
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995 303

An Optimal Instruction Scheduler
for Superscalar Processor

Hong-Chich Chou and Chung-Ping Chung

Abstract-Performance in superscalar processing strongly de-
pends on the compiler’s ability to generate codes that can be
executed by hardware in an optimal or near optimal order.
Generating optimal code is an NP-complete problem. However,
there is a need for highly optimized code, such as in superscalar
or real-time systems. In this paper, an instruction scheduling
scheme for optimizing a program trace is proposed. Optimized
code can be arrived at without much redundant work, if some
important features in code are well explored and utilized in
scheduling. To formalize the task, two abstract models, one for
a superscalar processor and the other for a program trace,
are given. These two models reflect most of the characteristics
of the scheduling problem. The interrelations between instruc-
tions and partial schedules are thoroughly studied, and dom-
inance and equivalence relations on them are defined. These
relations are then used to reduce the solution space and even-
tually help to produce optimal schedules. The results of exper-
iments that show the promise of the proposed scheme are also
presented.

Index Terms-Pipeline processors, sequencing and scheduling,
optimization, prune and search, and NP-completeness.

I. INTRODUCTION

UPERSCALAR processors, in contrast to scalar or vector S processors, are processors which attempt to improve the
execution rate of programs by executing, on average, more
than one instruction per clock cycle. Examples of superscalar
processors include the IBM RS/6000, Intel i860 [l], [2], and
DEC Alpha. The success of superscalar machines depends
not only on the vast hardware resources they provide, but
even more importantly, on how efficiently these resources are
used. The objective of superscalar instruction scheduling is to
rearrange instructions in such a way that they are executed by
hardware in an optimal (or near optimal) order (i.e., so that
execution time is minimized).

In this paper, an optimization scheduling scheme specially
tailored for superscalar processing is proposed, since no sat-
isfactory scheme exists at present. Though the instruction
scheduling problem appears similar to the unit-execution-time
(UET) task scheduling problem, there are some fundamental
differences between them. Superscalar instructions are typed
and may induce delay cycles in terms of result availability.
These two features are not seen in UET task scheduling.

Manuscript received December 21, 1992; revised October 2, 1993. This
work was supported in part by the National Science Council, Republic of
China, under Contract NSC 81-0408-E-009-594.

The authors are with the Institute of Computer Science and Information
Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

IEEE Log Number 9408141.

Another type of delay is in task scheduling-the communi-
cation delay [3]. Furthermore, pipelining is not possible at
the task level, although it is a must at the instruction level.
There are several reasons for studying superscalar processing
optimization schemes: 1) there is a need for highly optimized
code, such as in real time applications, 2) an optimized code
can be used to evaluate a heuristic schedule, and 3) scheduling
principles can be found in the research, which can guide the
design of superscalar architecture and heuristic algorithms.

Instruction scheduling can be done on intermediate code or
object code or both [4], [5] . From the instruction scheduling
point of view, intermediate code is different from object
code in that object code may contain, in addition to data
dependencies, output and anti-dependencies or restrictions
imposed by hardware. Thus, scheduling intermediate code is
regarded as a subproblem of scheduling object code. So, in
this paper we consider only the scheduling of object codes.

Instruction scheduling can be done by hardware or by
software [6], [7]. However, to be fully functional, hardware
scheduling must be able to solve several problems, including
artificial dependencies caused by register-file limitations, con-
ditional branches, imprecise interrupts, and so forth. Hardware
capable of solving all these problems is complex and costly,
and, more seriously, is slow in clock rate.

In contrast to hardware scheduling, the task of identifying
parallel executable instructions and scheduling them can be
done by software. The VLIW machine [ll] is an extreme
example, which relies completely on software instruction
scheduling to keep functional units busy while avoiding data
hazards [8]. Except for identifying parallel executable in-
structions, the scheduling software also tries to optimize
delay slots. Since software exposes program parallelism to
processors, the processor can be much simplified by assuming
that the incoming instructions in each cycle can be executed
simultaneously, as in the approach used in the IBM RS/6000,
or by setting a bit in an instruction to notify the processor
to execute the next instructions in parallel, as in the approach
used in the Intel i860. A simpler hardware design often implies
a faster clock rate.

Generally, the optimization superscalar instruction schedul-
ing problem is intractable [9], [lo]. Our optimization scheme
focuses on reducing solution space and execution time as much
and as early as possible. Nevertheless, we believe that an
optimal schedule can be arrived at without much redundant
work, if some important relations among instructions and
among partial schedules can be thoroughly explored and
utilized.

1045-9219/95$04.00 0 1995 IEEE

~ I -I--- 7-

304 EEE TRANSACllONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

II. FORMAL SPECIFICATIONS
In this research, we begin by conceiving two abstract

models, one for a superscalar architecture and another for the
program trace to be scheduled. These two models reflect most
of the flavor of superscalar instruction scheduling problem and,
formalize our research tasks.

A superscalar processor can be represented by a 4-tuple
notation (k, M, P, z) , where

k 2 1 denotes the number of different types of processors
employed in the superscalar architecture.
M = (ml, m2, - . - , mk), where mi denotes the number
of type i processors, for 1 5 i 5 k. The instruction set is
also categorized into k types an4 type i instructions can
only be executed on any of the mi type i processors.
P = {P;jll 5 i 5 k , l 5 j 5 m;} denotes the set of
processors. Pi, denotes the jth processor of type i.
z 2 0 denotes the maximum number of pipeline delay
cycles required to execute any instruction.

The above machine model is generalized enough to encom-
pass a wide range of superscalar architecture. For example, for
the IBM RS/6000, k = 4, ml = m2 = m3 = m4 = 1 and
z = 6 (delay of floating-point compare instruction).

We formally represent a program trace by a 4-tuple notation
(U, 4, Pf, D), where

U = {I1 , 1 2 , - . , I;} is the set of instructions constituting
a program trace.
4 is a transitive binary relation defined on U that specifies
the precedence relationships among instructions.
P f is a function, P f: U -+ {1,2, - . . , k}, that specifies
the type of processor on which an instruction is to be
executed.
D is a function, D: U -+ {0,1,. . . , z } , that specifies the
number of delay cycles of an instruction.

Here a program trace in our concern denotes a segment of
code which are to be scheduled in a batch. If the segment
contains only a single basic block, the scheduling may be
called local; otherwise it is global [12]. Strategies for increas-
ing instruction parallelism, such as loop unrolling or basic
block enlargement [13], are beyond the scope of this paper.

