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ABSTRACT

This paper presents a feedforward multi-layered neural network approach, which is capable of characterizing the
colorimetric model of a color cathode ray tube (CRT) monitor driven by a digital red, green, and blue signal source.
The model consists of forward and inverse transforms. The forward transform predicts the CIE display color for a given
triad of digital RGB video signals. The inverse transform determines the digital RGB drive signals necessary to produce
a color of specific CIE coordinates. Nevertheless, the identification of both forward and inverse transforms becomes
intractable when the nonlinear distortions are involved in the colormetric model. These distortions result from the
violations of the assumptions of phosphor constancy, gun independency, spatical uniformity and monitor characteristic
function with an expression of power function. The feedforward neural networks have the capability to learn arbitrary
nonlinearity and show great potential for determining the forward transform model of a color monitor. To avoid inverting
the complicated nonlinear forward transform directly, an alternative approach to the inverse transform identification is
proposed on the basis of Widrow and Winter’s neural-based inverse system control scheme. The performance of both
transforms was evaluated by the prediction and measurement of 29 test colors chosen to adequately sample the color
gamut reproducible by the CRT phosphors.

1 INTRODUCTION

For computer graphics and video service applications, it is desired to specify and reproduce colors on CRT displays
accurately i order to produce high-quality images in electronic imaging systems. The colors produced by a CRT display
can be expressed in terms of CIE ( Commission Internationale de I’Eclairage) colorimetry which is a standardized and
widely accepted color-specification system. The system is based on the 1931 CIE color matching functions, from which
a set of tristimulus values can be derived. From these tristimulus values, all the CIE color standards can be calculated.
Since the CIE color standards are based on additive color mixture, the video monitor produces its colors by the linear
combination of red, green, and blue phosphors. The coefficients of the linear combination are termed as the phosphor
matrix. The distinct levels of excitation in the three phosphars of a color video monitor are generated by the digital
video drive values which are applied to the three guns of the monitor. The drive values are controlled by digital-to-analog
converters whose inputs come from application software. The relationship between the video signal level and monitor
light output in each of its three channels is called the monitor characteristics function. Typically, it is expressed as
the form of a power function. The forward transform model of a color monitor is defined as a composite system of
both the monitor characteristic function and phosphor matrix [1]. The forward transform model acts as an emulator
which can predicts the CIE display color for a given digital RGB video drive signals. The characteristics of the forward
transform model can be identified by measuring all the colors a monitor can produce and then storing them in a large
table [2]. Hartmann and Madden [1] used the first-order approximation to fit those colors and represent the forward
model. They showed that the approximation model for their particular monitor is valid when the drive levels are above
30 IRE (Institute of Radio Engineers) units. However, the forward tranforin became nonlinear for input drive values
below 30 IRE. In addition, Cowan [2] indicated that the commonly used parametric expression of a power function
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did not suffice to describe the monitor characteristics function and sometimes may make large identification errors. To
tackle this difficulty, he used a complicated two-parameter expression to improve the performance.

A color video monitor is calibrated completely when the forward transform model is known and then gives the CIE
tristimulus values of the colors produced in terms of the drive signals applied to the three guns of the monitor. The
inverse transform model, which determines the digital RGB video drive signals needed to produce a color pspecific CIE
tristrimulus values, is usually identified by taking the inverse operator on the estimated forward model [1](2][3]. This
means that the color difference between the color produced by the inverse transform model and the expected color
is dependent on the estimation accuracy of forward transform models. Alternative approach to the inverse transform
identification is on the basis of Widrow and Winter’s inverse system control scheme using feedforward neural networks
[4]. Feedforward multi-layered neural networks have been widely used in the realization of complex nonlinear systems
for which the system architecture is not necessarily known. Recent research works [5][6][7] showed that neural networks
can uniformly approximate any continuous function with arbitrarily desired accuracy. This leads to a promosing method
for modelling both the forward and inverse transforms of a color video monitor.

The results of applying the feedforward neural network to the identification of both forward and inverse transform
models were discussed. The model was evaluated by the prediction and measurement of 29 test colors chosen to
adequately sample the color gamut reproducible by the monitor phosphors. A comparison of both neural-based method
and Hartmann’s first approximation model is illustrated in the last section. It is demonstrated that the performance of
neural-based method is superior to the first approximation method.

