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Abstract 

A general connectionist model, called neural fuzzy control network (NFCN), is proposed for the realization of a fuzzy 
logic control system. The proposed NFCN is a feedforward multilayered network which integrates the basic elements 
and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities. 
The NFCN can be constructed from supervised training examples by machine learning techniques, and the connectionist 
structure can be trained to develop fuzzy logic rules and find membership functions. Associated with the NFCN is 
a two-phase hybrid learning algorithm which utilizes unsupervised learning schemes for structure learning and the 
backpropagation learning scheme for parameter learning. By combining both unsupervised and supervised learning 
schemes, the learning speed converges much faster than the original backpropagation algorithm. The two-phase hybrid 
learning algorithm requires exact supervised training data for learning. In some real-time applications, exact training 
data may be expensive or even impossible to obtain. To solve this problem, a reinforcement neural fuzzy control network 
(RNFCN) is further proposed. The RNFCN is constructed by integrating two NFCNs, one functioning as a fuzzy 
predictor and the other as a fuzzy controller. By combining a proposed on-line supervised structure-parameter learning 
technique, the temporal difference prediction method, and the stochastic exploratory algorithm, a reinforcement learning 
algorithm is proposed, which can construct a RNFCN automatically and dynamically through a reward-penalty signal 
(i.e., "good" or "bad" signal). Two examples are presented to illustrate the performance and applicability of the proposed 
models and learning algorithms. 

Keywords: Neural networks; Connectionist; Fuzzy control; Fuzzy predictor; Gradient descent; Supervised-unsupervised 
learning; Reinforcement learning. 

1. Introduction 

Among the schemes in bringing the learning abilities of neural networks to automate  and realize the design 
of fuzzy logic control systems [2-5, 7, 9-13, 15, 18, 19, 22, 24-27, 29], the most popular  one is to imbed a fuzzy 
system into a neural network. In this scheme the fuzzy system is installed in an architecture isomorphic to 
neural networks, i.e., a multilayered network, where each node performs a function such as to make the entire 
network perfectly equivalent to the fuzzy system. In this approach, the gradient descent method that is akin 
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to the backpropagation algorithm is usually used to train the network. Examples include Jang's adap- 
tive-network-based fuzzy inference system (ANFIS) [7, 22], Berenji and Khedkar's generalized approximate 
reasoning-based intelligent control (GARIC) [2, 3] for reinforcement learning problems, Yager's implemen- 
tation of fuzzy controllers using a neural network framework [27], Nauck and Kruse's [18] fuzzy back- 
propagation approach [18], Wang and Mendel's [26] orthogonal least-squares learning, and many others 
[5, 13, 25]. The approaches developed in the paper follow this scheme. 

In this paper, a general neural-network (connectionist) model is proposed to realize fuzzy logic control 
systems. This connectionist model, in the form of feedforward multilayer net, combines the idea of fuzzy logic 
controllers and neural-network structure and learning abilities into an integrated neural fuzzy control 
network (NFCN). An NFCN can be constructed automatically through learning from the input-output 
training data sets. In this connectionist structure, the input and output nodes represent the input states and 
output control signals, respectively, and in the hidden layers, there are nodes functioning as membership 
functions and fuzzy rules. The NFCN brings the spirit of human-like thinking and reasoning into a neural 
network structure. Moreover, NFCN performs both the parameter learning (i.e. learning the membership 
functions) and the structure learning (i.e., learning the fuzzy logic rules). 

A structure-parameter learning algorithm is proposed for setting up the proposed NFCN. This two-phase 
hybrid learning algorithm combines unsupervised learning and supervised gradient-descent learning proced- 
ures to build the rule nodes and train the membership functions in two separate phases. This hybrid learning 
algorithm performs superiorly to the purely supervised learning algorithm (e.g., backpropagation learning 
rule) due to the a priori classification of training data through an overlapping receptive field before the 
supervised learning. Since the proposed NFCN maintains the spirit of human-like thinking and reasoning as 
in fuzzy logic systems, it eliminates the disadvantage of a normal feedforward multilayered net which is 
difficult for an outside observer to understand or to modify. So, if necessary, experts' knowledge can be easily 
incorporated into the proposed structure to speed up the network learning. 

The two-phase hybrid learning scheme requires precise training data for setting the link weights and the 
link connectivity of NFCN. For some real-world applications, precise data for training/learning are usually 
difficult and expensive, if not impossible, to obtain. For this reason, there has been a growing interest in 
reinforcement learning algorithms for neural networks [1, 3, 9]. In this connection, we further extend the 
NFCN to the reinforcement learning problem. For the reinforcement learning problem, training data are 
very rough and coarse, and they are just "evaluative" as compared with the "instructive" feedback in the 
supervised learning problem. Training a network with this kind of evaluative feedback is called reinforcement 
learning, and this simple evaluative feedback, called reinforcement signal, is a scalar. In addition to the 
roughness and non-instructive nature of the reinforcement signal, a more challenging problem to the 
reinforcement learning is that a reinforcement signal may only be available at a time long after a sequence of 
actions has occurred. To solve the long time-delay problem, prediction capabilities are necessary in 
a reinforcement learning system. To achieve the goal of solving reinforcement learning problems in fuzzy 
logic systems, a reinforcement neural fuzzy control network (RNFCN) is proposed which consists of two 
closely integrated NFCNs. One NFCN, the action network, is used for the fuzzy controller, it can choose 
a proper action or decision according to the current input vector. The other NFCN, the evaluation network, is 
used as the fuzzy predictor, and it performs the single- or multi-step prediction of the scalar external 
reinforcement signal. The fuzzy predictor provides the action network with more informative and beforehand 
internal reinforcement signals for learning. 

Associated with the proposed RNFCN is the reinforcement structure-parameter learning algorithm 
which uses the temporal difference technique on the evaluation network to decide the output errors for 
either the single- or multi-step prediction. With the knowledge of output errors, an on-line supervised 
structure-parameter learning algorithm is developed to train the evaluation network to obtain the 
proper membership functions and fuzzy logic rules. For the action network, the reinforcement struc- 
ture-parameter learning algorithm allows its output nodes to perform stochastic exploration. With the 
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internal reinforcement signals from the fuzzy predictor, the output nodes of the action network can perform 
more effective stochastic searches with a higher probability of choosing a good action as well as discovering 
its output errors. Again, after finding the output errors, the whole action network can be trained by the 
proposed on-line learning algorithm. Thus, the proposed reinforcement structure-parameter learning algo- 
rithm basically utilizes the techniques of temporal difference, stochastic exploration, and the on-line 
supervised structure-parameter learning algorithm. It can determine the proper network size, connections, 
and parameters of an RNFCN dynamically through an external reinforcement signal. Moreover, learning 
can proceed even in the period without any external reinforcement feedback. After learning, the action 
network becomes an independent fuzzy logic controller which can be used to control the plant in the original 
environment. 

In Section 2, the proposed NFCN is introduced and described. The two-phase hybrid learning algorithm is 
presented in Section 3. The structure of the proposed RNFCN and the corresponding reinforcement 
structure-parameter learning algorithm are presented in Section 4. In Section 5, two examples are used to 
illustrate the utility of the proposed systems. First, the model car example as suggested by Sugeno 1-21] is 
simulated to demonstrate the capabilities and the performance of the proposed hybrid learning algorithm. 
Then, the cart-pole balancing problem is simulated to demonstrate the capabilities of RNFCN. Finally, 
conclusions are summarized in Section 6. 

2. Neural fuzzy control network (NFCN) 

This section introduces the structure and functions of the proposed neural fuzzy control network (NFCN), 
which is a feedforward multilayered connectionist structure to realize the traditional fuzzy logic control 
systems from sets of input-output training data. The NFCN integrates the basic elements and functions of 
a traditional FLC (e.g., membership functions, fuzzy logic rules, fuzzification, defuzzification, and fuzzy 
implication) into a connectionist structure which has distributed learning abilities to learn the input/output 
membership functions and fuzzy logic rules. Fig. 1 shows the structure of our proposed NFCN. The system 
has five layers. Nodes at layer one are input nodes (linguistic nodes) which represent input linguistic variables. 
Layer five is the output layer. Nodes at layers two and four are term nodes and act as membership functions 
to represent the terms of each respective linguistic variable. Each node at layer three is a rule node which 
represents one fuzzy logic rule. Thus, all layer-three nodes form a fuzzy rule base. Layer-three links define the 
preconditions of the rule nodes, and layer-four links define the consequents of the rule nodes. Therefore, for 
each rule node, there is at most one link (perhaps none) from some term node of a linguistic node. This is true 
both for precondition links and consequent links. The links at layers two and five are fully connected 
between linguistic nodes and their corresponding term nodes. The arrow on the link indicates the normal 
signal flow direction when this network is in use. We shall later indicate the signal propagation, layer by 
layer, according to the arrow direction. Signals may flow in the reverse direction in the learning process as 
discussed later. 