The three main restrictions which limit instructions from
being executed in parallel, namely, 1) data dependencies, 2)
procedural dependencies, and 3) resources conflicts [7], are
reflected in these models. Precedence relations 4 originate
from true data dependencies, procedural dependencies, antide-
pendencies, and output dependencies. If Ii 4 Ij, then I; must
be executed before I j . The terms dependence and precedence
are used interchangeably below.

Resource conflicts are reflected in the function Pf(). We
assume that there is no resource conflict between instructions
of different types. And the only resource conflict between
instructions of the same type is the contention for processors
when instructions to be issued are more than the number of
processors available. This assumption is feasible for super-
scalar instructions.

It will be convenient to represent each instance
(U, 4, Pf, 0) by a directed acyclic graph (DAG). Fig. 1,
for example, shows a DAG with three types and a maximum

Fig. 1. A sample instruction DAG.

delay of two cycles. Nodes in Fig. 1 denote instructions. If
Ii 4 Ij, then there is a directed edge from node I; to node
Ij in the graph (note that transitive edges are not shown).
The number after the slash in each node indicates the type of
that instruction, and the number beside each edge denotes the
number of delay cycles required by the predecessor. Fig. 1
will be used as a running example throughout this paper.
Conventional terminology for a graph is followed here. If
I; 4 Ij, then I j (I ;) is a successor (predecessor) of I ; (I j) .
If there is no I' such that I; 4 I' 4 Ij, then I j (I i) is said
an immediate successor (predecessor) of I;(I j) .P(I;) is used
to denote the set of predecessors of Ii and S(I;) the set of
successors of I; (not necessarily immediate in both sets).
The function A: U -+ { 1, 2, . . -} is said a feasible schedule

of a given (U, 4, Pf, 0) on a given (k, M , P, z) if A()
satisfies the following conditions:

1) VI; , Ij E U, if I; 4 I j , then A (I ;) + D(I;) < A (I j) .

2) V t 2 1 and i 5 k, I{I E UlA(1) = t and P f (1) =

A (I ;) = t; means instruction I; is scheduled in time
slot ti. Condition 1 stipulates that a schedule should obey
the precedence relationships. Condition 2 stipulates that a
schedule should not use more processors than are available.
Fig. 2 shows a schedule for the DAG in Fig. 1. None of
the successors of Ii can be issued until A(&) + D(I;) + 1.
Thus we define A(&) + D(I;) to be the completion time of
I;. The time slots (A(Ii),A(Ii) + D(1;)) are said to be the
scope of I;. The length of a feasible schedule is defined to be
max{A(I) + D(I)} ,VI E U. The optimization scheduling
problem associated with the models given above is: given
a (I C , M, P, z) and a (U, 4, Pf, D), among all feasible
schedules, find the schedule with a minimum length. This
problem is "-hard when k > 1 or z > 1 and 4 defines an
arbitrary acyclic graph, since it is known to be NP-complete
when (k = 2 , M = (ml = l,mp = l) ,P , z = 0) [14] or

i}l 5 m;.

(I C = l , M = (m1 = l) , P , z = 2) [lo].

. .

CHOU AND CHUNG. INSTRUCITON SCHEDULER FOR SUPERSCALAR PROCESSOR

~

305

Fig

1 2 3 4 5 6 7 8 9 1 0 1 1 12
P11

P21

PSl

. 2. A schedule for the sample DAG.

A schedule is said to be a greedy schedule if it satisfies the
Principle of the Greedy Schedule. Ifprocessor Pij is idle at
time t , then there is no instruction issued at a time later than
t that could have been issued by Pij at time t . It can be easily
verified that an optimal schedule can always be transformed
into a greedy schedule. Thus our search for an optimal sched-
ule is narrowed down to a search among greedy schedules.

Results relevant to our work are found in optimal UET task
scheduling [15]. In [15], dominance and equivalence relations
between tasks were first defined. These two relations were
then used in a dynamic programming scheme: However, in the
experiment in [151, the algorithm was effective only for small
cases, partially owing to the limited memory capacity then
available, but mainly because the algorithm could not reduce
the solution space very much. Similar work was done by Yang
et al. [161. Yang et al. proposed a branch and bound scheme for
solving UET schedules with time profiles. They provided five
rules, two of which were termination rules and three of which
were heuristic rules. The termination rules were used to check
whether a partial schedule was an optimal schedule; if not,
exploration of that schedule was stopped. The heuristic rules
were used to select the next partial schedule for exploration.

The optimization scheme for UET task scheduling cannot
be applied to superscalar instruction scheduling, because of the
absence of the type and delay cycle features. Our optimization
scheme is based on a solution tree used to keep track of
all partial schedules. Suppose the DAG in Fig. 1 is to be
executed on an (ml = 1,m2 = 1,m3 = 4) architecture.
A solution tree for finding the optimal schedule for the DAG
in Fig. 1 is shown in Fig. 3. At the top of the solution tree
is the root node. Let us call the nodes on the solution tree
the S-nodes. An S-node, Q; = {&I, Ii2, . - . , Iin} , denotes
the instructions executed in parallel in a time slot. The root is
said to be at level 0, all of its children at level 1, and so on.
Instructions (125 , 124, 123, 122 , 121, 119) are the only ready
instructions (RI) that can be executed at the very beginning.
Since 121 is the only type 2 instruction, it can be executed
immediately. The other five instructions compete for four type
3 processors. So level 1 of the solution tree consists of five S-
nodes. By continuing in this manner, a complete solution tree
can be built. Each path from the root to a leaf forms a feasible
schedule. All the feasible schedules as well as an optimal
schedule can be found if we traverse the entire solution tree.

The solution tree depicted in Fig. 3 is the most basic ap-
proach to obtaining an optimal schedule. This basic approach
is however not efficient. Our effort in the optimal instruction
scheduling will be directed toward reducing the number of
S-nodes as much and as early as possible.

a
a

e
e

e
e

Fig. 3. Solution tree for the sample DAG.

III. A PRIORI ANALYSIS

A. Dominance and Equivalence Relations Between Instructions

The basic solution tree scheme illustrated above enumerates
all possible scheduling sequences of instructions. If, besides
the precedence constraints that stipulate the scheduling se-
quences, more relations can be found to confine the scheduling,
then the solution tree can be pruned. We hence define the
natural dominance and equivalence relations as follows:

Dejinition I) Natural Dominance Relation: If I; can al-
ways be scheduled no later than Ij in an optimal schedule,
then I; is said to dominate I j .

Definition 2) Natural Equivalence Relation: If Ii and Ij
can always be interchanged in a schedule without affecting its
length, then I; is said to be equivalent to I j .

In light of these definitions, the precedence relation is a
kind of natural dominance relation.

