
Optimal Assignment of
Robot Tasks with Precedence
for Multi-Robot Coordination
by Disjunctive Graphs and

State-Space Search*
. *

Chi-Fang Lin
Department of Computer Engineering and Science
Yuan-Ze lnstitute of Technology
Chungli, Taiwan 320
Republic of China

Wen-Hsirng Tsait
Department of Computer and lnformation Science
National Chiao Tung University
Hsinchu, Taiwan 300
Republic of China

Received November 2, 1993; revised July 19, 1994;
accepted October 5, 1994

An approach to optimal assignment of tasks with precedence relationships to multiple
robots is proposed. The robots are assumed to share a common workspace and work
cooperatively to accomplish a given process plan consisting of a set of tasks. The
optimal task assignment is defined to be the one that results in spending the least
amount of time to complete the plan under the criterion that no robot collision will
occur when the assigned tasks are performed. The ordering of the tasks in the process
plan is described by a topological tree, which is then expanded to form a larger state-
space tree without redundant tree paths. Each path in the expanded tree represents
a partially developed assignment of the tasks to the robots, and a graph formulation
scheme is presented for estimating the cost of the assignment. A collision-free motion
schedule for each robot based on each task assignment can be obtained by finding
the minimaximal path in a disjunctive graph formulated by the scheme. By using the
A* algorithm, a search method for finding the optimal assignment with the minimum
cost is presented. Some heuristic rules are also proposed to speed up the search
process. Simulation results are illustrated to show the effectiveness of the proposed
approach. 0 1995 john Wiley 6 Sons, lnc.

‘This work was supported in part by the National Science Council,
Republic of China under Contract NSC81-0404-E-009-010.
tTo whom all correspondence should be addressed.

Journal of Robotic Systems 12(4), 219-236 (1995)
0 1995 by John Wiley & Sons, Inc. CCC 0741 -2223/95/040219-I 8

990 Journal of Robotic Systems-1995

1. INTRODUCTION

Automatic assembly and manufacturing systems
have been applied to many industrial operations to
achieve high production rates. The system usually
consists of a single workstation (usually including a
robot) or a series of workstations (forming an assem-
bly line) in which several robots work independently
with prescribed functions such as inspection, assem-
bly, material handling, etc. The system can be made
more flexible if the robots are allowed to share a
common workspace and are multifunctionally de-
signed, given proper grippers or tools, to work coop-
eratively. In such a system, coordination of robot
tasks is important, and given a process plan that
consists of a set of tasks, it is desirable to accomplish
the plan by assigning the tasks to proper robots.

As an example, Figure 1 depicts an assembly
workstation with four robots and a fixture located
at the center of the common workspace of the robots.
Suppose that many small-sized parts in the parts
feeders need be assembled according to the process
plan given below:

1.

2.
3.

4.

5.

load the parts from the parts feeders into
the fixture;
drill some holes on the parts;
assemble the parts into two (an upper and a
lower) medium-sized parts;
join the two medium-sized parts together to
get a final product; and
unload the final product from the fixture to
the output conveyor.

The process plan can be described by a directed acy-
clic graph, called a task graph, with nodes represent-
ing the tasks and arcs the precedence relationships,

as shown in Figure 2. The process is performed repet-
itively unless the system is stopped or unless the
process plan is changed. The problem studied here
is to plan the robot motions to complete the tasks
in the task graph under the criteria that the total task
execution time is minimized and no collision among
the robots occurs.

Previous studies on coordination of multiple ro-
bots are quite limited. Maimon' presented a method
to implement an activity controller for a multi-robot
system. The controller has the ability to coordinate
any number of robots and to prevent collisions be-
tween the robots sharing a workspace. A resource
supervisor was designed and assigned to each poten-
tially shared resource, like a common workspace,
to prevent unauthorized access of the resource. In
Maimon,2 a multi-level decomposition algorithm
was developed to solve the robot-task-sequencing
planning problem. The optimal sequence of paths
for each robot to execute a prescribed task was found
first, and the collision-free sequence of tasks for the

Figure 1. A multirobot system.

Lin and Tsai: Optimal Assignment of Robot Tasks 221

0

(a) (b)
Figure 2. A process plan and a task graph: (a) the process
plan; (b) the task graph of (a).

robots was determined next by formulating the prob-
lem as an integer programming problem and pre-
senting a branch-and-bound algorithm. Nagata et aL3
proposed a plan generation system for multiple ro-
bots. The system consists of a planning subsystem
for generating sequences of actions for an assembly
task, and a subsystem for detecting and avoiding
mutual collisions of robots. Chen et al.4 presented a
graph-theoretic approach to determining an optimal
routing assignment for a set of autonomous vehicles
among several workstations. They solved the prob-
lem by a state-space search method using the A*
algorithm as well as a process of dynamic collision
detection to obtain an optimal collision-free rout-
ing assignment.

In general, the above methods can only provide
partial solutions for the case shown in Figure 1. To
solve the problem, techniques of both motion plan-
ning for robot manip~la t ion~-~ and task assignment
for distributed system^'^-'^ are required. The former
presents methods to plan collision-free motion
schedules for robots performing some prescribed
tasks repetitively among several moving obstacles,
while the latter describes the best way of assigning
tasks to processors that can maximize the through-
put or minimize the total execution time. The major
difference between the task assignment work for dis-
tributed systems and that for multi-robot systems is
that there is no risk of physical contact among the
processors when they execute tasks simultaneously;
however, contact among the robots must be pre-
vented in the latter case.

