
ELSEVIER Fuzzy Sets and Systems 70 (1995) 183 212

 ZZ¥
sets and systems

A neural fuzzy control system with structure and
parameter learning

Chin-Teng Lin

Department of Control Engineering, National Chiao-Tung University, Hsinchu, Taiwan. ROC

Received June 1994

Abstract

A general connectionist model, called neural fuzzy control network (NFCN), is proposed for the realization of a fuzzy
logic control system. The proposed NFCN is a feedforward multilayered network which integrates the basic elements
and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities.
The NFCN can be constructed from supervised training examples by machine learning techniques, and the connectionist
structure can be trained to develop fuzzy logic rules and find membership functions. Associated with the NFCN is
a two-phase hybrid learning algorithm which utilizes unsupervised learning schemes for structure learning and the
backpropagation learning scheme for parameter learning. By combining both unsupervised and supervised learning
schemes, the learning speed converges much faster than the original backpropagation algorithm. The two-phase hybrid
learning algorithm requires exact supervised training data for learning. In some real-time applications, exact training
data may be expensive or even impossible to obtain. To solve this problem, a reinforcement neural fuzzy control network
(RNFCN) is further proposed. The RNFCN is constructed by integrating two NFCNs, one functioning as a fuzzy
predictor and the other as a fuzzy controller. By combining a proposed on-line supervised structure-parameter learning
technique, the temporal difference prediction method, and the stochastic exploratory algorithm, a reinforcement learning
algorithm is proposed, which can construct a RNFCN automatically and dynamically through a reward-penalty signal
(i.e., "good" or "bad" signal). Two examples are presented to illustrate the performance and applicability of the proposed
models and learning algorithms.

Keywords: Neural networks; Connectionist; Fuzzy control; Fuzzy predictor; Gradient descent; Supervised-unsupervised
learning; Reinforcement learning.

1. Introduction

Among the schemes in bringing the learning abilities of neural networks to automate and realize the design
of fuzzy logic control systems [2-5, 7, 9-13, 15, 18, 19, 22, 24-27, 29], the most popular one is to imbed a fuzzy
system into a neural network. In this scheme the fuzzy system is installed in an architecture isomorphic to
neural networks, i.e., a multilayered network, where each node performs a function such as to make the entire
network perfectly equivalent to the fuzzy system. In this approach, the gradient descent method that is akin

0165-0114/95/$09.50 © 1995 - Elsevier Science B.V. All rights reserved
SSDI 0165-01 14(94)00216-9

184 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

to the backpropagation algorithm is usually used to train the network. Examples include Jang's adap-
tive-network-based fuzzy inference system (ANFIS) [7, 22], Berenji and Khedkar's generalized approximate
reasoning-based intelligent control (GARIC) [2, 3] for reinforcement learning problems, Yager's implemen-
tation of fuzzy controllers using a neural network framework [27], Nauck and Kruse's [18] fuzzy back-
propagation approach [18], Wang and Mendel's [26] orthogonal least-squares learning, and many others
[5, 13, 25]. The approaches developed in the paper follow this scheme.

In this paper, a general neural-network (connectionist) model is proposed to realize fuzzy logic control
systems. This connectionist model, in the form of feedforward multilayer net, combines the idea of fuzzy logic
controllers and neural-network structure and learning abilities into an integrated neural fuzzy control
network (NFCN). An NFCN can be constructed automatically through learning from the input-output
training data sets. In this connectionist structure, the input and output nodes represent the input states and
output control signals, respectively, and in the hidden layers, there are nodes functioning as membership
functions and fuzzy rules. The NFCN brings the spirit of human-like thinking and reasoning into a neural
network structure. Moreover, NFCN performs both the parameter learning (i.e. learning the membership
functions) and the structure learning (i.e., learning the fuzzy logic rules).

A structure-parameter learning algorithm is proposed for setting up the proposed NFCN. This two-phase
hybrid learning algorithm combines unsupervised learning and supervised gradient-descent learning proced-
ures to build the rule nodes and train the membership functions in two separate phases. This hybrid learning
algorithm performs superiorly to the purely supervised learning algorithm (e.g., backpropagation learning
rule) due to the a priori classification of training data through an overlapping receptive field before the
supervised learning. Since the proposed NFCN maintains the spirit of human-like thinking and reasoning as
in fuzzy logic systems, it eliminates the disadvantage of a normal feedforward multilayered net which is
difficult for an outside observer to understand or to modify. So, if necessary, experts' knowledge can be easily
incorporated into the proposed structure to speed up the network learning.

The two-phase hybrid learning scheme requires precise training data for setting the link weights and the
link connectivity of NFCN. For some real-world applications, precise data for training/learning are usually
difficult and expensive, if not impossible, to obtain. For this reason, there has been a growing interest in
reinforcement learning algorithms for neural networks [1, 3, 9]. In this connection, we further extend the
NFCN to the reinforcement learning problem. For the reinforcement learning problem, training data are
very rough and coarse, and they are just "evaluative" as compared with the "instructive" feedback in the
supervised learning problem. Training a network with this kind of evaluative feedback is called reinforcement
learning, and this simple evaluative feedback, called reinforcement signal, is a scalar. In addition to the
roughness and non-instructive nature of the reinforcement signal, a more challenging problem to the
reinforcement learning is that a reinforcement signal may only be available at a time long after a sequence of
actions has occurred. To solve the long time-delay problem, prediction capabilities are necessary in
a reinforcement learning system. To achieve the goal of solving reinforcement learning problems in fuzzy
logic systems, a reinforcement neural fuzzy control network (RNFCN) is proposed which consists of two
closely integrated NFCNs. One NFCN, the action network, is used for the fuzzy controller, it can choose
a proper action or decision according to the current input vector. The other NFCN, the evaluation network, is
used as the fuzzy predictor, and it performs the single- or multi-step prediction of the scalar external
reinforcement signal. The fuzzy predictor provides the action network with more informative and beforehand
internal reinforcement signals for learning.

Associated with the proposed RNFCN is the reinforcement structure-parameter learning algorithm
which uses the temporal difference technique on the evaluation network to decide the output errors for
either the single- or multi-step prediction. With the knowledge of output errors, an on-line supervised
structure-parameter learning algorithm is developed to train the evaluation network to obtain the
proper membership functions and fuzzy logic rules. For the action network, the reinforcement struc-
ture-parameter learning algorithm allows its output nodes to perform stochastic exploration. With the

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212 185

internal reinforcement signals from the fuzzy predictor, the output nodes of the action network can perform
more effective stochastic searches with a higher probability of choosing a good action as well as discovering
its output errors. Again, after finding the output errors, the whole action network can be trained by the
proposed on-line learning algorithm. Thus, the proposed reinforcement structure-parameter learning algo-
rithm basically utilizes the techniques of temporal difference, stochastic exploration, and the on-line
supervised structure-parameter learning algorithm. It can determine the proper network size, connections,
and parameters of an RNFCN dynamically through an external reinforcement signal. Moreover, learning
can proceed even in the period without any external reinforcement feedback. After learning, the action
network becomes an independent fuzzy logic controller which can be used to control the plant in the original
environment.

In Section 2, the proposed NFCN is introduced and described. The two-phase hybrid learning algorithm is
presented in Section 3. The structure of the proposed RNFCN and the corresponding reinforcement
structure-parameter learning algorithm are presented in Section 4. In Section 5, two examples are used to
illustrate the utility of the proposed systems. First, the model car example as suggested by Sugeno 1-21] is
simulated to demonstrate the capabilities and the performance of the proposed hybrid learning algorithm.
Then, the cart-pole balancing problem is simulated to demonstrate the capabilities of RNFCN. Finally,
conclusions are summarized in Section 6.

2. Neural fuzzy control network (NFCN)

This section introduces the structure and functions of the proposed neural fuzzy control network (NFCN),
which is a feedforward multilayered connectionist structure to realize the traditional fuzzy logic control
systems from sets of input-output training data. The NFCN integrates the basic elements and functions of
a traditional FLC (e.g., membership functions, fuzzy logic rules, fuzzification, defuzzification, and fuzzy
implication) into a connectionist structure which has distributed learning abilities to learn the input/output
membership functions and fuzzy logic rules. Fig. 1 shows the structure of our proposed NFCN. The system
has five layers. Nodes at layer one are input nodes (linguistic nodes) which represent input linguistic variables.
Layer five is the output layer. Nodes at layers two and four are term nodes and act as membership functions
to represent the terms of each respective linguistic variable. Each node at layer three is a rule node which
represents one fuzzy logic rule. Thus, all layer-three nodes form a fuzzy rule base. Layer-three links define the
preconditions of the rule nodes, and layer-four links define the consequents of the rule nodes. Therefore, for
each rule node, there is at most one link (perhaps none) from some term node of a linguistic node. This is true
both for precondition links and consequent links. The links at layers two and five are fully connected
between linguistic nodes and their corresponding term nodes. The arrow on the link indicates the normal
signal flow direction when this network is in use. We shall later indicate the signal propagation, layer by
layer, according to the arrow direction. Signals may flow in the reverse direction in the learning process as
discussed later.

