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Abstract-A co-rotational finite element formulation for the dynamic analysis of a planar curved Euler 
beam is presented. The Euler-Bernoulli hypothesis and the initial curvature are properly considered for 
the kinematics of a curved beam. Both the deformational nodal forces and the inertial nodal forces of 
the beam element are systematically derived by consistent linearization of the fully geometrically nonlinear 
beam theory in element coordinates which are constructed at the current configuration of the correspond- 
ing beam element. An incremental-iterative method based on the Newmark direct integration method and 
the Newton-Raphson method is employed here for the solution of the nonlinear dynamic equilibrium 
equations. Numerical examples are presented to demonstrate the effectiveness of the proposed element 
and to investigate the effect of the initial curvature on the dynamic response of the curved beam structures. 

1. INTRODUCTION 

The nonlinear dynamic behavior of beam structures, 
e.g. framed structures, flexible mechanisms, and 
robot arms, has been the subject of considerable 
research. Currently, the most popular approach for 
this analysis is to develop finite element models. 
Several studies have been made on investigating the 
dynamic response of flexible beams subject to large 
rigid body motion and small elastic defor- 
mations [l-14]. However, almost all of these studies 
are limited to the analysis of a straight beam or a 
slender curved beam. The circumferential strain 
varies linearly with distance from the centroid of the 
cross section for a straight beam, but does not vary 
linearly for a curved beam. In [3,4, 10, 131, the distri- 
bution of the circumferential strain in a curved beam 
was calculated by regarding the beam as straight. 
This approximation is accurate enough for slender 
curved beams in which the product of the initial 
curvature and the depth of the cross section is much 
smaller than unity. When this product is not much 
smaller than unity, the strains in a curved beam differ 
significantly from the strains in a straight beam of the 
same cross section [15]. Hence, as this product in- 
creases, the accurate expression for the kinematics of 
a curved beam should be used to obtain a reliable 
dynamic response. 

The objective of this study is to present a consistent 
co-rotational formulation for the dynamic analysis of 
a planar curved Euler beam with large rigid body 
motion and small elastic deformations. In order to 
capture all inertia effects and coupling between exten- 
sional and flexural deformations for a curved beam 
element, the inertia nodal forces and deformational 
nodal forces are systematically derived by consistent 

linearization [6, 141 of the fully geometrically nonlin- 
ear beam theory using the d’Alembert principle and 
the virtual work principle. Here, the Euler-Bernoulli 
hypothesis [14, 161 and the initial curvature are prop- 
erly considered to obtain a correct expression for the 
kinematics of a curved beam. Following Hsiao and 
Jang [9, 121 the nodal coordinates, incremental dis- 
placements and rotations, velocities, accelerations, 
and the equations of motion of the system are defined 
in terms of a fixed global coordinate system, while the 
total strains in the beam element are measured in 
element coordinates which are constructed at the 
current configuration of the beam element. The el- 
ement equations are constructed first in the element 
coordinate system and then transformed to the global 
coordinate system using standard procedure. The 
dominant factors in the geometrical nonlinearities of 
beam structures are attributable to finite rotations, 
the strains remaining small. For a beam structure 
discretized by finite elements, this implies that the 
motion of the individual elements to a large extent 
will consist of rigid body motion. If the rigid body 
motion part is eliminated from the total displace- 
ments and the element size is properly chosen, the 
deformational part (initial deformation included) of 
the motion is always small relative to the local 
element axes; thus in conjuction with the co-ro- 
tational formulation, the higher order terms of nodal 
parameters in the element deformational nodal forces 
and inertia nodal forces may be neglected. 

An incremental-iterative method based on the 
Newmark direct integration method and the New- 
ton-Raphson method is employed here for the sol- 
ution of the nonlinear dynamic equilibrium 
equations. Numerical examples are presented to 
demonstrate the effectiveness and versatility of the 
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proposed beam element for the dynamic analysis of 
the beam structures and to investigate the effect of the 
initial curvature on the dynamic response of the 
curved beam structures. 

2. NONLINEAR FORMULATION 

2.1. Basic assumptions 

The following assumptions are made in derivation 
of the nonlinear behavior. 
(1) The Euler-Bernoulli hypothesis is valid. 
(2) The unit extension of the centroid axis of the 

beam element is uniform. 
(3) The deflections of the beam element measured in 

the element coordinates are small. 
(4) The strain of the beam element is small. 

