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1. INTRODUCTION 

Automatic assembly and manufacturing systems 
have been applied to many industrial operations to 
achieve high production rates. The system usually 
consists of a single workstation (usually including a 
robot) or a series of workstations (forming an assem- 
bly line) in which several robots work independently 
with prescribed functions such as inspection, assem- 
bly, material handling, etc. The system can be made 
more flexible if the robots are allowed to share a 
common workspace and are multifunctionally de- 
signed, given proper grippers or tools, to work coop- 
eratively. In such a system, coordination of robot 
tasks is important, and given a process plan that 
consists of a set of tasks, it is desirable to accomplish 
the plan by assigning the tasks to proper robots. 

As an example, Figure 1 depicts an assembly 
workstation with four robots and a fixture located 
at the center of the common workspace of the robots. 
Suppose that many small-sized parts in the parts 
feeders need be assembled according to the process 
plan given below: 

1. 

2. 
3. 

4. 

5. 

load the parts from the parts feeders into 
the fixture; 
drill some holes on the parts; 
assemble the parts into two (an upper and a 
lower) medium-sized parts; 
join the two medium-sized parts together to 
get a final product; and 
unload the final product from the fixture to 
the output conveyor. 

The process plan can be described by a directed acy- 
clic graph, called a task graph, with nodes represent- 
ing the tasks and arcs the precedence relationships, 

as shown in Figure 2. The process is performed repet- 
itively unless the system is stopped or unless the 
process plan is changed. The problem studied here 
is to plan the robot motions to complete the tasks 
in the task graph under the criteria that the total task 
execution time is minimized and no collision among 
the robots occurs. 

Previous studies on coordination of multiple ro- 
bots are quite limited. Maimon' presented a method 
to implement an activity controller for a multi-robot 
system. The controller has the ability to coordinate 
any number of robots and to prevent collisions be- 
tween the robots sharing a workspace. A resource 
supervisor was designed and assigned to each poten- 
tially shared resource, like a common workspace, 
to prevent unauthorized access of the resource. In 
Maimon,2 a multi-level decomposition algorithm 
was developed to solve the robot-task-sequencing 
planning problem. The optimal sequence of paths 
for each robot to execute a prescribed task was found 
first, and the collision-free sequence of tasks for the 

Figure 1. A multirobot system. 
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0 

(a) (b) 
Figure 2. A process plan and a task graph: (a) the process 
plan; (b) the task graph of (a). 

robots was determined next by formulating the prob- 
lem as an integer programming problem and pre- 
senting a branch-and-bound algorithm. Nagata et aL3 
proposed a plan generation system for multiple ro- 
bots. The system consists of a planning subsystem 
for generating sequences of actions for an assembly 
task, and a subsystem for detecting and avoiding 
mutual collisions of robots. Chen et al.4 presented a 
graph-theoretic approach to determining an optimal 
routing assignment for a set of autonomous vehicles 
among several workstations. They solved the prob- 
lem by a state-space search method using the A* 
algorithm as well as a process of dynamic collision 
detection to obtain an optimal collision-free rout- 
ing assignment. 

In general, the above methods can only provide 
partial solutions for the case shown in Figure 1. To 
solve the problem, techniques of both motion plan- 
ning for robot manip~la t ion~-~  and task assignment 
for distributed  system^'^-'^ are required. The former 
presents methods to plan collision-free motion 
schedules for robots performing some prescribed 
tasks repetitively among several moving obstacles, 
while the latter describes the best way of assigning 
tasks to processors that can maximize the through- 
put or minimize the total execution time. The major 
difference between the task assignment work for dis- 
tributed systems and that for multi-robot systems is 
that there is no risk of physical contact among the 
processors when they execute tasks simultaneously; 
however, contact among the robots must be pre- 
vented in the latter case. 

We solve the above problem by integrating tech- 
niques of both motion planning and task assign- 
ment. First, tasks in a task graph must be executed 
according to their precedence order, so a topological 
tree5 including all the linear orderings of the tasks 
is first created. The tree serves as a basic structure 
for generating a larger state-space tree with each 
node indicating an assignment of a task to a robot 
(forming a task-robot pair). Each path of the state- 
space tree starting from the root node to a certain 
node represents a partially developed assignment 
consisting of several task-robot pairs corresponding 
to the nodes in the path. Accordingly, the cost of 
the assignment (or the cost of the last node in the 
path) is defined as the maximum completion time 
of the tasks assigned in the path, including not only 
the execution time to complete these tasks, but also 
the waiting time for avoiding robot collisions. This 
can be treated as a problem of motion planning be- 
cause safe motions for multiple robots are desired. 
To compute the cost for each node in the tree, we 
present a graph formulation scheme converting the 
cost evaluation process into a process of path finding 
in a disjunctive graph. Finally, the state-space tree 
is searched using the A* algorithm to find the optimal 
assignment with the minimum cost. Some heuristic 
rules are also provided for speeding up the search. 