We solve the above problem by integrating tech-
niques of both motion planning and task assign-
ment. First, tasks in a task graph must be executed
according to their precedence order, so a topological
tree5 including all the linear orderings of the tasks
is first created. The tree serves as a basic structure
for generating a larger state-space tree with each
node indicating an assignment of a task to a robot
(forming a task-robot pair). Each path of the state-
space tree starting from the root node to a certain
node represents a partially developed assignment
consisting of several task-robot pairs corresponding
to the nodes in the path. Accordingly, the cost of
the assignment (or the cost of the last node in the
path) is defined as the maximum completion time
of the tasks assigned in the path, including not only
the execution time to complete these tasks, but also
the waiting time for avoiding robot collisions. This
can be treated as a problem of motion planning be-
cause safe motions for multiple robots are desired.
To compute the cost for each node in the tree, we
present a graph formulation scheme converting the
cost evaluation process into a process of path finding
in a disjunctive graph. Finally, the state-space tree
is searched using the A* algorithm to find the optimal
assignment with the minimum cost. Some heuristic
rules are also provided for speeding up the search.

The article is organized as follows. Section 2 in-
cludes an overview of the basic concept of the pro-
posed approach. In section 3, the motion planning
method developed in a previous work6 is reviewed,
and a graph formulation scheme as well as two re-
duction methods are proposed. In section 4, the
search method using the A* algorithm and some
heuristic rules for searching the optimal assignment
are presented. Simulation results are given in section
5. Discussions and conclusions are presented, fi-
nally, in section 6.

2. PRINCIPLE OF OPTIMAL TASK ASSIGNMENT
FOR MULTIPLE ROBOTS

2.1. System Assumptions and Objectives

Various assumptions made of the task graph and
the robots are described in the following.

1.

2.

The robots are multifunctionally designed to
perform various task by changing grippers or
tools at their hands.
None of the robots is always given the privi-
lege to move first when conflicts occur, i.e.,
the robots are all equally prioritized.

222 Journal of Robotic Systems-1995

3.

4.

5.

The task graph is a directed acyclic graph,
with nodes and arcs representing the tasks
and the precedence relationships between the
tasks, respectively. For example, if m, and m2
are two tasks and ml precedes m2 in order
(i.e., there exists a path from ml to m2 in the
task graph), then m2 cannot be processed be-
fore ml is completed.
The total execution time for each robot to com-
plete a given task includes the time for fetch-
ing appropriate grippers or tools, the time for
executing the task, and the time for returning
the grippers or tools.
No communication time between any two ro-
bots is considered. It is assumed that any ob-
ject (e.g., an assembly part) to be processed
is stationary, and placed at the center of a
common workspace of the robots, so that the
communication time to transmit the process-
ing results from one robot to another is zero.

A two-dimensional function table with the value
of each entry at (t , Y) indicating the execution time
of task t assigned to a robot r is given in advance.
If task t cannot be assigned to robot Y , then the value
of (t , Y) is set to an infinite value. An example is
shown in Figure 3. Based on the above assumptions,
the objective of this study now can be described as
the determination of the optimal assignment of the
tasks in a task graph to the robots, given the function
table, under the constraints that no robot collision
is allowed and that the total task execution time is
minimized.

A B C D

Figure 3. An example of a function table.

More specifically, let A be a certain assignment
of tasks to some robots, t:(A) be the time spent for
task execution (including all the three types of times
as stated in Assumption 4 above), and ty(A) the time
for avoiding robot collisions (due to waiting, e.g.),
both in robot r. Define t,(A) to be the total time spent
in robot r for task assignment A, which is just

t , (A) = tF(A) + ty(A). (1)

Obviously, this amount of time is different for each
distinct robot for each assignment A. Define

t(A) = max t , (A) (2)
r

which is called the task turnaround time of A . It is
easy to see that t(A) is the total time to complete all
the tasks in a task graph according to assignment
A . A different assignment will result in a different
amount of task turnaround time, and the smaller
the task turnaround time the better the assignment.
Therefore, the problem is to determine the optimal
assignment A. that minimizes the tasks turnaround
time, i.e.,

t(Ao) = min t(A) (3)
A

= min max t,(A)
A r

which is the so-called minimax c~ i t e r ion .~

2.2. Basic Concept of Proposed Approach

Wang and Tsai5 proposed an approach to optimal
assignment of tasks with precedence relationships
in distributed systems. They solved the problem by
introducing the concept of a topological free, which is
also employed in this study. Each topological tree
consists of nodes with labels corresponding to the
tasks in a task graph and a dummy root node with
label 4. Each tree path starting from the root node
to a certain node represents a linear ordering (called
a topological ordering8) of the tasks in the path. The
topological tree for the task graph shown in Figure
2 is depicted in Figure 4a. The topological tree can
be used as a basic structure for generating a larger
state-space tree. The generation procedure is re-
viewed as follows, in which the term “processor”
corresponds to ”robot” for our case of task assign-
ment here.

