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a b s t r a c t

A graph G is k-ordered if for any sequence of k distinct vertices v1, v2, . . . , vk of G there
exists a cycle in G containing these k vertices in the specified order. In 1997, Ng and Schultz
posed the question of the existence of 4-ordered 3-regular graphs other than the complete
graph K4 and the complete bipartite graph K3,3. In 2008, Meszaros solved the question by
proving that the Petersen graph and the Heawood graph are 4-ordered 3-regular graphs.
Moreover, the generalized Honeycomb torus GHT(3, n, 1) is 4-ordered for any even integer
n with n ≥ 8. Up to now, all the known 4-ordered 3-regular graphs are vertex transitive.
Among these graphs, there are only two non-bipartite graphs, namely the complete
graph K4 and the Petersen graph. In this paper, we prove that there exists a bipartite
non-vertex-transitive 4-ordered 3-regular graph of order n for any sufficiently large even
integer n. Moreover, there exists a non-bipartite non-vertex-transitive 4-ordered 3-regular
graph of order n for any sufficiently large even integer n.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For the graph definitions and notation, we follow the definitions and notation of [1]. Let G = (V , E) be a graph if V is a
finite set and E is a subset of {(u, v) | (u, v) is an unordered pair of V }.We say that V is the vertex set and E is the edge set. Two
vertices u and v are adjacent if (u, v) ∈ E. A graph is of order n if |V | = n. The degree of a vertex u in G, denoted by degG(u),
is the number of vertices adjacent to u. A graph G is k-regular if degG(x) = k for any x ∈ V . A cubic graph is a 3-regular
graph. A path between vertices v0 and vk is a sequence of vertices represented by ⟨v0, v1, . . . , vk⟩ with no repeated vertex
and (vi, vi+1) is an edge of G for every i, 0 ≤ i ≤ k − 1. We also write the path ⟨v0, v1, . . . , vk⟩ as ⟨v0, . . . , vi,Q , vj, . . . , vk⟩

where Q is a path from vi to vj. A cycle is a path with at least three vertices such that the first vertex is the same as the last
one.

A graph G is k-ordered if for any sequence of k distinct vertices v1, v2, . . . , vk of G there exists a cycle in G containing
these k vertices in the specified order. The concept of k-ordered graphs was introduced in 1997 by Ng and Schultz [2].
Previous results focus on the conditions for minimum degree and forbidden subgraphs that imply k-ordered graphs [3–6].
A comprehensive survey of the results can be found in [6].

In [2], Ng and Schultz posed the question of the existence of 4-ordered 3-regular graphs other than K4 and K3,3. In [7],
Meszaros solved the question by proving that the Petersen graph and the Heawood graph are 4-ordered 3-regular graphs.
Moreover, the generalized Honeycomb torus GHT(3, n, 1) is 4-ordered if n is an even integer with n ≥ 8. Up to now, all
the known 4-ordered 3-regular graphs are vertex transitive. Among these graphs, there are only two non-bipartite graphs,
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Fig. 1. (a) A semi-cubic cell C1 = (H, p, q, r, s) and (b) its OR((H, p, q, r, s)).

namely the complete graph K4 and the Petersen graph. In this paper, we prove that there exists a bipartite non-vertex-
transitive 4-ordered 3-regular graphof ordern for any sufficiently large even integern.Moreover, there exists a non-bipartite
non-vertex-transitive 4-ordered 3-regular graph of order n for any sufficiently large even integer n.

The following lemma will be used later.

Lemma 1.1 ([7]). Any 4-ordered 3-regular graph with more than six vertices does not contain a cycle of length 4.

Let X be a set. An r-permutation of X is an ordered selection of r elements of X . A partition of X is a collection of disjoint
subsets whose union is X . In particular, let X be a set consisting of four elements p, q, r , and s. Obviously, there are exactly
twelve 2-permutations of X . Moreover, there are exactly three partitions that divide X into two disjoint subsets Y and Z such
that |Y | = |Z | = 2.