However, to find all the natural dominance and equivalence
relations among instructions is an intractable task, since it is
necessary that the optimization problem be resolved before-
hand. Nevertheless, some dominance and equivalence relations
and, moreover, semi-dominance and semi-equivalence rela-
tions, can be found without carrying out any scheduling tasks.

Definition 3) Equivalence Relation on Instructions: If

P(I i) = P (I j) and D(&) = D(Ij) , then Ii is said to be
equivalent to I j , denoted by Ii E Ij or Ij E I;.

Definition 4) Semi-Equivalence Relation on Znstructwm: If
I;, Ij E U and P f (I ;) = P f (I j) , if S(I;) = S (I j) and
P (L) # P (I j) and D(I;) = D(Ij) , then I; is said to be
semi-equivalent to I j , denoted by I; SE Ij or Ij SE I;.

Definition 5) Dominance Relation on Instructions: Let
I;, Ij E U and P f (1 ;) = P f (I j) and not I; E I j nor
I; SE I j . Then I* is said to dominate I j , denoted by I; D I j ,
if S(I;) 2 S(I j) and P(I ;)

I;, Ij E U and P f (1 ;) = P f (I j) , if S(I;) = S (I j) and

P (I j) and D(I;) 2 D(I j) .

I I I ,

306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

Dejinition 6) Semi-Dominance Relation on Instructions: Let
Ii, Ij E U and Pf (I ;) = P f (I j) , and not I; E Ij nor I; S E Ij
nor I; D I j . Then Ii is said to semi-dominate I j , denoted by
Ii SD I j , if Ii, Ij satisfy one of the following conditions:

1) S(Ii) 2 S (I j) and D(I i) 2 D (I j) .
2) S(I j) = 0 and L(I;) 2 D (I j) + 1.
All these relations are defined on instructions of the same

type, since instructions of different types do not compete for
the same processor. It is easy to see that the D and S D rela-
tions are transitive and nonsymmetric; the E relation is tran-
sitive, symmetric, and reflexive; and the SE relation is sym-
metric only. Ii S E Ij and Ij S E Ik do not imply that I; SE Ik,
since it is possible that I; E 4. Taking the DAG in Fig. 1 as
an example, 124 E h , I23 E h , I25 D (124, 123 , 1 2 2 , I21},

It can easily be checked that when I; D Ij , I; and Ij comply
with the natural dominance relation, that is, I; is scheduled
no later than Ij is in an optimal schedule. If otherwise, we
can always obtain another schedule of no longer length by
interchanging the positions of I; and I j . The semi-dominance
relation does not possess this good property. The predecessors
of the two intervolved instructions are different, and we cannot
freely interchange I; and Ij in a schedule only if I; SD I j .
However, the semi-dominance relation still facilitates the
reduction of the solution tree, though. The use of the semi-
dominance relation is that if I; S D Ij and I; and Ij are in RI
simultaneously, then we should schedule I; before I j .

The meaning of the equivalence relation is intuitive. If
Ii E I j , then Ii and Ij will be in RI simultaneously. Whether
I; is scheduled before or after Ij makes no difference to the
remainder of the schedule. The characteristics of the semi-
equivalence relation are similar to those of the semi-dominance
relation. If Ii SE Ij , we cannot interchange the positions of Ii
and Ij in any arbitrary schedule. But if I; and I3 are in RI
simultaneously, then scheduling either I; or Ij first will have
the same effect on the remainder of the schedule.

I10 SD Ig, I2 S E I l , and I12 S E I13.

B. Dominance and Equivalence Relations Between
S-Nodes and Partial Schedules

We now derive the dominance and equivalence relations
between S-nodes. Since instructions are typed, an S-node
Q; containing concurrently executed instructions is composed
of subs-nodes, denoted by Qi = (qf , q:, . . . I q,"), where
4," denotes the set of type j instructions in Q;. Thus q: =
(I?, I F , - . . l I $,) , and P f (I $) = j , for 1 5 x 5 mj.

Dominance and equivalence relations can be defined on d
and Qi as follows:

Dejinition 7) Equivalence Relation on Subs-Nodes: Given
two subs-nodes q; and qT1 q; is equivalent to qg, denoted
by q; E qg , if If1 = I? or If' E I? or If' SE I?, for all a .

Dejinition 8) Dominance Relation on Subs-Nodes: Given
two subs-nodes q; and q;, q; dominates q;, denoted by
q; D q;, if not qy E qg and (If' = I? or If' D I? or
1;' S D I ?) , for all i.

Definition 9) Equivalence Relation on S-Nodes: Let Q1
and Q2 be two S-nodes under the same parent in a solution

tree. Q1 is equivalent to Q2, denoted by Q1 E Q 2 , if qi E qb
for 1 5 i 5 k.

Q1
and Q2 be two S-nodes under the same parent in a solution
tree. Q1 dominates Q2, denoted by Q1DQ2, if not Q1 E Q2
and (qi E q; or qf D qb), for 1 5 i 5 k.

Dejinition 10) Dominance Relation on S-Nodes: Let

For example, for the S-nodes in Fig. 3, we have

(I21 7 I25 7 I24 7 I23 7 119) E (I21 7 I25 7 I24 7 I22 7 I19) 7

since 123 and

(I21 1 I25 7 I24 9 I23 , 119) D (I21 7 I24 i I23 7 I22 7 119)

since I25 D 1 2 2 .

Furthermore, the dominance and equivalence relations be-
tween partial schedules can be also defined. Before doing so,
however, the concept of live instructions must be introduced.
Taking Fig. 2 as an example, instruction I10 has a delay of two
cycles and is scheduled in time slot 7. We say I10 is alive in
time slots (7, 8, 9), since its scope covers these slots and any
successors of Il0 cannot be scheduled in these slots. Let S1 be
a schedule or a partial schedule. Instructions that are alive in
time slot i of S1 are the instructions whose scopes cover time
slot i, denoted by Live(S1, i). Let S1 denote the aggregation
of the instructions in S1. The dominance and equivalence
relations between partial schedules are as following:

DeJinition 11) Equivalence Relation on Partial Schedules:
Let S1 and S2 be two partial schedules with the same length
j.Sl is said to be equivalent to 52, denoted by S 1 E S 2 or
S2ES1, if SI and S 2 satisfy the following conditions:

1) ILive(S1, j) l = ILive(S2, j) l and there is a complete
matching from Live(S1, j) to Live(S2, j) , such that
X(Isl) = X(Is2) and (Is1 = Is2 or 1,1 E L 2 or
Isl SE 1 5 2) , I,1 E Live(S1, j) and Is2 E Live(S2, j) .

