus B and (b) jitter versus B (two real-time

flow sets).

1. For connections of type UGS, IEEE 802.16 includes tolerated jitter as one
of its QoS parameters (this parameter is not included for other service
types). To avoid jitter, using a playback buffer is a common solution to
guarantee the perceived quality of applications at the user side [22]. In our
experience, for voice applications, a playback buffer of size of 3 to 5 packets
is a common setting [23], [24].



5.2 Impact of Flow Arrival Pattern

The above discussion considers flow types of fixed combina-
tion. Below, we use the six types of real-time flows defined in
Table 2 again, but different from the previous experiment,
the flows of each type arrive at a Poisson process with rate �r
(number of flows/sec) and the hold time of each flow is
exponentially distributed with mean 1=� (secs). Letting
� ¼ 6�r

� , where “6” means the above six types of real-time
flows under consideration, we will observe the impact of � on
performance. Note that here a higher �means a higher traffic
load to the MSS. WithB ¼ 1;250, Fig. 13a shows the impact of
� on sleep ratio rs. When � is small, PS performs slightly
better than FD. After � � 5, FD outperforms PS because a
larger � causes multiple flows coexisting to show FD’s
advantage. On the other hand, when � is small, there is
usually one or very few flows between the MSS and the BS.
Therefore, only a single PSC is enough for the sleep
operation. Compared with PS’s wake-up period, which is
close to or even equal to the most strict delay constraint of
flows, FD’s wake-up period is smaller than or equal to half of
the flow’s delay constraint. This makes FD awake longer than
PS when � is small. Fig. 13b plots resource utilization U
against �. When � < 1, PS performs better than FD; after
� > 1, FD becomes better; but after � � 20, PS outperforms
FD again. Under � < 1, there is less than 1 flow in average;
since PS uses the delay constraint of the flow as the sleep
cycle, it can get better utilization. As there are more flows, FD
performs better than PS due to its multi-PSC capability.
However, when there are too many flows (� � 20), PS
outperforms FD again because PS would disable the sleep
mode more often than FD does (here we assume that the
resource utilization is one when the sleep mode is disabled
because resource can be accurately allocated). Fig. 14 sets
B ¼ 2;000 and shows similar results to Fig. 13. In Fig. 14a, we
can see that a larger B makes FD outperform PS after � � 7
which is larger than the value of five in the case of B ¼ 1;250
(Fig. 13a). This is because a largerB has a higher tolerance on
PS’s over-estimation on resource demand.

5.3 Sleep Performance by Including Non-Real-Time
Traffic

In this subsection, we consider one real-time flow set with a
non-real-time downlink traffic flow with packet arrival rate
�n. To verify the effectiveness of our scheme in handling
non-real-time traffic, we simulate FD with and without
including a PSC of type I, which are termed as “FD with
type I” and “FD w/o type I” in Fig. 15 and 16, respectively.
In “FD with type I”, the procedure in Section 3.4 is executed
to include a PSC of type I for non-real-time traffic, while in
“FD w/o type I”, the initial values of TS init; TL ¼ 1, and
TS max are directly used by the type I PSC to serve non-real-
time traffic. Fig. 15 shows sleep ratio rs and the average
response time experienced by non-real-time packets. A
larger packet arrival rate �n will degrade sleep ratio rs.
When TS max is smaller, adding a PSC of type I can
significantly save energy because it is easier to reach the
maximum sleep window, after which the type I PSC can
reuse the active frames of type II PSCs. In terms of response
time, using a type I PSC is always beneficial because FD
actually uses a smaller maximum sleep window size than
the original given one for the type I PSC. Fig. 16 sets B ¼
2;000 and shows similar results to Fig. 15.

6 CONCLUSION

In this paper, we have proposed a novel sleep scheduling
scheme called Fold-and-Demultiplex method, which con-
forms to the sleep mechanism and message formats
defined in IEEE 802.16. The scheme considers the delay
constraint, packet interarrival time, and data rate of
connections to determine the parameters of PSCs. Multiple
PSCs of type II are used to capture the sleep-active
behavior contributed by real-time flows. One PSC of type
I is used to handle non-real-time flows. We have also
proposed an earliest-next-bandwidth-first scheduler, which
can guarantee the real-time flows’ delay constraints.
Simulation results show that our scheme can save the
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Fig. 13. Effect of � on sleep ratio rs and resource utilization U under
random flow arrival (B ¼ 1;250 byte/frame).

Fig. 14. Effect of � on sleep ratio rs and resource utilization U under
random flow arrival (B ¼ 2;000 byte/frame).

Fig. 15. Effect of packet arrival rate �n on (a) sleep ratio rs and
(b) response time with one real-time flow set and a non-real-time
downlink flow of rate �n (B ¼ 1;250 byte/frame).

Fig. 16. Effect of packet arrival rate �n on (a) sleep ratio rs and
(b) response time with one real-time flow set and a non-real-time
downlink flow of rate �n (B ¼ 2;000 byte/frame).



MSS’s energy even when there are many real-time flows
coexist while keeping bandwidth utilization high under
real-time flows’ delay constraints. In our scheme, the
computation of PSCs is based on a given set of flows. This
implies that the set of PSCs may need to be recomputed
whenever a new connection starts, an old connection
terminates, or any change of an existing flow’s require-
ment. Therefore, one future direction would be how to
dynamically adjust some PSCs to adapt to such changes,
rather than reexecuting the whole scheme again.
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