The article is organized as follows. Section 2 in- 
cludes an overview of the basic concept of the pro- 
posed approach. In section 3, the motion planning 
method developed in a previous work6 is reviewed, 
and a graph formulation scheme as well as two re- 
duction methods are proposed. In section 4, the 
search method using the A* algorithm and some 
heuristic rules for searching the optimal assignment 
are presented. Simulation results are given in section 
5. Discussions and conclusions are presented, fi- 
nally, in section 6. 

2. PRINCIPLE OF OPTIMAL TASK ASSIGNMENT 
FOR MULTIPLE ROBOTS 

2.1. System Assumptions and Objectives 

Various assumptions made of the task graph and 
the robots are described in the following. 

1. 

2. 

The robots are multifunctionally designed to 
perform various task by changing grippers or 
tools at their hands. 
None of the robots is always given the privi- 
lege to move first when conflicts occur, i.e., 
the robots are all equally prioritized. 
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3. 

4. 

5. 

The task graph is a directed acyclic graph, 
with nodes and arcs representing the tasks 
and the precedence relationships between the 
tasks, respectively. For example, if m, and m2 
are two tasks and ml precedes m2 in order 
(i.e., there exists a path from ml to m2 in the 
task graph), then m2 cannot be processed be- 
fore ml is completed. 
The total execution time for each robot to com- 
plete a given task includes the time for fetch- 
ing appropriate grippers or tools, the time for 
executing the task, and the time for returning 
the grippers or tools. 
No communication time between any two ro- 
bots is considered. It is assumed that any ob- 
ject (e.g., an assembly part) to be processed 
is stationary, and placed at the center of a 
common workspace of the robots, so that the 
communication time to transmit the process- 
ing results from one robot to another is zero. 

A two-dimensional function table with the value 
of each entry at ( t ,  Y )  indicating the execution time 
of task t assigned to a robot r is given in advance. 
If task t cannot be assigned to robot Y ,  then the value 
of ( t ,  Y )  is set to an infinite value. An example is 
shown in Figure 3. Based on the above assumptions, 
the objective of this study now can be described as 
the determination of the optimal assignment of the 
tasks in a task graph to the robots, given the function 
table, under the constraints that no robot collision 
is allowed and that the total task execution time is 
minimized. 

A B C D 

Figure 3. An example of a function table. 

More specifically, let A be a certain assignment 
of tasks to some robots, t:(A) be the time spent for 
task execution (including all the three types of times 
as stated in Assumption 4 above), and ty(A) the time 
for avoiding robot collisions (due to waiting, e.g.), 
both in robot r. Define t,(A) to be the total time spent 
in robot r for task assignment A,  which is just 

t , (A) = tF(A) + ty(A). (1) 

Obviously, this amount of time is different for each 
distinct robot for each assignment A.  Define 

t(A) = max t , (A)  (2) 
r 

which is called the task turnaround time of A .  It is 
easy to see that t(A) is the total time to complete all 
the tasks in a task graph according to assignment 
A .  A different assignment will result in a different 
amount of task turnaround time, and the smaller 
the task turnaround time the better the assignment. 
Therefore, the problem is to determine the optimal 
assignment A. that minimizes the tasks turnaround 
time, i.e., 

t(Ao) = min t(A) (3) 
A 

= min max t,(A) 
A r  

which is the so-called minimax c~ i t e r ion .~  

2.2. Basic Concept of Proposed Approach 

Wang and Tsai5 proposed an approach to optimal 
assignment of tasks with precedence relationships 
in distributed systems. They solved the problem by 
introducing the concept of a topological free, which is 
also employed in this study. Each topological tree 
consists of nodes with labels corresponding to the 
tasks in a task graph and a dummy root node with 
label 4. Each tree path starting from the root node 
to a certain node represents a linear ordering (called 
a topological ordering8) of the tasks in the path. The 
topological tree for the task graph shown in Figure 
2 is depicted in Figure 4a. The topological tree can 
be used as a basic structure for generating a larger 
state-space tree. The generation procedure is re- 
viewed as follows, in which the term “processor” 
corresponds to ”robot” for our case of task assign- 
ment here. 
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Step 1. Generate a dummy node 0, with label d, as 
the root node of the state-space tree corresponding 
to the root node 0, of the topological tree. 
Step 2. Expand 0, as follows: 

1. collect all sons of 0, into a set d; 
2. for each node in SB with label m and each 

processor p ,  check the candidate pair (m,  p )  
for the validity, i.e., check if m is really execut- 
able on p;  and 

3. expand node 0, by generating as sons all the 
valid task-processor pairs, each with the cor- 
responding label (m,  p ) .  