The third assumption can always be satisfied if the 
element size is properly chosen. Due to the assump- 
tion of small strain, the engineering strain and stress 
are used for the measure of the strain and stress. For 
convenience, the engineering strain is obtained from 
the corresponding Green strain in this study. 

2.2. Coordinate systems 

In order to describe the system, following [9, 121, 
we define two sets of coordinate systems (see Fig. 1) 
as follows. 
(1) A fixed global set of coordinates, X,, X,; the 

nodal coordinates, incremental displacements 
and rotations, velocities, accelerations, and the 
equations of motion of the system are defined in 
this coordinate system. 

(2) Element coordinates, .Y,, x,; a set of element 
coordinates associated with each element, which 
is constructed at the current configuration of the 
beam element. The element equations are con- 
structed first in the element coordinate system 
and then transformed to the global coordinate 
system using standard procedure. 

Current configuration 

7$7w 

\ 
)41 

x2 

l- 

Initial configuration 

B -? 

Xl ‘I” 

Fig. I. Coordinate systems. 

Fig. 2. Kinematics of the deformed beam. 

2.3. Kinematics of beam elements 

The geometry of the beam element is described in 
the current element coordinate system. In this study, 
the symbol { } denotes column matrix, and the 
symbol (-) denotes the variable ( ) in the undeformed 
state. Let P (Fig. 2) be an arbitrary point in the beam 
element, and Q be the corresponding point of P on 
the centroid axis. The position vector of point P in 
the undeformed and deformed configurations can be 
expressed as 

i={~P,jP}={.Z,(S)-ysin8,ti(.Y)+ycos8} (1) 

and 

r={x,,y,}={x,(s)-ysinO,v(s)+ycos8} (2) 

where x,(s) and v(s) are the x, and x2 coordinates of 
point Q, respectively, s is the arc length of the 
deformed centroid axis measured from node 1 to 
point Q, y is the distance between points P and Q, 
and f3 is the angle measured from the ?c, axis to the 
tangent of the centroid axis. The relationship among 
x,(s) and v(s) and s may be given as 

s i 
x,.(s)= Ul +2 

s 
cos 0 d<, (3) _, 

where 

case =(l -v’2)“2 

da(s) r’=---- =sin(j 
ds 

(4) 

(5) 

and 

i;=-l+$ (6) 

in which u, is the displacement of node 1 in the x, 
direction. S is the current arc length of the centroid 
axis of the beam element. Note that due to the 
definition of the element coordinate system, the value 
of U, is equal to zero. However, the variations of U, 
are not zero. Making use of eqn (3) we obtain 

&! 
P’ 

(7) 
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where 

and 

fi= I s cos 6’ dr (8) 
-1 

I = x,(S) - x,(O) = L - u, + u*, (9) 

in which 1 is the current chord length of the beam axis, 
L is the chord length of the undeformed beam axis, 
and u2 is the displacement of node 2 in the x, 
direction. 

If Jand y in eqn (1) are regarded as the independent 
variables, the Green strains .c~ (i = I, 2,j = 1,2) are 
given by [ 171 

tii = i(G:G, - g:gi,, (10) 

G,=~=~~=(l -e,,)(l -rcy)(cos8,sin0) 

c,=d’ ~~ = {-sin8,cos0} 

g, = z = (1 - ~Q){cos 8, sin 8) 

g,=i=(-sin8,cosQ 
@ 

(11) 

as 
Lo=--1 

as 

and 

68 
K =z = cv”, 

(12) 

(13) 

in which 
I 

c=---- 

cos e (14) 

d’v uu =- 
ds2* (15) 

Note that K in eqn (13) is an exact expression for 
the physical curvature of the deformed beam centroid 
axis. An equivalent expression for K is given by 
Hodges [16]. Making use of the assumption of uni- 
form unit extension, we may rewrite the unit exten- 
sion t0 in eqn (12) as 

S 
co=-- 1. s (16) 

Due to the use of the Euler-Bernoulli hypothesis, 
as expected, c,, is the only nonzero component of Q. 
Substituting eqn (11) into eqn (10) we may obtain 

L,, = $[( 1 + t& 1 - !cyy - (1 - rQ)*]. (17) 

The engineering strain corresponding to c,, is given 

by U71 

2& 1:z 
f= 1+-x ( > id&!, 

_ 1 =(‘+~o)(l -v)_ 1 

(1-q) * 

(18) 