2) IU - {Sl}l =]U - {S2}l and there is a complete
matching from U - {Sl} to U - {S2}, such that
Is2 = Isl or 151 E l s a , where I,1 E U - {Sl} and

Dejinition 12) Dominance Relation on Partial Schedules:
Let S1 and 5 2 be two partial schedules with lengths i and
j , respectively, where i 5 j and not S l E S 2 . S1 is said to
dominate S2, denoted by S l Q S 2 , if S1 and S2 satisfy the
following conditions:

1) There is a complete matching from Live(S1, i) to
Live(S2, j) , such that X (1 5 1) = A(&) and (Isl = 152
or 151 E152 or ISl S E 1 5 2) , I,1 E Live(S1, i) and
Is2 E Live(S2, j) .

2) IU - {Sl}l 5 IU - {S2}l, and there is a complete
matchingfrom U - {Sl} to U - {S2}, such that Isl =
Is2 or 151 E Is2 or Isl D Is2, where Isl E U - {Sl}
and 152 E U - {S2}.

Definitions 9) and 10) may be regarded as special cases of
Definitions 11) and 12), respectively. However, Definitions 9)
and 10) are concerned with S-nodes under the same parent,
and the conditions in these definitions are looser than those in
Definitions 11) and 12). Another reason to separate Definitions
9) and 10) from Definitions 11) and 12) is that the S-nodes
under the same parent are generated simultaneously, so we can

152 E U - (s2).

CHOU AND CHUNG. INSTRUCTION SCHEDULER FOR SUPERSCALAR PROCESSOR 307

avoid generating unnecessary S-nodes quicker. Taking again
Fig. 3 as an example, the partial schedule ending with S-node
(122, 1 2 , 11) is equivalent to the partial schedule ending with
(123, 1 2 , 11) but dominates the partial schedule ending with

These definitions are defined hierarchically and are based
only on relations among instructions. Our objective in defining
these relations is to find those S-nodes and partial schedules
that cannot lead to an optimal schedule during construction of
the solution tree. It is proved below that dominated S-nodes
need not be generated in the solution tree, since such S-nodes ,
cannot lead to a solution better than the solutions emanating
from their dominating S-nodes. And only one of a pair of
equivalent S-nodes needs to be generated, since both will lead
to schedules of the same length. Similarly, dominated partial
schedules need not be continued, and it is sufficient to continue
only one of a pair of equivalent partial schedules.

The following four lemmas define the unnecessary S-nodes
and partial schedules. The proofs are not very difficult and are
omitted here. Interested readers may refer to [17].

Lemma I : The dominated S-nodes in a solution tree need
not be generated.

Lemma 2: Let Q1 and QZ be two 'S-nodes such that
Q1 & Q 2 . Then either Q1 or Q 2 need not be generated.
Lemma 3: Let S1 and S2 be two partial schedules such

that S1 E S2. Then either S1 or S2 need not be continued.
Lemma4: Let S1 and S2 be two partial schedules such

that S1 D S2. Then 52 need not be continued.

(125, 11).

N. IMPLEMENTATION
In this section, we first present a basic generation algorithm

which generates all legal S-nodes from RI. Then we modify
the algorithm so that it generates only nondominated S-nodes,
and further modify it to eliminate equivalent S-nodes. For
partial schedule termination, each time an S-node is generated,
we check it against the S-nodes previously generated on the
same level. From the definitions, the checking involves two
matching procedures on live instructions and unscheduled
instructions, respectively. The complexity of the matching
procedure is normally the cube of the input size [18]. But we
will show that when S-nodes are generated by our algorithm,
the matching procedure becomes quite straightforward.

A. Basic S-Node Generation Algorithm

Let RI; denote the type4 instruction subset of R I and { q i }
denote the mi-element subset of RIi. All the legal..children
S-nodes for the next time slot can be obtained by taking the
Cartesian product of the {q i } s . R I = {ql} x {q2} x {q ' } .

The basic subs-node generation algorithm is to find the mi-
element subsets from RIi, and generate S-nodes by carrying

a&

Fig. 4. Generation tree of (125, 124, 1 2 3 , 1 2 2 , 11s) by Algorithm A.

Consider instructions (125, 124 , 123 , 122 , 119) in Fig. 1;
these are type 3 instructions that are ready at the very
beginning. Taking these instructions as its input, Algorithm
A constructs the generation tree shown in Fig. 4. Since an
instruction may appear several times in the tree, we place an
index in the upper left comer of each node to distinguish the
instructions. Each path from the root consisting of i nodes
forms a subs-node of i instructions. All the paths originating
from the root and consisting of 4 (m3 = 4 in this case) nodes
form the {q3} set for the next time slot.

Let Y denote a set of nodes in the generation tree, L S (Y)
denote rhe set of left siblings of the elements in Y in the
generation tree, and R(I*) denote the ancestor of I* in the
generation tree. For example, in Fig. 4, LS(11) = {lo}
andR(11) = {2}, where the numbers represent the indexes
of the generation tree nodes. Algorithm A constructs the tree
by following a rule of thumb: each node I* in the tree will
have other instructions as its children except for the nodes in
the set of R(I*) and LS(R(I*) + I*).

Algorithm A

/* input: instructions in RIi *I
I* output: a generation tree of type a *I
1 push-stack(root);
2 while (stack not empty) do
3 z = pop-stack;
4
5
6
7
8
9
10

w = LS(R(2) + 2);
E = RIi - R(2) - W - a;
for each e in E

link e to 2 as a child;
push-stack(e) ;

endfor
endwhile

out a Cartesian product of the subs-nodes. Although there
exists an algorithm for finding such subsets 1193, we use a
new approach, which can then be refined to serve our final
goal. The basic algorithm, called Algorithm A, generates all
the mi-element subsets from RIi by constructing a generation
tree.

There are a total of five subs-nodes, (125, 124 , 123 , 122),

(125, 124, 123 , Ilg), (1225, 123, 122 , 1 1 9) ~ (125, 124, 122, 119)~
and (124, 123 , 122, 119), obtained from Fig. 4. These five
subs-nodes combined with 1 2 1 (the only type 2 instruction
ready for execution at the very beginning) form the five legal
S-nodes at the first level in Fig. 3.

T I ~-
I ---

-

I

I

I I ,

308 IEEE TRANSACTIONS ON PARALLEL AND DISTRlBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

Fig. 5. Dominance graph of instructions (125, 124, 123, 122, 119).

The generation tree can be constructed in a depth-first or
breadth-first (by replacing the stack in the algorithm with a
queue) manner. The computations of LS(R(z)) and R (z) on
lines 4 and 5 are not difficult, if some links between nodes are
maintained. It will be seen in Lemma 5 that each node in the
generation tree represents a subset of R I ; , thus the complexity
of Algorithm A is 0(ARz*l). his is not surprising, since the
instruction scheduling problem is "-hard.