With this five-layered structure of the proposed connectionist model, the basic functions of a node can be
defined. A typical network consists of a unit which has some finite fan-in of connections represented by
weight values from other units and fan-out of connections to other units. Associated with the fan-in of a unit
is an integration function f which serves to combine information, activation, or evidence from other nodes.
This function provides the net input for this node:

net-input = f (Utl k), U(2 k) U~k); W(1 k), W (k) w (k)) , (1)

where u~ k) represents the ith input signal at the kth layer, wl k) represents the ith link weight of the kth layer, the
superscript k indicates the layer number, and p represents the number of a node's input connections. This

186 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

Layer 5 F
(.output]
linguistic /
nodes) I_

B

Layer 4
(output
term
nodes)

Layer 3
(rule
nodes)

O 0 •

Ym Ym

Layer 2
(input
term
nodes)

Layer I 7
[input . 1
anguistac]
no~s) t...

0 0 0

Xl x 2 x n

Fig. 1. Proposed neural fuzzy control network (NFCN).

notation will also be used in the following equations. A second action of each node is to output an activation
value as a function of its net input:

output = ol k~ = a (f) , (2)

where a (') denotes the activation function. For example (in standard form),

P 1
f = ~ . ~k). ~k) (3) ,~i ,,i and a - -

i=1 1 + e - f "

We shall next describe the functions of the nodes in each of the five layers of the proposed connectionist
model.

L a y e r 1: The nodes in this layer transmit input values directly to the next layer. That is,

f = ul 1~ and a = f. (4)

From Eq. (4), the link weight at layer one (wl 1~) is unity.
L a y e r 2: Each node in this layer functions as a membership function. For example, for a bell-shaped

function, we have

(u~2~ - rnii)2 and a = e Y, (5) f = M~ , (mo , a 2

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212 187

where m o and aii are, respectively, the center (or mean) and the width (or variance) of the bell-shaped function
of the j th term of the ith input linguistic variable xl. We shall use bell-shaped membership function in this
paper.

Layer 3: The links in this layer are used to perform precondition matching of fuzzy logic rules. Hence, the
rule nodes should perform the fuzzy AND operation,

f = min(uC13),u~2 3~ u(p 3)) and a = f. (6)

The link weight in layer three (wl 3)) is then unity. We can also use product operator for the fuzzy AND
operation. It is differentiable and suitable for the derivation of a learning algorithm. However, it requires
more computations than the min operator.

Layer 4: For the hybrid learning algorithm, the nodes in this layer have two operation modes: down-up
transmission and up-down transmission modes. In the down-up transmission mode, signals flow upwards
and the links at layer four perform the fuzzy OR operation to integrate the fired rules which have the same
consequent, where the bounded sum operation is used for fuzzy OR:

p

f = ~ ul 4~ and a=min(1 , f) . (7)
i = l

Hence, the link weight wl 4~ = 1. In the up-down transmission mode, signals flow downwards and the nodes
in this layer and the links in layer five function exactly the same as those in layer two. For the RNFCN, the
nodes in this layer only operate in the down-up transmission mode.

Layer 5: For the hybrid learning algorithm, there are two kinds of nodes in this layer. The first kind of
node performs the up-down transmission for the training data y~ to feed into the network. For this kind of
node,

f = Y l and a = f (8)

The second kind of node performs the down-up transmission for the decision signal y'~ output. These nodes
and the layer-five links attached to them act as the defuzzifier. If m~/s and a~/s are the centers and the widths
of output membership functions, respectively, then the following functions can be used to simulate the center
of area defuzzification method [8]:

f = . , , , . , , , _ _ _ f _ _ f E vcij u i = E(mijffij)ul 5) and a = 2 a,~ulS). (9)

Here the link weight at layer five (wl~)) is m~ja~j. For the RNFCN, we have only one kind of nodes performing
the down-up transmission for the decision signal output.

Based on the above connectionist structure, a two-phase hybrid learning scheme will be proposed to
realize the NFCN from the given input-output training data sets. This learning algorithm includes structure
and parameter learning to determine optimal centers (mij's) and widths (a~j's) of term nodes in layers two and
four. Also, it will learn fuzzy logic rules by deciding the connection types of the links at layers three and four;
that is, the precondition links and consequent links of the rule nodes.

3. Two-phase hybrid learning algorithm

In this section, we shall present the proposed two-phase learning scheme for realizing the NFCN from the
given input-output training data sets. In phase one, a self-organized learning scheme is used to locate initial
input and output membership functions and to find the presence of fuzzy logic rules. In phase two,
a supervised learning scheme is used to adjust optimally both input and output membership functions for

188 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183 212

desired outputs. Before this network is trained, an initial form of the network is first constructed. Then,
during the learning process, some nodes and links of this initial network are deleted or combined to form the
final structure of the network. Let T(x~) denote the term set of the linguistic variable x~. Then in its initial
form (see Fig. 1), there are I]i[T(x~)l rule nodes with the inputs of each rule node coming from one possible
combination of the terms of input linguistic variables under the constraint that only one term in a term set
can be a rule node's input. Here [T(x~)l denotes the number of terms of x~ (i.e., the number of fuzzy partitions
of input state linguistic variable xi) . So the state space is initially divided into I T(x~)l x [T(x2)l x ... x I T(Xn)I
linguistically defined nodes (or fuzzy cells) which represent the preconditions of fuzzy rules. Also, initially, the
links between the rule nodes and the output term nodes are fully connected, meaning that the consequents of
the rule nodes are not yet decided. Only a suitable term in each output linguistic variable's term set will be
chosen after the learning process.

3.1. S e l f - o r g a n i z e d l earn ing p h a s e

The problem for the self-organized learning can be stated as: Given the training input data
x i (t) , i = 1 n, the desired output value y~(t), i = 1 m, the fuzzy partitions I T(x)l and [T(y)I, and the
desired shapes of membership functions, we want to locate the membership functions and find the fuzzy logic
rules. In this phase, the network works in a two-sided manner; that is, the nodes and links at layer four are in
the up-down transmission mode so that the training input and output data are fed into this network from
both sides.

First, the centers (or means) and the widths (or variances) of the (input and output) membership functions
are determined by self-organized learning techniques analogous to statistical clustering. This serves to
allocate network resources efficiently by placing the domains of membership functions covering only those
regions of the input/output space where data are present. Kohonen's feature-maps algorithm [14] is adopted
here to find the center ml of the membership function:

I Ix(t) - m~,osest(t)ll = min { [Ix(t) - mi(t) l l },
l <~i<~k

me1 t(t + 1) = m¢l t(t) + c t (t) [x (t) - - mc, t(t)],

rni(t + l) = mi (t) fo rmiv ~ m¢l t,

(lO)

(11)

(12)

where x (t) is the value of some linguistic variable at time t, mi(t) is the center of cluster i at time t, mcl t (t) is
the center closest to x (t) , ~(t) is a monotonically decreasing scalar learning rate, and k = IT(x)]. This
adaptive formulation runs independently for each input and output linguistic variable. The determination of
which of the mi's is rneloses t can be accomplished in constant time via a winner-take-all circuit. Once the centers
of membership functions are found, their widths can be simply determined by the f i r s t - n e a r e s t - n e i g h b o r
heuristic as

I mi --/~closestl a i - , (13)

where r is an overlap parameter. In the second learning phase, the centers and the widths of the membership
functions will be fine-tuned optimally.

After the parameters of the membership functions have been found, the signals from both external sides
can reach the output points of term nodes at layers two and four (see Fig. 1). Furthermore, the outputs of
term nodes at layer two can be transmitted to rule nodes through the initial architecture of layer-three links.
So we can get the firing strength of each rule node. Based on these rule firing strengths (denoted as o~3)(t)'s)
and the outputs of term nodes at layer four (denoted as o~4~(t)'s), we want to decide the correct consequent
links (layer-four links) of each rule node to find the existing fuzzy logic rule by competitive learning

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183 212 189

algorithms [15]. As stated in the last section, the links at layer four are initially fully connected. We denote
the weight of the link between the ith rule node and the j th output term node as w u. The following
competitive learning law is used to update these weights for each training data set:

~ u (t) = o~4)(- w i + o13)). J J (14)

(4) Here oj serves as a win-loss index of t he j th term node at layer four. The theme of this law is that learn if
win. In the extreme case, if o~ 4) is a 0-1 threshold function, then the above law says learn only if win.

After the competitive learning through the whole training data set, the link weights at layer four represent
the strength of the existence of the corresponding rule consequent. Among the links which connect a rule
node and the term nodes of an output linguistic node, at most one link with maximum weight is chosen and
the others are deleted. Hence, only one term in an output linguistic variable's term set can become one of the
consequents of a fuzzy logic rule. If all the link weights between a rule node and the term nodes of an output
linguistic node are very small, then all the corresponding links are deleted, meaning that this rule node has
little or no relation to this output linguistic variable. If all the links between a rule node and the layer-four
nodes are deleted, then this rule node can be eliminated since it does not affect the outputs.

After the consequents of rule nodes are determined, the rule combination is performed to reduce the
number of rules. The criteria for a set of rule nodes to be combined into a single rule node are (1) they have
exactly the same consequents, (2) some preconditions are common to all the rule nodes in this set, and (3)
the union of other preconditions of these rule nodes composes the whole term set of some input linguistic
variables. If a set of nodes meets these criteria, a new rule node with only the common preconditions
can replace this set of rule nodes. An example is illustrated in Fig. 2, where the first term of x0 is common
to all the rules and it thus becomes the only precondition of the resultant rule after the rule combination
scheme.