Lin and Tsai: Optimal Assignment of Robot Tasks 223

Step 1. Generate a dummy node 0, with label d, as
the root node of the state-space tree corresponding
to the root node 0, of the topological tree.
Step 2. Expand 0, as follows:

1. collect all sons of 0, into a set d;
2. for each node in SB with label m and each

processor p , check the candidate pair (m, p)
for the validity, i.e., check if m is really execut-
able on p; and

3. expand node 0, by generating as sons all the
valid task-processor pairs, each with the cor-
responding label (m, p) .

Step 3. Expand non-root node (m, p) as follows:

1. identify the corresponding node in the topo-
logical tree with label m; and

2. similarly to the expansion of the root node
discussed above, collect all sons of m and gen-
erate the appropriate valid task-processor
pairs as the sons of node (m, p) .

Step 4. Repeat Step 3 until all non-root nodes are ex-
panded.

The expanded state-space tree for Figure 4a is
shown in Figure 4b, given the function table of Fig-

A
3 4

I

I

I

3

5

6

I

I

I

4

5

6

ure 3. By computing an appropriate cost for each
node in the expanded tree, and searching the tree
using the well-known A* algorithm, the optimal task
assignment with the minimum cost can be found.

The concept of topological tree, as well as the tree
expanding method, are used to solve the problem of
task assignment for multiple robots in this study.
Unlike the case studied in Wang and TsaiT5 collisions
among the robots should be considered and avoided
in the multi-robot systems. A cost derivation method
considering both the task execution time and the
waiting time for avoiding robot collisions is pro-
posed. The concept is based on the observation that
for each path starting from the root node of the ex-
panded tree to a certain node n, there may exist one
or more robots performing the corresponding tasks
simultaneously. The cost of node n (or the cost of
the partially developed assignment) can be defined
to be the maximum execution time for the robots to
complete these tasks (or the maximum completion
time of the tasks), under the criterion that no robot
collisions occur. In more specific terms, assume that
the partially developed assignment is denoted as A’;
then the cost C, of node n is computed by

C, = max t,(A’).
r

(4)

A A A A

Figure 4. A topological tree and a fully expanded state-space tree: (a) the topological
tree corresponding to the task graph shown in Fig. 2b; (b) the state-space tree generated
by expanding (a).

224 Journal of Robotic Systems-1995

Computation of each node cost is formulated as a
problem of motion planning by a graph formulation
scheme developed in this study, and the cost deriva-
tion process thus can be regarded as a sequence of
motion planning processes, each for deriving the
cost of a node. This scheme is then used in evaluating
the cost value of each node n in the state-space tree
of the A* algorithm. The details will be discussed in
sections 3 and 4.

3. COST DERIVATION FOR TASK ASSIGNMENT

To evaluate the cost of a certain node n in the ex-
panded topological tree, which is defined as the cost
of a partially developed assignment consisting of the
task-robot pairs obtained by backtracking from node
n to the root node, a graph formulation scheme is
proposed to transform the cost derivation process
into a process of path finding in a disjunctive graph.
The motion planning method developed by Lin and
Tsai6 is then applied to the graph constructed by the
scheme, and the result is described by Gantt charts,
each being a collision-free motion schedule for a ro-
bot according to this assignment. The cost of node
n is just the maximum length measured in time of
the charts. To reduce the cost computation time for
each node and the search time for finding the optimal
assignment, two reduction methods are also pro-
posed. The details will be discussed in the subse-
quent sections.

3.1. Review of Motion Planning via
Disjunctive Graphs

The motion planning problem is solved in Lin and
Tsai6 for multiple robots by employing the concept
of a disjunctive graph9-" as follows. First, a schedule
map12 for each pair of robots performing certain tasks
is created. The map is a two-dimensional figure with
the horizontal axis and the vertical one representing,
respectively, the execution time flows of two robots,
say R, and R 2 , to complete the specified tasks. The
task performed on each robot conceptually can be
divided into a series of pseudo-subtasks, each requir-
ing an identical amount of processing time H (the
execution time of the task is assumed to be composed
of a multiple of small time intervals), and these sub-
tasks are indexed sequentially and increasingly.

For example, the subtasks are numbered from 1
through n, for R, and from nl + 1 through n, + n2
for R,, if the number of subtasks performed on R1
and R2 are n, and n2, respectively. A simple example

is shown in Figure 5a. Also shown in this figure
are some non-blank (shaded or dark) squares called
collision squares16 indicating that a collision will oc-
cur if both robots perform the corresponding sub-
tasks simultaneously. Each set of adjacent collision
squares are grouped together to form a collision re-
gion. A pair of collision squares, one on the upper
left position and the other on the lower right of a
rectangle satisfying the following two conditions, are
termed guiding squares6: (1) they are in the same
collision region; and (2) the rectangle specified by
the two collision squares is maximal in the sense that
it cannot be contained within any other rectangle
defined by a different pair of collision squares in
the region. The guiding squares are shown dark in
Figure 5a, and they will be used to define the disjunc-
tive arcs for a disjunctive graph in the next section.