With this five-layered structure of the proposed connectionist model, the basic functions of a node can be 
defined. A typical network consists of a unit which has some finite fan-in of connections represented by 
weight values from other units and fan-out of connections to other units. Associated with the fan-in of a unit 
is an integration function f which serves to combine information, activation, or evidence from other nodes. 
This function provides the net input for this node: 

net-input = f (Utl k), U(2 k) . . . . .  U~k); W(1 k), W (k) . . . . .  w (k ) ) ,  (1) 

where u~ k) represents the ith input signal at the kth layer, wl k) represents the ith link weight of the kth layer, the 
superscript k indicates the layer number, and p represents the number of a node's input connections. This 
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Fig. 1. Proposed neural fuzzy control network (NFCN). 

notation will also be used in the following equations. A second action of each node is to output an activation 
value as a function of its net input: 

output = ol k~ = a ( f ) ,  (2) 

where a ( ' )  denotes the activation function. For  example (in standard form), 

P 1 
f =  ~ . ~k). ~k) (3) ,~i ,,i and a - -  

i=1 1 + e  - f "  

We shall next describe the functions of the nodes in each of the five layers of the proposed connectionist 
model. 

L a y e r  1: The nodes in this layer transmit input values directly to the next layer. That is, 

f = ul 1~ and a = f.  (4) 

From Eq. (4), the link weight at layer one (wl 1~) is unity. 
L a y e r  2: Each node in this layer functions as a membership function. For  example, for a bell-shaped 

function, we have 

(u~2~ - rnii)2 and a = e Y, (5) f =  M~ , (mo ,  a 2 



C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212 187 

where m o and aii are, respectively, the center (or mean) and the width (or variance) of the bell-shaped function 
of the j th term of the ith input linguistic variable xl. We shall use bell-shaped membership function in this 
paper. 

Layer 3: The links in this layer are used to perform precondition matching of fuzzy logic rules. Hence, the 
rule nodes should perform the fuzzy AND operation, 

f = min(uC13),u~2 3~ . . . . .  u(p 3)) and a = f. (6) 

The link weight in layer three (wl 3)) is then unity. We can also use product operator for the fuzzy AND 
operation. It is differentiable and suitable for the derivation of a learning algorithm. However, it requires 
more computations than the min operator. 

Layer 4: For the hybrid learning algorithm, the nodes in this layer have two operation modes: down-up 
transmission and up-down transmission modes. In the down-up transmission mode, signals flow upwards 
and the links at layer four perform the fuzzy OR operation to integrate the fired rules which have the same 
consequent, where the bounded sum operation is used for fuzzy OR: 

p 

f =  ~ ul 4~ and a=min(1 , f ) .  (7) 
i = l  

Hence, the link weight wl 4~ = 1. In the up-down transmission mode, signals flow downwards and the nodes 
in this layer and the links in layer five function exactly the same as those in layer two. For the RNFCN, the 
nodes in this layer only operate in the down-up transmission mode. 

Layer 5: For the hybrid learning algorithm, there are two kinds of nodes in this layer. The first kind of 
node performs the up-down transmission for the training data y~ to feed into the network. For this kind of 
node, 

f = Y l  and a = f  (8) 

The second kind of node performs the down-up transmission for the decision signal y'~ output. These nodes 
and the layer-five links attached to them act as the defuzzifier. If m~/s and a~/s are the centers and the widths 
of output membership functions, respectively, then the following functions can be used to simulate the center 
of area defuzzification method [8]: 

f = . , , , .  , , ,  _ _ _ f _ _ f  E vcij u i = E(mijffij)ul 5) and a = 2 a,~ulS). (9) 

Here the link weight at layer five (wl~)) is m~ja~j. For the RNFCN, we have only one kind of nodes performing 
the down-up transmission for the decision signal output. 

Based on the above connectionist structure, a two-phase hybrid learning scheme will be proposed to 
realize the NFCN from the given input-output training data sets. This learning algorithm includes structure 
and parameter learning to determine optimal centers (mij's) and widths (a~j's) of term nodes in layers two and 
four. Also, it will learn fuzzy logic rules by deciding the connection types of the links at layers three and four; 
that is, the precondition links and consequent links of the rule nodes. 

3. Two-phase hybrid learning algorithm 

In this section, we shall present the proposed two-phase learning scheme for realizing the NFCN from the 
given input-output training data sets. In phase one, a self-organized learning scheme is used to locate initial 
input and output membership functions and to find the presence of fuzzy logic rules. In phase two, 
a supervised learning scheme is used to adjust optimally both input and output membership functions for 
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desired outputs. Before this network is trained, an initial form of the network is first constructed. Then, 
during the learning process, some nodes and links of this initial network are deleted or combined to form the 
final structure of the network. Let T(x~)  denote the term set of the linguistic variable x~. Then in its initial 
form (see Fig. 1), there are I]i[ T(x~)l rule nodes with the inputs of each rule node coming from one possible 
combination of the terms of input linguistic variables under the constraint that only one term in a term set 
can be a rule node's input. Here [ T(x~)l denotes the number of terms of x~ (i.e., the number of fuzzy partitions 
of input state linguistic variable xi) .  So the state space is initially divided into I T(x~)l x [ T(x2)l x ... x I T(Xn)I 
linguistically defined nodes (or fuzzy cells) which represent the preconditions of fuzzy rules. Also, initially, the 
links between the rule nodes and the output term nodes are fully connected, meaning that the consequents of 
the rule nodes are not yet decided. Only a suitable term in each output linguistic variable's term set will be 
chosen after the learning process. 

3.1.  S e l f - o r g a n i z e d  l earn ing  p h a s e  

The problem for the self-organized learning can be stated as: Given the training input data 
x i ( t ) ,  i = 1 . . . . .  n, the desired output value y~(t), i = 1 . . . . .  m,  the fuzzy partitions I T(x)l and [ T(y)I, and the 
desired shapes of membership functions, we want to locate the membership functions and find the fuzzy logic 
rules. In this phase, the network works in a two-sided manner; that is, the nodes and links at layer four are in 
the up-down transmission mode so that the training input and output data are fed into this network from 
both sides. 

First, the centers (or means) and the widths (or variances) of the (input and output) membership functions 
are determined by self-organized learning techniques analogous to statistical clustering. This serves to 
allocate network resources efficiently by placing the domains of membership functions covering only those 
regions of the input/output space where data are present. Kohonen's feature-maps algorithm [ 14] is adopted 
here to find the center ml of the membership function: 

I Ix( t ) -  m~,osest(t)ll = min { [ Ix( t ) -  mi(t) l l  }, 
l <~i<~k 

me1 .... t(t + 1) = m¢l . . . .  t(t) + c t ( t ) [ x ( t )  - -  mc, . . . .  t(t)], 

rni(t + l )  = mi ( t )  fo rmiv  ~ m¢l . . . .  t, 

(lO) 

(11) 

(12) 

where x ( t )  is the value of some linguistic variable at time t, mi( t )  is the center of cluster i at time t, mcl .... t (t) is 
the center closest to x ( t ) ,  ~( t )  is a monotonically decreasing scalar learning rate, and k = IT(x)]. This 
adaptive formulation runs independently for each input and output linguistic variable. The determination of 
which of the mi's is rneloses t can be accomplished in constant time via a winner-take-all circuit. Once the centers 
of membership functions are found, their widths can be simply determined by the f i r s t - n e a r e s t - n e i g h b o r  
heuristic as 

I mi --/~closestl  a i -  , (13) 

where r is an overlap parameter. In the second learning phase, the centers and the widths of the membership 
functions will be fine-tuned optimally. 

After the parameters of the membership functions have been found, the signals from both external sides 
can reach the output points of term nodes at layers two and four (see Fig. 1). Furthermore, the outputs of 
term nodes at layer two can be transmitted to rule nodes through the initial architecture of layer-three links. 
So we can get the firing strength of each rule node. Based on these rule firing strengths (denoted as  o~3)(t)'s) 
and the outputs of term nodes at layer four (denoted as o~4~(t)'s), we want to decide the correct consequent 
links (layer-four links) of each rule node to find the existing fuzzy logic rule by competitive learning 
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algorithms [15]. As stated in the last section, the links at layer four are initially fully connected. We denote 
the weight of the link between the ith rule node and the j th  output term node as w u. The following 
competitive learning law is used to update these weights for each training data set: 

~ u ( t )  = o~4)( - w i  + o13)). J J (14) 

(4) Here oj serves as a win-loss index of t he j th  term node at layer four. The theme of this law is that learn if 
win. In the extreme case, if o~ 4) is a 0-1 threshold function, then the above law says learn only if win. 