Yi

le nodes)

x 0 x I x 2

III
Yi

0 0 0 ~ulenod~)

,0 0 0~,0 00~ ~00~
x 0 x 1 x2

Fig. 2. Example of combination of rule nodes.

190 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

3.2. Superv i sed learning phase

After the fuzzy logic rules have been found, the whole network structure is established, and the network
then enters the second learning phase to adjust the parameters of the membership functions optimally. The
problem for the supervised learning can be stated as: Given the training input data x~(t), i = 1 , n, the
desired output value y~(t), i = 1 m, the fuzzy partitions I T(x)l and I T (y) I , and the fuzzy logic rules, adjust
the parameters of the membership functions optimally. These fuzzy logic rules were learned in the first-phase
learning or, in some application domains, they can be given by experts. In the second-phase learning, the
network works in the feedforward manner; that is, the nodes and the links at layer four are in the down-up
transmission mode. The idea of backpropagation is used for this supervised learning. The goal is to minimize
the error function

E = ½(y(t) -)~(t)) 2, (15)

where y (t) is the desired output, and ~(t) is the current output. For each training data set, starting at the input
nodes, a forward pass is used to compute the activity levels of all the nodes in the network. Then starting at
the output nodes, a backward pass is used to compute OE/Oy for all the hidden nodes. Assuming that w is the
adjustable parameter in a node (e.g., the center of a membership function), the general learning rule used is

A w oc - OE/Ow,

(w(t + l) = w(t) + q -- Ow /I

where r/is the learning rate, and

dE 0E 0(activation)

Ow 0(activation) Ow

OE Oa

0 a 0 w "

(16)

(17)

(18)

To show the learning rule, we shall show the computations of OE/~w, layer by layer, starting at the output
nodes, and we will use the bell-shaped membership functions with centers m[s and widths a[s as the
adjustable parameters for these computations.

L a y e r 5: Using Eqs. (18) and (9), the adaptive rule of the center mi is derived as

0E _ OE 0a~S~ = _ [y(t) -)~(t)] ~. (19)
~m i OatS) Om i

Hence, the center parameter is updated by

tTiUl 5)
mi(t + 1) = mi(t) + ~/[y(t) -)~(t)] y~alul5 ~. (20)

Similarly, using Eqs. (18) and (9), the adaptive rule of the width al is derived as

OE BE Oa ts) miulS)(Z aiul 5)) - (ZmiaiulS))u~ s)
O a l - Oa ts) 0try- = - [y(t) -- j~(t)] (Vj~O.iulS)) 2 (21)

Hence, the width parameter is updated by

miu~5) (Z ff iu~5~) -- (Z miff iu~5))u~ 5)
ai(t + 1) = ~i(t) + r/[-y(t) -- 9(t)] tx 'a utSh 2 (22)

xL..~ i i y

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212 191

The error to be propagated to the preceding layer is

- ~ E
6 ~5) - - - - y(t) - p(t). (23) ~a (5)

Layer 4:
(614)'s) need to be computed and propagated. The error signal ~i t4) is derived as in the following:

In the d o w n - u p mode, there is no parameter to be adjusted in this layer. Only the error signals

_ 6 1 4) _ ~ E 3 E d a l s)
~al ,~)-~ (5) , (24)

vai ~al 4)

where (from Eq. (9))

c3al 5) _ Oa (5) _ m i a i (Z aiul s)) - (Z mwiulS))ai
c~a~ 4) Oul 5) (E alulS)) 2

and from Eq. (23),

(25)

where (from Eq. (28))

OE t~E t~a~ 3) (30)
 aT' - 3) 2) '

0E
- - 6tk 3), (31)

t~al 3)

and from Eq. (6),

da~ 2) ~a~3~ - da~3---~ = {~ ~ul 3) if u~3)= min(inputs ° f rule n°de otherwise, k), (32)

summat ion of the errors of its consequents.
Layer 2: Using Eqs. (18) and (5), the adaptive rule of m u is derived as in the following:

~E _ 0E Oal 2) t~E 2(ul 2) -- mij)

63mij 63a12) 63mlj -- t'~al 2) e f ' 0"2 '

. (5)] (5) ~ 6
m i a i (E a i " i " (27) - - (E m i f f i u i ! i

614)(t) = [y (t) - 33(0] (EaiulS))2

In the mult iple-output case, the computa t ions in layers five and four are exactly the same as the above and
proceed independently for each output linguistic variable.

Layer 3: As in layer four, only the error signals need to be computed. According to Eq. (7), this error signal
can be derived as

t~E 0E ~al 4) ~(4)
_ _ _ _ _ _ 6 !4) , ~ - i a (4) (2 8)

- 613) t,~al3) ~a14) c3a13) , t3Ul,) -- vi •

Hence, the error signal is 613) = 614). If there are multiple outputs, then the error signal becomes 613) = ~k 6~k *),
where the summat ion is performed over the consequents of a rule node; that is, the error of a rule node is the

(29)

Hence, the error signal is

~E
6 (5) = -- [y(t) -- 33(0]. (26) Oa (5)

192 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

Hence,

c~E
- • qk, ~3al 2) V

where the summation is performed over the rule nodes that al 2) feeds into, and

[- - 6 [3) if al 2, is minimum in the kth rule node's inputs,
qk = ~ O otherwise.

So the adaptive rule of mij is

dE 2(ul 2) - - mij)
mij(t + 1) = mi j (t) -- rl ~a(12) e f ' ~r~

Similarly, using Eqs. (18), (5), and (30)-(34), the adaptive rule of aij is derived as

dE dE dal 2) dE r 2(u12) - miJ)2
- - e -

dGij ~al 2) ~aij ~al 2' a 3

Hence, the adaptive rule of crij becomes

d E e f ' 2(ul 2) - mij) z
a i j (t + 1) = tTij(t) -- r I ~Cui tr 3

(33)

(34)

(35)

(36)

(37)

Training Data)

1
Find centers/widths of membership functions

by self-organized clustering

I Find fuzzy logic rules by competitive learning

Rules elimination]

Rules combination

Find the op t ima l member sh ip functions I
by error backpropaga t ion

Fig. 3. Flow chart of the proposed hybrid learning algorithm.

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183 212 193

The proposed two-phase hybrid learning procedure is summarized by the flow chart in Fig. 3. The
convergence speed of the backpropagation in the phase-two learning is found superior to the normal
backpropagation scheme since the self-organized learning process in phase one has done much of the
learning work in advance. The hybrid learning algorithm requires that sets of precise input and output
training data are available. In the next section, we shall consider a more difficult learning problem, the
reinforcement learning problem.

4. Reinforcement structure-parameter learning algorithm for RNFCN

Unlike the supervised learning problem in which the correct "target" output values are given for each input
pattern to instruct the network's learning, the reinforcement learning problem has only very simple
"evaluative" or "critic" information instead of "instructive" information available for learning. In the extreme
case, there is only a single bit of information to indicate whether the output is right or wrong. Fig. 4 shows
how a network and its training environment interact in a reinforcement learning problem. The environment
supplies a time-varying vector of input to the network, receives its time-varying vector of output/actions, and
then provides a time-varying scalar reinforcement signal. In this paper, the reinforcement signal r(t) can be
one of the following forms: (1) a two-valued number, r(t) e { - 1, 1 }, such that r(t) = 1 means "a success" and
r(t) = - 1 means "a failure"; (2) a multi-valued discrete number in the range [- 1 , 1], for example,
r(t) e { - 1, -0 .5 , 0, 0.5, 1} which corresponds to different discrete degrees of failure or success; or (3) a real
number, r(t) E [- 1, 1], which represents a more detailed and continuous degree of failure or success. We also

, t y (t) I ~ (t) actinn~

FUZZY internal r e i n / / , , , ~ r~t:mr77,muD
PREDICTOR forcement / / \

signal 1 Output Membership
I / Functions I

e o e

MATCHING

)istributed Re

11
Input Membership [FUZZIFIER

Functions

T..T..t
x(t)

Input States

Fig. 4. Proposed reinforcement neural fuzzy control network (RNFCN).

194 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

assume that r(t) is the reinforcement signal available at time step t and is caused by the input and actions
chosen at time step t - 1 or even affected by earlier input and actions. The objective of learning is to maximize
a function of this reinforcement signal, such as the expectation of its value on the upcoming time step or the
expectation of some integral of its values over all future time.

To resolve the reinforcement learning problems, a new structure, called the reinforcement neural fuzzy
control network (RNFCN), is proposed. The proposed RNFCN, as shown in Fig. 4, integrates two NFCNs
into a learning system: one NFCN for the fuzzy controller and the other N F CN for the fuzzy predictor. These
two NFCNs share the same layers 1 and 2 and have individual layer 3 to layer 5, which are not clearly shown
in the fuzzy predictor in Fig. 4. Each network has exactly the same structure as shown in Fig. 1. In other
words, the fuzzy controller (action network) and the fuzzy predictor (evaluation network) share the same
distributed representation of input states by using the same input membership functions (i.e., the same
fuzzifier), but they have independent fuzzy logic rules (a different rule base and decision-making process) and
different output membership functions (a different defuzzifier). The action network can have multiple outputs
as shown in Fig. 1, although only one output node is shown in Fig. 4. In the multi-output case, all the output
nodes of the action network receive the same internal reinforcement signals from the evaluation network. The
evaluation network has only one output node since it is used to predict the external scalar reinforcement
signal. The action network decides a best action to impose onto the environment in the next time step
according to the current environment status. The evaluation network models the environment such that it
can perform a single- or multi-step prediction of the reinforcement signal that will eventually be obtained
from the environment for the current action chosen by the action network. The predicted reinforcement
signal can provide the action network beforehand as well as more detailed reward/penalty information
("internal reinforcement signals") about the candidate action for the action network to learn and to decrease
the uncertainty it faces to speed up the learning. We shall now describe the details of this reinforcement
learning algorithm in the following subsections.