Note that c in eqn (18) is an exact expression of 
engineering strain for the curved Euler beam. Here, 
the lateral deflection of the centroid axis, U(S), is 
assumed to be the cubic Hermitian polynomials of s 
and is given by 

where uj and v,! (j = 1,2) are the nodal value of v and 
v’ at nodes j, respectively. N, (i = l-4) are shape 
functions and are given by 

IV,=$ -02(2+0, N*=i(l -r2)(1 -r>, 

N,=+(l+U(2-4>, N,=~(--++2)(1+5), 

(20) 

where S is the current arc length of the centroid axis, 
and t: is the nondimensional coordinate defined in 

eqn (6). 
Here, V(S), the initial lateral deflection of the 

centroid axis, is assumed to have the same form as 
u(s), and is obtained by adding an overbar for each 
variable in eqns (19) and (20). 

2.4. Element internal nodal force vectors 

The element employed here has three degrees of 
freedom per node (Fig. 3): these are the translations 
uj and vj (j = 1,2) in the x, and x2 directions, 
respectively, and the counterclockwise rotations 0, 
(j = 1,2) at nodes j. The nodal degrees of freedom for 
the global coordinate system are the incremental 
translations AU, and A 5 (j = 1,2) in the X, and X, 
directions, respectively, and the incremental counter- 
clockwise rotations A0, (j = 1,2) at nodes j. The 
nodal forces corresponding to the nodal parameters 
are the conventional forces and moments as shown in 
Fig. 3. 

F.& 

Fig. 3. Nodal parameters and nodal forces. 
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The element internal nodal forces are obtained 
from the d’Alembert principle and the virtual work 
principle. The virtual work principle requires that 

c?uTf, + Surf, = 
s 

p(G~Trr + phrTf) dr, (21) 

where 
&II, = {SU, ,6u, ] (22) 

6u:={6u,,68,,6u,,68,) (23) 

f,=C+fl={fi,,fi*) (24) 

f,=f”,+fb={fi,,m,,f*2rm2} (25) 

in which ff and fj (j = a, b) are the deformational 
nodal force vector due to deformations and the 
inertia nodal force vector, respectively. St is the 
variation of L given in eqn (18). 0 = EC is the normal 
stress, where E is the Young’s modulus. p is the 
density, 6r is the variation of r given in eqn (2) with 
respect to the nodal parameters, and i: = d2r/dt2. In 
this paper, the symbol (‘) denotes differentiation with 
respect to time t. P is the volume of the undeformed 
beam. For a curved beam the differential volume dV 
may be expressed as dP=(l -2y)dA ds/(l +to), 
where A is the cross section area. 

The exact expression of fa and fb may be obtained 
by substituting the exact expression of 66, t, 6r, and 
i: into eqn (21). However, if the element size is 
properly chosen, the nodal parameters of the element 
may always be much smaller than unity. Thus only 
the first order terms of nodal parameters are retained 
in f”. and fi, and only zeroth order terms of nodal 
parameters are retained in fi and fb. However, in 
order to include the effect of axial force, a second 
order term of nodal parameters is retained in f:. The 
approximations 1 + t0 % 1, u’ 5 6, and cos 0 z 1 are 
used in the derivation off, and f,. In order to avoid 
improper omission in the derivation of fa and f,,, these 
approximations are applied to the exact expression of 
at, t, 6r and P. 

From eqns (3)-(g) and (13)-(16), the variation of 6 
in eqn (18) may be expressed as 

66 = & Kl - KY& - (1 + %)JJ6Kl, (26) 

where 

8K = C&?” + C’V’V”6V’ (27) 

(28) 

61=(-1,1}r(6u,,6u2}=G~6u, 

sp = - 
S’ 

cv’irv’ d& 
-1 

(29) 

(30) 

in which 6~’ and 6v” are the variations of v’ and v”, 
respectively, with respect to the nodal parameters. 
From eqns (19) and (20), 6~’ and bv” can be obtained 
as 

5~’ = (c?N;~)u~ + NC&I, 

= -$-N:u~ + N~&I, (31) 
0 

and 

60” = (6NcT)ub + NtTGui, 

660 = --NN;fu, + N;TTGu,, (32) 
1 + 60 

where 

h, = {sv,, cos 8, SO,, ik,, cos e,se, j (33) 

N, = {N;, 0, N;, O} (34) 

N,= (2N;, N;,2N;‘, N&‘). (35) 

Note that due to the definition of the element coordi- 
nate system, the values of v, and a2 are zero. Thus 
Nfu, = 0 in eqn (31), and N;fu, = VI’ in eqn (32). 