The generation tree in Fig. 4 need not be fully constructed.
If the number of instructions in R I ; is larger than m;, each
path is terminated as soon as its length is equal to m ; (m 3 = 4
in this case). Those paths whose lengths equal to mi form the
required subs-nodes. The shorter paths are discarded, since
subs-nodes obtained from these paths violate the Principle of
the Greedy Schedule and may not lead to an optimal schedule.
The tree constructed by the algorithm is not unique, since
we did not impose any order on the instructions in the set
E. A number of characteristics of the generation tree can be
identified:

1) All the right siblings are also children;
2) None of the left siblings are children;
3) No two paths or sub-paths from the root are identical;
4) All legal subs-nodes can be derived from the generation

Characteristics 1 and 2 follow directly from Algorithm A.
Characteristic 3 is a consequence of 1 and 2. Characteristic
4 can be proved by showing that all the subsets of RI* can
be derived from a fully constructed generation tree. That is,
all the paths from the root with length j form the j-element

Lentma5: All subsets of RI; containing j elements can
be derived from the generation tree by traversing each path
j steps.

tree.

subsets Of R I ; .

Proofi Refer to [17].
Corollary I : Let instructions { I l , I 2 , . - . , I k } be siblings

in a generation tree and let I 1 be the leftmost node among
them. Then there exists a path in the tree starting with I 1 that
is labeled with {&, 1 2 , .. - , I k } .

This corollary does not require that { 1 1 , 1 2 , - . , I k } be all
of the children of a parent node; The corollary still holds when
{ 1 1 , I 2 , - , I k } is a subset of the children.

B. Nondominated S-Node Generation Algorithm

Since Algorithm A generates all the m;-element subsets,
it is feasible only when there are no useful relations among
the instructions. We will now modify Algorithm A taking the
dominance relations into consideration. The revised algorithm,

Fig. 6. Generation tree of (1 2 5 , IZ4, 1 2 3 , 122, 1 1 9) by Algorithm B.

which we call Algorithm B, does not generate dominated
subs-nodes.

The D and S D relations between the instructions in R I ; can
be represented by a DAG called a dominance graph. In this
graph, a directed edge exists between a dominant instruction
and its dominated or semi-dominated instruction. Fig. 5 shows

The dominance graph facilitates the generation of nondom-
inated subs-nodes. In Algorithm B, a dominated instruction
cannot be linked to the generation tree except to a path on
which all its dominant instructions are present. Let D M (X)
denote the set of instructions in RI; such that all of their dom-
inant instructions in RI; are in X . For example D M (I 2 5) =

the dominance graph of (125 , I 2 4 , h , I 2 2 , h) .

(1247 1237 1 2 2) .

Algorithm B

I* input: instructions in R I ; *I
I* output: a generation tree of type a *I
1 push-stack(root);
2
3

5
6
7
8
9 push-stack(e);
10 endfor
11 endwhile

Nd = nondominated instructions in RI;
while (stack not empty) do

4 z = popstack
w = LS(R(2) + 5);
E = N d + DM(R(z) +z) - w - R(z) - 2;
for each e in E

link e to z as a child;

Fig. 6 shows the generation tree constructed by Algorithm
B for (1 2 5 , 124 , 123 , 122 , 1 1 9) . There are only four subs-
nodes, and none of them dominats the others. However, the
complexity of Algorithm B is also 0(21~~* l) .

Characteristics 1, 2, and 3 of Algorithm A are inherited
by Algorithm B. Characteristic 4 is true only when there is no
dominance relation between instructions in RI;. Corollary 1 is
also true for Algorithm B, since it is a result of characteristics

I l l ~ v- --

CHOU AND CHUNG INSTRUCIlON SCHEDULER FOR SUPERSCALAR PROCESSOR

1 and 2. The generation tree constructed by Algorithm B has
two additional characteristics:

5) Not all instructions in RIi are linked directly to the mot
node. Only instructions which have no dominator in RI;

6) Dominated instructions appear immediately after all of
their dominators have appeared on the same path, such
as nodes {3,4,5} in Fig. 6.

Also, like the tree constructed by Algorithm A, the tree
constructed by Algorithm B is not unique.
Lemma 6: All but dominated subs-nodes can be derived

from the tree constructed by Algorithm B.
Proofi We first prove that dominated subs-nodes will not

be derived from the tree. From the definition of the dominance
relation on subs-nodes, if qj is a dominated subs-node, then
there must be an instruction, say IF, in q i , for which the
dominant instruction, say I F , is not in qj. But Algorithm B
never produces this kind of subs-node. Since we treat the
dominance relation as similar to the precedence relation, an
instruction cannot be linked to the tree if not all of its dominant
instructions are on the same path.

We also prove that the algorithm is complete, i.e., that
all the nondominated subs-nodes will be derived. Suppose
there is a nondominated subs-node qj = {I? , 12, . . . ,I$ }
that cannot be derived from the tree. First we partition the
instructions in qi into two disjoint subsets, q i y d q;. q$
contains all the nondominated instructions in q;, and qb
contains the remaining dominated instructions in q; . Since the
instructions in q i are not dominated, all of them are linked
to the root node. Suppose that e is the leftmost sibling
among them. Consider the children of e. Since all right
siblings of a node will be also its children, the children of
I? are q i - I? + DM(I?) (D M (~) c q;). Suppose
again without loss of generality that 12 is the leftmost sibling
among q i - + DM(1Y) . Then the children of 12 are
the set q i - {e, 12 } + DM({ I?, e }). If we continue in
this manner, since all the dominant instructions of q; are in
q i , all of the instructions in q; will finally be activated by
the function D M () and thus will be linked. So we can find a
path starting from the root labeled with only the instructions

In the above proof, we do not specify any particular or-
der in which the instructions are linked to their parent, so
Lemma 6 also proves that all the trees constructed by Al-
gorithm B are equivalent in generating subs-nodes. How-
ever, within the trees, equivalent subs-nodes still exist. The

(125,123,122,119) derived from the tree in Fig. 6 are actually
equivalent, because 124,123 and 122 are equivalent instructions.
So Algorithm B needs further improvement.

are.

in q;. 0

three SubS-nodes (125,124, 1237 I19), (125,1247 122,119); and

C. Eliminating Equivalent Subs-Nodes
We start from the generation tree in Fig. 6. Consider nodes

3, 4, and 5, which represent instructions 124,123 and 122,
respectively. Since 124 E 123, and 124 is the left sibling of
123, all the right siblings of 123 are also right siblings of 124.
So the children of node 3 encompasses the children of node 4.