After the competitive learning through the whole training data set, the link weights at layer four represent 
the strength of the existence of the corresponding rule consequent. Among the links which connect a rule 
node and the term nodes of an output linguistic node, at most one link with maximum weight is chosen and 
the others are deleted. Hence, only one term in an output linguistic variable's term set can become one of the 
consequents of a fuzzy logic rule. If all the link weights between a rule node and the term nodes of an output 
linguistic node are very small, then all the corresponding links are deleted, meaning that this rule node has 
little or no relation to this output linguistic variable. If all the links between a rule node and the layer-four 
nodes are deleted, then this rule node can be eliminated since it does not affect the outputs. 

After the consequents of rule nodes are determined, the rule combination is performed to reduce the 
number of rules. The criteria for a set of rule nodes to be combined into a single rule node are (1) they have 
exactly the same consequents, (2) some preconditions are common to all the rule nodes in this set, and (3) 
the union of other preconditions of these rule nodes composes the whole term set of some input linguistic 
variables. If a set of nodes meets these criteria, a new rule node with only the common preconditions 
can replace this set of rule nodes. An example is illustrated in Fig. 2, where the first term of x0 is common 
to all the rules and it thus becomes the only precondition of the resultant rule after the rule combination 
scheme. 

Yi 

le nodes) 

x 0 x I x 2 

III 
Yi 

0 0 0 ~ulenod~) 

,0 0 0~,0 00~ ~00~ 
x 0 x 1 x2 

Fig. 2. Example of combination of rule nodes. 
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3.2. Superv i sed  learning phase  

After the fuzzy logic rules have been found, the whole network structure is established, and the network 
then enters the second learning phase to adjust the parameters of the membership functions optimally. The 
problem for the supervised learning can be stated as: Given the training input data x~(t), i = 1 . . . .  , n, the 
desired output value y~(t), i = 1 . . . . .  m, the fuzzy partitions I T(x)l and I T ( y ) I ,  and the fuzzy logic rules, adjust 
the parameters of the membership functions optimally. These fuzzy logic rules were learned in the first-phase 
learning or, in some application domains, they can be given by experts. In the second-phase learning, the 
network works in the feedforward manner; that is, the nodes and the links at layer four are in the down-up 
transmission mode. The idea of backpropagation is used for this supervised learning. The goal is to minimize 
the error function 

E = ½(y( t )  - )~(t)) 2, (15) 

where y ( t )  is the desired output, and ~(t) is the current output. For each training data set, starting at the input 
nodes, a forward pass is used to compute the activity levels of all the nodes in the network. Then starting at 
the output nodes, a backward pass is used to compute OE/Oy for all the hidden nodes. Assuming that w is the 
adjustable parameter in a node (e.g., the center of a membership function), the general learning rule used is 

A w  oc - OE/Ow, 

( w(t  + l)  = w( t )  + q --  Ow /I 

where r/is the learning rate, and 

dE 0E 0(activation) 

Ow 0(activation) Ow 

OE Oa 

0 a  0 w "  

(16) 

(17) 

(18) 

To show the learning rule, we shall show the computations of OE/~w, layer by layer, starting at the output 
nodes, and we will use the bell-shaped membership functions with centers m[s and widths a[s as the 
adjustable parameters for these computations. 

L a y e r  5: Using Eqs. (18) and (9), the adaptive rule of the center mi is derived as 

0E _ OE 0a~S~ = _ [y(t) - )~(t)] ~. (19) 
~m i OatS) Om i 

Hence, the center parameter is updated by 

tTiUl 5) 
mi(t  + 1) = mi(t)  + ~/[y(t) - )~(t)] y~alul5 ~. (20) 

Similarly, using Eqs. (18) and (9), the adaptive rule of the width al is derived as 

OE BE Oa ts) miulS)(Z aiul  5)) - (ZmiaiulS))u~ s) 
O a l -  Oa ts) 0try- = - [y(t) -- j~(t)] (Vj~O.iulS)) 2 (21) 

Hence, the width parameter is updated by 

miu~5) ( Z  ff iu~5~ ) -- ( Z  miff iu~5))u~ 5) 
ai(t  + 1) = ~i(t)  + r/[-y(t) -- 9(t)] tx 'a utSh 2 (22) 

xL..~ i i y 
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The error  to be propagated  to the preceding layer is 

- ~ E  
6 ~5) - - -  - y( t )  - p(t). (23) ~a (5) 

Layer  4: 
(614)'s) need to be computed  and propagated.  The error  signal ~i t4) is derived as in the following: 

In the d o w n - u p  mode,  there is no parameter  to be adjusted in this layer. Only the error  signals 

_ 6 1 4 ) _  ~ E  3 E  d a l  s)  
~al ,~)-~  (5) , (24) 

vai ~al 4) 

where (from Eq. (9)) 

c3al 5) _ Oa (5) _ m i a i ( Z  aiul s)) - ( Z  mwiulS))ai  
c~a~ 4) Oul 5) (E alulS)) 2 

and from Eq. (23), 

(25) 

where (from Eq. (28)) 

OE t~E t~a~ 3) (30) 
 aT' - 3) 2 ) '  

0E 
- - 6tk 3), (31) 

t~al 3) 

and from Eq. (6), 

da~ 2) ~a~3~ - da~3---~ = {~ ~ul 3) if u~3)= min(inputs  ° f  rule n°de  otherwise, k), (32) 

summat ion  of the errors of its consequents.  
Layer  2: Using Eqs. (18) and (5), the adaptive rule of m u is derived as in the following: 

~E _ 0E Oal 2) t~E 2(ul 2) -- mij ) 

63mij 63a12) 63mlj -- t'~al 2) e f '  0"2 ' 

. (5)]  ( 5 ) ~ 6  
m i a i ( E a i " i  " (27) - -  ( E m i f f i u i  ! i 

614)(t) = [ y ( t ) -  33(0] (EaiulS))2 

In the mult iple-output  case, the computa t ions  in layers five and four are exactly the same as the above and 
proceed independently for each output  linguistic variable. 

Layer  3: As in layer four, only the error  signals need to be computed.  According to Eq. (7), this error  signal 
can be derived as 

t~E 0E ~al 4) ~(4) 
_ _ _ _  _ _ 6 !4 )  , ~ - i  a (4)  ( 2 8 )  

- 613) t,~al3 ) ~a14 ) c3a13) , t3Ul,) -- vi • 

Hence, the error  signal is 613) = 614). If there are multiple outputs,  then the error  signal becomes 613) = ~k 6~k *), 
where the summat ion  is performed over the consequents  of a rule node; that  is, the error  of a rule node is the 

(29) 

Hence, the error  signal is 

~E 
6 (5) = -- [y( t )  -- 33(0]. (26) Oa (5) 
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Hence, 

c~E 
- • qk, ~3al 2) V 

where the summation is performed over the rule nodes that al 2) feeds into, and 

[ - - 6 [  3) if al 2, is minimum in the kth rule node's inputs, 
qk = ~ O  otherwise. 

So the adaptive rule of mij is 

dE 2(ul 2) - -  mij ) 
mij( t  + 1) = mi j ( t )  --  rl ~a(12) e f '  ~r~ 

Similarly, using Eqs. (18), (5), and (30)-(34), the adaptive rule of aij is derived as 

dE dE dal 2) dE r 2(u12) - miJ )2 
- -  e -  

dGij ~al 2) ~aij  ~al 2' a 3 

Hence, the adaptive rule of crij becomes 

d E  e f  ' 2(ul 2) - mij)  z 
a i j ( t  + 1) = tTij(t ) --  r I ~Cui tr 3 

(33) 

(34) 

(35) 

(36) 

(37) 

Training Data ) 

1 
Find centers/widths of membership functions 

by self-organized clustering 

I Find fuzzy logic rules by competitive learning 

Rules elimination ] 

Rules combination 

Find  the op t ima l  member sh ip  functions I 
by  error  backpropaga t ion  

Fig. 3. Flow chart of the proposed hybrid learning algorithm. 
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The proposed two-phase hybrid learning procedure is summarized by the flow chart in Fig. 3. The 
convergence speed of the backpropagation in the phase-two learning is found superior to the normal 
backpropagation scheme since the self-organized learning process in phase one has done much of the 
learning work in advance. The hybrid learning algorithm requires that sets of precise input and output 
training data are available. In the next section, we shall consider a more difficult learning problem, the 
reinforcement learning problem. 