In the following section, we introduce the concept of 4-ordered cells. With 4-ordered cells, we can construct 4-ordered
3-regular graphs. In Section 3, we present examples of 4-ordered cells with generalized honeycomb tori. In the final section,
we give our conclusion and some unsolved problems.

2. 4-ordered cells

A cell is a 5-tuple (H, p, q, r, s), where H is a graph, and p, q, r, s are four distinct vertices in H . A cell H is semi-cubic if
degH(x) = 3 for every x ∈ V (H) − {p, q, r, s} and degH(x) = 2 for x ∈ {p, q, r, s}. The graph OR((H, p, q, r, s)) is obtained
fromH by adding two vertices a, b, and five edges (a, b), (a, p), (a, q), (b, r) and (b, s). We also say that the cell (H, p, q, r, s)
is derived fromOR((H, p, q, r, s)) by deleting two adjacent vertices a and b. A semi-cubic cell C1 = (H, p, q, r, s), for example,
is illustrated in Fig. 1(a). The corresponding OR((H, p, q, r, s)) is illustrated in Fig. 1(b). We note that the graph in Fig. 1(b) is
actually the Heawood graph. Obviously, OR((H, p, q, r, s)) is a cubic graph if H is semi-cubic.

A 4-ordered cell is a cell (H, p, q, r, s) with the following properties.

(1) OR((H, p, q, r, s)) is cubic and 4-ordered.
(2) Let x1, x2, and x3 be any three vertices of H . There exists a path P of H joining u to v with {u, v} ⊂ {p, q, r, s} and

traversing x1, x2, and x3 in the order specified by the indices.
(3) Let x be any vertex ofH and {u, v} be any two vertices of {p, q, r, s}. There exists a path P ofH joining u to v that traverses

x.
(4) Let x1 and x2 be two vertices of H . There are at least seven 2-permutations uv of {p, q, r, s} such that there exists a path

P of H joining u to v that traverses x1 and x2 in the order specified by the indices.
(5) For any partition that divides {p, q, r, s} into two pairs {{u, v}, {w, x}}, there exist two disjoint paths P and Q of H such

that P joins u to v and Q joins w to x.
(6) Let x1 and x2 be two vertices of H . There are two partitions that divide {p, q, r, s} into two subsets {{u, v}, {w, x}} such

that there exist two disjoint paths P and Q of H where P joins u to v traversing x1 and Q joins w to x traversing x2.

Now, we can check that C1 in Fig. 1(a) is actually a 4-ordered cell. Since C1 has twelve vertices, we can prove that C1
is a 4-ordered cell using a computer. The program can be downloaded and the computer result viewed on the website
http://www.cs.pu.edu.tw/lhhsu/FourOrdered/.

Suppose that we delete vertices a and q from the Heawood graph in Fig. 1(b). Wewill obtain the graph K , shown in Fig. 2,
with four vertices b, p, i and k of degree 2. Again, we can check that C2 = (K , b, p, i, j) is a 4-ordered cell using the computer.

Suppose that we delete vertices a and b from the Petersen graph in Fig. 3(a). We will obtain the cell C3 = (L, p, q, r, s)
shown in Fig. 3(b). Now,we claim that C3 is not a 4-ordered cell. Let x1 = p and x2 = s. Assume that u and v are two elements
of {p, q, r, s} such that there exists a path P of L joining u to v that traverses x1 and x2 in the order specified by the indices.
Obviously, u ≠ s and v ≠ p. By brute force, we can check that there is no path joining q to r that traverses x1 and x2 in the

http://www.cs.pu.edu.tw/lhhsu/FourOrdered/
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Fig. 2. Another 4-ordered cell C2 .

a b

Fig. 3. Example of non-4-ordered cell.