Step 3. Expand non-root node (m, p )  as follows: 

1. identify the corresponding node in the topo- 
logical tree with label m; and 

2. similarly to the expansion of the root node 
discussed above, collect all sons of m and gen- 
erate the appropriate valid task-processor 
pairs as the sons of node (m,  p ) .  

Step 4. Repeat Step 3 until all non-root nodes are ex- 
panded. 

The expanded state-space tree for Figure 4a is 
shown in Figure 4b, given the function table of Fig- 

A 
3 4 

I 

I 

I 

3 

5 

6 

I 

I 

I 

4 

5 

6 

ure 3. By computing an appropriate cost for each 
node in the expanded tree, and searching the tree 
using the well-known A* algorithm, the optimal task 
assignment with the minimum cost can be found. 

The concept of topological tree, as well as the tree 
expanding method, are used to solve the problem of 
task assignment for multiple robots in this study. 
Unlike the case studied in Wang and TsaiT5 collisions 
among the robots should be considered and avoided 
in the multi-robot systems. A cost derivation method 
considering both the task execution time and the 
waiting time for avoiding robot collisions is pro- 
posed. The concept is based on the observation that 
for each path starting from the root node of the ex- 
panded tree to a certain node n, there may exist one 
or more robots performing the corresponding tasks 
simultaneously. The cost of node n (or the cost of 
the partially developed assignment) can be defined 
to be the maximum execution time for the robots to 
complete these tasks (or the maximum completion 
time of the tasks), under the criterion that no robot 
collisions occur. In more specific terms, assume that 
the partially developed assignment is denoted as A’; 
then the cost C, of node n is computed by 

C, = max t,(A’). 
r 

(4) 

A A A A  

Figure 4. A topological tree and a fully expanded state-space tree: (a) the topological 
tree corresponding to the task graph shown in Fig. 2b; (b) the state-space tree generated 
by expanding (a). 
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Computation of each node cost is formulated as a 
problem of motion planning by a graph formulation 
scheme developed in this study, and the cost deriva- 
tion process thus can be regarded as a sequence of 
motion planning processes, each for deriving the 
cost of a node. This scheme is then used in evaluating 
the cost value of each node n in the state-space tree 
of the A* algorithm. The details will be discussed in 
sections 3 and 4. 

3. COST DERIVATION FOR TASK ASSIGNMENT 

To evaluate the cost of a certain node n in the ex- 
panded topological tree, which is defined as the cost 
of a partially developed assignment consisting of the 
task-robot pairs obtained by backtracking from node 
n to the root node, a graph formulation scheme is 
proposed to transform the cost derivation process 
into a process of path finding in a disjunctive graph. 
The motion planning method developed by Lin and 
Tsai6 is then applied to the graph constructed by the 
scheme, and the result is described by Gantt charts, 
each being a collision-free motion schedule for a ro- 
bot according to this assignment. The cost of node 
n is just the maximum length measured in time of 
the charts. To reduce the cost computation time for 
each node and the search time for finding the optimal 
assignment, two reduction methods are also pro- 
posed. The details will be discussed in the subse- 
quent sections. 

3.1. Review of Motion Planning via 
Disjunctive Graphs 

The motion planning problem is solved in Lin and 
Tsai6 for multiple robots by employing the concept 
of a disjunctive graph9-" as follows. First, a schedule 
map12 for each pair of robots performing certain tasks 
is created. The map is a two-dimensional figure with 
the horizontal axis and the vertical one representing, 
respectively, the execution time flows of two robots, 
say R, and R 2 ,  to complete the specified tasks. The 
task performed on each robot conceptually can be 
divided into a series of pseudo-subtasks, each requir- 
ing an identical amount of processing time H (the 
execution time of the task is assumed to be composed 
of a multiple of small time intervals), and these sub- 
tasks are indexed sequentially and increasingly. 

For example, the subtasks are numbered from 1 
through n,  for R, and from nl + 1 through n, + n2 
for R,, if the number of subtasks performed on R1 
and R2 are n, and n2, respectively. A simple example 

is shown in Figure 5a. Also shown in this figure 
are some non-blank (shaded or dark) squares called 
collision squares16 indicating that a collision will oc- 
cur if both robots perform the corresponding sub- 
tasks simultaneously. Each set of adjacent collision 
squares are grouped together to form a collision re- 
gion. A pair of collision squares, one on the upper 
left position and the other on the lower right of a 
rectangle satisfying the following two conditions, are 
termed guiding squares6: (1) they are in the same 
collision region; and (2) the rectangle specified by 
the two collision squares is maximal in the sense that 
it cannot be contained within any other rectangle 
defined by a different pair of collision squares in 
the region. The guiding squares are shown dark in 
Figure 5a, and they will be used to define the disjunc- 
tive arcs for a disjunctive graph in the next section. 