4. Reinforcement structure-parameter learning algorithm for RNFCN 

Unlike the supervised learning problem in which the correct "target" output values are given for each input 
pattern to instruct the network's learning, the reinforcement learning problem has only very simple 
"evaluative" or "critic" information instead of "instructive" information available for learning. In the extreme 
case, there is only a single bit of information to indicate whether the output is right or wrong. Fig. 4 shows 
how a network and its training environment interact in a reinforcement learning problem. The environment 
supplies a time-varying vector of input to the network, receives its time-varying vector of output/actions, and 
then provides a time-varying scalar reinforcement signal. In this paper, the reinforcement signal r(t) can be 
one of the following forms: (1) a two-valued number, r(t) e { - 1, 1 }, such that r(t) = 1 means "a success" and 
r(t) = - 1  means "a failure"; (2) a multi-valued discrete number in the range [ - 1 ,  1], for example, 
r(t) e { -  1, -0 .5 ,  0, 0.5, 1} which corresponds to different discrete degrees of failure or success; or (3) a real 
number, r(t) E [ -  1, 1], which represents a more detailed and continuous degree of failure or success. We also 
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Fig. 4. Proposed reinforcement neural fuzzy control network (RNFCN). 
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assume that r(t) is the reinforcement signal available at time step t and is caused by the input and actions 
chosen at time step t - 1 or even affected by earlier input and actions. The objective of learning is to maximize 
a function of this reinforcement signal, such as the expectation of its value on the upcoming time step or the 
expectation of some integral of its values over all future time. 

To resolve the reinforcement learning problems, a new structure, called the reinforcement neural fuzzy 
control network (RNFCN), is proposed. The proposed RNFCN, as shown in Fig. 4, integrates two NFCNs 
into a learning system: one NFCN for the fuzzy controller and the other N F CN  for the fuzzy predictor. These 
two NFCNs share the same layers 1 and 2 and have individual layer 3 to layer 5, which are not clearly shown 
in the fuzzy predictor in Fig. 4. Each network has exactly the same structure as shown in Fig. 1. In other 
words, the fuzzy controller (action network) and the fuzzy predictor (evaluation network) share the same 
distributed representation of input states by using the same input membership functions (i.e., the same 
fuzzifier), but they have independent fuzzy logic rules (a different rule base and decision-making process) and 
different output membership functions (a different defuzzifier). The action network can have multiple outputs 
as shown in Fig. 1, although only one output node is shown in Fig. 4. In the multi-output case, all the output 
nodes of the action network receive the same internal reinforcement signals from the evaluation network. The 
evaluation network has only one output node since it is used to predict the external scalar reinforcement 
signal. The action network decides a best action to impose onto the environment in the next time step 
according to the current environment status. The evaluation network models the environment such that it 
can perform a single- or multi-step prediction of the reinforcement signal that will eventually be obtained 
from the environment for the current action chosen by the action network. The predicted reinforcement 
signal can provide the action network beforehand as well as more detailed reward/penalty information 
("internal reinforcement signals") about the candidate action for the action network to learn and to decrease 
the uncertainty it faces to speed up the learning. We shall now describe the details of this reinforcement 
learning algorithm in the following subsections. 

4.1. Stochastic exploration 

In this subsection, we first develop the learning algorithm for the action network. The goal of the 
reinforcement structure-parameter learning algorithm is to adjust the parameters (e.g., mi's) of the action 
network, to change the connectionist structure or even to add new nodes, if necessary, such that the 
reinforcement signal is maximum; that is, 

Ami ~: Or/t3mi. (38) 

To determine ~r/~mi, we need to know t3r/~y, where y is the output of the action network. (For clarity, we 
discuss the single-output case first.) Since the reinforcement signal does not provide any hint as to what the 
right answer should be in terms of a cost function, there is no gradient information. Hence, the gradient dr/dy 
can only be estimated. If we can estimate dr/dy, then an on-line supervised structure-parameter learning 
algorithm can be directly derived for the action network to solve the reinforcement learning problem. To 
estimate the gradient information in a reinforcement learning network, there needs to be some source of 
randomness in the manner in which output actions are chosen by the action network such that the space of 
possible output can be explored to find a correct value. Thus, the output nodes (layer 5) of the action network 
are now designed to be stochastic units which compute their output as a stochastic function of their input. 
The functions of nodes in the other layers of the action network remain unchanged as described in Section 2. 
Such an approach has also been used in other reinforcement learning algorithms [1, 9] and is consistent with 
the closely related theory of stochastic learning automata [17]. 

In our learning algorithm, the gradient information t3r/dy is also estimated by the stochastic exploratory 
method. In particular, the intuitive idea behind the multi-parameter distributions is used for the stochastic 
search of network output units. In estimating the gradient information, the output y of the action network 
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does not directly act on the environment. Instead, it is treated as a mean (expected) action. The actual action 
3~ is chosen by exploring a range around this mean point. This range of exploration corresponds to the 
variance of a probability function which is the normal distribution in our design. This amount  of exploration 
a(t) is chosen as 

k (39) a(t) = [1 - tanh(p(t))] - 1 + e 2pt')' 

where k is a search-range scaling constant which can be simply set to 1, and p(t) is the predicted (expected) 
reinforcement signal used to predict r(t). Eq. (39) is a monotonic decreasing function between k and 0, and 
a(t) can be interpreted as the extent to which the output node searches for a better action. Since p(t) is the 
expected reward signal, if p(t) is small, the exploratory range a(t) will be large according to Eq. (39). On the 
contrary, if p(t) is large, a(t) will be small. This amounts to narrowing the search about the mean y(t) if the 
expected reinforcement signal is large. This can provide a higher probability to choose an actual action 3~(t) 
which is very close to y(t), since it is expected that the mean action y(t) is very close to the best action possible 
for the current given input vector. On the other hand, the search range about the mean y(t) is broadened if the 
expected reinforcement signal is small such that the actual action can have a higher probability of being quite 
different from the mean action y(t). Thus, if an expected action has a smaller expected reinforcement signal, 
we can have more novel trials. In terms of searching, the use of multi-parameter distributions in the 
stochastic nodes (the output nodes of the action network) could allow independent control of the location 
being searched and the breadth of the search around that location. In the above two-parameter distribution 
approach, a predicted reinforcement signal is necessary to decide the search range a(t). This predicted 
reinforcement signal can be obtained from the fuzzy predictor. If no such prediction is available, the search 
range cr(t) can be set as a constant. Then the multi-parameter distribution approach reduces to the 
single-parameter distribution approach, which has been widely used in the reinforcement learning algorithms 
[1]. Once the variance has been decided, the actual output of the stochastic node can be set as 

~(t} = N(y(t) ,  a(t)). (40) 

That is, j)(t) is a normal or Gaussian random variable with the density function 

1 
f ( 3 ~ ) - - - e  I~ ~,t2/2~ 2 (41) 

a \ 2 ~  

For  a real-world application, 33(0 should be properly scaled to the final output to fit the input specifications 
of the controlled plant. This scaling factor or method is application-oriented. 

The gradient information is estimated as 

~r [ f 1 ( t - - 1 ) - - y ( t - - 1 ) ]  [ ] 
- -  ~ J r ( t )  - -  p ( t ) ]  - - -  - -  , ( 4 2 )  (?y ~ - t - - ~  [r(t) -- p(t)3 33 -- y 

O" t 1 

where the subscript t - 1 represents the time displacement and a is a scaling factor. The time displacements in Eq. 
(42) and the following equations reflect the assumption that the reinforcement signal (which may be the 
"predicted" reinforcement signal in the multi-step fuzzy predictor) at time step t depends on the input and actions 
chosen at time step t - 1. In Eq. (42), the term (p - y)/a is the normalized difference between the actual and the 
expected actions, r(t) is the real reinforcement feedback for the actual action p(t - 1), and p(t) is the predicted 
reinforcement signal for the expected action y(t - 1). Eq. (42) was derived based on the following intuitive concept. 
Ifr(t) > p(t), then p(t - 1) is a better action than the expected one, y(t - 1), and y(t - 1) should be moved closer to 
p(t - 1). If r(t) < p(t), then p(t - 1) is a worse action than the expected one, and y(t - 1) should be moved farther 
away from p(t - 1). This idea also comes from the observations of a discrete gradient descent method. The concept 
behind Eq. (42) is frequently adopted in the stochastic exploration techniques. 
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After the gradient information is available, we have transformed the reinforcement learning problem to the 
supervised learning problem and can apply the gradient descent method to develop the reinforcement 
structure-parameter learning algorithm for the action network in the proposed RNFCN. According to Fig. 
5, after the initialization process the learning algorithm enters the training loop in which each loop 
corresponds to an incoming internal reinforcement signal. The goal now is to maximize the reinforcement 
signal r(t). For each input vector from the environment, starting at the input nodes, a forward pass computes 
the activity levels of all the nodes in the network, and at the end, stochastic exploration is performed at the 
output node to predict ~r/dy. Then, starting at the output nodes, a backward pass computes Or/dffor all the 
hidden nodes. Assuming that w is an adjustable parameter in a node (e.g., the center of a membership 
function), the general parameter learning rule used is 

Aw ~ Or/Ow, (43) 

w(t + 1) = w(t) + rl(~r/Ow ), (44) 

Initialization J 

Forward Signal Propagation 
and 

Stochastic Exploration 
or 

Temporal Difference Prediction 

Yes 

N 

Train 
Loop ~ Yes 

I Add new nodel 

Change fuzzy 
logic rules I 

Fig. 5. Flow chart of the proposed reinforcement structure/parameter learning algorithm. 
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where r/is the learning rate, and 

~?r t?r 0(activation) t?r t?a 
- ( 4 5 )  

~w O(activation) dw Oa 8w" 

To show the learning rule, we shall show the computations of OUt?w, layer by layer, starting from the output 
layer; we use the bell-shaped membership functions with centers mi's and widths ai's as the adjustable 
parameters for these computations. 