Fig. 4. OPf (C1, C2) where C1 is the cell in Fig. 1, C2 is the cell in Fig. 2, f (p) = i, f (q) = p, f (r) = b, and f (s) = j.

order specified by the indices. Therefore, uv can only be pq, pr , ps, qs, rq, or rs. Thus, there are at most six 2-permutations uv
of {p, q, r, s} such that there exists a path P of L joining u to v that traverses x1 and x2 in the order specified by the indices.
Therefore, C3 is not a 4-ordered cell.

Cells are used for the construction of various families of graphs [8–10]. In this section, wewill use the following operation
to combine two cells. Let Ci = (Gi, pi, qi, ri, si) be a cell for i = 1, 2 and f be a 1–1 correspondence between {p1, q1, r1, s1}
and {p2, q2, r2, s2}. The graph OPf (C1, C2) is obtained from the disjoint union of G1 and G2 by adding the edges (p1, f (p1)),
(q1, f (q1)), (r1, f (r1)), and (s1, f (s1)). See Fig. 4 for illustration. Obviously, all vertices in OPf (C1, C2) are of degree 3 if C1 and
C2 are semi-cubic.

Theorem 2.1. Assume that Ci = (Gi, pi, qi, ri, si) is a 4-ordered cell for i = 1, 2. Then OPf (C1, C2) is 4-ordered 3-regular for any
1–1 correspondence f between {p1, q1, r1, s1} and {p2, q2, r2, s2}.

Proof. The proof is mainly based on the pigeonhole principle. Let x1, x2, x3, and x4 be any four vertices of OPf (C1, C2). We
need to find a cycle of OPf (C1, C2) that traverses x1, x2, x3 and x4 in the order specified by the indices. Without loss of
generality, we have the following four cases.
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Fig. 5. A graph obtained by combining the two isomorphic cells in Fig. 3.

Case 1: x1, x2, x3, and x4 are all in G1. We assume that OR((G1, p1, q1, r1, s1)) is the graph obtained from G1 by adding
two vertices a1 and b1 together with the edges set {(p1, a1), (q1, a1), (r1, b1), (s1, b1), (a1, b1)}. By Property (1), there exists
a cycle C in OR((G1, p1, q1, r1, s1)) that traverses x1, x2, x3 and x4 in the order specified by the indices.

Suppose that {(p1, a1), (q1, a1), (r1, b1), (s1, b1), (a1, b1)} ∩ E(C) = ∅. Obviously, C is also a cycle in OPf (C1, C2) that
traverses x1, x2, x3, and x4 in the order specified by the indices. Suppose that {(p1, a1), (q1, a1), (r1, b1), (s1, b1), (a1, b1)} ∩

E(C) ≠ ∅. Without loss of generality, we have the following three subcases.
Subcase 1.1: ⟨p1, a1, q1⟩ and ⟨r1, b1, s1⟩ are subpaths of C . By Property (5), there exist two disjoint paths Q1 and Q2 in G2

such that Q1 joins f (p1) to f (q1) and Q2 joins f (r1) to f (s1). In C , we replace ⟨p1, a1, q1⟩ by the path ⟨p1, f (p1),Q1, f (q1), q1⟩
and replace ⟨r1, b1, s1⟩ by the path ⟨r1, f (r1),Q2, f (s1), s1⟩ to obtain a cycle C ′ inOPf (C1, C2). Obviously, C ′ traverses x1, x2, x3,
and x4 in the order specified by the indices.

Subcase 1.2: ⟨p1, a1, q1⟩ is a subpath of C but ⟨r1, b1, s1⟩ is not a subpath of C . By Property (3), there exists a path Q in
G2 such that Q joins f (p1) to f (q1). In C , we replace ⟨p1, a1, q1⟩ by the path ⟨p1, f (p1),Q , f (q1), q1⟩ to obtain a cycle C ′ in
OPf (C1, C2). Obviously, C ′ traverses x1, x2, x3, and x4 in the order specified by the indices.