~

309

12 x”
Fig. 7. Generation tree of (125,1224,123,122,119) by Algorithm C.

From Corollary 1, for any path starting from node 4, there is a
corresponding path starting from node 3 containing the same
set of instructions, except that the first instruction is replaced
by 124 instead of 123. Thus, the exploration of node 4, and also
node 5, should be terminated to eliminate equivalent subs-
nodes. We modify Algorithm B by adding one more constraint:
the exploration of equivalent instructions in the set E on line
7 of Algorithm B should be stopped. The resulted algorithm,
named Algorithm C, is as follows:

Algorithm C

/* input: RI;, dominance graph and equivalence

I* output: a reduced generation tree of type i *I
1 push-stack(root);
2 Nd = nondominated instructions in RI*;
3 while (stack not empty) do

5
6
7

8
9
10 push-stack(e);
11 endfor
12 endwhile

relations */

4 z=pop-stack;
w = LS(R(z) + z);
E = N d + D M (R (z) +z) - W - R (z) - z ;
terminate redundant equivalent or semi-equivalent
instructions in E
for each instruction e in E

link e to x as a child;

Lemma 7: All but nondominated and nonequivalent subs-
nodes can be derived from the tree generated by Algorithm
C.

Proofi The proof follows directly from the argument
above. 0

The final generation tree is given in Fig. 7. Only two subs-
nodes (125,1247 123,122) and (125,124,123,119) are obtained
from the tree. The nodes marked with ‘x’ are terminated
owing to equivalence (or semi-equivalence) relations.

I I

310 IEEE TRANSACTIONS ON PAFALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

D. Eliminating Dominated and Equivalent Partial Schedules

It is not likely that we can prevent the generation of all dom-
inated and equivalent partial schedules, since these schedules
may emanate from different parent S-nodes. From Definitions
11) and 12), we know that checking the dominance and
equivalence conditions will involve two matching procedures
on live instructions and unscheduled instructions, respectively.
To formalize the matching problem, let us translate it into
a bipartite graph matching problem. Let (Vl , V2, E) denote
a bipartite graph. The matching problem in condition 2 of
Definition 12) is translated to:

V1 denotes the set of instructions in U - {Sl}.
V2 denotes the set of instructions in U - {SZ}.
E is the set of edges. Let Ivl E U - (5’1) and Iv2 E
U - {S2}. (Ivl, Iv2) E E if Ivl = Iv2 or Ivl EIv2 or
Ivl D Iv2 .

Condition 2 of Definition 12) is satisfied if and only if
there is a complete matching on V1 and V2. Lawler [18]
presented an O(IV1121V21) algorithm to find such a matching
if it exists. However, the matching task can be reduced
to O(IV112) if the S-nodes are generated by Algorithm C.
The equivalence relation between instructions is reflexive,
symmetric and transitive, so equivalent instructions will form
an equivalence class. The instructions in V1 and V2 can thus
be divided into several equivalence classes. If Ivl E V1, I,z E
V2 and (I ,~,I ,z) E E, then Ivl also has edges to all the other
instructions which belong to the same equivalence class of
Iv2. Thus if we neglect the edges originates from dominance
relations (though they are allowed), the instruction matching
task is reduced to an equivalence class matching task. To check
whether a complete matching exists, we need only check that
the number of instructions in each matched equivalence class
are equal.

We now prove that when S-nodes are generated by Algo-
rithm C, if there is a complete matching on V1 and V2, then
this matching contains only equivalence relations.

Lemma 8: When S-nodes are generated by Algorithm C, if
condition 2 of Definition 12) is satisfied, then the matching
contains only equivalence relations.

Pro08 We prove this lemma by contradiction. Suppose
there is a matching containing dominance relation. Assume
the dominance relation is: I, matches Ib,I , E V l , & E V2,
and I, D I b . Since I, D Ib, from Algorithm C, I b must also
be in V1. Consider the matched instruction of Ib in V2,
and assume it to be I,. Then I b E I, or I b DI,. In either
case, we have I, D I,, thus I, is also in V1, from Algorithm
C. If we go on in this manner, an instruction in V1 which
has no matched instruction in V2 can always be found. So
the matching does not exist. We conclude that if there is a
matching to satisfy condition 2 of Definition 12), this matching
contains no dominance relation.

Next, consider the other conditions in Definition 11) and
Definition 12). For the first two conditions in Definition 11)
and Definition 12), the two sets can also be divided into
equivalence classes, with each class formed by instructions
that are scheduled in the same time slot and have equivalence
or semi-equivalence relations with each other. Condition 2 of

Definition 11) can also be treated in a similar way. Thus the
matching task again becomes an equivalence class matching
problem. So we conclude that to check the conditions in
Definitions 11) and 12) it suffices to check whether the number
of instructions in the matched equivalence classes is equal or
not, and the complexity of this task is at most a square of the
input size.

E. Optimization Scheduling Algorithm

solution tree using Algorithm C.
The optimization scheme basically involves constructing the

Optimization Scheduling Algorithm:

I* input: instructions to be scheduled with precedence

I* output: solution tree *I
1 push-stack(root)
2 while (stack not empty) do

4 computeRI;
5
6

7 endfor

9
10
11

relation *I

3 x =pop-stack;

fori = 1 to k
Si =subs-nodes generated from RIi by
Algorithm C;

8 S-Set = X s2 X .**Sk;
for each S-node s in S-set

link s to x as a child;
check if the partial schedule emanating
from s is dominated or equivalent to
other schedules

12 endfor
13 endwhile

Owing to the NP-complete nature of the problem, the
complexity of the scheme is basically exponential. The ac-
tual complexity will depend on the dependencies between
instructions, and it is impossible to give a detailed complexity
analysis here. The final solution tree for the sample DAG
is illustrated in Fig. 8. The partial schedule on the right is
terminated, because it is dominated by the schedule on the
left. The S-nodes which are trimmed by Algorithm C are not
shown in the figure.

v. EXPERIMENT AND RESULTS

The proposed algorithm was run on an HP 90001425 work-
station. We used a random procedure to generate test data,
instead of using real programs. This decision is based on
the following reasons. First, the scope of this study is on a
basic block, such as in local scheduling, or a program trace,
such as in global scheduling, but not on the entire program.
Secondly, there is no common agreement as to what a typical
program trace should be, and a good instruction scheduler
should react to different input code properly. And thirdly, it
is important that we capture the knee points of the various
performance curves in the experiment, so that the behavior
and performance of the different schedulers can be thoroughly

I-- r r i T

CHOU AND CHUNG: INSTRUCTION SCHEDULER FOR SUPERSCALAR PROCESSOR 311

___ v- I T - - -

I

liclis.hz, h i c) 8 X

1io.b

Fig. 8. Final solution tree constructed by the proposed scheme.

tested and analyzed The parameters involved in the random
procedure include:

k: the number of processor types;
mi: the number of processors of each type i ;
n: the number of instructions to be scheduled;
the distribution of instructions of all types;
the dependencies between instructions.