From eqns (27H35), using the approximations 
1 +co x 1, v’ z 0, and cos 0 NN 1, and retaining all 
zeroth order terms and one first order term of nodal 
parameters, 6~ in eqn (26) may be approximated by 

~G~~u,+G~&J~-~N;~~u, , 1 (36) 

where 

1 ’ 
GL,=~ _, 

s 
v/N’, d& (37) 

From eqns (2)-(9), (19), and (20), 6r can be 
expressed as 

s e 
cosed5 -5 s cv’6v’ d< 

-I 

where 

6v = (6 N:)u, + N&5 II,, = 

and 

N, = {O, N2,0, N,}. (40) 

Substituting eqns (28)-(31), (39), and (40) into eqn 
(38), using the approximations 1 + 6. % 1, v’ ‘z 6, and 
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cos 0 x 1, and retaining only zeroth order terms of 
nodal parameters, we may obtain 

(41) 

where 

N,={q,F}. (42) 

From eqns (2)-(g), (19), and (20), the exact ex- 
pression of 7 may be obtained. Using the approxi- 
mations l+~Zl, v ‘~0, and ~0~9~1, and 
retaining only zeroth order terms of nodal parameters 
in the exact expression of P, we may obtain 

.m +a ’ 
N:ii,+T _,(N;=iI,)‘dC 

s 

- ; (NLTti,)* d< + $ N;n,G$, 

- yNiTil,, N:ii, - y(N~ii,)* + $G:O,N:& , 

where 
(43) 

ii~={Ii,,ti*}, il,={ii,,ti*} w 

and 

‘4#={‘4,4,d*,fi*), iib = (27, ) 0, ) 4) 8;). (45) 

Note that nj and iij (j = a, 6) are the absolute velocity 
and acceleration vectors of an element referred to the 
element coordinates which are obtained from the 
transformation of the corresponding global velocity 
and acceleration vectors extracted from the equations 
of motion of the system using standard procedure [9]. 

Substituting eqns (I@, (36), (38), (41), and (43) into 
eqn (21), using the approximations 1 + t0 x 1, v’ z 0, 
and cos 0 x 1, dropping higher order terms of nodal 
parameters, and equating the terms in both sides of 
eqn (21) corresponding to virtual displacement vec- 
tors 6u, and au:, respectively, we may obtain 

f:=; CdAdsG, 
s 

(46) 

N;W: dlu, - E 
s 

ycN;dA d.s 

(47) 

f; = 
s 

~(1 - rZykrXN, dA ds (48) 

f; = 
s 

~(1 - rZy)( -yu,N; + u,.N,) dA ds. (49) 

2.5. Element matrices 

The element stiffness matrices and mass matrices 
may be obtained by differentiating the element nodal 
force vectors in eqns (46)-(49) with respect to nodal 
parameters, and time derivatives of nodal par- 
ameters. However, element matrices are only used to 
obtain predictors and correctors for incremental sol- 
utions of nonlinear equations in this study. Approxi- 
mate element matrices can meet these requirements. 
Thus, the element matrices used in [9] for a straight 
beam are adopted here for simplicity. 

2.6. Equations of motion 

The nonlinear equations of motion may be ex- 
pressed by 

q =F’+FD-P=O, (50) 

where cp is the unbalanced force among the inertia 
nodal force F’, deformational nodal force FD, and the 
external nodal force P. F’ and FD are assembled from 
the element nodal force vectors in eqns (46>-(49), 
which must be transformed from element coordinate 
system to global coordinate system before assemblage 
using standard procedure. 

In this paper, a weighted Euclidean norm of the 
unbalanced force is employed for the equilibrium 
iterations, and is given by 

e&!!<e 
N . fd? (51) 

where N is number of the equations of the system; eta, 
is a prescribed value of error tolerance. The error 
tolerance is set to lo-“ in this paper. 

3. APPLICATIONS 

An incremental iterative method based on the 
Newmark direct integration method [9, 181 and the 
Newton-Raphson method is employed. The pro- 
cedure used here to determine the deformational 
nodal rotations for individual elements is the same as 
that proposed in [I91 and is not repeated here. 