4.1. Stochastic exploration

In this subsection, we first develop the learning algorithm for the action network. The goal of the
reinforcement structure-parameter learning algorithm is to adjust the parameters (e.g., mi's) of the action
network, to change the connectionist structure or even to add new nodes, if necessary, such that the
reinforcement signal is maximum; that is,

Ami ~: Or/t3mi. (38)

To determine ~r/~mi, we need to know t3r/~y, where y is the output of the action network. (For clarity, we
discuss the single-output case first.) Since the reinforcement signal does not provide any hint as to what the
right answer should be in terms of a cost function, there is no gradient information. Hence, the gradient dr/dy
can only be estimated. If we can estimate dr/dy, then an on-line supervised structure-parameter learning
algorithm can be directly derived for the action network to solve the reinforcement learning problem. To
estimate the gradient information in a reinforcement learning network, there needs to be some source of
randomness in the manner in which output actions are chosen by the action network such that the space of
possible output can be explored to find a correct value. Thus, the output nodes (layer 5) of the action network
are now designed to be stochastic units which compute their output as a stochastic function of their input.
The functions of nodes in the other layers of the action network remain unchanged as described in Section 2.
Such an approach has also been used in other reinforcement learning algorithms [1, 9] and is consistent with
the closely related theory of stochastic learning automata [17].

In our learning algorithm, the gradient information t3r/dy is also estimated by the stochastic exploratory
method. In particular, the intuitive idea behind the multi-parameter distributions is used for the stochastic
search of network output units. In estimating the gradient information, the output y of the action network

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183 212 195

does not directly act on the environment. Instead, it is treated as a mean (expected) action. The actual action
3~ is chosen by exploring a range around this mean point. This range of exploration corresponds to the
variance of a probability function which is the normal distribution in our design. This amount of exploration
a(t) is chosen as

k (39) a(t) = [1 - tanh(p(t))] - 1 + e 2pt')'

where k is a search-range scaling constant which can be simply set to 1, and p(t) is the predicted (expected)
reinforcement signal used to predict r(t). Eq. (39) is a monotonic decreasing function between k and 0, and
a(t) can be interpreted as the extent to which the output node searches for a better action. Since p(t) is the
expected reward signal, if p(t) is small, the exploratory range a(t) will be large according to Eq. (39). On the
contrary, if p(t) is large, a(t) will be small. This amounts to narrowing the search about the mean y(t) if the
expected reinforcement signal is large. This can provide a higher probability to choose an actual action 3~(t)
which is very close to y(t), since it is expected that the mean action y(t) is very close to the best action possible
for the current given input vector. On the other hand, the search range about the mean y(t) is broadened if the
expected reinforcement signal is small such that the actual action can have a higher probability of being quite
different from the mean action y(t). Thus, if an expected action has a smaller expected reinforcement signal,
we can have more novel trials. In terms of searching, the use of multi-parameter distributions in the
stochastic nodes (the output nodes of the action network) could allow independent control of the location
being searched and the breadth of the search around that location. In the above two-parameter distribution
approach, a predicted reinforcement signal is necessary to decide the search range a(t). This predicted
reinforcement signal can be obtained from the fuzzy predictor. If no such prediction is available, the search
range cr(t) can be set as a constant. Then the multi-parameter distribution approach reduces to the
single-parameter distribution approach, which has been widely used in the reinforcement learning algorithms
[1]. Once the variance has been decided, the actual output of the stochastic node can be set as

~(t} = N(y(t) , a(t)). (40)

That is, j)(t) is a normal or Gaussian random variable with the density function

1
f (3 ~) - - - e I~ ~,t2/2~ 2 (41)

a \ 2 ~

For a real-world application, 33(0 should be properly scaled to the final output to fit the input specifications
of the controlled plant. This scaling factor or method is application-oriented.

The gradient information is estimated as

~r [f 1 (t - - 1) - - y (t - - 1)] []
- - ~ J r (t) - - p (t)] - - - - - , (4 2) (?y ~ - t - - ~ [r(t) -- p(t)3 33 -- y

O" t 1

where the subscript t - 1 represents the time displacement and a is a scaling factor. The time displacements in Eq.
(42) and the following equations reflect the assumption that the reinforcement signal (which may be the
"predicted" reinforcement signal in the multi-step fuzzy predictor) at time step t depends on the input and actions
chosen at time step t - 1. In Eq. (42), the term (p - y)/a is the normalized difference between the actual and the
expected actions, r(t) is the real reinforcement feedback for the actual action p(t - 1), and p(t) is the predicted
reinforcement signal for the expected action y(t - 1). Eq. (42) was derived based on the following intuitive concept.
Ifr(t) > p(t), then p(t - 1) is a better action than the expected one, y(t - 1), and y(t - 1) should be moved closer to
p(t - 1). If r(t) < p(t), then p(t - 1) is a worse action than the expected one, and y(t - 1) should be moved farther
away from p(t - 1). This idea also comes from the observations of a discrete gradient descent method. The concept
behind Eq. (42) is frequently adopted in the stochastic exploration techniques.

196 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

After the gradient information is available, we have transformed the reinforcement learning problem to the
supervised learning problem and can apply the gradient descent method to develop the reinforcement
structure-parameter learning algorithm for the action network in the proposed RNFCN. According to Fig.
5, after the initialization process the learning algorithm enters the training loop in which each loop
corresponds to an incoming internal reinforcement signal. The goal now is to maximize the reinforcement
signal r(t). For each input vector from the environment, starting at the input nodes, a forward pass computes
the activity levels of all the nodes in the network, and at the end, stochastic exploration is performed at the
output node to predict ~r/dy. Then, starting at the output nodes, a backward pass computes Or/dffor all the
hidden nodes. Assuming that w is an adjustable parameter in a node (e.g., the center of a membership
function), the general parameter learning rule used is

Aw ~ Or/Ow, (43)

w(t + 1) = w(t) + rl(~r/Ow), (44)

Initialization J

Forward Signal Propagation
and

Stochastic Exploration
or

Temporal Difference Prediction

Yes

N

Train
Loop ~ Yes

I Add new nodel

Change fuzzy
logic rules I

Fig. 5. Flow chart of the proposed reinforcement structure/parameter learning algorithm.

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183 212 197

where r/is the learning rate, and

~?r t?r 0(activation) t?r t?a
- (4 5)

~w O(activation) dw Oa 8w"

To show the learning rule, we shall show the computations of OUt?w, layer by layer, starting from the output
layer; we use the bell-shaped membership functions with centers mi's and widths ai's as the adjustable
parameters for these computations.

Layer 5: Using Eqs. (45), (42) and (9), the adaptive rule of the center m~ is derived:

dr _ t?r ~a '5' I t (t) - p(t)] I " f - y] [tr'ulS' 1 (46)
5' _ o _ , _ , L O-,ul---" J,_ 1

Hence, the expected updated amount of the center parameter is

Ami(t) = r / [r (t) - p(t)] ~ ,-1 }~rlul s' ,-1" (47)

Similarly, using E q s . (4 5) , (4 2) , a n d (9) , the adaptive rule of the width ~ri is derived:

(?r_ 8r ~a (5' [29 - - Y] ,5) is) 15) ~5, [miu, (Zo-iui)-(Zmlo-,ui)ui l (48) ~, (~a,5, c~cr ' - [r (t) - p(t)] ~ ~ o - , - i 1_ ~ - ~ 1 5 ~ J, ,

Hence, the expected updated amount of the width parameter is

[] [m~ui (r'o-iu~)--(~'m~a'u~)u~ 1 (49) Ao'i(t) = q[r(t) -- p(t)])3 - - Y ~51 (5, (5, is)
O..U(5) 2 t - O- , i L (2 , ,) J ,

The error to be propagated to the preceding layer is

~ r ~ ? r [i O - y] (50)
6(5'(0-~a~5) - (? y - [r (t) - p (t)] ~ - t-l"

Fuzzy similarity measure: In this step, the system will decide if the current structure should be changed or not
according to the expected updated amount of the center and width parameters (Eqs. (47) and (49)). To do this,
the expected center and width are, respectively, computed as

ml-new = mi(t) + Ami(t) ,

O ' i - n e w "~" O-i(t) -t- Aai(t). (51)

From the current membership functions of output linguistic variables, we want to find the one which is the
most similar to the expected membership function by measuring their fuzzy similarity. The fuzzy similarity
measure [11] determines the similarity between two fuzzy sets. If A and B are two fuzzy sets with bell-shaped
membership functions, then

/~a(x) = e - I ,2/~,~ and #B(x) = e - I 12/-~ (52)

The approximate fuzzy similarity measure of A and B, E(A, B), is defined and can be computed as follows:
Assuming ml >~ m 2 ,

I A n B I I A n B I
- - - - , (5 3)