In our experiments, we selected k = 2 and k = 4,
because no contemporary superscalar architecture employs
more than four different types of processors. Moreover, it is
shown in [17] that the more types of processor a superscalar
architecture employs, the worse the worst-case scheduling
behavior becomes. When k = 2, there is one fixed a'nd one
floating-point processor; when k = 4, two additional types
are branch processor and conditional-register processor. This
configuration is the same as that of the IBM RS16000.

When k = 2, we assume ml = m2 = 1 and m l = m2 = 2.
For k = 4, we assume ml = m2 = m3 = m4 = 1, or
ml = 4,mn = 2,m3 = 1 and m4 = 1. We select these mi
values so that the summation of mi in each case is a power
of two.

We select n = 20 (number of instructions scheduled in a
batch). Since this number is large enough to approximates that

of a large program trace in general-purpose applications, and
to reveal the advantages of our scheme. A random procedure
is uesd to determine the type and delay of each instruction
and the dependency relationships among instructions. An n
by n adjacency matrix M is used to represent the dependency
relationships among instructions. For each M (i , j) entry,
for i > j, a random number was generated. This random
number was compared against a preset density value S, and
M (i , j) = 1 if the random number was less than S , and
M (i , j) = 0 otherwise. M (i , j) = 1 means that I; 4 13. In
our experiments, the variable S which controls the sparseness
of the matrix was increased from 0.00 to 0.30 with a stride of
0.02. For the distribution of types and delays of instructions,
we adopted data from Shiau and Chung [20]. They showed
that fixed-point instructions account for about 83% of all
instructions, floating-point 12%, branch 4%, and conditional-
register 1%. A random number was used to assign the types
of instructions.

It is known that the numbers generated by a random number
generator reach a stable distribution after the generator is
called a certain number of times. Thus, for each density value,
five instances of adjacent matrices (DAGs) were created and
run. The experimental results were taken from the average
of the results of the five runs. Three programs were coded
to run on the generated DAGs. The first program, Alg-C&PS,
implements the proposed scheme. The second program, Alg-C,
implements only Algorithm C. The third program, BF, uses an
exhaustive, brute force manner to construct the solution tree.

The number of S-nodes generated and the time consumed
by each program for each run are collected and processed.
The number of S-nodes for that program in each case is
calculated from the arithmetic mean of the five runs. For
computation time, instead of comparing the absolute time
consumed, it is more meaningful to show the speedups resulted
from Alg-C&PS to Alg-C and BF. Let Tli, T2i, and T3i
denote the computation time of Alg-C&PS, Alg-C, and BF
in each run, respectively. So the ratios T2i/Tli and T3i/Tlz
are the speedups of Alg-C&PS to Alg-C and BF, respectively.
The harmonic means, instead of arithmetic means, of these
speedups are calculated.

The programs are allowed to be aborted due to a shortage
in memory (if the solution tree grows too large). In the
experiment, Alg-C&PS was never aborted, and Alg-C was
aborted only in a few cases. But BF was rarely completed. If a
program was terminated, we assign default values for that run.
The default value for the number of S-nodes is 1oo00, and the
default computation time is 60 seconds, which is a little longer
than the maximum computation time of any successful run.
Although this assumption is very conservative, the efficiency
of Alg-C&PS is still evident.

Tables I and 11 list the experimental results for (ml =
l ,m2 = 1) and (ml = 1,m2 = 1,m3 = l ,m4 = 1)
processor organizations. In these tables, a '-' entered for
the number of S-nodes indicates that the program failed to
complete execution in any of the five runs. In these cases, the
relative speed was more than 300-a conservative estimate.
One can see that Alg-C&PS performs far better than the
other two programs. Some other interesting phenomena can

312 IEEE TRANSACrIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

TABLE I
NUMBER OF S-NODES AND RELAnvE SPEED OF (ml = 1, mz = 1).

TABLE II
NUMBER OF S-NODES AND RELATIVE S P ~

OF (ml = 1,mz = 1 , m j = l ,m4 = 1)

also be observed in these tables. Taking Table I for example,
we observed that the number of S-nodes in the columns
Alg-C&PS and Alg-C increases as the density decreases but
decreases when the density is very small. The reason is that
when the density is high, there are many dependencies or
dominance relations among instructions. So the number of
ready instructions in each time slot is small. The solution
tree tends to be narrow, and the number of S-nodes is small.
As the density decreases, the number of ready instructions in
each time slot increases. The solution tree becomes wide, and
the number of S-nodes grows large. However, as the density
becomes very small, the dominance relations diminish yet the
equivalence relations increase. Alg-C&PS and Alg-C both can
take advantage of equivalence relations, so the solution tree
becomes narrow again, and the number of S-nodes becomes
small. In the extreme case when S = 0.00, all the instructions
with the same type and delay are equivalent instructions. The
solution trees constructed by Alg-C&PS and Alg-C are almost
a single chain. In contrast, BF fails to take this advantage, so
it runs out of memory, even though the DAGs in these zero-
density cases are very easy to schedule. More experimental
results can be found in [17].

The second phenomenon we noticed in these tables is that
the change in the values in each column is not strictly mono-
tonic. This is because the DAG’s are randomly generated. The
density value can control only the number of edges in these
DAG‘s, but not the way the dependencies are allocated, or
the “shape” of the DAGs. However, it is known that not
only the number of edges, but also the “shape” of the DAG’s
affect scheduling. This phenomenon will become less apparent
or disappear if we were to generate thousands of DAG’s in
each case instead of only five. Here we only point out this
phenomenon instead of concealing it by running more DAG‘s.

Alg-C&PS, as expected, produces far fewer S-nodes than
the other two methods in most cases. We conclude that Alg-
C&PS is efficient in both time and space quired. Owing
to the ability to generate only those S-nodes and partial

schedules nearly absolutely needed, we believe that Alg-C&PS
is practical to schedule real code, regardless of the number
of instructions involved, and remains superior to the other
methods.

VI. DISCUSSION

From Lemma 1, we learned that a scheduling algorithm
should give scheduling priority to dominant instructions over
their corresponding dominated instructions. If not, a less
optimal schedule may result. Also we suggest that a scheduling
algorithm give scheduling priority to semi-dominant instruc-
tions, since it is likely that semi-dominant instructions will be
scheduled no later than their corresponding semi-dominated
instructions in an optimal schedule.