In order to investigate the effect of the initial 
curvature on the dynamic response, three examples 
are studied using the curved Euler beam (CEB) 
element proposed here and the straight Euler beam 
(SEB) element proposed by Hsiao et al. [14]. 

3.1. Clamped semicircular arch (R/h = 67.115) 

A clamped semicircular arch (Fig. 4) subjected to 
a central concentrated step loading P of magnitude 
7001b is analyzed. The geometry and material 
properties of the arch are: h = 1 in., width = 1 in., 
E = 10' psi, and p = 2.44 x 10e4 lb - sec2/in4. Be- 
cause of symmetry, only half of the arch is analyzed 
using 15 elements. The time step size is chosen to be 
2.5 x 10e4 sec. The time histories of the vertical dis- 
placement and the strain of the top edge at the 
loading point are shown in Figs 5 and 6, respectively. 
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Fig. 4. Semicircular circular arch. 

As expected, the results of SEB elements (not shown) 
are nearly identical with the results of CEB elements 
for this slender curved beam structure. Also shown in 
Fig. S are the results of [3]. Very good agreement 
between these two solutions is observed. 

3.2. Ciamped semicircular arch (R/h = 5) 

The clamped semicircular arch considered here is 
moderately thick. This arch is subjected to a central 
concentrated loading P(t) as follows. 

Time (1 O%ec) 

Fig. 6. Time history for tip strain. 

tip displacements U and V, which are defined in Fig. 
9, are shown in Fig. 10. The time histories of the 
strains at root are shown in Fig. 11. E,, E,. , and Q, in 
Fig. 11 denote the strains on the top edge, centroid, 
and bottom edge respectively. It is observed that the 
tip displacments obtained by using the CEB and SEB 
elements are nearly identical. However, the dis- 

I 

P(t) = 
2000[ 1 - cos(nt /0.0003)] lb 0 < t < 0.0003 set 
4000 lb t > 0.0003 sec. 

The geometry and material properties of the arch are 
the same as those given in the first example. Because 
of symmetry, only half of the arch is analyzed using 
15 elements. The time step size is chosen to be 
2 x 10m6 sec. The time histories of the vertical dis- 
placement and the strains at the loading point are 
shown in Figs 7 and 8. t,, t,, and tb in Fig. 8 denote 
the strains on the top edge, centroid, and bottom 
edge, respectively. As can be seen. the discrepancy 
between the strains obtained by using the CEB and 
SEB elements is not negligible. 

3.3. Quarter-circular arch 

This example considered is a quarter-circular arch 
rotating horizontally about a vertical axis passing 
through one end as shown in Fig. 9. The geometry of 
the arch is: R/h = 5, h = 5 in., and width = 5 in. The 
material properties of the arch are the same as those 
given in the first example. This arch is subjected to a 
prescribed rotation angle t/~(t) at one end as follows. 

crepancy between the strains obtained by using the 
CEB and SEB elements is not negligible. 

4. CONCLUSIONS 

This paper has described a consistent finite element 
formulation for the dynamic analysis of a planar 
curved Euler beam. The Euler-Bernoulli hypothesis 
and the initial curvature are properly considered for 
the kinematics of curved beams. Both the inertia 
nodal forces and deformational nodal forces are 
systematically derived by consistent linearization of 
the fully geometrically nonlinear beam theory using 
the d’Alembert principle and the virtual work prin- 
ciple. In conjunction with the co-rotational formu- 
lation, the higher order terms of nodal parameters in 
element nodal forces are consistently neglected. From 
the numerical examples studied, it is found that the 
effects of the initial curvature on the dynamic re- 
sponse of strains are not negligible for moderately 
thick curved beam structures. 

I 

J 

The beam is discretized using 15 elements. The time It is believed that the consistent co-rotational 
step size is set to 10m4 sec. The time histories of the formulation for a curved beam element presented 

Fig. 5. Time history for tip displacement. Fig. 7. Time history for tip displacement 
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-4 ’ ’ ’ ’ B m ’ 1234567 
Time (1 0m4sec) 

Fig. 8. Time history for tip strains. 

Initial 
configuration 

Fig. 9. Quarter-circular arch. 

Time (1 Ow2 set) 

Fig. 10. Time history for displacement components U 
and V. 

-4o_. 
Time (1 Om2sec) 

Fig. II. Time history for root strains. 

here may represent a valuable engineering tool for the 
dynamic analysis of planar curved beam structures. 
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