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Abstract

A new technique called motion restoration method (MRM) for estimating the global motion due to zoom and pan of
the camera is proposed. It is composed of three steps: (a) block-matching motion estimation, (b) object assignment,
and (c) global motion restoration. In this method, each image is first divided into a number of blocks. Step (a)
may employ any suitable block-matching motion estimation algorithm to produce a set of motion vectors which
capture the compound effect of zoorn, pan, and object movement. Step (b) groups the blocks which share common
global motion characteristics into one object. Step (c¢) then extracts the global motion parameters (zoom and pan)
corresponding to each object from the compound motion vectors of its constituent blocks. The extraction of global
motion parameters is accomplished via singular value decomposition (SVD). Experimental results show that this new
technique is efficient in reducing the entropy of the block motion vectors for both zooming and panning motions and

may also be used for image segmentation.
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1 Introduction

Motion estimation plays an important role in video data compression which exploits the high temporal redundancy
between successive frames of a video sequence to achieve high compression ratio. It is also used in segmentation of
images for computer vision applications. The most common technique of motion estimation employed in video coding
is block matching[1]-[3]. In this technique, a single motion vector is estimated for each image block by comparing
the current-frame nmage block to the blocks in the previous frame that correspond to different displacement vectors.

And the displacement vector that minimizes a predetermined error criterion i1s chosen. The assumption underlying

1870 / SPIE Vol. 2308 0-8194-1638-X/94/$6.00

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms



block-matching motion estimation is that all the pixels inside a block are undergoing the same translational motion.
As a result, this approach may generate a significant proportion of motion vectors that do not correspond to true
motion. This imprecise estimation will increase the prediction error and reduce the compression ratio. Therefore,
methods that can cope with more general forms of motion (including translation, zoom, pan, and deformation) have
been the focus of a great deal of research in recent years [4]-[7].

We propose a method called motion restoration to estimate local as well as global motion. This method
consists of three steps: (a) block-matching motion estimation, (b) object assignment, and (c) global motion restora-
tion. The first step estimates translational motion in a block-by-block fashion and it may employ any appropriate
block-matching algorithm (BMA). The two remaining steps then extract the zooming and panning components from
the block motion vectors obtained in the first step. The entropy in the motion vectors is thereby reduced. As a
result, we can reduce the amount of data to be transmitted. Or we may use a simaller block size so that the amount
of data is not reduced but the BMA could yield a more accurate estimate to start with, alleviating the inaccuracy
problem associated with traditional block-based motion estimation.

This paper is organized as follows. In Section 2, we give a mathematical description for general global and
object motion. In Section 3, the proposed motion restoration method (MRM) is derived. Section 4 is devoted to the

presentation and discussion of experimental results. Section 5 is the conclusion.

2 Mathematical Description of Global Motion

To match the mechanism of ordinary video cameras, we use central projection to model the motion traces on the
recorded images caused by object or camera movement (i.e., zoom, pan, etc.). Figure 1 illustrates our model. P is a
point of interest on an object. Let

(z,y,z) = object-space coordinates of the point P,

(X,Y) = image-plane coordinates of the image point P’, and

F = z-coordinate of the image-plane in object-space.

Based on similarity between the triangles AOPR and AOP’S, we have

Therefore,

y = FY (2)
Similarly, we also have

X=FZ (3)

A general movement consisting of zoom, pan, and object motion is depicted in Figure 2. Let V, be the dis-

placement vector of point P and let Vi, Vi, and V,; be its x-directional, y-directional and z-directional components,
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respectively. Geometry then gives

Xa= 22’ = 75— (2 4 Vor = Vpr)

{ Y, = %1/: oWt Voy = Voy) )
where (X2,Y2) is the projection of P(z’,y',2’) on the image plane and (V,z, Vpy) is the panning vector of camera
(or, equivalently, image coordinates). Now note that (from Equations (2) and (3))

= EXL Y= FlYI (5)
Inserting Equation (5) into Equation (4), we obtain

{ Xo = (5 X1+ Vou = Vpa)

7 2 M 6
Yy = z+Fv.,,( ,Yl + Voy = Vpy) ©)

Therefore, the corresponding vector (Vz, V) on the image plane due to the cornbination of object and camera

movement 1s

- l)Xl F‘:; ‘/P"' + z;.-V (7)
I_’T:+~Vo, - 1)Y1 z+f/ VPy + z24+Vos Voy

For simplicity, we rewrite Equation (7) as

Ve=Z2X14+PVoe + Vor (8)
Vi =ZY14+PVoy +Vey '

where

Voy = T+ Vo, Voy
The first term in the righthand side of Equation (7) is due to camera zoom. The second term is caused by pan.
And the third term is the projection of the object’s movement on the image plane. In the next section, we derive a

method to restore the motion components, i.e., the pan, zoom, and object motion parameters.

