
~ Pergamon 
Int. J. Math. Tools Manufact. Vol. 35, No. 3. pp. 4,;5--458. 199~ 

Copyright ~) 1994 Elsevier Science Ltd 
Printed in Great Britain. All rights res~ved 

1 ~ 5 / ~ $ ~ . ~  + .00 

0890-O~$(94)E00124 

D E C E N T R A L I Z E D  C O N T R O L  O F  A R O T O R  S Y S T E M  
S U P P O R T E D  B Y  M A G N E T I C  B E A R I N G S  

Y I - H U A  F A N t  a n d  AN-CHEN LEE1" 

(Received 22 December 1993) 

Abstract--The controller design for a permanent/electromagnetic magnetic bearing system that suspends a 
high-speed rigid horizontal rotor is investigated. The key points to ensure the stability of a rotor using this 
type of magnetic bearing are discussed. To facilitate implementation, a decentralized state feedback algorithm 
is proposed to stabilize the inherently unstable magnetic suspension system. Experimental results for the 
controlled system show that the system operates well at rotor speeds of up to 10,000 rpm. 
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NOMENCLATURE 

displacements of mass center of rotor along X- and Y-axes 
angular displacements about the X- and Y.axes 
rotor displacements at left magnetic bearing location 
rotor displacements at right magnetic bearing location 
distances to magnetic bearings from rotor center of mass 
distance between two magnetic bearings 
rotational speed about the spinning Z-axis 
rotor mass 
the transverse mass moments of inertia of rotor 
the polar mass moments of inertia of the rotor 
mass eccentricity components of rotor corresponding to the X- and Y-axes 
the magnetic force 
the coil current 
static part of coil current 
the controlled current 
the force-displacement coefficient 
the force-current coefficient 
voltage of error signal 
output voltage generated by the controller 
constant gain of sensor and driver respectively 
p-control and d-control feedback game matrices 

I. INTRODUCTION 

THE demand for high-speed/high-power machine tool spindles has led researchers to 
investigate alternatives to traditional rolling contact bearings. One such alternative is 
magnetic bearings, a recent high-technology development in the turbomachinery field. 
Magnetic bearings suspend a rotating shaft by controlling magnetic attractive force 
without mechanical contact and lubricaton. The major advantages of these bearings 
are that they eliminate traditional bearing problems such as wear and lubrication and, 
even more important, offer great potential for vibration reduction. Magnetic bearings 
have been the subject of much development work in laboratories and are gradually 
being put into use in industry in machine tool spindles, turbomolecular pumps, and 
other applications. 

The attractive magnetic suspension system used in magnetic bearings is inherently 
unstable; therefore, artificial stabilization by means of feedback control is required. 
Much recent literature has investigated the stability of and vibration control in magnetic 
bearing rotor systems. Fumio et al. [1] considered a horizontal rotating shaft controlled 
by a magnetic bearing. They derived the equations of motion for a levitated rotating 
body and clarified the relations between the voltage, current, and attractive force of 
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electromagnets. Takeshi and Toshiro [2] studied a totally active d.c.-type magnetic 
bearing rotor system. They derived the equations of motion for a vertically rigid rotor 
suspended by 10 magnetic bearings and rotating at a constant angular velocity, and 
they also designed a controller using linear optimal control theory and presented an 
analytic solution. Kenzou et al. [3] used a finite element method to obtain a mathemat- 
ical model of a flexible rotor taking into acount the interaction between the mechanical 
system of the flexible rotor and a controller. They did not, however, consider the 
gyroscopic effect. The feedback control algorithms developed in these studies are very 
complicated, and each control input depends on all the degrees of freedom of the 
rotor. Furthermore, the stability analysis in the above studies was based on only a 
single, fixed speed of rotation of the rotor. 

In this paper, we propose a new controller design method for a rigid symmetrical 
rotor supported by permanent/electromagnetic magnetic bearings (PEMBs). In our 
previous laboratory studies [4, 5] we found that a permanent-magnetic biased magnetic 
bearing has the merits of small size, light weight, and low power consumption. In 
addition, and perhaps even more important, a PEMB can be operated at almost a 
linear force vs control current, which makes controller design easy. To simplify the 
controller design and facilitate implementation, we propose a decentralized state feed- 
back control algorithm. Furthermore, depending upon the necessary and sufficient 
conditions for the stabilization of a conservative system [6], we can design a controller 
so that the closed-loop stability will be maintained when the speed of rotation changes. 