The methodology described in the above sections can be
easily extended to other scheduling problems, especially those
where the computation times of the scheduled objects are
identical. The first natural extension is to the UET task
scheduling problem. Since UET tasks involve no type or
delay features, the dominance and equivalence relations for
UET tasks are simpler than those defined in Section III.
The constraints on type and delay in Definition 3) through
Definition 6) are thus unnecessary for UET task scheduling.
Another application of our scheme is in UET task scheduling
with a deadline [14]. In this problem, each task Ti is associated
with a deadline d(T;). The scheduling criterion requires that
each task be completed before its deadline. The dominance
and equivalence relations on such tasks require one more
constraint than pure UET tasks. The additional constraint is
d(T;) = d(Tj) , if Ti is equivalent or semi-equivalent to Ti;
and d(T,) 5 d(T j) , if Ti dominates or semi-dominates Tj.

VII. CONCLUDING REMARKS

Dominance characteristics have been exploited to solve
many scheduling problems. We believe that our approach
is different from previous approaches in one very important

I I 1 T

CHOU AND CHUNG INSTRUCTION SCHEDULER FOR SUPERSCALAR PROCESSOR 313

respect. Previous- approaches emphasized dominance relations
only. Our scheme takes advantage of not only dominance
but also semi-dominance, equivalence, and semi-equivalence
relations. Moreover, we also define hierarchical dominance
and equivalence relations on S-nodes and partial schedules.
We propose an algorithm, named Algorithm C, that avoids
the generation of dominated and redundant equivalent S-
nodes. The optimization scheduling algorithm presented in
Section IV-E also facilitates the checking of dominated partial
schedules. Finally, our experiments show the efficiency of the
proposed scheme.

[16] C. I. Yang, J. S. Wang, and R. C. T. Lee, “A branch-and-bound
algorithm to solve the equalexecution-time job scheduling problem
with precedence constraint and profile,” Compuf. Oper. Res., vol. 16,

[17] H. C. Chon, “A study of superscalar instruction scheduling problem,”
Ph.D. dissertation, Inst. Comput. Sci. Inform. Eng., Nat. Chiao Tung
Univ., Taiwan, 1992.

[18] E. L. Lawler, Combinatorial Optimization: Networks and Matroids.
New York Holt, Rhinehart, and Winston, 1976.

[19] M. R. Edward, N. N. Jurg, and D. Narsingh, CombinatiorialAlgorifh:
Theory and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1977.

[20] Y. H. Shiau and C. P. Chung, “Effects and handling of instruction class
contention in superscalar processing,” submitted paper.

[21] E. Lawer, I. K. Lenstra, C. Martel, B. Simons, and L. Stockmeyer,
“Pipeline scheduling: A survey,” IBM Res. Rep. RI 5738, San Jose,
CA, 1987.

pp. 257-269, 1989.

REFERENCES

[l] R. R. Oehler and R. D. Groves, “IBM RISC Systed6OOO processor
architecture,” IBM J. Res. Develop., vol. 34, pp. 23-36, 1990.

[2] N. Margulis, i860 Microprocessor Archifecture. New York McGraw-
Hill, 1990.

131 V. J. Rayward-Smith, “UET scheduling with unit interprocessor com-
munication delays,” Discrete Appl. Math., vol. 18, pp. 55-71, 1987.

[41 M. Johnson, Superscalar Microprocessor Design. Englewood Cliffs,
N J Prentice-Hall, 1990.

[5] H. S . Warren, Jr., “Instruction scheduling for the IBM RISC Sys-
ted6OOO processor,” IBM J. Res. Develop., vol. 34, pp. 85-92, 1990.

[6] R. M. Tomasdo, “An efficient algorithm for. exploiting multiple arith-
metic units,” IBM J. Res. Develop., vol. 1 I , pp. 25-33, 1967.

[7] V. Propescu, M. Schultz, J. Spracklen, G. Gibson, B. Lightner, and D.
Isaman, ‘The megallow architecture,” IEEE Micro, June 1991.

[8] J. R. Ellis, Bulldog: A Compiler for VLlW Architecture. Cambridge,
MA: The M.I.T. Press, 1986.

[9] J. Bruno, J. W. Jones, and K. So, “Deterministic scheduling with
pipelined processors,” IEEE Trans. Compuf., vol. C-29, pp. 308-316,
1980.

[IO] J. L. Hennessy and T. R. Gross, “Postpass code optimization of pipeline
constraints,” ACM Trans. Programming Language and System, vol. 5,
pp. 442448, 1983.

[Ill J. A. Fisher, “The VLIW machine: A multiprocessor for compiling
scientific code,” IEEE Comput., pp. 45-53, July 1984.

[I21 J. A. Fisher, “Trace scheduling: A technique for global microcode
compaction,” ZEEE Trans. Comput., vol. C-30, pp. 478-490, 1981.

1131 S. Melvin, “Exploiting fine-grained parallelism through a combination of
hardware and software techniques,” in Proc. Int. Con$ Parallel Comput.,
1991.

[141 M. R. Garey and D. S. Johnson, Computers and Infractabilify: A Guide
to the Theory of NP-completness. San Francisco, C A Freedman, 1979.

[151 C. V. Ramamoo~thy, K. M. Chandy, and M. J. Gonzalez Jr, “Optimal
scheduling strategies in a multiprocessor system,” IEEE Trans. Compuf.,
vol. C-21, pp. 137-146, 1972.

How-Chi& Chou was bom in Taiwan, Republic
of China. He received the B.S., M.S., and Ph.D.
degrees in computer science and information engi-
neering from the National Chiao Tung University,
Taiwan, in 1986, 1988 and 1992, respectively.

Currently, he is with the Computer & Commu-
nication Research Laboratories (CCL) of Industrial
Technology Research Institute (lTRI) as a hardware
engineer. His research interests include computer
architecture, parallel processing and VLSI system
design.

mung-Ping Chung received the B.E. degree from
the National Cheng Kung University, Taiwan, Re-
public of China, in 1976, and the M.E. and Ph.D.
degrees from the Texas A&M University in 1981
and 1986, respectively, all in electrical engineering.

He was a Lecturer of electrical engineering at
the Texas A&M University while working towards
the Ph.D. degree. Since 1986 he has been with the
Department of Computer Science and Information
Engineering at the National Chiao Tung University,
Hsinchu, Taiwan, ROC, where he is a Professor.

From 1991 to 1992, he was a Visiting Association Professor of Computer
Science at the Michigan State University. His research interests include
computer architecture, parallel processing, and parallel compiler design.