3 Motion Restoration Method (MRM)

The architecture of the motion restoration method is shown in Figure 3. It consists of three steps:

1. Motion Estimation:

In this step, the motion vector of each block of an image is obtained using a suitable BMA (e.g., full search,
3-step search, or others). In our simulation, we use the full-search BMA to estimate these motion vectors. The

resultant motion vector field forms the basis of the following two steps.

2. Object Assignment:

We assign the the blocks that share certain common global motion characteristics to the same object. The

assignment criteria are summarized in two object-assignment theorems to be described later.
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3. Motion Restoration:

The motion components due to camera zooming and panning are extracted in this step. Hence, the object

movement is separated from the camera motion.

3.1 Object Assignment

For simplicity, images are divided into blocks and each block is viewed as a single computational unit. Thus, let

(X1,Y1) in Equation (8) refer to the center of a block. Let A and B be two image blocks. According to Equation (8),

we have
{ Vea = ZaXa+PaVoe+Vora )
Via = ZaYa4+PaViy +Voyau
and
{ Vep = ZXp +PBVor + VozrB (10)
Vae = ZYe+PVpy +Voyp

If these two blocks belong to the same object, then the corresponding motion parameters (Z,P,V,) will be equal.
Assuming this is true, we subtract Equation (10) from Equation (9) and obtain

Via = Vop _ Xa—Xp (11)
Vya — VyB Ya-Yp '

Therefore, we have the following object-assignment theorem.

Theorem 1 If zoom molion ezists (Z is nonzero) and two blocks 1 and 2 belong to the same object, then

Ver=Ver X1 = Xo
Vi =Vye ~ V1Yo’

where
(X:,Y:) = the central coordinates of block i,
(Vai, Vyi) the observed motion vector in the image plane.

Theorem 1 is valid under rather general conditions; that is, when both zoom and pan exist. Assume that

only panning exists, then Equations (9) and (10) become

{ Vea = Pa sz‘ + Voza (12)
Vya = Pa pr + Voya
and
{ Ver = 7-)vazv + VocB (13)
Vog = PuVoy +Veys '
If the two blocks belong to the same object, then
Vea = Vep
{ Vya = Vyp (14)

Thus we obtain the second object-assignment theorem.
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Theorem 2 If zoom motion does not ezist and the two blocks A and B belong to the same object, then

{ Vea = Vg
VyA = VyB

Based on the above object-assignment theorems, the blocks in the whole image can be grouped into a number
of objects. The blocks that belong to the same object have the same global and object motion vectors. Therefore,

for an object containing p blocks, we have

V:cl = ZX] +Pvpx + vo:t:
Vin = ZY1 4+ PVoy + Vo

: ) (15)
Vep = ZXp + PVpe + Voo
Vyp = Zyp +p‘/py + Voy

where Z and P are identical for all the p blocks. This set of linear equation can be abbreviated as AW = b.

In object assignment, we first index each block in an image in ascending numerical order as shown in Figure 4.

The blocks are denoted B;, i = 1,..., N. We then invoke the following procedure.

Step 0: Set j=1. Let all blocks be unmarked.

Step 1: Among all unmarked blocks, choose the one with the smallest index as the reference block and

denote it Br.;. Mark this block and assign it to object j.

Step 2: For each remaining unmarked block, test it against B,y for Equality (11) or (14). If equality holds,

then mark it and assign it to object j.

Step 3: If all blocks are marked, then stop. Otherwise let j=j+1 and go to Step 1.

In the next subsection, we discuss how motion restoration is performed on the “objectized” image to compute the

global motion parameters for each object.

3.2 Cascaded Motion Restoration

One way to implement the motion restoration block shown in Figure 3 is to decompose it into two cascaded sub-
steps for separate zoom and pan estimation as depicted in Figure 5. This figure shows that the motion vectors of
an arbitrary object are first processed for zooming estimation which extracts the zoom vector V, from the motion
vector V. The difference vector V. = V — V, is then processed for panning estimation and is separated into a pan
vector V}, and an object motion vector Vop; = Vi — V},. The two estimation sub-steps may be reversed to yield a pan-
plus-zoom (P+Z) architecture instead of the depicted zoom-plus-pan (Z+P) architecture. The overall organization
of the complete motion restoration process can therefore have a number of variants. The four that we considered
are denoted as schemes A, A’, B, and B’, respectively, in Figure 6. Schemes A and A’ employ Theorem I in object

assignment, while schemes B and B’ employ Theorem 2.
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We next describe in more detail how each sub-step in the cascaded motion restoration can be performed,
assuming a Z+P architecture. Equations for the P+Z architecture can be similarly derived.
a. Zooming estimation