In addition, the notation MAP(t,,t,.R,,RI) is used in
this study to denote the schedule map of robots R,
and R, performing tasks t, and t,, respectively. It is
noted that MAP,, ,f,;R,,R,) need be created only when
both tasks f, and" t, are unrelated in the task graph
(Lee, only when there exists no path from t, to t,
and no path from t, to t, in the graph). The reason
is that, if the two tasks are related so that if a task,
say t,,, is the predecessor of the other, then t , must
be completed before t, can be started. Therefore,
no conflict will occur because t, and t, cannot be
processed simultaneously at any time instant.

After the creation of the schedule maps as dis-
cussed above, a disjunctive graph is defined as G =
(T; %, 9), where (1) T is a set of nodes with labels
corresponding to the subtasks and two additional
dummy nodes, labeled 0 and *, indicating the source
and the sink of the graph, respectively; (2) (e is a
set of conjunctive arcs with each element (i, i + 1)
representing that subtasks i and i + 1 are performed
by an identical robot and subtask i precedes subtask
i + 1 in order; % also includes, for each robot Rk,
two additional arcs (0, sk) and (ek, *) where sk and ek
are the first and the last subtasks performed on robot
R,, respectively; (3) 9 is a set of disjunctive arc pairs
with each pair of arcs (i, j) and (j , i) indicating that
subtasks i and j are performed on different robots
but their corresponding time intervals span a guiding
square. The disjunctive graph of Figure 5a is shown
in Figure 5b. The amount of processing time (or the
arc length) associated with each arc (i, j) in % U 9 is

H i f i f 0
0 otherwise

Lin and Tsai: Optimal Assignment of Robot Tasks 2w

i i+l i+2 i+3 i+4 i+5

(b)
Figure 5. A schedule map and its corresponding disjunctive graph: (a) the schedule map
of robots B and C performing tasks 4 and 3, respectively; (b) the disjunctive graph
representation of (a).

where His a positive constant specifying the amount
of processing time of each subtask. By finding the
minimaximal path in a disjunctive graph, the prob-
lem of motion planning for multiple robots can be
solved for various conditions.6

3.2. Disjunctive Graph Formulation Scheme

Consider that a path in the expanded tree with nodes
4, (t l , RJ, . . . , (t, , R,,), where is the root node
of the tree and node (ti, Ri) represents the assignment
of task ti to robot Ri. The cost C, of node (t,, R,) has
been defined to be the maximum completion time
of all tasks t i , for i = 1, 2, . . . , n, as described by
Eq. (4). Because there may exist more than one robot
in the path performing the corresponding assigned
tasks simultaneously, additional costs (e.g., the time
for waiting) for avoiding robot collisions should be
considered. This problem can be treated as a problem
of motion planning.

ASSWIW that MAJ'(~,,,,~,;R,,R,) is the schedule map
as defined previously, and let G = (T; %, 9) be a
disjunctive graph created as discussed in the last
section. Define the outdegree of node u in 'T to be
the number of arcs originating from u and pointing

1 I i,

1.

2.

outward, and the indegree of node u the number
of arcs originating from the other nodes in 'V and
pointing to u. Before the graph formulation scheme
is presented, several operators applicable to G are
introduced and listed in the following (assume that

j I n) .

The assignment operator: Applying the assign-
ment operator to node (ti, Ri) means adding
into 'V the nodes with labels corresponding
to the subtasks of task t i , and adding into '&
a set of conjunctive arcs (i, i + 1) in which i
and i + 1 are subtasks performed on robot R,
(see Fig. 6a, given the task graph and the
function table shown in Fig. 2b and Fig. 3,
respectively).
The conjunction operator: Applying the con-
junction operator to a pair of nodes ((ti, Ri),
(t i , Rj)) means adding into % a conjunctive arc
(ei, sj), where ei and sj are the last and the first
subtasks of ti and ti, respectively (i.e., the last
and the first subtasks performed on Ri and Rj ,
respectively) (see Fig. 6b). The conjunction
operator is applied when ti is a predecessor
of ti or when both Ri and Rj denote the
same robot.

226 Journal of Robotic Systems-1995

3.

4.

opaand opagtor Result Notation -
Assignment o o o o o

Conjunction

Disjunction @+b@

(6. D) Start

Agure 6. Operators for creating a disjunctive graph (newly-created arcs and nodes
generated by the corresponding operators are shown dark): (a) the assignment operator;
(b) the conjunction operator; (c) the disjunction operator; (d) the start operator; (e) the
end operator.

The disjunction operator: Applying the disjunc-
tion operator to a pair of nodes ((t , , R,), (f,,
R,)) means adding into 9 pairs of disjunctive
arcs, with each pair of arcs (u, , u,) and
(u,, u,) specifying the guiding square in
MAP,, ,t ,R ,R spanned by the time intervals of
u, and L,: hhere u, and u, are the subtasks
of t , and f,, respectively (see Fig. 6c). The
disjunction operator is applied when t, and f,
are unrelated, which means that there exists
no path from t, to f, and no path from f, to f ,
in the task graph.
The start operator: Applying the start operator
to a set of nodes ((t,, R,), (t,+l, R,+l), . . . ,
(t,, R,)) means adding a dummy node 0 into

7 f and a set of conjunctive arcs (0, u) into %,
where u is a node in 7 f - (0) and the indegree
of u is zero (see Fig. 6d).