E(A,B) IAuBI o-1 x//~ + a2x//~ -- IA n el

198 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

where I A c~ B I indicates the cardinality of A c~ B and it can be easily computed from

IA n BI = 1 h2(m2 - m, + x/n(cr, + a2)) + 1 h2(m2 - mx + v/~(al - or2))

2 V/n(a, + o'2) 2 v/n(a2 - o',)

1 h 2 (m 2 - m, - x /~(al - 0"2))
q , (54)

2 v /n(a l - a2)

where h (x) = max {0, x }. The detailed derivation of the fuzzy similarity measure is presented in the appendix.
Let M(m~, try) represent the bell-shaped membership function with center m~ and width ai. Let

degree(i, t) = E [M(mi_ new, O'i-new), M(mi-e l t ' O ' i - e l t) ']

= max E[M(mi-new, 6/-new), M(mj , a~)], (55)
l~j<~k

where k = IT(y) lis the size of the fuzzy partition of the output linguistic variable y (t). After the most similar
membership function M (mi- el t , trl- ~l t) to the expected membership function M (m~_ ~ew, ai- new) has
been found, the following adjustment is made:

If degree(i, t) < ct(t),
T H E N

create a new node M(mi- ,ew, tri-new) in layer 4
and denote this new node as the i-closest node,

do the structure learning process,
ELSE IF M (mi-¢l t, tri-cl t) ~ M (mi, tri)

T H E N
do the structure learning process,

ELSE
do the following parameter adjustments in layer 5:

mi(t + 1) = mi-.ew

ai(t + 1) = ai-new

skip the structure learning process.

~(t) is a monotonically increasing scalar similarity index such that lower similarity is allowed in the initial
stages of learning. According to the above judgement, degree(i, t) is first compared to a given similarity index
• (t). If the similarity is too low, then a new term node (new membership function) with the expected
parameters is built since, in this case, all the current membership functions are too much different from the
expected one. This new node with the expected membership function is created, and the output connections
of some just firing rule nodes should be changed to connect to this new term node through the structure
learning process. If no new term node is necessary, it will then check if the ith term node is the/-closest node.
If this is false, it means that some just firing fuzzy logic rules should have the/-closest (term) node instead of
the original i th term node as their consequent. In this case, the structure learning process ~houlcl be
performed to change the current structure properly. If the ith term node is the /-closest node, then no
structural change is necessary, and only the parameter learning should be performed by the standard
backpropagation algorithm. The structure learning process is then described as follows.

Structure learning process: When entering this process, it means that the ith term node in layer 4 is
improperly assigned as the consequent of some fuzzy logic rules which have just been fired strongly. The

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212 199

more proper consequent for these fuzzy logic rules should be the/-closest node. To find the rules whose
consequents should be changed, we set a firing strength threshold ft. Only the rules whose firing strengths are
higher than or equal to this threshold are treated as really firing rules. Only the really firing rules are
considered to be changing their consequents, since only these rules are fired strongly enough to contribute
to the above results of judgement. Assuming that the term node M(mi, ai) in layer 4 has inputs from rule
nodes 1 l in layer 3, whose corresponding firing strength are al3~'s, i = 1 l, then

IF alS)(t) /> /3, THEN change the consequent of the ith rule node
from M(ml, al) to M(ml-d t, ai-cl t)-

Layer 4: There is no parameter to be adjusted in this layer. Only the error signals (614~'s) need to be
computed and propagated. The error signal 6~ 4~ is derived as in the following:

dr dr Or Oa ~s~
614)- 0al,) - 0ulS ~ - 0a~5) dul5), (56)

where from Eq. (9),

do (5) -- miff i (E aiUl 5)) -- (~ miaiul5))ai
OuI5 ~ (E alulS~)2 (57)

and from Eq. (50),

Or 6t5) I ~ y]
da~5) - = [r (t) - p(t)] - - t-," (58)

Hence, the error signal is

61")(t) = [r (t) - p(t)] - - ~ , - , (~ I ~ Jr- ," (59)

In the multi-output case, the computations in layers five and four are exactly the same as the above using the
same internal reinforcement signals and proceed independently for each output linguistic variable.

Layer 3: As in layer four, only the error signals need to be computed. According to Eq. (7), this error signal
can be derived:

Or Or Or dal 4) Or
613)(0 - dal3 ~ dul, o = dal4) dul4 , - dala~) - 61")(0. (60)

Hence, the error signal is 613)(t) = 614)(t). If there is more than one output, then the error signal becomes
613)(0 = ~k di['*)(t), where the summation is performed over the consequents of a rule node; that is, the error of
a rule node is the summation of the errors of its consequents.

Layer 2: Using Eqs. (45) and (5), the adaptive rule of mij is derived:

d r = dr dal 2) dr 2(u~2)--mij) (61)
dmij dal 2, dm,j - d,L-i-i 2, ey' cr/~ '

where from Eq. (60),

~r = S ~ dr da~ 3)
Oa~ 2) ~ Oa~ 3) O/~tl 3)'

dr
_ _ = 6~ 3) ,
0a~ 3)

(62)

(63)

200 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

and from Eq. (6),

gal a' ~'1 if u13'= min(inputs of rule node k),
OUl 3) otherwise. 10

Hence,

(64)

01"
- ~ qk(t), (65) c~al 2~ T

where the summation is performed over the rule nodes that al 2) feeds into, and

ff3(t) if ai is minimum in the kth rule node's input,
qk(t) (66) 10 otherwise.

So the adaptive rule of mij is

I c~r I Fef'2(ul2)----miJ)] (67) mij(t + 1) = mlj(t) + rl ~ati2) , L tr2 At-1"

Similarly, using Eqs. (45), (5), and (62)-(66), the adaptive rule of trlj is derived:

cOtrij gal 2) cOtrij ~ eY' (68) oai t tr3 t - 1"

Hence, the adaptive rule of a~j becomes

] (69)
aal 2---~ a;. J,- i"

Note that we perform structure learning only in the output part of the RNFCN (for the output linguistic
variables) in the above learning algorithm. In fact, the same structure learning scheme can be applied to the
input part of the RNFCN for the input linguistic variables, since the error signals for layer-two nodes are
available in Eqs. (67) and (69). This can possibly automate the choice of the number of input fuzzy partition.
However, simulation results show that the error values are usually too small to perform structure changes in
this layer due to the nature of the backpropagation algorithm. Other structure learning schemes need to be
developed to address this problem.

4.2. Fuzzy predictor

We shall use an NFCN to develop a fuzzy predictor (evaluation network) as shown in Fig. 4. It shares the
same fuzzifier as the action network; that is, both use the same internal representation, which is an
overlapping type of distributed representation of input patterns. The fuzzy predictor receives an external
reinforcement signal from the environment and produces internal reinforcement signals to the action
network. There are two kinds of fuzzy predictors: single-step fuzzy predictor and multi-step fuzzy predictor,
suitable to different reinforcement learning problems. The function of the single-step fuzzy predictor is to
predict the external reinforcement signal r(t) one time step ahead, that is, at time t - 1. Here, r(t) is the real
reinforcement signal resulting from the inputs and actions chosen at time step t - 1, but it can only be known
at time step t. If the fuzzy predictor can produce a signal p(t), which is the prediction of r(t) but is available at
time step t - 1, then the time delay problem can be solved. With a correct predicted signal p(t), a better action

C.-T. Lin / Fuzz)' Sets and Systems 70 (1995) 183-212 201

can be chosen by the action network at time step t - 1, and the corresponding learning can be performed on
the action network at time step t upon receiving the external reinforcement signal r(t). As indicated in the last
subsection, p(t) is necessary for the stochastic exploration with multi-parameter probability distribution (Eq.
(39)). The other internal reinforcement signal ~(t) in Fig. 4 is set as ~(t) = r(t) - p(t), which is the prediction
error for computing Eq. (42) by the action network. Basically, the training of a single-step predictor is
a simple supervised learning problem. Thus, the reinforcement learning algorithm for the single-step fuzzy
predictor is exactly the same as the on-line supervised learning algorithm proposed for the N F C N with
a single output node. The single-step prediction is the extreme case of the multi-step prediction. Hence, we
will focus on the multi-step fuzzy predictor in the following.

When both the reinforcement signal and input patterns from the environment may depend arbitrarily on the
past history of the network output and the network may only receive a reinforcement signal after a long
sequence of outputs, the credit assignment problem becomes severe. This temporal credit assignment problem
results because we need to assign credit or blame to each step individually in such a long sequence for an
eventual success or failure. Hence, for this class of reinforcement learning problem, we need to solve the
temporal credit assignment problem together with the original structure credit assignment problem of
attributing network error to different connections or weights. The solution to the temporal credit assignment
problem in the RNFCN is to design a multi-step fuzzy predictor which can predict the reinforcement signal at
each time step within two successive external reinforcement signals which may be separated by many time steps.
This multi-step fuzzy predictor can assure that both the evaluation network and the action network do not
have to wait until the actual outcome is known, and they can update their parameters and structures within
the period without any evaluative feedback from the environment. To solve the temporal credit assignment
problem, the technique based on the temporal-difference methods is used [23]. Unlike the single-step prediction
or the supervised learning method which assigns credit according to the difference between the predicted and
actual output, the temporal-difference methods assign credit according to the difference between temporally
successive predictions. Some important temporal-difference equations of three different cases are summarized
below.