Layer 5: Using Eqs. (45), (42) and (9), the adaptive rule of the center m~ is derived: 

dr _ t?r ~a '5' I t ( t ) -  p(t)] I " f - y ]  [ tr'ulS' 1 (46) 
5' _ o _ , _ ,  L O-,ul---" J,_ 1 

Hence, the expected updated amount of the center parameter is 

Ami(t) = r / [ r ( t ) -  p(t)] ~ ,-1 }~rlul s' ,-1" (47) 

Similarly, using E q s .  ( 4 5 ) ,  ( 4 2 ) ,  a n d  ( 9 ) ,  the adaptive rule of the width ~ri is derived: 

(?r_ 8r ~a (5' [ 29 - - Y]  ,5) is) 15) ~5, [miu, (Zo-iui )-(Zmlo-,ui )ui l (48) ~, (~a,5, c~cr ' - [ r ( t ) -  p( t ) ]  ~ ~ o -  , - i  1_ ~ - ~ 1 5 ~  J, , 

Hence, the expected updated amount of the width parameter is 

[ ] [m~ui (r'o-iu~)--(~'m~a'u~ )u~ 1 (49) Ao'i(t ) = q[r(t) -- p(t)] )3 - - Y  ~51 (5, (5, is) 
O..U(5) 2 t -  O- , i L  ( 2 , , )  J , 

The error to be propagated to the preceding layer is 

~ r ~ ? r  [ i O -  y ]  (50) 
6(5'(0-~a~5 ) - ( ? y - [ r ( t ) - p ( t ) ]  ~ -  t-l" 

Fuzzy similarity measure: In this step, the system will decide if the current structure should be changed or not 
according to the expected updated amount of the center and width parameters (Eqs. (47) and (49)). To do this, 
the expected center and width are, respectively, computed as 

ml-new = mi(t)  + Ami(t) ,  

O ' i - n e w  "~" O-i(t) -t- Aai(t). (51) 

From the current membership functions of output linguistic variables, we want to find the one which is the 
most similar to the expected membership function by measuring their fuzzy similarity. The fuzzy similarity 
measure [11] determines the similarity between two fuzzy sets. If A and B are two fuzzy sets with bell-shaped 
membership functions, then 

/~a(x) = e - I  . . . .  ,2/~,~ and #B(x) = e - I  . . . .  12/-~ (52) 

The approximate fuzzy similarity measure of A and B, E(A, B), is defined and can be computed as follows: 
Assuming ml >~ m 2 ,  

I A n B I  I A n B I  
- - -  - , ( 5 3 )  

E(A,B) IAuBI  o-1 x//~ + a2x//~ -- IA n el  
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where I A c~ B I indicates the cardinality of A c~ B and it can be easily computed from 

IA n BI = 1 h2(m2 - m, + x/n(cr, + a2)) + 1 h2(m2 - mx + v/~(al  - or2)) 

2 V/n(a, + o'2) 2 v/n(a2 - o',) 

1 h 2 ( m 2  - m, - x /~(al  - 0"2)) 
q , (54) 

2 v /n(a l  - a2) 

where h (x) = max {0, x }. The detailed derivation of the fuzzy similarity measure is presented in the appendix. 
Let M(m~, try) represent the bell-shaped membership function with center m~ and width ai. Let 

degree(i, t) = E [M(mi_ new, O'i-new), M(mi-e l  . . . .  t '  O ' i - e l  . . . .  t ) ' ]  

= max E[M(mi-new, 6/-new), M(mj ,  a~)], (55) 
l~j<~k 

where k = IT(y) lis the size of the fuzzy partition of the output linguistic variable y (t). After the most similar 
membership function M (mi- el . . . .  t ,  trl- ~l .... t) to the expected membership function M (m~_ ~ew, ai-  new) has 
been found, the following adjustment is made: 

If degree(i, t) < ct(t), 
T H E N  

create a new node M(mi- ,ew,  tri-new) in layer 4 
and denote this new node as the i-closest node, 

do the structure learning process, 
ELSE IF M (mi-¢l .... t, tri-cl .... t) ~ M (mi, tri) 

T H E N  
do the structure learning process, 

ELSE 
do the following parameter adjustments in layer 5: 

mi(t + 1) = mi-.ew 

ai(t + 1) = ai-new 

skip the structure learning process. 

~(t) is a monotonically increasing scalar similarity index such that lower similarity is allowed in the initial 
stages of learning. According to the above judgement, degree(i, t) is first compared to a given similarity index 
• (t). If the similarity is too low, then a new term node (new membership function) with the expected 
parameters is built since, in this case, all the current membership functions are too much different from the 
expected one. This new node with the expected membership function is created, and the output connections 
of some just firing rule nodes should be changed to connect to this new term node through the structure 
learning process. If no new term node is necessary, it will then check if the ith term node is the/-closest node. 
If this is false, it means that some just firing fuzzy logic rules should have the/-closest (term) node instead of 
the original i th  term node as their consequent. In this case, the structure learning process ~houlcl be 
performed to change the current structure properly. If the ith term node is the /-closest node, then no 
structural change is necessary, and only the parameter learning should be performed by the standard 
backpropagation algorithm. The structure learning process is then described as follows. 

Structure learning process: When entering this process, it means that the ith term node in layer 4 is 
improperly assigned as the consequent of some fuzzy logic rules which have just been fired strongly. The 
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more proper consequent for these fuzzy logic rules should be the/-closest node. To find the rules whose 
consequents should be changed, we set a firing strength threshold ft. Only the rules whose firing strengths are 
higher than or equal to this threshold are treated as really firing rules. Only the really firing rules are 
considered to be changing their consequents, since only these rules are fired strongly enough to contribute 
to the above results of judgement. Assuming that the term node M(mi, ai) in layer 4 has inputs from rule 
nodes 1 . . . . .  l in layer 3, whose corresponding firing strength are al3~'s, i = 1 . . . . .  l, then 

IF alS)(t) /> /3, THEN change the consequent of the ith rule node 
from M(ml, al) to M(ml-d .... t, ai-cl .... t)- 

Layer 4: There is no parameter to be adjusted in this layer. Only the error signals (614~'s) need to be 
computed and propagated. The error signal 6~ 4~ is derived as in the following: 

dr dr Or Oa ~s~ 
614)- 0al, ) - 0ulS ~ - 0a~5 ) dul5 ), (56) 

where from Eq. (9), 

do (5) -- miff i (E aiUl 5)) -- (~  miaiul5))ai  
OuI5 ~ (E alulS~)2 (57) 

and from Eq. (50), 

Or 6t5) I ~ y  ] 
da~5 ) -  = [ r ( t ) -  p(t)] - -  t-," (58) 

Hence, the error signal is 

61")(t) = [ r ( t ) -  p(t)] - - ~  , - ,  ( ~ I ~  Jr- ,"  (59) 

In the multi-output case, the computations in layers five and four are exactly the same as the above using the 
same internal reinforcement signals and proceed independently for each output linguistic variable. 

Layer 3: As in layer four, only the error signals need to be computed. According to Eq. (7), this error signal 
can be derived: 

Or Or Or dal 4) Or 
613)(0 - dal3 ~ dul, o = dal4 ) dul4 , - dala~ ) - 61")(0. (60) 

Hence, the error signal is 613)(t) = 614)(t). If there is more than one output, then the error signal becomes 
613)(0 = ~k di['*)(t), where the summation is performed over the consequents of a rule node; that is, the error of 
a rule node is the summation of the errors of its consequents. 

Layer 2: Using Eqs. (45) and (5), the adaptive rule of mij is derived: 

d r =  dr dal 2) dr 2(u~2)--mij) (61) 
dmij dal 2, dm,j - d,L-i-i 2, ey' cr/~ ' 

where from Eq. (60), 

~r = S ~  dr da~ 3) 
Oa~ 2) ~ Oa~ 3) O/~tl 3)' 

dr 
_ _  = 6~  3 ) ,  
0a~ 3) 

(62) 

(63) 
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and from Eq. (6), 

gal a' ~'1 if u13'= min(inputs of rule node k), 
OUl 3) otherwise. 10 

Hence, 

(64) 

01" 
- ~ qk(t), (65) c~al 2~ T 

where the summation is performed over the rule nodes that al 2) feeds into, and 

ff3(t) if ai is minimum in the kth rule node's input, 
qk(t) (66) 10 otherwise. 