5. The end operator: Applying the end operator
to a set of nodes ((t i , Ri), Ri+J, . . . ,
(t i , Rj)) means adding a dummy node * into
OV and a set of conjunctive arcs (u, *) into V,
where u is a node in OV - {*} and the outdegree
of u is zero (see Fig. 6e).

The algorithm to create a disjunctive graph for
computing the cost of node (f,, R,) is now presented
as follows.

Algorithm 1. Disjunctive graph creation algorithm.

Lin and Tsai: Optimal Assignment of Robot Tasks 227

Input: The task graph and the tree path with nodes
4, (t l , Rl), . . . , (t, , R,,) in the expanded topologi-
cal tree.

Output: A disjunctive graph G = (V; %, 9),

Method:

Step 1. Apply the assignment operator to each node
(t,, R,) in the path for i = 1, 2 . . . , n.

Step 2. For each pair of nodes (t , , R,) and (t,, R,) in
the path where 1 5 i < j 5 n, the following conditions
are checked.

Condition 1. If R, is identical to R, (i.e., if they
denote an identical robot), then apply the con-
junction operator to ((t , , R,), (t,, R,)).

Condition 2. If R, is not identical to R, (i.e., if
they do not denote an identical robot) and t ,
is the predecessor of t, in the task graph, then
apply the conjunction operator to ((t , , R,),

Condition 3. If R, is not identical to R, and t , is
unrelated to t, in the task graph, then apply
the disjunction operator to ((t , , R,), (t,, R,)).

Step 3. Apply the start and the end operators to the
set of nodes ((t , , Rl), (t 2 , R2), . . . , (t, , R,)) and stop.

The graph output by Algorithm 1 can then be used
as input to the motion planning algorithm,6 and the
output (Lee, the planning result) will include the
maximum completion time of task t , , for i = 1,
2, . . . , n, which is just the cost of node (t, , , R,).

(t,, R J .

3.3. Reductions of Conjunctive Arcs
and Tree Paths

3.3.1. Reduction of Conjunctive Arcs

The disjunctive graph created in the last section may
contain certain redundant conjunctive arcs that are
useless and can be depleted from % without chang-
ing the final scheduling result. To see an example,
assume that (t , , R,), (f,, R,), and (t L , R,) are three
different task-robot pairs corresponding to the nodes
in the expanded tree. By applying the assignment
operator to these nodes and the conjunction operator
to pairs of nodes W,, R,), (t,, R,)), ((t,, R,), (f k r R,)),
and ((t , , R,), (f,, R,)), the resulting graph is shown
in Figure 7. It can be seen from this figure that the
conjunctive arc that connects the last subtask oft, to
the first subtask of t, is redundant because it cannot

Figure 7. An example of a redundant conjunctive arc.

be the arc on any of the longest paths from the first
subtask of f j to the last subtask of t,.

A method to identify and delete the redundant
conjunctive arcs is presented here. Suppose that
A = [ai j] is an adjacency matrix with size 17'1 x (V(
for graph G = (V; %, 9), where 17'1 is the number of
nodes in V , and for any i, j in T, aij = 1 if there is
an arc (i, j) in % and uii = 0 if not. The number of
paths between vertices i and j is given by the value
of the ij-element in the matrix B = [bii].I3 Then, it
can be seen that arc (i, j) in % is redundant and can
be deleted from % if

a,, * b,, > 1. (5)

The reason is that if there is more than one path
between vertices i and j , then arc (i, j) must be the
shortest path connecting both i and j (it is defined
before that the processing time associated with each
arc in % U 9 is a constant H , and is treated as the
length of the arc).

3.3.2. Reduction of Tree Paths

Sometimes disjunctive graphs created from different
tree paths using Algorithm 1 may actually be identi-
cal. For example, in Figure 8a the disjunctive graph
created from the left path (4, (1, A), (2, B) , (3, B),
(4, C)) is identical to that created from the right path
(4, (1, A) , (2, B) , (4 C), (3, B)) , and the graph is
shown in Figure 8b. The tree paths generating an
identical disjunctive graph are thus redundant ex-
cept for one of them. Time will be wasted in comput-
ing the node costs and in searching the optimal as-
signment if the expanded topological tree contains
too many such redundant paths. The expanding
method of Wang and Tsai5 can be used to generate
expanded topological trees, but it also generates re-
dundant paths. This problem is solved in this study
by expanding the topological tree in a variable-sized
form instead of in a fixed-sized form like that pro-

228 Journal of Robotic Systems--2995

P,

I
I

\ /
(a) (b)

Figure 8. An example of redundant tree paths: (a) two different tree paths of Fig. 4b
corresponding to an identical graph representation; (b) the identical disjunctive graph
of (a).

posed in Wang and T ~ a i . ~ Assume that the robots
are indexed with distinct numbers. The method is
to modify the generation process discussed in section
2.2 for expanding a non-root node (m, Ri) as follows.

1.

2.

Identify the corresponding node in the topo-
logical tree with label m.
Collect all sons of m in the task graph and
generate all task-robot pairs as sons of node
(m, Ri), with each pair (n, Rj) satisfying the
following two requirements: (i) task n can be
performed on robot R, according to the func-
tion table; and (ii) if task n is unrelated to task
rn in the task graph, then the index of Rj must
be greater than or identical to that of R, (other-
wise redundant tree paths will be created).