2. MODELING OF THE HORIZONTAL ROTOR BEARING SYSTEM 

Figure 1 shows the schematic of the test rotor. The rotor is suspended by two sets 
of PEMBs, and a motor regulates the speed of the rotor. The rotor is assumed to be 
rigid and symmetric and to have uniform mass unbalance. The shaft is suspended 
horizontally by contact-free magnetic bearings at both sides and the rotor positions of 
the magnetic bearings are measured by four eddy current-type sensors. The rotor has 
four degrees of freedom including two translational motions in the radial directions 
and two rotational motions about its center of mass, and is controlled by eight electro- 
magnets. Furthermore, all displacements from the desired position are assumed to be 
small. Figure 2 shows the basic structure of the attractive-type magnetic bearing rotor 
system. The attractive forces supplied by the electromagnets acting on the rotor are 
expressed as F,, (n = 1 . . . .  , 8). Figure 2 also shows the direction and point of action 
of each force. Here, we define a coordinate frame O - X Y Z  fixed in space. The origin 
point O corresponds to the center of mass of the rotor and the Z-axis corresponds to 
its spinning axis. The parameters x and y denote the linear displacements of the center 
of mass of the rotor along the X- and Y-axis, respectively, and 0x and 0y represent 
the angular displacements of the spinning axis about the X- and Y-axis individually. 
xa, ya, xb, and Yb are the displacements of the rotor at the magnetic bearing locations, 
and a and b are the distances to the magnetic bearings from the center of mass of the 
rotor. 

Magnet ic  Magnet ic  
b e a r i n g  A b e a r i n g  B 

bearing 

Platform . [ 

FIG. 1. Schematic of test rotor. 
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F,G. 2. Basic structure of the rotor-bearing system (1-8: electromagnets). 

On the basis of the preceding description, the dynamic equations of the rotor about 
the mass center are as follows: 

m£ = Ft - F3 + F5 - F7 + m•£12 cosl)t - m~l) 2 sinflt 

m ~  = - m g  + F2 - F4 + 1:6 - Fa + m•l~ 2 sinl)t + m~l) 2 cosl)t 

I~ (Jy - f l l .  Ox = b(F5 - FT) - a(Fx - F3) 

I~ Ox + f i b  Oy = a(F2 - S4) - b(S6  - Ss), (1) 

where 1) is the rotational speed about the spinning axis Z, m is the rotor mass, Ir is 
the transverse mass moment of inertia of the rotor, I .  is the polar mass moment of 
inertia of the rotor, and • and [ are the mass eccentricity components of the rotor 
corresponding to the X- and Y-axes. 

Our previous research showed that the magnetic forces FI to Fs provided by the 
two sets of PEMBs are a function of the length of the air gap and the magnitude of 
the magnetic flux, which is the sum of the electromagnet (EM) flux and permanent 
magnet (PM) bias flux. The length of the air gap is dependent upon the nominal length 
of the gap and the displacement from the center position of the magnetic beating. 
Because the EM flux due to the coil current i,, is far less than the PM bias flux and 
the rotor displacement d,, is confined to less than 1/10 of the gap length under normal 
operation, the magnetic force may be approximated by a Taylor expansion about the 
normal operating point i,, = 0 and d,, = 0, taking only those terms of less than second 
order into consideration, i,e. the magnetic force can be expressed as 

F .  = fo + k,~d. + k i i . ,  (2) 

where fo is the static magnetic force when i , , - -0  and d,, = 0, k d is the 
force-displacement factor, and k~ is the force-current factor. 

For simplicity, we let the eight electromagnets have the same coefficients kd and k~. 
Then the eight input forces can be written as follows: 
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F1 = fo + ki i l  + kdXa 

F2 = fo + kii2 + kay,, 

F3 = fo + kii3 - kdXa 

F4 = fo + k j 4  - kay,, 

F5 = fo + kii5 + kdXb 

F6 = fo -t- k i i  6 q- kayb 

F7 = f o  + kii7 - kdXb 

178 = fo + kiis - kayb. (3) 

Substituting these control forces (3) into equation (1), we obtain the dynamic equations 
of the rotor mass center: 

m x  

m ~ -  

I~ Or - 

l r 6 x +  

2kd (X``+Xb) = ki (il - / 3  + i5 - i7) + m ~  2 cosflt - m~l-I 2 sinl)t 

2kd  (Y``+Yb) = - m g  + k~ (/2 - / 4  + i6 - i8) + m~l'12 sinIlt + rn~l) 2 cosIlt 