Subcase 1.3: ⟨p1, a1, b1, r1⟩ is a subpath of C . By Property (3), there exists a path Q in G2 such that Q joins f (p1) to f (r1).
In C , we replace ⟨p1, a1, b1, r1⟩ by the path ⟨p1, f (p1),Q , f (r1), r1⟩ to obtain a cycle C ′ in OPf (C1, C2). Obviously, C ′ traverses
x1, x2, x3, and x4 in the order specified by the indices.

Case 2: x1, x2, and x3 are in G1 and x4 is in G2. By Property (2), there exists path P of G1 joining u to v for some
{u, v} ∈ {p, q, r, s} that traverses x1, x2, and x3 in the order specified by the indices. By Property (3), there exists a path Q
in G2 such that Q joins f (v) to f (u) that traverses x4. We set C as ⟨u, P, v, f (v),Q , f (u), u⟩. Obviously, C traverses x1, x2, x3,
and x4 in the order specified by the indices.

Case 3: x1 and x2 are in G1; x3 and x4 are in G2. By Property (4), there are at least seven 2-permutations uv among all the
twelve 2-permutations from {p1, q1, r1, s1} such that there exists a path P of G1 joining u to v that traverses x1 and x2 in the
order specified by the indices. Similarly, there are at least seven 2-permutations u′v′ among all the twelve 2-permutations
from {p2, q2, r2, s2} such that there exists a path Q of G2 joining v′ to u′ that traverses x3 and x4 in the order specified by the
indices. Suppose that there is no 2-permutation uv such that there exists a path P of G1 joining u to v that traverses x1 and
x2 in the order specified by the indices and there exists a path Q of G2 joining f (v) to f (u) that traverses x3 and x4 in the
order specified by the indices. Then there are at least 14 different 2-permutations from {p1, q1, r1, s1} which is impossible.
Thus, we can find a 2-permutation uv such that there exists a path P of G1 joining u to v that traverse x1 and x2 in the order
specified by the indices and there exists a path Q of G2 joining f (v) to f (u) that traverse x3 and x4 in the order specified by
the indices. Now, we set C as ⟨u, P, v, f (v),Q , f (u), u⟩. Obviously, C traverses x1, x2, x3, and x4 in the order specified by the
indices.

Case 4: x1 and x3 are in G1; x2 and x4 are in G2. By Property (6), there are at least two different {{u, v}, {w, x}} among all
the three partitions that divide {p1, q1, r1, s1} into two pairs such that there exist two disjoint paths P1 and P3 of G1 where
P1 joins u to v traversing x1 and P3 joins w to x traversing x3. Similarly, there are at least two different {{u′, v′

}, {w′, x′
}}

among all the three partitions that divide {p2, q2, r2, s2} into two pairs such that there exist two disjoint paths P2 and P4 of
G2 where P2 joins u′ to v′ traversing x3 and P4 joinsw′ to x′ traversing x4. By the pigeonhole principle, we can find a partition
{{u, v}, {w, x}} of {p1, q1, r1, s1} such that {u′, v′

}∩{f (u), f (v)} = 1. By interchanging the roles of u and v and interchanging
the roles of w and x, we can assume without loss of generality that P1 joins u to v, P2 joins f (v) to f (w), P3 joins w to x, and
P4 joins f (x) to f (u). We set C as ⟨u, P1, v, f (v), P2, f (w), w, P3, x, f (x), P4, f (u), u⟩. Obviously, C traverses x1, x2, x3, and x4
in the order specified by the indices. �

With Theorem 2.1, we can easily conclude that the graph in Fig. 4 is 4-ordered. However, the graph in Fig. 5, which is
obtained by combining two isomorphic cells in Fig. 3, is not 4-ordered. One can check that there is no cycle that traverses
the vertices labeled 1, 2, 3, and 4 in that order.
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Fig. 6. The generalized honeycomb tori (a) GHT(3, 8, 1), (b) GHT(4, 8, 0), and (c) GHT(4, 8, 2).