2 NEURAL-BASED MODEL IDENTIFICATION OF COLOR MONITORS

Neural networks have become a very fashionable area of researh with a range of potential applications that spans
Al engineering and science. All the applications are dependent upon training the network with illustrative examples
and this involves adjusting the weights which define the strength of connection between the neurons in the network.
This can often be interpreted as a system identification problem of estimating the system that transforms inputs into
outputs given a set of examples of examples of input-output pairs.

This section focuses on the feasibility of neural networks and their learning algorithms for training the networks
to represent forward and inverse transform models of nonlinear color monitor systems. Training a neural network
using input-output data from a nonlinear plant can be considered as a nonlinear functional approximation problem.
Approximation theory is a classical field of mathematics. From the well-known Stone-Weierstrass theorem [7], it shows
that polynomials can approximate arbitraily well a continuous function. Recently, the approximation capability of
networks has been investigated [6][7][8] by using the similar concept based on the Stone-Weierstrass theorem. A number
of results have been published showing that a feedforward network of the multilayer perceptron type can approximate
arbitrarily well a continuous function [5][6]. To be specific, these research works prove that multilayer feedforward
networks with as few as single layer and an appropriately smooth hidden layer activation function are capable of
arbitrarily accurate approximation to an arbitrary continuous function.

Before applying the feedforward neural networks to the model identification of color monitor system, it is im-
protant to establish their approximation capabilities to some arbitrary nonlinear real-vector-valued continuous mappihg
y =f(x) : D C R* — R™ from input/output data pairs {z,y}, where D is a compact set on R. For example, the col-
orimetry of a monitor can be represented by f(x) when the domain D and its image space £f(D) are defined in the RGB
and CIEXY Z color spaces respectively. Consider a feedforward network NN (x,w) with x as a vector representing
inputs and w as a parameter weighting vector that is updated by some learning rules. It is desired to train NN (x,w)
to approximate the mapping f(x) as close as possible. The Stone-Weierstrass theorem [7] shows that for any continuous
function f € C''(D) with respect to x, a compact metric space, an N N(x,w) with appropriate weight vector w can be
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found such that || NN(x,w) — f(x) ||x < € for an arbitrary € > 0, where || e || is the norm defined by

|l e]lx =sup{ || e(x)||: x € D, || -|| is the vector norm } (1)
X

For network approximators, key equations are how many layers of hidden units should be used, and how many
units are required in each layer. Cybenco[5] and Wang et al have shown that the feedforward network with a single
hidden layer can uniformly approximate any continuous function to an arbitrary degree of exactness—providing that the
hidden layer contains a sufficient number of units. However, it is not cost-effective for the practical implementation.
Nevertheless, Chester [8] gave a theoretical support to the empirical observation that networks with two hidden layers
appear to provide high accuracy and better generalization than a single hidden layer network, and at a lower cost (i. e.
fewer total processing units ). Since, in general, there is no prior knowledge about the number of hidden units needed,
a common practice is to start with a large number of hidden units and then prune the network whenever possible.
Additionally, Huang and Huang [9] gave the lower bounds on the number of hidden units which can be used to estimate
its order.

2.1 Forward and Inverse System Model Identification by Feedforward network

In general, system identification is usually recognized as a process to train networks to represent nonlinear dynamical
systems and their inverses. This would be distinctly helpful in achieving the desired output signal of the system. The
issue of identification is perhaps of even greater importance in the field of adaptive control and signal processing systems
[4]. Since the plant in an adaptive control varies in operation with time , the adaptive control must be adjusted to
account for the plant variations.

The procedure of training a neural network to represent the forward dynamics will be referred to as forward
model identification. The basic configuration for achieving this is shown schematically in Fig. 1. A feedforward neural
network with a single hidden layer is placed in parallel with the system and receives the same input x as the system.
The system output provides the desired response d during training. The purpose of the identification is to find the
appropriate weights wj;s of the network with response o that matchs the response y of the system for a given set of
inputs x. During the identification, the norm of the error vector, || e ||=]| d —o|| , is minimized through a number
of weight adjustments by the delta-bar-delta learning rule. In our case, those weights are updated by minimizing the
system error, E = Zf:/:x || ex [|2, by the same algorithm, where ex = (dy — o).