1)I~ b~ - 2ka (bxb - ax``) = k~ b( is  - i7) - k~ a(i~ - i3) 

1)I~ Oy - 2kd (ay`` -- byb)  = ki a(i2 - i , )  - k~ b(i6 - / 8 ) .  (4) 

To simplify the dynamic equations (4), we will express the system equations in terms 
of displacements in the magnetic bearing locations. Since the rotor is assumed to be 
rigid and the displacement from the desired position is assumed to be small, the 
relationships between x~, x2, Yl, and Y2 and x, y, 0x, and 0y can be expressed as follows: 

bx`` + aXb by`` + ay b 
x =  L Y =  L 

0x ~ tan0x = Y`̀  - L Yb 0y --- tan0y - xb L - x`` (5) 

Substituting equations (5) into equations (4) yields the dynamics of the system as 
follows: 

b b 
m ~.f``  + m -L.fb - -2kd (X,,+Xb) = ki (il  - i 3 d- i5 - i7) 

+ m ¢ l )  2 cosl)t - m[l)  2 sintlt 

b b 
m - ~  y`` + m - ~  yb -- 2 k d ( y ` ` + y b )  = - m g  + k i ( i2  - i4 + i6 -- i8) 

+ m d )  2 sintlt + m ~  z costlt 

-~ (Xb -- X~) -- ~ (Y~ -- Yb) -- 2kd (bxb - axe)  = k, b(i5 - i7) - k, a(i ,  - i3) 

lr ~ l a  
-~ (Y`` - Yb) + T (2b -- ~``) -- 2kd (ay,, -- byb)  = k,  a(i2 - i4) -- ki b(i6 - i8). (6) 

3. STABILITY ANALYSIS AND CONTROLLER DESIGN 

In our design, the currents flowing through the electromagnets, as shown in Fig. 3, 
are assigned as il = - /3 , /2  = - /4, /5 = -/7 and/6 = -i8. Furthermore, the coil current 
ij, j = 1-8, consists of a static part ijo and a dynamic part i~ (i.e. the controlled 
current). We can represent the incremental current as 

• , +  • 

ij = ~ ~jo j = 1 , . . . ,  8. (7) 

To provide an initial force to suspend the rotor without inducing any initial torque, 
we set 
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FIG. 3. Control circuit for a permanent-magnet biased magnetic bearing. 

bmg 
i2o = - i ~  = 2 ( a + b )  ki" 

amg 
i6o = - i s o  = 2 ( a + b )  ki 

and  i]o = i3o = iso = i7o = 0;  t hen  the  equa t i ons  of  m o t i o n  (6)  can  be  s impl i f ied  and  
r ewr i t t en  as fo l lows:  

b a 
m -L2a + m -~2 b - 2kd (Xa+Xb) = 2ki (i '~+i~) + m~.~ 2 cosl"~t - m ~  2 s in f l t  

b a 
m -Ly,,., + m -~Yb -- 2kd (Y,,+Yb) = 2ki ( i~+i~)  + mF.fl 2 s in f l t  + m~f l  2 cosf~t 

f l,, 
~ (2b -- 2,,) -- ~ -  (P,:,--)'b) -- Eke (bXb--ax,,) = 2kj bi ~ - 2k, ai 

'r 
~ (Y ,  - Yb) + (~b--.r.) -- 2kd ( a y . - b y b )  = 2k, ai~ - 2k~ bi; .  (8) 

T h e  a b o v e  e q u a t i o n s  can  be  r e a r r a n g e d  as fol lows:  

2kd 2,, + (Ya--~gb) -- 2k_~d ( X a + X b )  --  (a2Xa -- abXb) 
m Tr 

2k, (i~ +i~)  + 2ki = ~ ~ (a2 i~ -ab i~ )  + e~2 cos f l t  - [f i2 s in[ I t  

_ _  2ka 
2b -- (~a- -~b)  -- 2ka (Xa+Xb) -- (b2Xb -- abxa) 

m 

2k~ 
= 2k--A ( iT+i~)  + ( b 2 i ~ - a b i ~ )  + ~ 2  cos f i t  - ~1~2 s in l ) t  
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l ) l .a  2ka 2kd .  2 
Ya --  Ir----L- (2a--JOb) --  ~ (Y.+Yb) -- --fir (a y ,  -- abyb) 