So the adaptive rule of mij is 

I c~r I Fef'2(ul2)----miJ)] (67) mij(t + 1) = mlj(t) + rl ~ati2) , L tr2 At-1" 

Similarly, using Eqs. (45), (5), and (62)-(66), the adaptive rule of trlj is derived: 

cOtrij gal 2) cOtrij ~ eY' (68) oai t tr3 t -  1" 

Hence, the adaptive rule of a~j becomes 

] (69) 
aal 2---~ a;. J,- i" 

Note that we perform structure learning only in the output part of the RNFCN (for the output linguistic 
variables) in the above learning algorithm. In fact, the same structure learning scheme can be applied to the 
input part of the RNFCN for the input linguistic variables, since the error signals for layer-two nodes are 
available in Eqs. (67) and (69). This can possibly automate the choice of the number of input fuzzy partition. 
However, simulation results show that the error values are usually too small to perform structure changes in 
this layer due to the nature of the backpropagation algorithm. Other structure learning schemes need to be 
developed to address this problem. 

4.2. Fuzzy predictor 

We shall use an NFCN to develop a fuzzy predictor (evaluation network) as shown in Fig. 4. It shares the 
same fuzzifier as the action network; that is, both use the same internal representation, which is an 
overlapping type of distributed representation of input patterns. The fuzzy predictor receives an external 
reinforcement signal from the environment and produces internal reinforcement signals to the action 
network. There are two kinds of fuzzy predictors: single-step fuzzy predictor and multi-step fuzzy predictor, 
suitable to different reinforcement learning problems. The function of the single-step fuzzy predictor is to 
predict the external reinforcement signal r(t) one time step ahead, that is, at time t - 1. Here, r(t) is the real 
reinforcement signal resulting from the inputs and actions chosen at time step t - 1, but it can only be known 
at time step t. If the fuzzy predictor can produce a signal p(t), which is the prediction of r(t) but is available at 
time step t - 1, then the time delay problem can be solved. With a correct predicted signal p(t), a better action 
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can be chosen by the action network at time step t - 1, and the corresponding learning can be performed on 
the action network at time step t upon receiving the external reinforcement signal r(t). As indicated in the last 
subsection, p(t) is necessary for the stochastic exploration with multi-parameter probability distribution (Eq. 
(39)). The other internal reinforcement signal ~(t) in Fig. 4 is set as ~(t) = r(t) - p(t), which is the prediction 
error for computing Eq. (42) by the action network. Basically, the training of a single-step predictor is 
a simple supervised learning problem. Thus, the reinforcement learning algorithm for the single-step fuzzy 
predictor is exactly the same as the on-line supervised learning algorithm proposed for the N F C N  with 
a single output node. The single-step prediction is the extreme case of the multi-step prediction. Hence, we 
will focus on the multi-step fuzzy predictor in the following. 

When both the reinforcement signal and input patterns from the environment may depend arbitrarily on the 
past history of the network output and the network may only receive a reinforcement signal after a long 
sequence of outputs, the credit assignment problem becomes severe. This temporal credit assignment problem 
results because we need to assign credit or blame to each step individually in such a long sequence for an 
eventual success or failure. Hence, for this class of reinforcement learning problem, we need to solve the 
temporal credit assignment problem together with the original structure credit assignment problem of 
attributing network error to different connections or weights. The solution to the temporal credit assignment 
problem in the RNFCN is to design a multi-step fuzzy predictor which can predict the reinforcement signal at 
each time step within two successive external reinforcement signals which may be separated by many time steps. 
This multi-step fuzzy predictor can assure that both the evaluation network and the action network do not 
have to wait until the actual outcome is known, and they can update their parameters and structures within 
the period without any evaluative feedback from the environment. To solve the temporal credit assignment 
problem, the technique based on the temporal-difference methods is used [23]. Unlike the single-step prediction 
or the supervised learning method which assigns credit according to the difference between the predicted and 
actual output, the temporal-difference methods assign credit according to the difference between temporally 
successive predictions. Some important temporal-difference equations of three different cases are summarized 
below. 

Case 1: Prediction of final outcome. Given the observation-outcome sequences of the form 
x~, x2 . . . . .  xm, z, where each xt is an input vector available at time step t from the environment, and z is the 
external reinforcement signal available at time step m + 1. For  each observation-outcome sequence, the fuzzy 
predictor produces a corresponding sequence of predictions pl, P2 . . . . .  p,~, each of which is an estimate of z. 
Since Pt is the output of the evaluation network at time t, p, is a function of the network's input x,, and the 
network's adjustable parameters wt, and can be denoted as p(xt, wt), where wt can be mi(t) (center of 
membership function) or tri (t) (width of membership function). For this prediction problem, the learning rule, 
which is called TD(2) family of learning procedures, is 

t - 1  

Aw, = ~l(P, - P,-I)  ~, 2 '-k-117wP~, (70) 
k = l  

where pro+ 1 = z, 0 ~< 2 ~< 1, and ~/ is the learning rate. ~. is the recency weighting factor with which 
alternations to the predictions of observation vectors occurring k steps in the past are weighted by 2 k. In the 
extreme case that 2 = 1, all the proceeding predictions, Pl, P2 . . . . .  Pt-1, are altered properly according to the 
current temporal difference, P t -  Pt-1, to an "equal" extent. In this case, Eq. (70) reduces to a super- 
vised-learning approach, and if pt is a linear function of xt and wt, then it is the same as the Widrow-Hoff  
procedure I-6]. In the other extreme case that 2 = 0, the increment of the parameter w, is determined only by 
its effect on the prediction associated with the most recent observation. A theorem about the convergence of 
TD(0) when Pt is a linear function of xr and wt can be found in [23]. 

Case 2: Prediction of finite cumulative outcomes. In this case, Pt predicts the remaining cumulative cost 
given the tth observation xt, rather than the overall cost for the sequence. This case happens when we are 
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more concerned with the sum of future predictions than the prediction of what will happen at a specific future 
~ m + l  time. Let rt be the actual cost incurred between time steps t - 1 and t. Then Pt- 1 is to predict z,_ 1 = 2~k=t rk" 

Hence, the prediction error is 

m + l  m + l  

z t - l - - p , - l =  ~, r k - - P t - 1  = Z ( r k + P k - - P k - 1 ) ,  
k = l  k = l  

where p,,+l is defined as 0. Thus, the learning rule is 

t - I  

Aw, = tl(rt + Pt - P , -1)  ~', 2 ' - k  1Vwpk. (71) 
k = l  

Case 3: Predict ion o f  infinite discounted cumulative outcomes. In this case, Pt-1 predicts zt-1 = 
oo k 

Y,k=O )' rt+k = rt + 7Pt, where the discount-rate parameter V, 0 ~< 7 < 1, determines the extent to which we are 
concerned with short- or long-range prediction. This is used for prediction problems in which exact success 
or failure may never become completely known. In this case, the prediction error is (rt + ~'pt) - Pt- 1, and the 
learning rule is 

t - - 1  

Awt = tl(r, + ~p, - P t -1)  ~', 2 t - k -1VwPk .  (72) 
k = l  

In applying the temporal difference procedures to the proposed RNFCN, we let 2 = 0 due to its efficiency 
and accuracy [-23]. A general learning rule used for the above three cases is 

Awt = tiff, + ~pt - p t -1 )  17wp,-~, (73) 

where 7, 0 ~< 7 < 1, is a discount-rate parameter, and q is the learning rate. 
We shall next derive the learning rule of the multi-step fuzzy predictor according to Eq. (73). In this case, 

p(t)  is the single output of the fuzzy predictor (evaluation network) for the network's current parameter w(t), 
and current given input vector x(t) ,  at time step t. Here, p( t )  can be any kind of prediction output in the 
various cases of the multi-step prediction problem stated above. According to Eq. (73), let 

e ( t ) = r ( t ) + y p ( t ) - p ( t - 1 ) ,  0 ~ < 7 <  1. (74) 

Then ~(t) is the error signal of the output node of the multi-step fuzzy predictor. The general parameter 
learning rule then is 

Aw(t) = ~ ( t )  ~ ~- 1' 

where w is the network parameter (i.e., mi or ~ri). The learning rule for each layer in the fuzzy predictor can be 
computed as in Eqs. (45)-(69). The only exception is that the error signal is different. Thus, the learning 
equations for the multi-step fuzzy predictor are the same as in Eqs. (45)-(69) but with the term 

replaced by the term ~(t) in Eq. (74). Also the multi-step fuzzy predictor will provide two internal 
reinforcement signals, the prediction output p(t), and the prediction error ~(t), to the action network for its 
learning (see Fig. 5). 