The result of applying the above modified pro-
cess to Figure 4a is shown in Figure 9. The effective-
ness of the improved method will be illustrated by
simulation experiment results given in section 5.

4. SEARCHING FOR OPTIMAL ASSIGNMENT

The expanded topological tree is useful for generat-
ing all possible assignments of the tasks in a task
graph to the robots. The cost of each node can be
determined by the methods proposed in the last sec-
tion. Searching for the optimal assignment with the
minimum cost is a state-space search problem, and
the A* algorithm discussed in Nil~son '~ is used in

this study. The expanded topological tree serves as
a state-space search tree here. Some heuristic rules
are also provided to speed up the search process.
The details are described in this section.

4.1. Search Method

In a state-space search problem, each state is de-
scribed as a node, and an operator is designed to

0

Figure 9. The tree of Fig. 4(b) containing no redundant
tree path.

Lin and Tsai: Optimal Assignment of Robot Tasks 8 229

generate all the successors for the node, called node
expansion. A solution path of a search problem is a
path starting from the initial state to one of the goal
states. In our case here, a solution path defines an
assignment of the tasks in a task graph to the robots.
Note that the cost of a solution path is actually the
cost of a terminal node in the path. The search
method is now described as follows.

State Description. Let two-tuple S, = (P, , C,) denote
the description of the current search state at node
n, where P, = {(t, r) ((t , r) is a task-robot pair associ-
ated with a node in the path starting from the root
node to node n} and C, is the cost of node n defined
in section 2. Also let T, = {tl(tf r) is in P,} be a set
of already assigned tasks.

Initial State. The initial state is S, = (P,, C,) with
P, being an empty set and C, zero, where 4 is used
to denote the root node.

Operator. The procedure of applying an operator to
node n (called node expansion) with node label (t , r)
and state description S, = (P,, C,) is described as
follows. First, generate all the sons of n according
to the improved expanding method discussed in sec-
tion 3.4. Next, update S, for each generated node rn
with node label (t’, r ’) as S, = (P m , C,), where
P, = P, U (t’, r’) and C,, is the cost of node rn
computed using the method presented in section 3.2.

Goal State. Any state Sg = (P8, CJ is a goal state if
and only if the corresponding Tg contains all the
tasks in a task graph. Node g is termed a goal node.

In the A* algorithm, the node to be expanded in
every step is determined by a cost evaluation func-
tion, and the solution path with the minimum cost,
called the optimal solution path, can always be found
if the cost function is properly defined. More specifi-
cally, let f (n) be a cost function, and

(6)

where g(n) is a non-negative measure of the cost of
the path from the root node to node n in the state-
space tree, and h(n) is a lower-bounded estimate of
h*(n), which is the minimum cost of the path from
node n to a goal node. According to Nil~son,’~ the
optimal solution path is guaranteed as long as
h(n) I h*(n) for all n (i.e., as long as h(n) is consistent),
if one exists. This is equivalent to saying that if
f (n) I f+(n) for all node n where

f (n) = g(n) + h(n)

then the optimal assignment A, in Eq. (3) can always
be found using the A* algorithm.

Algorithm 2. Find the optimal assignment A , .

Step 1. Put the root node + into a list called OPEN,
and set the value off(+) to zero.
Step 2. Remove from OPEN the node n with the
smallest f value (to be estimated in the next section),
and put the node into a list called CLOSED.
Step 3. If node n is the goal state, then backtrack
from n to 4 to obtain the corresponding assignment
A, and exit; otherwise continue.
Step 4. Expand node n and update the state descrip-
tion for each generated node using the above opera-
tors. Append the generated nodes and the corre-
sponding f values to the OPEN list.
Step 5. Go to Step 2.

4.2. Evaluation of Cost Function

To evaluate the value of function f for each node
generated in Step 4 of the above algorithm, a method
consisting mainly of the following two steps is pro-
posed: (1) creating two disjunctive subgraphs Gg and
G, corresponding to the function g and the heuristic
function h, respectively; and (2) combining Gg and
G, into a larger graph Gf, which is then taken as the
input into an algorithm described in our previous
work6 for evaluating the cost off. The operators listed
in section 3.2 are used in constructing these sub-
graphs. We also provide some heuristic rules for
use in constructing Gh and in combining the two
subgraphs to guarantee that the consistency prop-
erty off is satisfied (i.e., to guarantee the inequality
f (n) I f*(n) for all nodes in the state-space tree).

Assume thatf(n) of node n with state description
S, = (P,, C,) and set T, as defined in section 4.1 is
to - be estimated. Let T , be the complement of T , (i.e.,
T, is the set of unassigned tasks in the task graph
and T, n ?;, = 4). The method for estimating the
value of f (n) consists of the following two steps.

Step 1. Construction of G, and G,,.
As mentioned before, function g(n) is a measure of
the cost of the path from the root node to node n.
Note that g is a measure of a true cost; it is not an
estimated value. The cost of node n can be used as
the value of g(n), and Algorithm 1 discussed in sec-
tion 3.2, excluding Step 3, can be applied to construct
the subgraph Gg .