3. Generalized honeycomb torus

In this section, we present more examples of 4-ordered cells.
Stojmenovic [11] proposed three classes of honeycomb torus architectures: honeycomb hexagonal torus, honeycomb

rectangular torus, and honeycomb rhombic torus. Cho and Hsu [12] found that all these honeycomb torus networks can
be characterized in a unified way, and thereby proposed a class of interconnection networks known as the generalized
honeycomb torus.

Let n be a positive even integer with n ≥ 4,m be a positive integer, and d be a nonnegative integer that is less than n and
is of the same parity as m. An (m, n, d) generalized honeycomb torus, denoted by GHT(m, n, d), is a graph with the vertex
set {(i, j) | i ∈ {0, 1, . . . ,m − 1}, j ∈ {0, 1, . . . , n − 1}}. We call m, n, and d the width, height, and slope of GHT(m, n, d),
respectively. For a vertex (i, j) of GHT(m, n, d), i and j are called its first and second components, respectively. Here and in
what follows, all arithmetic operations carried out on the first and second components are modulo m and n, respectively.
Two vertices (i, j) and (k, l) with i ≤ k are adjacent if and only if one of the following three conditions is satisfied:

(1) (k, l) = (i, j + 1) or (k, l) = (i, j − 1);
(2) 0 ≤ i ≤ m − 2, i + j is odd, and (k, l) = (i + 1, j);
(3) i = 0, j is even, and (k, l) = (m − 1, j + d).

The generalized honeycomb tori GHT(3, 8, 1), GHT(4, 8, 0), and GHT(4, 8, 2), for example, are shown in Fig. 6. Obviously,
any GHT(m, n, d) is 3-regular and vertex transitive. We can color vertices (i, j) white when i + j is even or black otherwise.
Thus, any GHT(m, n, d) is bipartite. It is proved in [12] that {GHT(m, n, d) | m is even and d = 0}is the set of honeycomb
rectangular tori. In [7], an infinite family of 4-ordered 3-regular graphs is proposed. Actually, this family of graphs is
{GHT(3, n, 1) | n is an even integer with n ≥ 8}. Using our terminology, we prove the following lemma in [7].

Lemma 3.1 ([7]). Any GHT(3, n, 1) is 4-ordered for any even n with n ≥ 8.

Proof. We prove this lemma by induction. Using computer programming, we can check that GHT(3, 8, 1) is 4-ordered.
Assume that GHT(3, n − 2, 1) is 4-ordered and n is any positive even integer with n ≥ 9. Let x1, x2, x3, and x4 be any four
vertices of GHT(3, n, 1). We want to find a cycle in GHT(3, n, 1) that traverses the vertices x1, x2, x3, and x4 in the order
specified by the indices. Since n ≥ 10, there exists an integer j ∈ Zn such that {x1, x2, x3, x4} ∩ {(r, s) | r ∈ {0, 1, 2}, s ∈

{j, j+1}} = ∅. In GHT(3, n, 1), we delete all the vertices in {(r, s) | r ∈ {0, 1, 2}, s ∈ {j, j+1}} and join (i, j−1)with (i, j+2)
for i = 0, 1, 2. See Fig. 7 for illustration. Obviously, the resultant graph is isomorphic to GHT(3, n − 2, 1). By assumption,
there exists a cycle C ′ in GHT(3, n − 2, 1) that traverses the vertices x1, x2, x3, and x4 in the order specified by the indices.
Now,we replace all the edges of the form joining (i, j−1) to (i, j+2) in C ′ with the path ⟨(i, j−1), (i, j), (i, j+1), (i, j+2)⟩ to
obtain a cycle C in GHT(3, n, 1) that traverses the vertices x1, x2, x3, and x4 in the order specified by the indices. The lemma
is proved. �

Remarks. In the above proof, we have seen that the desired path pattern of GHT(3, n, 1) can be obtained from the path
pattern of GHT(3, n − 2, 1) by inserting two rows. We call this operation row insertion.