The learning algorithm for the action network is the same as that derived in Section 4.1 above. However, 
due to the different nature of the internal reinforcement signal ~(t), the learning algorithm of the action 
network with the multi-step fuzzy predictor will be different. The goal of the action network is to maximize 
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the external reinforcement signal r(t) .  Thus, we need to estimate the gradient information ~r/Oy as we did 
above. With the internal reinforcement signals p( t )  and 8(t), from the evaluation network, the action network 
can perform the stochastic exploration and learning. The prediction signal p( t )  is used to decide the variance 
of the normal distribution function in the stochastic exploration in Eq. (39). Then the actual output p(t) can 
be determined according to Eq. (40). Since 8(t) is the prediction error, the gradient information is estimated as 

0Y~r = '(t) [ ) ) -  Y I ~ - -  t - , '  (76) 

In Eq. (74), the prediction error is f(t) = r(t) + 7p( t )  - p ( t  - 1) = r( t )  - [ p ( t  - 1) - ),p(t)]. Since p( t  - 1) 
predicts the accumulated reinforcement signal in the future (i.e. r( t )  + yp ( t ) ) ,  p ( t  - 1) - 7p( t )  predicts the next 
reinforcement signal (i.e., r( t ) ) .  Thus, r(t) is the reinforcement signal with respect to the actual action ~9(t - 1), 
and [ p ( t  - 1) - yp(t)] is the reinforcement signal with respect to the expected action y ( t  - 1). Then from the 
equation 

~ = [r(t) - [ p ( t  - 1) - 7p(t)]] ,-1' (77) 

we can observe that if r( t )  > [ p ( t  - 1) - 7p(t)], the actual action 3)(t - 1) is better than the expected action 
y ( t  - 1). So y ( t  - 1) should be moved closer to ~(t - 1). On the other side, if r(t) < [ p ( t  - 1) - ~p(t)], then the 
actual action j~(t - 1) is worse than the expected action y ( t  - 1). So y ( t  - 1) should be moved further away 
from ~9(t - 1). 

Having the gradient information Or/Oy (Eq. (77)), the learning algorithm of the action network can be 
determined in the same way as in the previous section. The exact learning equations are the same as in Eqs. 
(43)-(69) except that 

3 3 - y  
[ r ( t ) - p ( t ) ] I ~ l , _ l  

has been replaced by the new error term 

[ r ( t ) + T p ( t ) - p ( t - 1 ) ]  ~ ,-1 

5. Illustrative examples 

A general purpose simulator has been written in the "C" language to simulate and show the applicability of 
the proposed systems. Using this simulator, two typical examples are presented in this section. The first 
example is to use NFCN to control an unmanned vehicle by learning the driving technique of a skilled driver, 
and the second example is to use RNFCN to solve the cart-pole balancing problem. 

5.1.  E x a m p l e  1: f u z z y  c o n t r o l  o f  u n m a n n e d  veh ic le  

This example illustrates the applicability of the proposed two-phase hybrid learning algorithm for 
constructing the NFCN for the control of the "fuzzy" car conceived by Sugeno [21]. The car has the ability to 
learn from training examples to move automatically along a track with rectangular turns. The goal is to 
demonstrate that the car, under a N F C N ,  can learn from past driving experiences of a skilled driver, and then 
the car can run automatically for similar road conditions as if it were driven by a skilled driver. The input 
linguistic variables are x0, xl ,  and x2 which represent the distance of the car from the side boundary of the 
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track, the distance of the car from the turning point of a corner, and the current steering angle, respectively 
(see Fig. 6). The output linguistic variable y is the next steering angle. The constraints of these variables are 
0 ~< Xo ~< 250cm, 0 ~< xl ~< 700 cm, and - 65 ° ~< x 2 , y  <~ 65 °. The training data are obtained in the process 
when a skilled operator guides the fuzzy car along the track as shown in Fig. 9. A total of 780 input -output  
training pairs are used. In the simulation, we set the side of fuzzy partitions of Xo, xl ,  and x2 to 3, 5, and 5, 
respectively; that is, the input linguistic variable Xo has three fuzzy sets ("close", "normal", and "far") in 
describing the distance of the car from the side of the track. 

In the simulation, the two-phase hybrid learning algorithm is used to set up the proposed N F C N  with sets 
of off-line training data. In this simulation, the size of fuzzy partitions of the output linguistic variable is set to 
10 and the overlap parameter  is set as r = 2.0. Figure 7 shows the curve of mean-squared error with respect to 
the number  of epochs, and the curve of mean iteration number with respect to the number of epochs. Here the 
learning rate is set to 0.15 and the error tolerance is 0.01. From the second curve, we can find that the average 
iteration number  for a single training point to converge is rather small from the beginning, meaning that the 
phase-one, self-organizing learning process has done much work already. The learned N F C N  is shown in 
Fig. 8. After the whole connectionist fuzzy logic controller is established, it is used to control the car. We keep 
the speed of the car constant, and assume that there are sensors on the car to measure the state values Xo, xl ,  
and x2 which are fed into the controller to derive the next steering angle. The simulated result is shown in 

x° I 
× 

J 

I 

I 
I 

Fig. 6. The state variables in the fuzzy car example. 
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Fig. 7. Learning curves: mean error and mean iteration versus 
time (epoch) in the fuzzy car simulation using hybrid learning 
algorithm. 
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Fig. 8. Structure of the NFCN after the supervised learning in the fuzzy car simulation. 

Fig. 9. The dotted curve is the training path and the solid curve is the path that the fuzzy car runs under the 
control of the proposed connectionist fuzzy logic controller. We found that these paths coincide closely. We 
simulated this example several times with different initial steering angles, and the results we obtained were 
nearly the same. 

5.2. Example 2." the cart-pole balancing problem 

The proposed RNFCN with the multi-step fuzzy predictor has been simulated for the cart-pole balancing 
problem or the so-called inverted pendulum balancing problem. This problem is often used as an example of 
inherently unstable, dynamic systems to demonstrate both modern and classic control techniques as well as 
the learning control techniques of neural networks using supervised learning methods [28] or reinforcement 
learning methods [1]. 

As shown in Fig. 10, the cart-pole balancing problem is the problem of learning how to balance an upright 
pole. The bottom of the pole is hinged to a cart that travels along a finite-length track to its right or its left. 
Both the cart and the pole can move only in the vertical plane; that is, each has only one degree of freedom. 
There are four input state variables in this system: 0, angle of the pole from an upright position (in degrees); 0, 
angular velocity of the pole (in degrees/s); x, horizontal position of the cart's center (in meters); and :t, velocity 
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Fig. 9. Simulation results of the fuzzy car running under the control of the learned NFCN in the fuzzy car simulation, where the dotted 
line is the training curve and solid lines are the running curves of the fuzzy cars. 
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Fig. 10. The cart-pole balancing system. 

of  the cart  (in m/s). The  only  con t ro l  ac t ion  is f, which is the a m o u n t  of force (N) appl ied  to the cart  to move it 
t o w a r d  its left o r  right.  The  system fails and  receives a pena l ty  signal of  - 1 when the pole  falls pas t  a cer ta in  
angle  ( _  12 ° is used here) or  the car t  runs in to  the bounds  of  its t rack  (the dis tance is 2.4 m from the center  to 
bo th  bounds  of  the track). The goal  of  this cont ro l  p r o b l e m  is to t ra in  the R N F C N  such that  it can de te rmine  
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a sequence of forces with proper magnitudes to apply to the cart to balance the pole for as long as possible 
without failure. 

The model and the corresponding parameters of the cart-pole balancing system for our computer  
simulation are adopted from [1] with additional consideration of friction effects. This model and its 
parameters are also used by Barto et al. [1]. The equations of motion that we used are 

O(t + 1) = O(t) + AO(t), 

0(t + 1) : 0(t) 

+ A  

(78) 

mg sin O(t ) -- cos O ( t ) [ f  (t) + mpl(O(t)x/180) 2 sin O(t ) -- la¢ sgn (2(t))] -- #pmO(t)/mpl 

(4/3)mi -- mpl cos 20(t) 

x( t  + 1) = x( t )  + AYe(t), 

2(t + 1) = 2(t) + A f ( t )  + mpl[(O(t)~z/180)2 sin O(t) - 0(t)rt/180cos 0(t)] - #csgn [2(t)]  
m 

where g = - 9 . 8  m/s 2, acceleration due to the gravity, m = 1.1 kg, combined mass of the pole and the cart, 
m p =  0.1 kg, mass of the pole, l = 0.5 m, half-pole length,/~c = 0.0005, coefficient of friction of the cart on the 
track, #p = 0.000002, coefficient of friction of the pole on the cart, and A = 0.02, sampling interval. 