Case 1: Prediction of final outcome. Given the observation-outcome sequences of the form
x~, x2 xm, z, where each xt is an input vector available at time step t from the environment, and z is the
external reinforcement signal available at time step m + 1. For each observation-outcome sequence, the fuzzy
predictor produces a corresponding sequence of predictions pl, P2 p,~, each of which is an estimate of z.
Since Pt is the output of the evaluation network at time t, p, is a function of the network's input x,, and the
network's adjustable parameters wt, and can be denoted as p(xt, wt), where wt can be mi(t) (center of
membership function) or tri (t) (width of membership function). For this prediction problem, the learning rule,
which is called TD(2) family of learning procedures, is

t - 1

Aw, = ~l(P, - P,-I) ~, 2 '-k-117wP~, (70)
k = l

where pro+ 1 = z, 0 ~< 2 ~< 1, and ~/ is the learning rate. ~. is the recency weighting factor with which
alternations to the predictions of observation vectors occurring k steps in the past are weighted by 2 k. In the
extreme case that 2 = 1, all the proceeding predictions, Pl, P2 Pt-1, are altered properly according to the
current temporal difference, P t - Pt-1, to an "equal" extent. In this case, Eq. (70) reduces to a super-
vised-learning approach, and if pt is a linear function of xt and wt, then it is the same as the Widrow-Hoff
procedure I-6]. In the other extreme case that 2 = 0, the increment of the parameter w, is determined only by
its effect on the prediction associated with the most recent observation. A theorem about the convergence of
TD(0) when Pt is a linear function of xr and wt can be found in [23].

Case 2: Prediction of finite cumulative outcomes. In this case, Pt predicts the remaining cumulative cost
given the tth observation xt, rather than the overall cost for the sequence. This case happens when we are

2 0 2 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183 212

more concerned with the sum of future predictions than the prediction of what will happen at a specific future
~ m + l time. Let rt be the actual cost incurred between time steps t - 1 and t. Then Pt- 1 is to predict z,_ 1 = 2~k=t rk"

Hence, the prediction error is

m + l m + l

z t - l - - p , - l = ~, r k - - P t - 1 = Z (r k + P k - - P k - 1) ,
k = l k = l

where p,,+l is defined as 0. Thus, the learning rule is

t - I

Aw, = tl(rt + Pt - P , -1) ~', 2 ' - k 1Vwpk. (71)
k = l

Case 3: Predict ion o f infinite discounted cumulative outcomes. In this case, Pt-1 predicts zt-1 =
oo k

Y,k=O)' rt+k = rt + 7Pt, where the discount-rate parameter V, 0 ~< 7 < 1, determines the extent to which we are
concerned with short- or long-range prediction. This is used for prediction problems in which exact success
or failure may never become completely known. In this case, the prediction error is (rt + ~'pt) - Pt- 1, and the
learning rule is

t - - 1

Awt = tl(r, + ~p, - P t -1) ~', 2 t - k -1VwPk . (72)
k = l

In applying the temporal difference procedures to the proposed RNFCN, we let 2 = 0 due to its efficiency
and accuracy [-23]. A general learning rule used for the above three cases is

Awt = tiff, + ~pt - p t -1) 17wp,-~, (73)

where 7, 0 ~< 7 < 1, is a discount-rate parameter, and q is the learning rate.
We shall next derive the learning rule of the multi-step fuzzy predictor according to Eq. (73). In this case,

p(t) is the single output of the fuzzy predictor (evaluation network) for the network's current parameter w(t),
and current given input vector x(t) , at time step t. Here, p(t) can be any kind of prediction output in the
various cases of the multi-step prediction problem stated above. According to Eq. (73), let

e (t) = r (t) + y p (t) - p (t - 1) , 0 ~ < 7 < 1. (74)

Then ~(t) is the error signal of the output node of the multi-step fuzzy predictor. The general parameter
learning rule then is

Aw(t) = ~ (t) ~ ~- 1'

where w is the network parameter (i.e., mi or ~ri). The learning rule for each layer in the fuzzy predictor can be
computed as in Eqs. (45)-(69). The only exception is that the error signal is different. Thus, the learning
equations for the multi-step fuzzy predictor are the same as in Eqs. (45)-(69) but with the term

replaced by the term ~(t) in Eq. (74). Also the multi-step fuzzy predictor will provide two internal
reinforcement signals, the prediction output p(t), and the prediction error ~(t), to the action network for its
learning (see Fig. 5).

The learning algorithm for the action network is the same as that derived in Section 4.1 above. However,
due to the different nature of the internal reinforcement signal ~(t), the learning algorithm of the action
network with the multi-step fuzzy predictor will be different. The goal of the action network is to maximize

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183 212 203

the external reinforcement signal r(t) . Thus, we need to estimate the gradient information ~r/Oy as we did
above. With the internal reinforcement signals p(t) and 8(t), from the evaluation network, the action network
can perform the stochastic exploration and learning. The prediction signal p(t) is used to decide the variance
of the normal distribution function in the stochastic exploration in Eq. (39). Then the actual output p(t) can
be determined according to Eq. (40). Since 8(t) is the prediction error, the gradient information is estimated as

0Y~r = '(t) [)) - Y I ~ - - t - , ' (76)

In Eq. (74), the prediction error is f(t) = r(t) + 7p(t) - p (t - 1) = r(t) - [p (t - 1) -),p(t)]. Since p(t - 1)
predicts the accumulated reinforcement signal in the future (i.e. r(t) + yp (t)) , p (t - 1) - 7p(t) predicts the next
reinforcement signal (i.e., r(t)) . Thus, r(t) is the reinforcement signal with respect to the actual action ~9(t - 1),
and [p (t - 1) - yp(t)] is the reinforcement signal with respect to the expected action y (t - 1). Then from the
equation

~ = [r(t) - [p (t - 1) - 7p(t)]] ,-1' (77)

we can observe that if r(t) > [p (t - 1) - 7p(t)], the actual action 3)(t - 1) is better than the expected action
y (t - 1). So y (t - 1) should be moved closer to ~(t - 1). On the other side, if r(t) < [p (t - 1) - ~p(t)], then the
actual action j~(t - 1) is worse than the expected action y (t - 1). So y (t - 1) should be moved further away
from ~9(t - 1).

Having the gradient information Or/Oy (Eq. (77)), the learning algorithm of the action network can be
determined in the same way as in the previous section. The exact learning equations are the same as in Eqs.
(43)-(69) except that

3 3 - y
[r (t) - p (t)] I ~ l , _ l

has been replaced by the new error term

[r (t) + T p (t) - p (t - 1)] ~ ,-1

5. Illustrative examples

A general purpose simulator has been written in the "C" language to simulate and show the applicability of
the proposed systems. Using this simulator, two typical examples are presented in this section. The first
example is to use NFCN to control an unmanned vehicle by learning the driving technique of a skilled driver,
and the second example is to use RNFCN to solve the cart-pole balancing problem.

5.1. E x a m p l e 1: f u z z y c o n t r o l o f u n m a n n e d veh ic le

This example illustrates the applicability of the proposed two-phase hybrid learning algorithm for
constructing the NFCN for the control of the "fuzzy" car conceived by Sugeno [21]. The car has the ability to
learn from training examples to move automatically along a track with rectangular turns. The goal is to
demonstrate that the car, under a N F C N , can learn from past driving experiences of a skilled driver, and then
the car can run automatically for similar road conditions as if it were driven by a skilled driver. The input
linguistic variables are x0, xl , and x2 which represent the distance of the car from the side boundary of the

204 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183 212

track, the distance of the car from the turning point of a corner, and the current steering angle, respectively
(see Fig. 6). The output linguistic variable y is the next steering angle. The constraints of these variables are
0 ~< Xo ~< 250cm, 0 ~< xl ~< 700 cm, and - 65 ° ~< x 2 , y <~ 65 °. The training data are obtained in the process
when a skilled operator guides the fuzzy car along the track as shown in Fig. 9. A total of 780 input -output
training pairs are used. In the simulation, we set the side of fuzzy partitions of Xo, xl , and x2 to 3, 5, and 5,
respectively; that is, the input linguistic variable Xo has three fuzzy sets ("close", "normal", and "far") in
describing the distance of the car from the side of the track.

In the simulation, the two-phase hybrid learning algorithm is used to set up the proposed N F C N with sets
of off-line training data. In this simulation, the size of fuzzy partitions of the output linguistic variable is set to
10 and the overlap parameter is set as r = 2.0. Figure 7 shows the curve of mean-squared error with respect to
the number of epochs, and the curve of mean iteration number with respect to the number of epochs. Here the
learning rate is set to 0.15 and the error tolerance is 0.01. From the second curve, we can find that the average
iteration number for a single training point to converge is rather small from the beginning, meaning that the
phase-one, self-organizing learning process has done much work already. The learned N F C N is shown in
Fig. 8. After the whole connectionist fuzzy logic controller is established, it is used to control the car. We keep
the speed of the car constant, and assume that there are sensors on the car to measure the state values Xo, xl ,
and x2 which are fed into the controller to derive the next steering angle. The simulated result is shown in

x° I
×

J

I

I
I

Fig. 6. The state variables in the fuzzy car example.

. 4 -

. 6 -

.2-

° 0 ~

mean error

i I i I
-0 1(300 2000 3000

time (epoch)

iteration

5 -

4 -

2 -
i i I I

-0 1000 2000 3000

dmc (epoch)

Fig. 7. Learning curves: mean error and mean iteration versus
time (epoch) in the fuzzy car simulation using hybrid learning
algorithm.