2k~ (i*~+i~) + 2kt = --m -~r (a2 i~ -ab i~ )  + ~fl 2 sintlt + [[12 cosflt  

Yb + ~ ( k , , - - ~ b )  2ka . + 2ka 
- - -~  (Y,, Yb) -- ~ (bZYz - abya) 

2k~ (i*~ +i~) + 2k~ = -~- ~ (b 2 i~ - abi~) + d l  2 sintlt + ~II 2 cosflt. (9) 

Finally, the equations of motion can be written in matrix form as follows: 

M i  + D i  + K x  = B u  + E w ,  0o) 

where 

M ~ /4X4 

D = 

0 0 
0 0 

--Ctl (~1 
o t  2 ~ ot 2 

- a 2  ~ t -  bl32 131+b2132 
0 ' 0 
0 0 

001 0 
131 +a2132 f~1-abf32 
f~l-abf~2 ~1 +b2~2.J 

r °°1 !] B 0 0 , B1 = T1 + a2~/2 T1 - ab ' y2]  ~ - ~ 

B = 0 0 B1 J Vl - ab~i2 Vl + b2"~2J' E --- 
0 0 

x = [X, Xby,,yb] r, U = [i~ i~ i[ i~]r ,  W = Il l  2 COS~t N 2 sinl~t] r 

121~a Dl .b  
al = I~L et2 = I~L 

2kd 2ka 

2ki 2ki 
~11 = m ~t2 = 

Furthermore,  the damping matrix D can be separated into two parts, a symmetric 
part Dc and a skew-symmetric part Go, expressed as follows: 

Dc = 

0 0 0 ct2 - cq 
2 

0 0 oq - a2 0 
2 

0 txl - a :  0 0 
2 

or2 - a l  0 0 0 
2 
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GC ~--" 

0 0 aÂ 2 

~1 + ~2 
0 0 a2 

2 

a~ + a2 0 0 
- a ~  2 

2 - a 2  0 0 

Q1 + a2 

The equations of motion can then be rewritten as: 

M~ + D c t  + Get  + Kx = Bu + Ew. (11) 

Table 1 shows the eigenvalues of the rotor bearing system for the case of a = 0.083, 
b = 0.083, and l) = 10,000 rpm. We found that the magnetic bearing rotor system is 
inherently unstable, and thus a controller is necessary to make the system stable. 

Earlier studies [1-3] have shown that the feedback control matrix is very complicated 
and coupled with all states. Furthermore, the stability of the closed-loop system is 
dependent on the speed of rotation fl, and consequently the control gain must change 
according to changes in fl. Here, we hope to control the directions x and y and 
hopefully the left and right magnetic bearings separately to simplify the controller, i.e. 
our aim is a decentralized state feedback control, where the control gain is independent 
of ~ .  

According to the discussion by Lee and Chen [6], in order to stabilize a conservative 
system with rigid-body modes using a collocated direct position feedback design with 
a symmetric and positive definite feedback gain matrix, the necessary and sufficient 
conditions for the rigid-body modes to be stabilized are that the number of sensors/ 
actuators be at least equal to the number of multiple eigenvalues of the uncontrolled 
system, and if the full-order closed loop equation can be expressed as 

M#(t) + D¢~/(t) + GJ/( t )  + Kq(t) = O, (12) 

where 

M = the mass matrix 
De = the symmetric part of the damping matrix 
Gc = the skew-symmetric part of the damping matrix 
K = the stiffness matrix, 

then the necessary and sufficient conditions for the system (12) to be asymptotically 
stable are that the stiffness matrix must be symmetric and positive definite and the 
symmetric part of the damping matrix must be semi-positive definite. 

TABLE 1. EIGENVALUES OF THE 
OPEN-LOOP SY$~.bl 

-5.833 + ]0.0633 
-5.833 - ]0.0633 

5.833 + ]0.0633 
5.833 - ]0.0633 

-5.833 
5.833 
5.833 

-5.833 
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Comparing the dynamic equations (11) and (12), we see that position and velocity 
feedback control is necessary to satisfy the conditions for asymptotic stability. 