Theorem 3.1. Assume that m is an odd integer with m ≥ 3 and n is an even integer with n ≥ 4. The generalized honeycomb
torus GHT(m, n, 1) is 4-ordered if and only if n ≠ 4.
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Fig. 7. Illustration for the proof of Lemma 3.1: (a) GHT(3, n, 1) and (b) delete all the vertices in {(r, s) | r ∈ {0, 1, 2}, s ∈ {j, j+ 1}} and join (i, j− 1) with
(i, j + 2) for i = 0, 1, 2.

i i+1 i–1 i+2

a b

Fig. 8. Illustration for the proof of Lemma 3.1: (a) GHT(m, n, 1) and (b) delete all the vertices in {(r, s) | r ∈ {i, i + 1}, s ∈ {0, 1, . . . , n − 1}} and join
(i − 1, j) with (i + 2, j) for j ∈ {0, 1, . . . , n − 1} if (i − 1, j) is adjacent to (i, j).

Proof. Obviously, there are 4-cycles in GHT(m, 4, 1). By Lemma 1.1, GHT(m, 4, 1) is not 4-ordered. Using computer
programming, we can check that GHT(m, n, 1) is 4-ordered for m ∈ {3, 5, 7} and n ∈ {6, 8}. Using row insertion, we
can prove that GHT(m, n, 1) is 4-ordered form ∈ {3, 5, 7} and n ≥ 10.

Now, assume that GHT(m−2, n, 1) is 4-ordered andm ≥ 9. Let x1, x2, x3, and x4 be any four vertices of GHT(m, n, 1). We
want to find a cycle in GHT(m, n, 1) that traverses the vertices x1, x2, x3, and x4 in the order specified by the indices. Since
m ≥ 9, there exists an integer i such that {x1, x2, x3, x4} ∩ {(r, s) | r ∈ {i, i + 1 (mod m)}, s ∈ {0, 1, . . . , n − 1}} = ∅. In
GHT(m, n, 1), we delete all the vertices in {(r, s) | r ∈ {i, i+ 1 (mod m)}, s ∈ {0, 1, . . . , n− 1}} and join (i− 1 (mod m), j)
with (i + 2 (mod m), j) for j ∈ {0, 1, . . . , n − 1} if (i − 1 (mod m), j) is adjacent to (i, j). See Fig. 8 for illustration.
Obviously, the resultant graph is isomorphic to GHT(m− 2, n, 1). By assumption, there exists a cycle C ′ in GHT(m− 2, n, 1)
that traverses the vertices x1, x2, x3, and x4 in the order specified by the indices. Now, we replace all the edges of the form
joining (i− 1 (mod m), j) to (i+ 2 (mod m), j) in C ′ with the path ⟨(i− 1 (mod m), j), (i, j), (i, j+ 1), (i+ 1 (mod m), j+
1), (i + 1 (mod m), j), (i + 2 (mod m))⟩to obtain a cycle C in GHT(m, n, 1) that traverses the vertices x1, x2, x3, and x4 in
the order specified by the indices.

The theorem is proved. �

Remarks. In the above proof, we have seen that the desired path pattern of GHT(m, n, 1) can be obtained from the path
pattern of GHT(m − 2, n, 1) by inserting two columns. We call this operation column insertion.

Using similar techniques to those above, we obtain the following theorem.

Theorem 3.2. Assume that m is a positive even integer with m ≥ 2 and n is an even integer with n ≥ 4. The generalized
honeycomb torus GHT(m, n, 0) is 4-ordered if and only if n ≠ 4.
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Next, we will discuss some path patterns for generalized honeycomb tori.
Let (a, b) be any edge of GHT(m, n, d). We use XHTa,b(m, n, d) to denote the subgraph GHT(m, n, d) − {a, b}. Obviously,

there are four vertices p, q, r , and s in XHTa,b(m, n, d) of degree 2 and all the other vertices are of degree 3.
Using computer programming, we can check that for any edge (a, b) of GHT(m, n, 1) and any three vertices x1, x2,

and x3 of XHTa,b(m, n, 1) with m ∈ {3, 5, 7} and n ∈ {6, 8} there exists a path P of XHTa,b(m, n, 1) joining u to v with
{u, v} ∈ {p, q, r, s} that traverses x1, x2, and x3 in the order specified by the indices. Applying row insertion and column
insertion, we can obtain the following lemma.