Assuming PV, +V, = V;, we can rewrite Equation (15) as

Ver = ZXi+ Ve
I/yl = ZVi+ Vry
: (16)
Vep = ZXp+ Vi
Vip = ZYp+Viy

The above equation can be expressed in matrix notations as

Azwzzbzq
where _ .
X, 10
_ X, 1 0
4. = Y1, 0 1}’
LY, 01
W, = [Z,Vee, Vey]", and
T
bz = V“,...,Vx,,,Vyl,...,Vyl
P P

Using the singular value decomposition (SVD) technique[8], we can obtain the solution as
W, = Alb,.

After removing the zooming factor Z, V, = (V,z, V;y) is passed to the next sub-step.
b. Panning estimation

From the result of zooming estimation, we remove the Z component in Equation (15) and obtain

Vie = PV;U' + Vor
Viy = PVy+ Ve
. (17)
Vie = 7:"/;):1: + Vor
Viy = PViy+Voy
This can be rewritten as
AW, = by,

SPIE Vol. 2308/ 1875

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms



where

1 1 0 0
_ 1 1 0 0

A = 001 1}

0 0 1 1]
I/VP = [Pvpl'v VOJ: ] Pvpyy Voy]T, (lTld
T

b, = Vero o Ve, Vi, LV,

P R y y
p P

Applying SVD again, we can obtain the panning vector from

W, = Alb,.
4 Experimental Results

The proposed algorithm is tested on a variety of image sequences. We present the results from using the flower
garden and the table tennis sequences. Each sequence contains 30 pictures at a resolution of 720x480 per picture.
The flower garden sequence contains panning activity only, whereas the table tennis sequence has individual object
movement as well. Besides the four MRM schemes outlined previously, we also consider a zero-forcing (ZF) MRM
in which the object motion vectors are set to zero. This approach is based on the assumption that object motion
vectors do not affect significantly the estimated zoom and pan vectors and hence can be neglected in their estimation.

The numerical results are summarized in Figures 7-10, in which we compare the entropy of the block motion
vectors as well as the PSNR before and after motion restoration. The entropy values are computed frame-by-frame
using the statistics of each frame separately. In addition, since the block motion vectors after the extraction of global
motion components may not be integers, they are quantized prior to entropy computation. The block size is 16 x 16
in all experiments. The figures show that the MRM can reduce the entropy of the block motion vectors and increase
the PSNR. Interestingly, the ZF MRM is found to significantly outperformm other MRM schemes in both entropy
reduction and PSNR gain in some cases.

For the flower garden sequence, Figure 8 shows that schemes A’ and B’ yield a higher compression ratio
than schemes A and B. This is intuitively reasonable since the sequence contains pan motion only, and schemes A’
and B’ conduct panning estimation first while schiemes A and B do zooming estimation first. As a result, schemes A
and B may produce incorrect zooming vectors and thereby result in a higher distortion in the subsequent panning
estimation. In the case of the table tennis sequence, there is no significant global motion before the 23rd frame, at
which camera zoom commences. This causes the MRM to produce an increase in the entropy of the motion vectors
for the first 22 frames. This undesirable anomaly of the MRM can be avoided by developing an improved method or

by turning off the MRM in adverse conditions.
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From coding experiments on different video material with a CCITT H.261-type coder, we note that the
amount of motion information can vary from 10% to over 20% of the total compressed video data. Therefore,

depending on the video material, the bit-rate saving from the above entropy reduction can be quite significant.

5 Conclusion

We gave a mathematical model describing global motions in an image sequence. Based on this model, the motion
restoration method (MRM) was derived which can restore the zoom, pan, and object motion vectors in an image.
Four variants were considered, plus one which forces the object motion vectors to zero (the zero-forcing MRM).
Simulation results show that, for images containing both panning and zooming, the proposed method can achieve
roughly 30% to 40% of entropy reduction in the block motion vectors. And the zero-forcing MRM can be quite
advantageous compared to the four more elaborate alternatives.

Due to the object-assignment step, the method is inherently hierarchical. The proposed object-assignment
technique can also be used for image segmentation in various applications such as computer vision and pattern

recognition.
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Figure 7: Entropy reduction and PSNR gain for the flower garden sequence with motion restoration.
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Figure 8: Entropy reduction and PSNR gain for the flower garden sequence with zero-forcing motion restoration.
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Figure 9: Entropy reduction and PSNR gawn for the table tennis sequence with motion resloration.
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