In addition, the notation MAP(t,,t,.R,,RI) is used in 
this study to denote the schedule map of robots R, 
and R, performing tasks t, and t,, respectively. It is 
noted that MAP,, ,f,;R,,R,) need be created only when 
both tasks f, and" t, are unrelated in the task graph 
(Lee, only when there exists no path from t, to t, 
and no path from t, to t, in the graph). The reason 
is that, if the two tasks are related so that if a task, 
say t,,, is the predecessor of the other, then t ,  must 
be completed before t, can be started. Therefore, 
no conflict will occur because t, and t, cannot be 
processed simultaneously at any time instant. 

After the creation of the schedule maps as dis- 
cussed above, a disjunctive graph is defined as G = 
(T; %, 9), where (1) T is a set of nodes with labels 
corresponding to the subtasks and two additional 
dummy nodes, labeled 0 and *, indicating the source 
and the sink of the graph, respectively; (2) (e is a 
set of conjunctive arcs with each element (i, i + 1) 
representing that subtasks i and i + 1 are performed 
by an identical robot and subtask i precedes subtask 
i + 1 in order; % also includes, for each robot Rk, 
two additional arcs (0, sk) and (ek,  *) where sk and ek 
are the first and the last subtasks performed on robot 
R,, respectively; (3) 9 is a set of disjunctive arc pairs 
with each pair of arcs (i, j )  and ( j ,  i) indicating that 
subtasks i and j are performed on different robots 
but their corresponding time intervals span a guiding 
square. The disjunctive graph of Figure 5a is shown 
in Figure 5b. The amount of processing time (or the 
arc length) associated with each arc (i, j )  in % U 9 is 

H i f i f 0  
0 otherwise 
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i i+l i+2 i+3 i+4 i+5 

(b) 
Figure 5. A schedule map and its corresponding disjunctive graph: (a) the schedule map 
of robots B and C performing tasks 4 and 3, respectively; (b) the disjunctive graph 
representation of (a). 

where His a positive constant specifying the amount 
of processing time of each subtask. By finding the 
minimaximal path in a disjunctive graph, the prob- 
lem of motion planning for multiple robots can be 
solved for various conditions.6 

3.2. Disjunctive Graph Formulation Scheme 

Consider that a path in the expanded tree with nodes 
4, (t l ,  RJ, . . . , (t, ,  R,,), where is the root node 
of the tree and node (ti, Ri) represents the assignment 
of task ti to robot Ri. The cost C, of node (t,, R,) has 
been defined to be the maximum completion time 
of all tasks t i ,  for i = 1, 2, . . . , n, as described by 
Eq. (4). Because there may exist more than one robot 
in the path performing the corresponding assigned 
tasks simultaneously, additional costs (e.g., the time 
for waiting) for avoiding robot collisions should be 
considered. This problem can be treated as a problem 
of motion planning. 

ASSWIW that MAJ'(~,,,,~,;R,,R,) is the schedule map 
as defined previously, and let G = (T; %, 9) be a 
disjunctive graph created as discussed in the last 
section. Define the outdegree of node u in 'T to be 
the number of arcs originating from u and pointing 

1 I i, 

1. 

2. 

outward, and the indegree of node u the number 
of arcs originating from the other nodes in 'V and 
pointing to u. Before the graph formulation scheme 
is presented, several operators applicable to G are 
introduced and listed in the following (assume that 

j I n) .  

The assignment operator: Applying the assign- 
ment operator to node (ti, Ri) means adding 
into 'V the nodes with labels corresponding 
to the subtasks of task t i ,  and adding into '& 
a set of conjunctive arcs (i, i + 1) in which i 
and i + 1 are subtasks performed on robot R, 
(see Fig. 6a, given the task graph and the 
function table shown in Fig. 2b and Fig. 3, 
respectively). 
The conjunction operator: Applying the con- 
junction operator to a pair of nodes ((ti, Ri), 
(t i ,  Rj))  means adding into % a conjunctive arc 
(ei, sj), where ei and sj are the last and the first 
subtasks of ti and ti, respectively (i.e., the last 
and the first subtasks performed on Ri and Rj ,  
respectively) (see Fig. 6b). The conjunction 
operator is applied when ti is a predecessor 
of ti or when both Ri and Rj denote the 
same robot. 
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3. 

4. 

opaand opagtor Result Notation - 
Assignment o o o o o  

Conjunction 

Disjunction @+b@ 

(6. D) Start 

Agure 6. Operators for creating a disjunctive graph (newly-created arcs and nodes 
generated by the corresponding operators are shown dark): (a) the assignment operator; 
(b) the conjunction operator; (c) the disjunction operator; (d) the start operator; (e) the 
end operator. 