Fig. 1 shows use of a feedforward neural network for direct modeling of an unknown system to obtain a close
approximation to its responses. By changing the configuration, it is possible to use the feedforward network for inverse
modeling to obtain the reciprocal of the unknown system’s transfer function when the system is invertible. In constrast
to forward system characteristics identification, the system output o is used as neural network input, as shown in Fig. 2.
The unknown system’s input, x, is the desired response of the feedforward network. Thus, the error vector of network
training is computed as a x — 0. The system error to be minimized through learning is therefore £ = Zszl || xx — o ||2
The neural network trained by the delta-bar-delta algorithm will implement the mapping of the system inverse. Once
the network has been successfully trained to mimic the system inverse, it can be used directly for feedforward inverse
control. In other words, the inverse model is cascaded with the controlled unknown system in order that the composed
systemn results in an identity mapping between desired response ( i.e. the network inputs) and the contolled system
output.

As mentioned, it is assumed that the system is invertible. Then there exists an injective mapping which represents
its inverse. If it is not true, a major problem with system inverse identification arises when the system invesre is not

uniquely defined.

A second approach to inverse modeling which aims to overcome these problems is known as specialized inverse
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learning[12]. As pointed out in Psaltis et. al. [12], the specialized method allows the training of the inverse network
in a region in the expected operational range of the system. On the other hand, the generalized training procedure
produces an inverse over the operating space which may be uniquely defined. Fortunately, the mapping of a color
monitor system may have a unique inverse. Thus, we could apply the direct invesre method as illustrated in Fig. 2 to
find the approximation of the inverse.

3 ILLUSTRATED EXAMPLES

A Minolta chroma meter CS-100 is used to measure the CIE tristimulus values X, Y, and Z. Overall 512 measured
training data points are generated from the current commonly used sampling algorithms. The algorithms sample the
monitor coordinates linearly with respect to the monitor coordinates. For example, if 512 = 2° samples are to be
taken, 8 = 23 values on each of the red, green and blue guns would be taken, and the 512 samples would consist of all
combinations of the gun values. The gun values would sample the range of possible gun values linearly. Thus, if there
were 256 possible values for each gun, running from 0 to 255, the 8 values chosen would be 0, 36, 72, 109, 145, 182, 218,
and 255. If the full range is not to be used because of non-zero turn-on values for guns or blooming, the values would be
scaled between the end points of the range. The linear sampling in monitor color coordinates roughly approximates the
sampling in a perceptually uniform color space when monitor is designed to have its device color coordinates relatively
equally spaced visually.

Two feedforward neural networks with one hidden layer and two hidden layers are designed to learn the forward
and inverse system models respectively. According to Huang and Huang’s suggestions [9], it is possible to estimate the
lower bounds on the numbers of hidden units in both neural networks. The numbers of hidden units for the networks
associated with the forward and inverse models are chosen as 50 and 30 for each hidden layer respectively. To perform
delta-bar-delta learning algorithm, the parameters related to weight update rule and learning rate update rule are chosen
as 1)(t)|,=y = 0.03,a = 0.8,x = 0.00005,¢ = 0.4 and § = 0.3. Since the degree of reproduction is judged by the color
difference metric defined in perceptual color space CIELUV, instead of CIEXY Z from Fig. 1, the system error E of
the three-layer network is given by

N
k2 1 *
E= AEluv = _A—f § :(AEuv)i (2)
k=1

where AE7, = the root mean square of the color difference between the network output (o) and the desired output

(y=d), AE;, = \/AL*‘2 + (Au"‘)2 + (Av")2 , N = number of sample color patches, and L*, u* v* are the coordinates
defined in CIELUV space. Notice that the color coordinates in CIELUV space can be obtained from the three
tristimulus values X, Y and Z.

By inputting the N (= 512) training color patches into the NEC 5-D color monitor and performing the delta-bar-delta
algorithm on the neural-based forward models, the training errors can be found as 0.85 for CIELUV color space.

In contrast to the identification of forward modelling, from Fig. 2, the system error of the four-layer network for the
inverse modelling is defined in R(B space and given by

N
7 1 9 9
E=dyn =5 S (AR*+ AG® + ABY), (3)

k=1

where || 2 — op ||* = —(AR? + AG® + AB?),.

1
N(
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Meanwhile, the color difference defined in RGB space cannot provide the metric in uniform color spaces of which
the corresponding measure is in agreement with the human visual system (HVS). The HVS allows us to process color
reproducton in a controlled way in accordance with the visual perception of the reproduced color images. The CIELUV
space is related to the CIEXY Z color space by known formula. However, the RGB to XY Z transformation is dependent
on the display device. If the training system error defined in RGB space is 0.62, its corresponding root mean square
of the color difference defined in CIELUV space is 0.54. By the transformation formula, the root mean square of the
color difference defined in CIEXY Z space can be found as 0.43.