The constraints on the variables are - 1 2  ° ~< 0 ~< 12 °, - 2 . 4 m  ~< x ~< 2.4m, and - 1 0 N  ~<f~< 10N. In 
designing the controller, the equations of motion of the car t -pole  balancing system are assumed to be 
unknown to the controller. A more challenging part  of this problem is that the only available feedback is 
a failure signal that notifies the controller when a failure occurs; that is, either I 01 > 12 ° or Ix I > 2.4 m. This is 
a typical reinformation learning problem and the feedback failure signal serves as the reinforcement signal. 
Since a reinforcement signal may only be available after a long sequence of time steps in this failure avoidance 
task, a multi-step fuzzy predictor is required for the RNFCN.  Moreover, since the goal is to avoid failure for 
as long as possible, there is no exact success in finite time. Also, we hope that the R N F C N  can balance the 
pole for as long as possible for infinite trials, not just for one particular trial, where a "trial" is defined as the 
time steps from an initial state to a failure. Hence, Eq. (73) is used here for the temporal-difference prediction 
method. The reinforcement signal is defined as 

J ' - I  if 10(t)1>12 ° or I x ( t ) l > 2 . 4 m ,  
r ( t )  (79) 

0 otherwise, 

and the goal is to maximize the sum ~k=oVkr(t  + k), where 7 is the discount rate. 
In our computer  simulation, the learning system was tested for 10 runs by trying to use the same learning 

parameter  values in [1]. Each run consisted of a sequence of trials; each trial began with the same initial 
condition 0(0) = 0(0) = x(0) = 2(0) = 0, or with a randomized initial condition, and ended with a failure 
signal indicating that either 10(t)l > 12 ° or Ix(t)[ > 2.4 m. The randomized initial condition means that after 
each failure, the initial configuration was independently and randomly chosen such that 
- 10 < 0(0) < 10, - 5 0  < 0(0) < 50, - 2  < x(0) < 2, and - 10 < 2(0) < 10. The input fuzzy partitions were 

set as IT(x)[ = 3, [T(~)I = 3, I T(0)I = 7, and [T(0)I = 3 for all runs. For  each run, the input (output) 
membership functions were initialized so that they covered the whole input (output) space evenly, and the 
output fuzzy partition was initialized as I T ( f ) l  = 7. The membership functions were chosen to be the 
bell-shaped functions (Eq. (5)). Also, in the initiation of each run, each rule was assigned with a consequent 
term randomly. There is a total of 189 rules in the beginning. Here we assumed that no expert knowledge (in 
the form of I F - T H E N  rules) are available. Runs were consisted of at most 50 trials unless the duration of each 
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run exceeded 500 000 time steps. A run was successful and terminated after 500 000 time steps before all 50 trials 
took place; otherwise, it was called "a failure" and terminated at the end of its 50th trial. 

In our computer simulations, a total of 10 runs were performed. Among these 10 runs, five of them started 
with zero initial conditions and the others started with randomized initial conditions. The simulation results 
(see Fig. 11) showed that the RNFCN can learn to balance the pole within 20 trials. In most of the 10 runs, the 
learning was completed before 10 trials. It was observed that the runs starting with randomized initial condition 
usually took more trials. Fig. 12 shows the angle deviation of the pole about the center point when the cart-pole 
system was controlled by a well-trained RNFCN. This performance is better than the results presented in [1] 
and compatible to those in [3]. In most runs, the final number of learned output membership functions is less 
than 15 as compared to 189 output membership functions that were used in [9] for each run; that is, one output 
membership function for each (overlapping) grid of input space. 

6. Conclusion 

A general connectionist model of a fuzzy logic control system called NFCN was proposed. The proposed 
model introduces the low-level learning power of neural networks into the fuzzy logic system and provides 
high-level human-understandable meaning to the normal connectionist architecture. A hybrid learning 
scheme which combines a self-organized learning algorithm and a supervised learning algorithm was 
developed for performing the structure and parameter learning of this model. The hybrid learning algorithm 
performed well when sets of precise supervised training data are available. We also described the develop- 
ment of integrating two NFCNs into an integrated RNFCN for solving various reinforcement learning 
problems. By combining the techniques of temporal difference, stochastic exploration, and a derived on-line 
supervised structure-parameter learning algorithm, a reinforcement structure-parameter learning algorithm 
was proposed for the RNFCN. The proposed RNFCN makes the design of fuzzy logic controllers more 
practical for real-world applications since it greatly lessens the quality and quantity requirements of the 
feedback training signals. Computer simulations of the unmanned vehicle control and the cart-pole 
balancing problem satisfactorily verified the validity and the performance of the proposed supervised 
learning algorithm for NFCN and the reinforcement structure-parameter learning algorithm for the 
RNFCN, respectively. 

Appendix: approximate similarity measure of fuzzy sets 

We use an approximate approach to reduce the computational complexity of the fuzzy similarity measure 
of two fuzzy sets with bell-shaped membership functions. Since the area of the bell-shaped function e -~x-ce/, 2 
is a x ~  and its height is always 1, we can approximate it by an isosceles triangle with unity height and the 
length of bottom edge 2ax/~. We can then compute the fuzzy similarity measure of two fuzzy sets with such 
kind of membership functions (see Fig. 13). 

To derive the equations of the similarity measure of two fuzzy sets with isosceles triangular member- 
ship functions, we observe all the possible relative relationships of two isosceles triangles on a horizontal 
axis (x-axis). Let A(ml, ai) denote the isosceles triangle with unity height, bottom-line length 2aix~, 
and center of bottom-line at mi on x-axis. Assume the two end-points of the bottom-line of A(ml, trl) are 
a and b on x-axis, and the two end-points of the bottom-line of A (m2, a2) are c and d on x-axis (see Fig. 13). 
That is, 
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Fig. 13. Two isosceles triangular membership functions. 

First, if ml = m2, then obviously,  I a  n BI = ¢r2x//~ (if a l  >~ a2) or  IA n nl  = a l~/ -~  (if trx < tr2). In the 
following discussion, we assume ml > m2. Let  us consider the following four possible situations: 

Case 1: If  a ~> d, then I A c~ B I = 0 since the two membersh ip  functions do not  overlap. 
Case 2: I f b / > d > a ~ > c ,  then 

IA c~ BI = ½(d - a)y 

l ( m 2 - - m l  + ~ r l x / ~  + a2x / /~)  2 

2 (o"1 + ° '2)x/~ 
(A.1) 

Case 3: If b > d and c > a, then 

IA c~ BI = ½(x2 - c)y2 + ½(Yl + y2) (x l  - -  x 2 )  + ½(d - xl)yl. (A.2) 

We can get 

1 1 
5(x~ - c)y2 = 5o~ 

1 1 
~(d  -- x l ) y x  = ~t72 

Since 

[m~ -- m~ + v/~(~ -- ~)]~ 

v/~(G~ - ~;)' 

Em~ - m ,  + v/~(~, + ~,)]~ 
x/~(c~ + ~2) 2 

(A.3) 

½(Yl + yE)(Xl -- x2) = ½(xl -- a ) y l  -- ½(x2 -- a)y2.  (A.4) 
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we can get the following results: 

1 1 Ira2 - -  ml + ~J/-~(0.1 "Jr 0"2)-] 2 
~(Xl -- a ) y l  = -~ 0.1 ,/-~(0., + 0.~)2 

1 1 [m2 - -  m l  + %//~(0.1 - -  0"2)] 2 
~(x2 -- a)y2 = ~ a a  

N/f~(0.1 - -  0.2) 2 

So the final result is that  

1 [m~ - ml  + x /~(0 .~  - 0.~)]~ 1 [m 2 - -  m 1 + N///~(0.1 "3 L 0.2)] 2 ---- + 
IA ~ 81 ~ v / ~ ( 0 . t  - 0.2) 2 , J ~ ( 0 . ,  + 0.2) 

Case 4: If b < d and a > c, then 

IA c~ BI = ½(b - x t ) y l  + ½(x2 - a)y2 + ½(d - x2)Y2 - ½(d - x , ) y  I . 

We can get the following results: 

1 1 [m  I - -  m 2 + X//~(0.1 - -  0.2)'] 2 
~ ( b  - x l ) y ,  = ~0.1 

1 1 

1 1 
~ ( d  - x 2 ) y  2 = ~0.2 

1 1 
~ ( d - -  x 1 ) y  I ---- ~0.2 

So, we can get 

V/-~(G, - 0-2)2 

I-m2 - -  m I -+- N//f~(0.1 .+. 0-2)] 2 

N//~(0.1 "{- 0"2) 2 

[ ' 2  - mt + x / ~ ( 0 . ,  + 0.2)]  2 

v/n(0.1 + 0.2) 2 

Era, - m2 + , , / ~ (0 . ,  - 0.2)]  2 

, / ~ ( 0 . ,  _ 0.:)2 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

1 I-m2 - m l  + V / - ~ ( a ,  + 0"2) ]  2 I l - rot  - m z  + V / ~ ( a ,  - 0 .2 ) ]  2 
= + ( A . 9 )  

IA ~ BI 2 x /~(  0., + 0.1) 2 x/~(0.1 - 0.2) 

F r o m  the above discussion and the t ruth that  m 2 - m l  + v/~(0.1 + 0.2)< 0 implies m 2 - m  1 + 
v/~(0.1 - 0.1) < 0 implies mz - m l  + x/~(0.1 + 0.1) < 0, we can conclude a general formula for IA c~ B[ as in 
Eq. (54). Notice that  this general formula is true even when ml = m2. 
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