The disjunction operator: Applying the disjunc- 
tion operator to a pair of nodes ( ( t , ,  R,), (f,, 
R,)) means adding into 9 pairs of disjunctive 
arcs, with each pair of arcs (u, ,  u,) and 
(u,, u,)  specifying the guiding square in 
MAP,, ,t ,R ,R spanned by the time intervals of 
u, and L,: hhere u, and u, are the subtasks 
of t ,  and f,, respectively (see Fig. 6c). The 
disjunction operator is applied when t, and f, 
are unrelated, which means that there exists 
no path from t, to f, and no path from f, to f ,  
in the task graph. 
The start operator: Applying the start operator 
to a set of nodes ((t,, R,), (t,+l, R,+l), . . . , 
(t,, R,)) means adding a dummy node 0 into 

7 f  and a set of conjunctive arcs (0, u )  into %, 
where u is a node in 7 f  - (0) and the indegree 
of u is zero (see Fig. 6d). 

5. The end operator: Applying the end operator 
to a set of nodes ( ( t i ,  Ri), Ri+J,  . . . , 
( t i ,  Rj) )  means adding a dummy node * into 
OV and a set of conjunctive arcs (u, *) into V, 
where u is a node in OV - {*} and the outdegree 
of u is zero (see Fig. 6e). 

The algorithm to create a disjunctive graph for 
computing the cost of node (f,, R,) is now presented 
as follows. 

Algorithm 1. Disjunctive graph creation algorithm. 
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Input: The task graph and the tree path with nodes 
4, ( t l ,  Rl), . . . , (t, ,  R,,) in the expanded topologi- 
cal tree. 

Output: A disjunctive graph G = (V; %, 9), 

Method: 

Step 1. Apply the assignment operator to each node 
(t,, R,) in the path for i = 1, 2 . . . , n. 

Step 2. For each pair of nodes ( t , ,  R,) and (t,, R,) in 
the path where 1 5 i < j 5 n, the following conditions 
are checked. 

Condition 1. If R, is identical to R, (i.e., if they 
denote an identical robot), then apply the con- 
junction operator to ((t , ,  R,), (t,, R,)). 

Condition 2. If R, is not identical to R, (i.e., if 
they do not denote an identical robot) and t ,  
is the predecessor of t, in the task graph, then 
apply the conjunction operator to ( ( t , ,  R,), 

Condition 3. If R, is not identical to R, and t ,  is 
unrelated to t, in the task graph, then apply 
the disjunction operator to ( ( t , ,  R,), (t,, R,)). 

Step 3. Apply the start and the end operators to the 
set of nodes ( ( t ,  , Rl), ( t 2 ,  R2),  . . . , (t, ,  R,)) and stop. 

The graph output by Algorithm 1 can then be used 
as input to the motion planning algorithm,6 and the 
output (Lee, the planning result) will include the 
maximum completion time of task t , ,  for i = 1, 
2, . . . , n, which is just the cost of node (t, , ,  R,). 

(t,, R J .  

3.3. Reductions of Conjunctive Arcs 
and Tree Paths 

3.3.1. Reduction of Conjunctive Arcs 

The disjunctive graph created in the last section may 
contain certain redundant conjunctive arcs that are 
useless and can be depleted from % without chang- 
ing the final scheduling result. To see an example, 
assume that ( t , ,  R,), (f,, R,), and ( t L ,  R,) are three 
different task-robot pairs corresponding to the nodes 
in the expanded tree. By applying the assignment 
operator to these nodes and the conjunction operator 
to pairs of nodes W,, R,), (t,, R,)), ((t,, R,), ( f k r  R,)), 
and ((t , ,  R,), (f,, R,)), the resulting graph is shown 
in Figure 7. It can be seen from this figure that the 
conjunctive arc that connects the last subtask oft, to 
the first subtask of t, is redundant because it cannot 

Figure 7. An example of a redundant conjunctive arc. 

be the arc on any of the longest paths from the first 
subtask of f j  to the last subtask of t,. 

A method to identify and delete the redundant 
conjunctive arcs is presented here. Suppose that 
A = [ai j ]  is an adjacency matrix with size 17'1 x (V( 
for graph G = (V; %, 9), where 17'1 is the number of 
nodes in V ,  and for any i, j in T, aij = 1 if there is 
an arc (i, j) in % and uii = 0 if not. The number of 
paths between vertices i and j is given by the value 
of the ij-element in the matrix B = [bii].I3 Then, it 
can be seen that arc (i, j) in % is redundant and can 
be deleted from % if 

a,, * b,, > 1. (5) 

The reason is that if there is more than one path 
between vertices i and j ,  then arc (i, j) must be the 
shortest path connecting both i and j (it is defined 
before that the processing time associated with each 
arc in % U 9 is a constant H ,  and is treated as the 
length of the arc). 