On the other hand, function h(n) is a lower-

230 Journal of Robotic Systems-1995

tj

I
A
n A n

I
I
I

1

2 3 4

3 3 4 2 4 2

2
A / A I I
I I l l I I I
I I l l I I I

4 5 3 4 5 2 3

5 5 4 5 5 4 5 5

6 6 6 6 6 6 6 6

(b)
Figure 10. A task graph and the corresponding topological tree: (a) the task graph; (b)
the tree including all the topological orderings of the tasks in (a).

bounded estimate of the minimum cost h* of the
path from node n to a goal node. We provide two
heuristic rules for creating the subgraph Gh . The first
rule utilizes the set of unassigned tasks 7,. It is easy
to know that each task in T,, must be assigned to
one and exactly one robot to complete the process
plan. To ensure that the estimated value h is never
larger than h*, each of the remaining unassigned
tasks can be assigned to the robot that spends the
least amount of time to complete the task. In more
specific terms, we assign each task t in 7, to a certain
robot r which is determined by

r = min t'(t, r f) (8)
r'

where t'(t, r ') is the execution time of robot r f to
complete task t. Assume that the label of node n
considered here is (t,, R,). Note that if task t in Eq.
(8) is unrelated to task t, of node n, an additional
constraint to be checked is that the index of robot r
determined by the above equation must be greater
than or identical to that of robot R,. The reason is
that the state-space tree generated in this study is
not a fully expanded tree because the redundant
tree paths have been removed. This fact should be
considered in determining the robot for each unas-

signed task in Eq. (8). After finding appropriate task-
robot pairs by Eq. (8), the assignment operator is
applied to each of the pairs.

The second rule involves the processing se-
quence of the task-robot pairs assigned by Rule 1.
Assume that t, and t, are two tasks in T,, and t,
precedes f, in the task graph. It is easy to see that
no matter to what robots the two tasks are assigned,
t , must be completed before t, can be started. So,
for any two task-robot pairs created by Rule 1 and
processed by the assignment operator, say (t , , R,)
and (t,, R,), if task t , is a predecessor of task t,, then
apply the conjunction operator to ((t , , R,), (t,, R,)),
and the subgraph Gh is hence created.

Step 2. Combination of Gs and G,,.
The conjunction operator is used again in this step
to combine the two subgraphs Gg and Gh created in
the last step. The operator is applied to each pair of
nodes ((ti, RJ, (t i , Rj)) , where task ti is in T, and task
t, is in ?;, , and the former precedes the latter in order.
The start and the end operators are applied next to
the combined result of G, and G h to create graph Gr ,
Finally, the redundant conjunctive arcs in graph Gf
are identified and deleted using the method pre-
sented in section 3.3 to achieve a better performance.

Lin and Tsai: Optimal Assignment of Robot Tasks -1

1 9 m m 8

The value off (n) can be obtained by taking graph
G, as input to an algorithm from our previous work.6
Note that if the value of h is always set to zero,
then the search method discussed above will be a
uniform-cost s e a r ~ h . ' ~ It can be seen that the consis-
tency requirement is satisfied in evaluating f using
the above methods.

5. SIMULATION RESULTS

Three illustrative examples are given in this section
to show the effectiveness of the proposed approach.
Four robots (A, B, C, and D) are scheduled to execute
six tasks in our simulation experiments. A function
table indicating the processing time of each task per-
formed on each robot is given in Figure 11. A task
graph describing the precedence relationships of the
tasks and a set of schedule maps constructed in ad-
vance are also given for each example and shown in
Figures 12 through 14.

By using Algorithm 2 presented in section 4 as
a search method, the optimal assignment of the tasks
to the robots with the minimum task turnaround
time can be obtained for each simulation example.
To show the effectiveness of our heuristic rules in
search speed and reduction of the number of
searched nodes, we further reuse Algorithm 2 as a
uniform-cost search algorithm by setting h(n) zero
for all nodes. The results are summarized in Table

A B C D

4 ~ 1 5

6 1 7 I m l m 1 9 I
(Imit: H)

Figure 11. A function table for the illustrative experi-
ments.

Table 1. A summary of the simulation results

Examples Example 1 Example 2 Example 3

of nodes
(without reduction)

of nodes
(with reduction)

Nodes expanded
(A* search)

Nodes generated
(A* search)

Processing time@
(A' search)

Nodes expanded
(uniform-cost search)

Nodes generated
(uniform-cost search)

Processing time@
(uniform-cost search)

Optimal cost

959

349

16

43

1.43

109

206

16.70
33

1,707

509

16

39

1.76

61

169

20.27
26

2,511

422

15

38

1.70

39

95

4.07
17

Ca = CPU sec. on PC386.

I. The total number of nodes generated in the state-
space tree for Example 1, as shown in Table I, if
expanded in a fixed-sized form, is 959, and is re-
duced to 349 if expanded in a variable-sized form.
Among these nodes, as shown in Figure 15a, in total
only 16 nodes are expanded and 43 nodes generated
before the goal node is found by using our search
method, and 109 expanded and 206 generated if the
uniform-cost search method is employed (the result-
ing graph for the latter case is too large to be included
as a figure and is omitted here). The optimal assign-

A), and the cost is 33H. The collision-free motion
schedules of the four robots are depicted by Gantt
charts in Figure 15b.