Next, we would like to validate the estimated forward and inverse models by test colors which consists of (1) the
24 patches of the MACBETH COLOR CHECKER chart, (2) one baryta white patch, (3) the colors produced by the
red, green, blue, and white full monitor drives. The chromametric measurements of MACBETH COLOR CHECKER
chart and baryta patch were made under incandescent tungsten illumination to their CIE chromaticities and illuminance
factors.

The test colors CIE chromaticities and luminances served as input to the inverseviransform model, which can compute
the digital red, green, and blue video drive values required to produce the specified CIE stimuli on the color monitor. [1]
introduced three indexes to evaluate the model’s color reproduction capability, that is, chromaticity difference, luminance
factor difference, and color difference metric defined in CIELUYV space. The first two indexes are defined as follows

CHROM.DIFF. 2 [(20 — 2) + (yn — 1)) (4)

and

%Y

Luminance factor difference

100* | (YM - Y)/YM I

e e

()

where z,,y, Yy are the resulting CIE chromaticities and luminance factor measured on the CRT, and zyY are the
specified CIE chromaticities and luminance factor input to the inverse model (z4,y4, and Yy) or the calculated chro-
maticities and luminance (z;,y;, and Y;) from the forward model. The mean values of the chromaticity differences (or
%Y) over the 29 test colors for both the neural-based forward model and Hartwann’s forward model are equal to 0.0057
(1.734) and 0.0124 (2.949) respectively. For the inverse transform, the mean values of the chromaticity differences (or
%Y) for neural model and Hartwann’s model are 0.0067 (1.0987) and 0.02719 (3.3286) respectively. Figures 3 and 4
show a comparison of the chromaticity differences for the Hartwann’s and neural-based inverse models in the CIE x,y
coordinate system. It is seen that the chromaticity differences of neural-based inverse model are less than Hartwann’s
inverse model. As a result, this implies that the degree of color reproduction of neural inverse model is better than
Hartwann’s inverse model. Similarly, a comparison of both Hartwann’s and neural-based forward models is illustrated
in Figures 5 and 6.

Unfortunately, both chromaticity and luminance factor differences cannot provide a measure in accordance with HVS
to the reproduced color images. Another index of merit to color reproduction is the color difference metric defined in
CIELUV space, AE},. Table 1 shows a comparison of the CIELUV color differences resulted from neural-based and
Harwann’s inverse models over the 29 test color patches. Similarly, the comparison of both neural-based and Hartwann’s
forward models is shown in Table 2. It is shown that that both the neural-based inverse and forward models yield the
color difference r.m.s. errors 2.9073 and 2.6375 respectively which are less than those (15.2664 and 9.8553) obtained
from Hartwann’s methods by about an order of magnitude. An useful indication is the size of the minimum perceptible
color difference and this is of the order of 0.0004 in the C:IE 1976 u’-v’ uniform chromaticity coordinates. In television
assessments, a unit ten times this value, i.e. 0.004 has often been used as a just noticeable difference (JND) under
critical conditions of viewing. This corresponds to 2 to 3 units in (C/IELUV space. Undoubtedly, the values of AE?,
for both neural-based models fall in the range of JND.
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4 CONCLUSION

The use of feedforward multi-layered neural networks promises to bring a new level of accuracy to the prediction
of video display colorimetry and monitor calibration. The process of monitor calibration is performed by training a
feedforward neural network to represent the forward transform of the target color CRT monitor. This would allow the
monitor’s output for any set of input values to be predicted from the input values. The inverse transform has been
obtained by performing Widrow and Winter’s inverse system identification. The trained inverse transform is simply
cascaded with the color CRT monitor in order that the composed system results in an identity mapping between desired
CIE coordinates (i.e. network inputs) and the output display colors. The results have shown that the CIELUV color
difference r.m.s. errors of both neural-based calibration and prediction models are less than the Hartwann’s models by
an order of magnitude and also fall the range of JND.
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Fig. 3 Chromaticity diagram of measurement data (’0’) and Hartwann’s pre-
diction model outputs (+’).
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Fig. 4 Chromaticity diagram of measurement data (’o’) and neural-based pre-
diction model outputs ("+’).
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