3.3.2. Reduction of Tree Paths 

Sometimes disjunctive graphs created from different 
tree paths using Algorithm 1 may actually be identi- 
cal. For example, in Figure 8a the disjunctive graph 
created from the left path (4, (1, A),  (2, B) ,  (3, B), 
(4, C)) is identical to that created from the right path 
(4, (1, A) ,  (2, B) ,  (4 C), (3, B ) ) ,  and the graph is 
shown in Figure 8b. The tree paths generating an 
identical disjunctive graph are thus redundant ex- 
cept for one of them. Time will be wasted in comput- 
ing the node costs and in searching the optimal as- 
signment if the expanded topological tree contains 
too many such redundant paths. The expanding 
method of Wang and Tsai5 can be used to generate 
expanded topological trees, but it also generates re- 
dundant paths. This problem is solved in this study 
by expanding the topological tree in a variable-sized 
form instead of in a fixed-sized form like that pro- 
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P, 

I 
I 

\ / 
(a) (b) 

Figure 8. An example of redundant tree paths: (a) two different tree paths of Fig. 4b 
corresponding to an identical graph representation; (b) the identical disjunctive graph 
of (a). 

posed in Wang and T ~ a i . ~  Assume that the robots 
are indexed with distinct numbers. The method is 
to modify the generation process discussed in section 
2.2 for expanding a non-root node (m, Ri) as follows. 

1. 

2. 

Identify the corresponding node in the topo- 
logical tree with label m. 
Collect all sons of m in the task graph and 
generate all task-robot pairs as sons of node 
(m, Ri), with each pair (n,  Rj)  satisfying the 
following two requirements: (i) task n can be 
performed on robot R, according to the func- 
tion table; and (ii) if task n is unrelated to task 
rn in the task graph, then the index of Rj must 
be greater than or identical to that of R, (other- 
wise redundant tree paths will be created). 

The result of applying the above modified pro- 
cess to Figure 4a is shown in Figure 9. The effective- 
ness of the improved method will be illustrated by 
simulation experiment results given in section 5. 

4. SEARCHING FOR OPTIMAL ASSIGNMENT 

The expanded topological tree is useful for generat- 
ing all possible assignments of the tasks in a task 
graph to the robots. The cost of each node can be 
determined by the methods proposed in the last sec- 
tion. Searching for the optimal assignment with the 
minimum cost is a state-space search problem, and 
the A* algorithm discussed in Nil~son '~ is used in 

this study. The expanded topological tree serves as 
a state-space search tree here. Some heuristic rules 
are also provided to speed up the search process. 
The details are described in this section. 

4.1. Search Method 

In a state-space search problem, each state is de- 
scribed as a node, and an operator is designed to 

0 

Figure 9. The tree of Fig. 4(b) containing no redundant 
tree path. 
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generate all the successors for the node, called node 
expansion. A solution path of a search problem is a 
path starting from the initial state to one of the goal 
states. In our case here, a solution path defines an 
assignment of the tasks in a task graph to the robots. 
Note that the cost of a solution path is actually the 
cost of a terminal node in the path. The search 
method is now described as follows. 

State Description. Let two-tuple S, = (P, ,  C,) denote 
the description of the current search state at node 
n,  where P, = {(t, r ) ( ( t ,  r )  is a task-robot pair associ- 
ated with a node in the path starting from the root 
node to node n} and C, is the cost of node n defined 
in section 2. Also let T,  = {tl(tf r )  is in P,} be a set 
of already assigned tasks. 

Initial State. The initial state is S, = (P,, C,) with 
P, being an empty set and C, zero, where 4 is used 
to denote the root node. 

Operator. The procedure of applying an operator to 
node n (called node expansion) with node label ( t , r )  
and state description S, = (P,, C,) is described as 
follows. First, generate all the sons of n according 
to the improved expanding method discussed in sec- 
tion 3.4. Next, update S, for each generated node rn 
with node label (t’, r ’ )  as S, = ( P m ,  C,), where 
P, = P, U (t’, r’) and C,, is the cost of node rn 
computed using the method presented in section 3.2. 

Goal State. Any state Sg = (P8,  CJ is a goal state if 
and only if the corresponding Tg contains all the 
tasks in a task graph. Node g is termed a goal node. 

In the A* algorithm, the node to be expanded in 
every step is determined by a cost evaluation func- 
tion, and the solution path with the minimum cost, 
called the optimal solution path, can always be found 
if the cost function is properly defined. More specifi- 
cally, let f ( n )  be a cost function, and 

(6 )  

where g(n)  is a non-negative measure of the cost of 
the path from the root node to node n in the state- 
space tree, and h(n) is a lower-bounded estimate of 
h*(n), which is the minimum cost of the path from 
node n to a goal node. According to Nil~son,’~ the 
optimal solution path is guaranteed as long as 
h(n) I h*(n) for all n (i.e., as long as h(n) is consistent), 
if one exists. This is equivalent to saying that if 
f ( n )  I f+(n) for all node n where 

f ( n )  = g(n )  + h(n) 

then the optimal assignment A, in Eq. (3) can always 
be found using the A* algorithm. 