The simulation experiments were programmed
using the C language on a personal computer (IBM
PC/AT). The use of faster workstations may improve
the speed.

ment is (1, D), (2, A) , (3, C), (4, B) , (5, D), and (6,

6. CONCLUSIONS AND DISCUSSIONS

The problem of optimal assignment of tasks with
precedence relationships to multiple robots is solved
in this study. The proposed approach consists of the
following three major parts: (1) a state-space tree
generation method considering all possible assign-
ments of the tasks in a task graph to the robots;
(2) a cost derivation method that can evaluate the
processing time for each assignment of the tasks to
the robots, including the execution time to complete

!23P Journal of Robotic Systems-1995

T
0

T
0

Figure 19. Example 1: (a) the task graph; (b) the schedule maps.

Lin and Tsai: Optimal Assignment of Robot Tasks 233

Figure 13. Example 2: (a) the task graph; (b) the schedule maps.

the tasks and the waiting time for avoiding robot
collisions; and (3) an A* search method of the optimal
assignment with the minimum cost in the state-
space tree.

Also proposed are a method to reduce the size
of the state-space tree by eliminating the redundant
tree paths from the tree, and some effective heuristic
rules for quick search of the best goal node with the

m4 Journal of Robotic Systems-1995

Figure 14. Example 3: (a) the task graph; (b) the schedule maps.

Lin and Tsai: Optimal Assignment of Robot Tasks 135

6 0

32 31

35 34 32 32 34 33 31 31 42 35 32 32 40 42 oo

B

C

D p 11 11 11 11 11 11 11 --5 15 1s 1s 1s 15 15

: waiting : cxccucing task i

0)
Figure 15. The state-space search tree and the scheduling results of Example 1 (the
optimal solution path is shown dark): (a) the state-space search tree with a number above
a node indicating node expansion order and a number below indicating f (n) value; (b)
the collision-free scheduling results represented by Gantt charts.

minimum cost. They improve the performance of
finding the optimal assignment.

The precedence relationships of the tasks in a
process plan are represented by a directed acyclic

graph. However, not all process plans can be de-
scribed by such graphs. In some cases the tasks may
be described by AND/OR graphs.I5 Future research
may be directed to handling such graphs in the pro-

936 Journal of Robotic Systems-1995

posed approach. Conducting a practical implemen-
tation of the proposed approach o n a real multi-robot
system to prove the feasibility of the approach is also
under consideration.

REFERENCES

1. 0. Z . Maimon, “A generic multirobot control experi-
mental system,” 1. Rob. Syst. 3(4), 451-466, 1986.

2. 0. Maimon, ”The robot task-sequencing planning
problem,” I € € € Trans. Rob. Autom. 6(6), 760-765,1990.

3. T. Nagata, K. Honda, and Y. Teramoto, “Multirobot
plan generation in a continuous domain: Planning by
use of plan graph and avoiding collisions among ro-
bots,” IEEE 1. Rob. Autom. 4(1) 2-13, 1988.

4. C. L. Chen, C. S. G. Lee, and C. D. McGillem, ”Task
assignment and load balancing of autonomous vehi-
cles in a flexible manufacturing system,” I E E E 1. Rob.
Autom. RA-3(6), 659-671, 1987.

5. L. L. Wang and W. H. Tsai, “Optimal assignment of
task modules with precedence for distributed process-
ing by graph matching and state-space search,” BIT,

6. C. F. Lin and W. H. Tsai, “Motion planning of multiple
28, 54-68, 1988.

robots with multi-mode operations via disjunctive
graphs,” Robotica, 9, 393-408, 1991.

7. C. C. Shen and W. H. Tsai, “A graph matching ap-
proach to optimal task assignment in distributed com-
puting systems using a minimax criterion,” I E E E
Trans. Comput., C-34(3), 197-203, 1985.

8. E. Horowitz and S.Sahni, Fundamentals of Data Sfruc-
tures. Woodland and Hills, CA, 1982.

9. E. Balas, ”Machine sequencing via disjunctive graphs:
an implicit enumeration algorithm,” Oper. Res., 17(6),

10. M. Florian, P. Trepant, and G. McMahon, “An implicit
enumeration algorithm for the machine sequencing
problem,” Manage. Sci., 17, B782-B792, 1971.

11. S. Ashour, T. E. Moore, and K. Y. Chiu, “An implicit
enumeration algorithm for the nonpreemptive shop
scheduling problem,” AIIE Trans., 6(1), 62-72, 1974.

12. C. F. Lin and W. H. Tsai, “Trajectory modeling, colli-
sion detection, and motion planning for two robot
manipulators,” Int. 1. Rob. Autom., 6(4), 193-209,1991.

13. R. J. Wilson and L. W. Beineke, Applications of Graph
Theory. Academic Press, New York, 1979.

14. N. J. Nilsson, Problem Solving Methods in Artificial Intelli-
gence. McGraw-Hill, New York, 1971.

15. L. S. H. D. Mello and A. C. Sanderson, “And/or graph
representation of assembly plans,” I E E E Trans. Rob.
Autom., 6(2), 188-199, 1990.

941-957, 1969.