As shown in Fig. 3, the control system controls the position of the rotor by providing 
current to the electromagnet according to the signals from the position sensors. The 
distances between the magnet poles and the shaft of the rotor are measured by eddy 
current-type position sensors. Signals from the position sensors are then compared with 
the reference signals, which define the rotor's central position. Usually, the sensors 
cannot be placed directly in the bearing planes, under the assumption of a rigid rotor, 
so the position of the radial bearing is compensated for by a geometric relationship as 
follows: 

(a+dr)Xl - (a-dl)Xr 
Xa = dl + dr 

(b -dr )x i  + (b+d,)xr 
xb = dl+ dr 

(a+dr)y, - (a-dl)Yr  
Y" = dj + dr 

- (b -dr )y ,  + (b+d,)yr 
Yb = dl+ dr (13) 

where Xl, y~, Xr, and Yr are the displacements of the rotor at the left and right side 
sensor positions and d~ and dr are the distances of the sensors from the mass center 
of the rotor. 

The error signals measured from magnetic bearings A and B are proportional to the 
difference between the central position and the actual position of the rotor at any 
given time. If both error signals are zero, the rotor position is in the center of the 
stator. In response to the magnitude of the error signals, the controller generates a 
suitable low power voltage signal to drive the power amplifier and then provides the 
control currents to the winding coils so that suitable bearing forces are generated and 
the desired rotor position is maintained. 

Because an inexpensive and reliable sensor for measuring the rotor displacement 
velocity has not yet been developed, a differential circuit or a velocity observer is 
commonly used to produce a pseudo velocity from the displacement measurement. In 
this study, a differential analog circuit is used. 

Furthermore, since the time constants of the sensor and driver are usually very small, 
we can neglect the delay phenomenon. The dynamic equations of the sensor and driver 
can be expressed as 

Voj=gsX( j )  j =  1 ,2 ,3 ,4  (14) 

and 

u(j) =gaVcj ,  j =  1 ,2 ,3 ,4 ,  (15) 

where Voi is the voltage of error signal which is the difference between the measured 
voltage of the sensor and the reference input, Vcj is the output voltage generated by 
the controller, gs and ga are the constant gain of the sensor and driver, respectively, 
and x(j) expresses the displacement of the rotor at magnetic bearings A and B. 

The control law can then be expressed as 

vo,-- -K.Ve,- Kd o,, (16) 

where Kp and Ka are the position and velocity feedback control gain matrices, respec- 
tively. 
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Thus, the overall dynamics of the system is: 

m~ + GJt + (Dc + gdg, BKd) t + (K + gag.BKp) x = Ew. 

The position feedback control gain matrix Kp is designed 
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(17) 

to make the matrix 
K + gdgsBKp symmetric and positive definite, and since the symmetric part of the 
damping matrix De is non-negative, the velocity feedback control gain matrix Kd is set 
to be a symmetric and positive semi-definite matrix. Hence the system is asymptotically 
stable• 

For the sake of simplicity and ease of implementation, we shall propose a decentral- 
ized controller. Define Kp = B? ~ K~ and Kd = B~ ~ K~, and choose both K~ and K~ 
to be diagonal matrices: 

K~ = diag ( kpl kp2 kp3 kp4) 

K,~ = diag (k~i k~2 k~3 k~4). 

(18) 
(19) 

To satisfy the necessary and sufficient conditions for asymptotic stability, we set 

k~s >- 0, j =  1-4 

gdgsk~l > ~l + a2~2, gdgsk~2 > 61 "~" b2~2 

gdgsk~a > ~l + 2 * a ~2, gdgskp4 > [~1 + b2~2 

(gdgs)2k;~ k;2 - ~ gdgs (k;1 + k;2) - ~2gdg~ (b2k;~ + d k ; 2 )  + a ~ 2  (a 2+b2) > 0 
2 * * * * (gdg~) kpakp4 - ~ gdg~ (kpa+kp4) - a2gdg, (b2k;3 + a2k;4) + ~1132 (a2+b 2) > 0. (20) 

Then the symmetric part of the damping matrix will be non-negative and the stiffness 
matrix will be positive definite and symmetric. 