Algorithm 2. Find the optimal assignment A , .  

Step 1. Put the root node + into a list called OPEN, 
and set the value off(+) to zero. 
Step 2. Remove from OPEN the node n with the 
smallest f value (to be estimated in the next section), 
and put the node into a list called CLOSED. 
Step 3. If node n is the goal state, then backtrack 
from n to 4 to obtain the corresponding assignment 
A, and exit; otherwise continue. 
Step 4. Expand node n and update the state descrip- 
tion for each generated node using the above opera- 
tors. Append the generated nodes and the corre- 
sponding f values to the OPEN list. 
Step 5. Go to Step 2. 

4.2. Evaluation of Cost Function 

To evaluate the value of function f for each node 
generated in Step 4 of the above algorithm, a method 
consisting mainly of the following two steps is pro- 
posed: (1) creating two disjunctive subgraphs Gg and 
G, corresponding to the function g and the heuristic 
function h, respectively; and (2) combining Gg and 
G, into a larger graph Gf, which is then taken as the 
input into an algorithm described in our previous 
work6 for evaluating the cost off. The operators listed 
in section 3.2 are used in constructing these sub- 
graphs. We also provide some heuristic rules for 
use in constructing Gh and in combining the two 
subgraphs to guarantee that the consistency prop- 
erty off is satisfied (i.e., to guarantee the inequality 
f ( n )  I f*(n)  for all nodes in the state-space tree). 

Assume thatf(n) of node n with state description 
S, = (P,, C,) and set T,  as defined in section 4.1 is 
to - be estimated. Let T ,  be the complement of T ,  (i.e., 
T,  is the set of unassigned tasks in the task graph 
and T,  n ?;, = 4). The method for estimating the 
value of f ( n )  consists of the following two steps. 

Step 1. Construction of G, and G,,. 
As mentioned before, function g(n)  is a measure of 
the cost of the path from the root node to node n. 
Note that g is a measure of a true cost; it is not an 
estimated value. The cost of node n can be used as 
the value of g(n),  and Algorithm 1 discussed in sec- 
tion 3.2, excluding Step 3, can be applied to construct 
the subgraph Gg . 

On the other hand, function h(n) is a lower- 
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(b) 
Figure 10. A task graph and the corresponding topological tree: (a) the task graph; (b) 
the tree including all the topological orderings of the tasks in (a). 

bounded estimate of the minimum cost h* of the 
path from node n to a goal node. We provide two 
heuristic rules for creating the subgraph Gh . The first 
rule utilizes the set of unassigned tasks 7,. It is easy 
to know that each task in T,, must be assigned to 
one and exactly one robot to complete the process 
plan. To ensure that the estimated value h is never 
larger than h*, each of the remaining unassigned 
tasks can be assigned to the robot that spends the 
least amount of time to complete the task. In more 
specific terms, we assign each task t in 7, to a certain 
robot r which is determined by 

r = min t'(t, r f )  (8) 
r' 

where t'(t, r ' )  is the execution time of robot r f  to 
complete task t. Assume that the label of node n 
considered here is (t,, R,). Note that if task t in Eq. 
(8) is unrelated to task t, of node n, an additional 
constraint to be checked is that the index of robot r 
determined by the above equation must be greater 
than or identical to that of robot R,. The reason is 
that the state-space tree generated in this study is 
not a fully expanded tree because the redundant 
tree paths have been removed. This fact should be 
considered in determining the robot for each unas- 

signed task in Eq. (8). After finding appropriate task- 
robot pairs by Eq. (8), the assignment operator is 
applied to each of the pairs. 

The second rule involves the processing se- 
quence of the task-robot pairs assigned by Rule 1. 
Assume that t, and t, are two tasks in T,, and t, 
precedes f, in the task graph. It is easy to see that 
no matter to what robots the two tasks are assigned, 
t ,  must be completed before t, can be started. So, 
for any two task-robot pairs created by Rule 1 and 
processed by the assignment operator, say (t , ,  R,) 
and (t,, R,), if task t ,  is a predecessor of task t,, then 
apply the conjunction operator to ( ( t , ,  R,), (t,, R,)), 
and the subgraph Gh is hence created. 

Step 2. Combination of Gs and G,,. 
The conjunction operator is used again in this step 
to combine the two subgraphs Gg and Gh created in 
the last step. The operator is applied to each pair of 
nodes ((ti, RJ, ( t i ,  Rj)) ,  where task ti is in T,  and task 
t, is in ?;, , and the former precedes the latter in order. 
The start and the end operators are applied next to 
the combined result of G, and G h  to create graph Gr , 
Finally, the redundant conjunctive arcs in graph Gf 
are identified and deleted using the method pre- 
sented in section 3.3 to achieve a better performance. 