C.-T. Lin / Fuzz), Sets and Systems 70 (1995) 183-212 205

Layer 5 F
(output |
linguistic I
nodes) L

Layer 4
(output
term
nodes)

Layer 3
(rule
nodes)

Layer 2
(input
term
nodes)

Layer I F
(input I
linguistic L
nodes) Xl ×2 × 3

Fig. 8. Structure of the NFCN after the supervised learning in the fuzzy car simulation.

Fig. 9. The dotted curve is the training path and the solid curve is the path that the fuzzy car runs under the
control of the proposed connectionist fuzzy logic controller. We found that these paths coincide closely. We
simulated this example several times with different initial steering angles, and the results we obtained were
nearly the same.

5.2. Example 2." the cart-pole balancing problem

The proposed RNFCN with the multi-step fuzzy predictor has been simulated for the cart-pole balancing
problem or the so-called inverted pendulum balancing problem. This problem is often used as an example of
inherently unstable, dynamic systems to demonstrate both modern and classic control techniques as well as
the learning control techniques of neural networks using supervised learning methods [28] or reinforcement
learning methods [1].

As shown in Fig. 10, the cart-pole balancing problem is the problem of learning how to balance an upright
pole. The bottom of the pole is hinged to a cart that travels along a finite-length track to its right or its left.
Both the cart and the pole can move only in the vertical plane; that is, each has only one degree of freedom.
There are four input state variables in this system: 0, angle of the pole from an upright position (in degrees); 0,
angular velocity of the pole (in degrees/s); x, horizontal position of the cart's center (in meters); and :t, velocity

206 C.-T. Lin I Fuzzy Sets and Systems 70 (1995) 183-212

;I

250

125

. ! . . .

-125:
0 100 2~ 3~ 4~ 5~

Fig. 9. Simulation results of the fuzzy car running under the control of the learned NFCN in the fuzzy car simulation, where the dotted
line is the training curve and solid lines are the running curves of the fuzzy cars.

!
, 0

S
[_1

-I I
t.) t.)

I
!

,..4
I

X i
I

Fig. 10. The cart-pole balancing system.

of the cart (in m/s). The only con t ro l ac t ion is f, which is the a m o u n t of force (N) appl ied to the cart to move it
t o w a r d its left o r right. The system fails and receives a pena l ty signal of - 1 when the pole falls pas t a cer ta in
angle (_ 12 ° is used here) or the car t runs in to the bounds of its t rack (the dis tance is 2.4 m from the center to
bo th bounds of the track). The goal of this cont ro l p r o b l e m is to t ra in the R N F C N such that it can de te rmine

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212 207

a sequence of forces with proper magnitudes to apply to the cart to balance the pole for as long as possible
without failure.

The model and the corresponding parameters of the cart-pole balancing system for our computer
simulation are adopted from [1] with additional consideration of friction effects. This model and its
parameters are also used by Barto et al. [1]. The equations of motion that we used are

O(t + 1) = O(t) + AO(t),

0(t + 1) : 0(t)

+ A

(78)

mg sin O(t) -- cos O (t) [f (t) + mpl(O(t)x/180) 2 sin O(t) -- la¢ sgn (2(t))] -- #pmO(t)/mpl

(4/3)mi -- mpl cos 20(t)

x(t + 1) = x(t) + AYe(t),

2(t + 1) = 2(t) + A f (t) + mpl[(O(t)~z/180)2 sin O(t) - 0(t)rt/180cos 0(t)] - #csgn [2(t)]
m

where g = - 9 . 8 m/s 2, acceleration due to the gravity, m = 1.1 kg, combined mass of the pole and the cart,
m p = 0.1 kg, mass of the pole, l = 0.5 m, half-pole length,/~c = 0.0005, coefficient of friction of the cart on the
track, #p = 0.000002, coefficient of friction of the pole on the cart, and A = 0.02, sampling interval.

The constraints on the variables are - 1 2 ° ~< 0 ~< 12 °, - 2 . 4 m ~< x ~< 2.4m, and - 1 0 N ~<f~< 10N. In
designing the controller, the equations of motion of the car t -pole balancing system are assumed to be
unknown to the controller. A more challenging part of this problem is that the only available feedback is
a failure signal that notifies the controller when a failure occurs; that is, either I 01 > 12 ° or Ix I > 2.4 m. This is
a typical reinformation learning problem and the feedback failure signal serves as the reinforcement signal.
Since a reinforcement signal may only be available after a long sequence of time steps in this failure avoidance
task, a multi-step fuzzy predictor is required for the RNFCN. Moreover, since the goal is to avoid failure for
as long as possible, there is no exact success in finite time. Also, we hope that the R N F C N can balance the
pole for as long as possible for infinite trials, not just for one particular trial, where a "trial" is defined as the
time steps from an initial state to a failure. Hence, Eq. (73) is used here for the temporal-difference prediction
method. The reinforcement signal is defined as

J ' - I if 10(t)1>12 ° or I x (t) l > 2 . 4 m ,
r (t) (79)

0 otherwise,

and the goal is to maximize the sum ~k=oVkr(t + k), where 7 is the discount rate.
In our computer simulation, the learning system was tested for 10 runs by trying to use the same learning

parameter values in [1]. Each run consisted of a sequence of trials; each trial began with the same initial
condition 0(0) = 0(0) = x(0) = 2(0) = 0, or with a randomized initial condition, and ended with a failure
signal indicating that either 10(t)l > 12 ° or Ix(t)[> 2.4 m. The randomized initial condition means that after
each failure, the initial configuration was independently and randomly chosen such that
- 10 < 0(0) < 10, - 5 0 < 0(0) < 50, - 2 < x(0) < 2, and - 10 < 2(0) < 10. The input fuzzy partitions were

set as IT(x)[= 3, [T(~)I = 3, I T(0)I = 7, and [T(0)I = 3 for all runs. For each run, the input (output)
membership functions were initialized so that they covered the whole input (output) space evenly, and the
output fuzzy partition was initialized as I T (f) l = 7. The membership functions were chosen to be the
bell-shaped functions (Eq. (5)). Also, in the initiation of each run, each rule was assigned with a consequent
term randomly. There is a total of 189 rules in the beginning. Here we assumed that no expert knowledge (in
the form of I F - T H E N rules) are available. Runs were consisted of at most 50 trials unless the duration of each

208 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

-0

I
I I i

l0 20 30 40

Trials

Fig. 11. Performance of thc RNFCN on the cart-polc balancing problem.

50

4-

2-

Angle 0-

-2 -

-4-

4)
I I I

50 100 150

Time (s e c o n d s)

Fig. 12. Variations in 0 produced by the learned RNFCN.

200

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212 209

run exceeded 500 000 time steps. A run was successful and terminated after 500 000 time steps before all 50 trials
took place; otherwise, it was called "a failure" and terminated at the end of its 50th trial.

In our computer simulations, a total of 10 runs were performed. Among these 10 runs, five of them started
with zero initial conditions and the others started with randomized initial conditions. The simulation results
(see Fig. 11) showed that the RNFCN can learn to balance the pole within 20 trials. In most of the 10 runs, the
learning was completed before 10 trials. It was observed that the runs starting with randomized initial condition
usually took more trials. Fig. 12 shows the angle deviation of the pole about the center point when the cart-pole
system was controlled by a well-trained RNFCN. This performance is better than the results presented in [1]
and compatible to those in [3]. In most runs, the final number of learned output membership functions is less
than 15 as compared to 189 output membership functions that were used in [9] for each run; that is, one output
membership function for each (overlapping) grid of input space.

6. Conclusion

A general connectionist model of a fuzzy logic control system called NFCN was proposed. The proposed
model introduces the low-level learning power of neural networks into the fuzzy logic system and provides
high-level human-understandable meaning to the normal connectionist architecture. A hybrid learning
scheme which combines a self-organized learning algorithm and a supervised learning algorithm was
developed for performing the structure and parameter learning of this model. The hybrid learning algorithm
performed well when sets of precise supervised training data are available. We also described the develop-
ment of integrating two NFCNs into an integrated RNFCN for solving various reinforcement learning
problems. By combining the techniques of temporal difference, stochastic exploration, and a derived on-line
supervised structure-parameter learning algorithm, a reinforcement structure-parameter learning algorithm
was proposed for the RNFCN. The proposed RNFCN makes the design of fuzzy logic controllers more
practical for real-world applications since it greatly lessens the quality and quantity requirements of the
feedback training signals. Computer simulations of the unmanned vehicle control and the cart-pole
balancing problem satisfactorily verified the validity and the performance of the proposed supervised
learning algorithm for NFCN and the reinforcement structure-parameter learning algorithm for the
RNFCN, respectively.

Appendix: approximate similarity measure of fuzzy sets

We use an approximate approach to reduce the computational complexity of the fuzzy similarity measure
of two fuzzy sets with bell-shaped membership functions. Since the area of the bell-shaped function e -~x-ce/, 2
is a x ~ and its height is always 1, we can approximate it by an isosceles triangle with unity height and the
length of bottom edge 2ax/~. We can then compute the fuzzy similarity measure of two fuzzy sets with such
kind of membership functions (see Fig. 13).