Lemma 3.2. Assume that m is odd with m ≥ 3 and n is even with n ≥ 6. Let (a, b) be any edge of GHT(m, n, 1) and x1, x2,
and x3 be three vertices of XHTa,b(m, n, 1). There exists a path P of XHTa,b(m, n, 1) joining u to v with {u, v} ∈ {p, q, r, s} that
traverses x1, x2, and x3 in the order specified by the indices.

Using similar techniques, we have the following lemmas.

Lemma 3.3. Assume that m is odd with m ≥ 3 and n is even with n ≥ 6. Let (a, b) be any edge of GHT(m, n, 1) and x be any
vertex of XHTa,b(m, n, 1). There exists a path P of XHTa,b(m, n, 1) joining u to v with {u, v} ∈ {p, q, r, s} that traverses x.

Lemma 3.4. Assume that m is odd with m ≥ 3 and n is even with n ≥ 6. Let (a, b) be any edge of GHT(m, n, 1) and x1 and
x2 be two vertices of XHTa,b(m, n, 1). There are at least seven 2-permutations uv of {p, q, r, s} such that there exists a path P of
XHTa,b(m, n, 1) joining u to v that traverses x1 and x2 in the order specified by the indices.

Lemma 3.5. Assume that m is odd with m ≥ 3 and n is even with n ≥ 6. Let (a, b) be any edge of GHT(m, n, 1). For any
partition that divides {p, q, r, s} into {{u, v}, {w, x}}, there exist two disjoint paths P and Q of XHTa,b(m, n, 1) such that P joins
u to v and Q joins w to x.

Lemma 3.6. Assume that m is odd with m ≥ 3 and n is even with n ≥ 6. Let (a, b) be any edge of GHT(m, n, 1) and x1 and
x3 be two vertices of XHTa,b(m, n, 1). There are at least two different partitions that divide {p, q, r, s} into {{u, v}, {w, x}} such
that there exist two disjoint paths P and Q of XHTa,b(m, n, 1) where P joins u to v traversing x1 and Q joins w to x traversing x3.

Combining the discussion above, we obtain the following theorem.

Theorem 3.3. Every XHTa,b(m, n, 1) is a 4-ordered cell if m is odd with m ≥ 3, n is even with n ≥ 6 and (a, b) is any edge of
GHT(m, n, 1). Similarly, every XHTa,b(m, n, 0) is a 4-ordered cell if m is even with m ≥ 4, n is even with n ≥ 6 and (a, b) is any
edge of GHT(m, n, 0).

4. Main result and concluding remarks

Using Theorem 3.3, we can apply Theorem 2.1 combining a 4-ordered cell XHTa,b(m, n, 1) and a 4-ordered cell
XHTa,b(i, j, 0) in a different manner to obtain a 4-ordered 3-regular graph.

Thus, we obtain the following theorem.

Theorem 4.1. There exists a bipartite non-vertex-transitive 4-ordered 3-regular graph of order n for any sufficiently large even
integer n. Moreover, there exists a non-bipartite non-vertex-transitive 4-ordered 3-regular graph of order n for any sufficiently
large even integer n.

Finally, we will discuss some currently unsolved problems. We have seen that some generalized honeycomb tori are
4-ordered and some are not. Thus, we would like to classify all generalized honeycomb tori that are 4-ordered. Similarly,
we would like to classify all generalized Petersen graphs that are 4-ordered.
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