Lin and Tsai: Optimal Assignment of Robot Tasks -1 

1 9  m m 8  

The value off ( n )  can be obtained by taking graph 
G, as input to an algorithm from our previous work.6 
Note that if the value of h is always set to zero, 
then the search method discussed above will be a 
uniform-cost s e a r ~ h . ' ~  It can be seen that the consis- 
tency requirement is satisfied in evaluating f using 
the above methods. 

5. SIMULATION RESULTS 

Three illustrative examples are given in this section 
to show the effectiveness of the proposed approach. 
Four robots (A,  B,  C, and D )  are scheduled to execute 
six tasks in our simulation experiments. A function 
table indicating the processing time of each task per- 
formed on each robot is given in Figure 11. A task 
graph describing the precedence relationships of the 
tasks and a set of schedule maps constructed in ad- 
vance are also given for each example and shown in 
Figures 12 through 14. 

By using Algorithm 2 presented in section 4 as 
a search method, the optimal assignment of the tasks 
to the robots with the minimum task turnaround 
time can be obtained for each simulation example. 
To show the effectiveness of our heuristic rules in 
search speed and reduction of the number of 
searched nodes, we further reuse Algorithm 2 as a 
uniform-cost search algorithm by setting h(n)  zero 
for all nodes. The results are summarized in Table 

A B C D 

4 ~ 1  5 

6 1 7  I m l m 1 9  I 
(Imit: H )  

Figure 11. A function table for the illustrative experi- 
ments. 

Table 1. A summary of the simulation results 

Examples Example 1 Example 2 Example 3 

# of nodes 
(without reduction) 

# of nodes 
(with reduction) 

Nodes expanded 
(A* search) 

Nodes generated 
(A* search) 

Processing time@ 
(A' search) 

Nodes expanded 
(uniform-cost search) 

Nodes generated 
(uniform-cost search) 

Processing time@ 
(uniform-cost search) 

Optimal cost 

959 

349 

16 

43 

1.43 

109 

206 

16.70 
33 

1,707 

509 

16 

39 

1.76 

61 

169 

20.27 
26 

2,511 

422 

15 

38 

1.70 

39 

95 

4.07 
17 

Ca = CPU sec. on PC386. 

I. The total number of nodes generated in the state- 
space tree for Example 1, as shown in Table I, if 
expanded in a fixed-sized form, is 959, and is re- 
duced to 349 if expanded in a variable-sized form. 
Among these nodes, as shown in Figure 15a, in total 
only 16 nodes are expanded and 43 nodes generated 
before the goal node is found by using our search 
method, and 109 expanded and 206 generated if the 
uniform-cost search method is employed (the result- 
ing graph for the latter case is too large to be included 
as a figure and is omitted here). The optimal assign- 

A),  and the cost is 33H. The collision-free motion 
schedules of the four robots are depicted by Gantt 
charts in Figure 15b. 

The simulation experiments were programmed 
using the C language on a personal computer (IBM 
PC/AT). The use of faster workstations may improve 
the speed. 

ment is (1, D), (2, A) ,  (3, C), (4, B) ,  (5, D), and (6, 

6. CONCLUSIONS AND DISCUSSIONS 

The problem of optimal assignment of tasks with 
precedence relationships to multiple robots is solved 
in this study. The proposed approach consists of the 
following three major parts: (1) a state-space tree 
generation method considering all possible assign- 
ments of the tasks in a task graph to the robots; 
(2) a cost derivation method that can evaluate the 
processing time for each assignment of the tasks to 
the robots, including the execution time to complete 
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T 
0 

T 
0 

Figure 19. Example 1: (a) the task graph; (b) the schedule maps. 
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Figure 13. Example 2: (a) the task graph; (b) the schedule maps. 

the tasks and the waiting time for avoiding robot 
collisions; and (3) an A* search method of the optimal 
assignment with the minimum cost in the state- 
space tree. 

Also proposed are a method to reduce the size 
of the state-space tree by eliminating the redundant 
tree paths from the tree, and some effective heuristic 
rules for quick search of the best goal node with the 
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Figure 14. Example 3: (a) the task graph; (b) the schedule maps. 
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: waiting : cxccucing task i 

0) 
Figure 15. The state-space search tree and the scheduling results of Example 1 (the 
optimal solution path is shown dark): (a) the state-space search tree with a number above 
a node indicating node expansion order and a number below indicating f ( n )  value; (b) 
the collision-free scheduling results represented by Gantt charts. 

minimum cost. They improve the performance of 
finding the optimal assignment. 

The precedence relationships of the tasks in a 
process plan are represented by a directed acyclic 

graph. However, not all process plans can be de- 
scribed by such graphs. In some cases the tasks may 
be described by AND/OR graphs.I5 Future research 
may be directed to handling such graphs in the pro- 
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posed approach. Conducting a practical implemen- 
tation of the proposed approach o n  a real multi-robot 
system to prove the feasibility of the approach is also 
under consideration. 
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