To derive the equations of the similarity measure of two fuzzy sets with isosceles triangular member-
ship functions, we observe all the possible relative relationships of two isosceles triangles on a horizontal
axis (x-axis). Let A(ml, ai) denote the isosceles triangle with unity height, bottom-line length 2aix~,
and center of bottom-line at mi on x-axis. Assume the two end-points of the bottom-line of A(ml, trl) are
a and b on x-axis, and the two end-points of the bottom-line of A (m2, a2) are c and d on x-axis (see Fig. 13).
That is,

210 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

I I I

c m 2 a x d m~ b

J ~ On l ~ ~ o

I I I I

Fig. 13. Two isosceles triangular membership functions.

First, if ml = m2, then obviously, I a n BI = ¢r2x//~ (if a l >~ a2) or IA n nl = a l~/ -~ (if trx < tr2). In the
following discussion, we assume ml > m2. Let us consider the following four possible situations:

Case 1: If a ~> d, then I A c~ B I = 0 since the two membersh ip functions do not overlap.
Case 2: I f b / > d > a ~ > c , then

IA c~ BI = ½(d - a)y

l (m 2 - - m l + ~ r l x / ~ + a2x / /~) 2

2 (o"1 + ° '2)x/~
(A.1)

Case 3: If b > d and c > a, then

IA c~ BI = ½(x2 - c)y2 + ½(Yl + y2) (x l - - x 2) + ½(d - xl)yl. (A.2)

We can get

1 1
5(x~ - c)y2 = 5o~

1 1
~(d -- x l) y x = ~t72

Since

[m~ -- m~ + v/~(~ -- ~)]~

v/~(G~ - ~;)'

Em~ - m , + v/~(~, + ~,)]~
x/~(c~ + ~2) 2

(A.3)

½(Yl + yE)(Xl -- x2) = ½(xl -- a) y l -- ½(x2 -- a)y2. (A.4)

C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212 211

we can get the following results:

1 1 Ira2 - - ml + ~J/-~(0.1 "Jr 0"2)-] 2
~(Xl -- a) y l = -~ 0.1 ,/-~(0., + 0.~)2

1 1 [m2 - - m l + %//~(0.1 - - 0"2)] 2
~(x2 -- a)y2 = ~ a a

N/f~(0.1 - - 0.2) 2

So the final result is that

1 [m~ - ml + x /~(0 .~ - 0.~)]~ 1 [m 2 - - m 1 + N///~(0.1 "3 L 0.2)] 2 ---- +
IA ~ 81 ~ v / ~ (0 . t - 0.2) 2 , J ~ (0 . , + 0.2)

Case 4: If b < d and a > c, then

IA c~ BI = ½(b - x t) y l + ½(x2 - a)y2 + ½(d - x2)Y2 - ½(d - x ,) y I .

We can get the following results:

1 1 [m I - - m 2 + X//~(0.1 - - 0.2)'] 2
~ (b - x l) y , = ~0.1

1 1

1 1
~ (d - x 2) y 2 = ~0.2

1 1
~ (d - - x 1) y I ---- ~0.2

So, we can get

V/-~(G, - 0-2)2

I-m2 - - m I -+- N//f~(0.1 .+. 0-2)] 2

N//~(0.1 "{- 0"2) 2

[' 2 - mt + x / ~ (0 . , + 0.2)] 2

v/n(0.1 + 0.2) 2

Era, - m2 + , , / ~ (0 . , - 0.2)] 2

, / ~ (0 . , _ 0.:)2

(A.5)

(A.6)

(A.7)

(A.8)

1 I-m2 - m l + V / - ~ (a , + 0"2)] 2 I l - rot - m z + V / ~ (a , - 0 .2)] 2
= + (A . 9)

IA ~ BI 2 x /~(0., + 0.1) 2 x/~(0.1 - 0.2)

F r o m the above discussion and the t ruth that m 2 - m l + v/~(0.1 + 0.2)< 0 implies m 2 - m 1 +
v/~(0.1 - 0.1) < 0 implies mz - m l + x/~(0.1 + 0.1) < 0, we can conclude a general formula for IA c~ B[as in
Eq. (54). Notice that this general formula is true even when ml = m2.

References

[1] A.G. Barto, R.S. Sutton and C.W. Anderson, Neuronlike adaptive elements that can solve difficult learning control problems,
IEEE Trans. System Man Cybernet. SMC-13 (1983) 834-847.

[2] H.R. Berenji, An architecture for designing fuzzy controllers using neural networks, Internat. J. Approx. Reasoning 6 (1992) 267-292.
[-3] H.R. Berenji and P. Khedkar, Learning and tuning fuzzy logic controllers through reinforcements, IEEE Trans. Neural Networks

3 (1992) 724-740.
[-4] H. Bersini, J.-P. Nordvik and A. Bonarini, A simple direct adaptive fuzzy controller derived from its neural equivalent, Proc. IEEE

lnternat. Conf. on Neural Networks, San Francisco, CA (1993) 345-350.
[5] I. Enbutsu, K. Baba and N. Hara, Fuzzy rule extraction from a multilayered neural network, Proc. IEEE Internat. Joint Conf. on

Neural Networks (1991) 11-461-465.

212 C.-T. Lin / Fuzzy Sets and Systems 70 (1995) 183-212

[6] J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computation (Addison-Wesley, New York, 1991)
188-189.

[7] J.-S. Jang, Self-learning fuzzy controllers based on temporal back propagation, IEEE Trans. Neural Networks 3 (1992) 741-723.
[8] C.C. Lee, Fuzzy logic in control systems: fuzzy logic controller - part I & II, IEEE Trans. System Man Cybernet. SMC-20 (1990)

404 435.
[9] C.C. Lee and H.R. Berenji, An intelligent controller based on approximate reasoning and reinforcement learning, Proc. IEEE

Intelli#ent Machine (1989) 200 205.
[10] C.T. Lin and C.S.G. Lee, Neural-network-based fuzzy logic control and decision system, IEEE Trans. Comput. C-40 (1991)

1320-1336.
[11] C.T. Lin and C.S.G. Lee, Real-time supervised structure-parameter learning for fuzzy neural network, Proc. IEEE Internat. Conf.

on Fuzzy Systems, San Diego, CA (1992) 1283-1290.
[12] C.T. Lin and C.S.G. Lee, Reinforcement structure-parameter learning for neural-network-based fuzzy logic control systems, Proc.

IEEE lnternat. Conf. on Fuzzy Systems, San Francisco, CA (1993) 88-93.
[13] E. Khan and P. Venkatapuram, Neufuz: neural network based fuzzy logic design algorithms, Proc. IEEE lnternat. Conf. on Fuzzy

Systems, San Francisco, CA (1993) 647 654.
[14] T. Kohonen, Self-organization and Associative Memory (Springer, Berlin, 1988) p. 132.
[15] B. Kosko, Neural Networks and Fuzzy Systems (Prentice-Hall, Englewood Cliffs, N J, 1992).
[16] A. Nafarieh and J.M. Keller, A new approach to inference in approximate reasoning, Fuzzy Sets and Systems 41 (1991) 17 37.
[17] K.S. Narendra and M.A.L. Thathachar, Learnin9 Automata: An Introduction (Prentice-Hall, Englewood Cliffs, N J, 1989).
[18] D. Nauck and R. Kruse, A fuzzy neural network learning fuzzy control rules and membership functions by fuzzy error

backpropagation, Proc. IEEE lnternat. Conf. on Neural Networks, San Francisco, CA (1993) 1022-1027.
[19] H. Nomura, 1. Hayashi and N. Wakami, A learning method of fuzzy inference rules by descent method, Proc. IEEE Internat. Conf.

on Neural Networks (1992) 203-210.
[20] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by error propagation, in: Parallel Distributed

Processing, Vol. 1 (MIT Press, Cambridge, 1986) 318 362.
[21] M. Sugeno and M. Nishida, Fuzzy control of model car, Fuzzy Sets and Systems 16 (1985) 103-113.
[22] C.-T. Sun and J.-S. Jang, A neuro-fuzzy classifier and its applications, Proc. IEEE Internat. Conf. on Fuzzy Systems, San Francisco,

CA (1993) 94-98.
[23] R.S. Sutton, Learning to predict by the methods of temporal difference, Mach. Learnino 3 (1988) 9-44.
[24] H. Takagi and I. Hayashi, NN-driven fuzzy reasoning, Internat. J. Approx. Reasonin# 5 (1991) 191 212.
[25] L.-X. Wang and J.M. Mendel, Backpropagation fuzzy system as nonlinear dynamic system identifiers, Proc. IEEE lnternat. Conf.

on Fuzzy Systems, San Diego, CA (1992) 1409-1418.
[26] L.-X. Wang and J.M. Mendel, Fuzzy basis functions, universal approximation, and orthogonal least-square learning, IEEE Trans.

Neural Networks 3 (1992) 807-814.
[27] P.J. Werbos, Neuralcontrol and fuzzy logic: connections and designs, Internat. J. Approx. Reasonin# 6 (1992) 185-219.
[28] B. Widrow, The original adaptive neural net broom-balancer, Proc. lnternat. Symp. on Circuits and Systems (1987) 351-357.
[29] R.R. Yager, Implementing fuzzy logic controllers using a neural network framework, Fuzzy Sets and Systems 48 (1992) 53-64.
[30] L.A. Zadeh, Fuzzy logic, IEEE Comput. (April 1988) 83-93.