As stated above, the control law can be expressed as 

"7= ' 
ilJ --gdgs LTl_ab~l 2 ~hd_b2T2 j 

,,]= 
i l l  --gdg~ I."Vl-ab'v2 ~@b2~2J 

o][.]+[? 
k;2 Xb 

L] [::] + [? 
L}[::]) 
L]{*,:]). (21) 

Thus, the semi-decentralized controllers of the four pairs of electromagnets can be 
implemented independently without horizontal and vertical interaction. A block dia- 
gram of the overall system for the semi-decentralized case is shown in Fig. 4. 

im 

im 

i 
x t s~  xr.s~ 

I=, | I ~. 

u. I Bearing ~__~ ' , . o . . ~  

i'i[ system I 

IPo-oo. ..+ 

FIG. 4. Block diagram of the closedqoop system for semi-decentralized case. 
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I f  a = b = L/2, t h e n  oq = or2 a n d  D c  = 0.  T h u s  t h e  n e c e s s a r y  a n d  s u f f i c i e n t  c o n  
ditions for an asymptotically stable system can be simplified as follows: 

k~i>-O, j =  1-4, 

gdgsk~/> 81 + a2f32,j = 1-4 

* ~ * * 2 3 2  (gdg,)2k~,ikp2 gdg,(f3a + a2~2)(kp1+kp2) + ~i~2>0 
2 * * * * (gdg~) k,akt ,4 - gdg~ (131 + a213z) (kpa+kp4) + 232131132 > 0, (22) 

And the control law becomes: 

B =14 × 4, and K = - _ _  

J ill= _gdg_.s ['YI+a2"y2 -~/x+a2"Y2l([k ~, k02] [Xa]+ [k~1 0 ] Xa]) 
i~J 4a2'yl~/2L-'y1+a2~/2 "yl+a2"y2 J x b k ~ 2  LJC b 

[ i ' * I  = _~d~__, [,1+(/2,2-'~1~a2"~21 k 0 Yadl- g k~14 Y b  

[igJ 4a2 ~/1 '~2 [.-'~1+a2~2 "~1-Fa2~2 J k~4 Yb 

Furthermore,  if we choose a = b = L/2 and 41,/L z = m, then we have Dc = 0, 
4kd 

14 x 4, and the equations of motion (18) can be simplified 
m 

as follows: 

I~ + Gc~ - 4k___qa Ix = 4k--2~ lu + Ew, (24) 
m m 

where I is a 4 x 4 identity matrix. 
We design both Kp and Kd to be diagonal matrices, expressed as follows: 

Kp = diag (kpl kp2 kp3 kt,4) (25) 

Kd = diag (kdl kd2 kd3 ka4). (26) 

For the stiffness matrix, let 

4k, gdgskp/-  4ka > 0, ] = 1, 2, 3, 4, (27) 

then the positive definite and symmetric conditions will be satisfied. 
For the damping matrix, set 

kd/>--O, j =  1 , 2 , 3 , 4 ,  (28) 

then the symmetric part of the damping matrix will be non-negative. 
Therefore,  the controllers of the four pairs of electromagnets can be implemented 

independently and the control law can be expressed as follows: 

d x  a 
i ~ = - gdgskplxa -- gdgskax -~ 

i ~ = - gdgs kp2Xb -- gdgs kd2 ~b 

dya 
i*~ = - gdgskpaya -- gdgskda dt 

i~  = -- g d g s k p 4 y o  -- gdgsKd4 - ~ .  (29) 
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=t.,,r x,~ 
lie ut,I ~ geemetr/e ~ -  
~. ~ Rotor ~ , _ _ _ . . ~ c o = , , , , . , = , 1 ~  - 
, .  _ =.~[ B e a r i n g  ly, 

I 'I S y s t e m ,  o.--.=o 
Y,.~ Y~,~ ] 

IPD--~ontroller~ 

[PD-eontroilerl~ 

[PD-controJler]~ 

[PD-eontroller]~ 

Fro. 5. Block diagram of the dosed-loop system for full decentralized case. 

A block diagram of the full decentralized control system is shown in Fig. 5. 
Figure 6 shows the root loci for three types of decentralized controllers with different 

speeds of rotation ll. The figure indicates that the stability of all three types of 
controllers will not be affected by the rotating speed ~;  that is, the controllers can be 
used for any rotating speed fl without requiring that the control gain be adjusted to 
maintain stability. 

.;| 

I I l= l  

Im 

e~ 

xt0-*) 

1 : a = 0 . 0 8 3  and  b=0 .063  
2 : a=b=O.063 
3 : a = b = L / 2 = O . 0 8 3  

-.-.;...Re (xlO") 

-41 i 

, , , ~ R e ( x l o  ~) 

Fro. 6. Root loci for three decentralized controlled systems with rotating speed ft from 0 to 10,000 rpm 
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4. EXPERIMENTAL RESULTS 

4.1. Test apparatus 

The laboratory test rotor is shown in Fig. 7. The rigid shaft, which was an 11-mm- 
diameter drill rod 320 mm long, had two disks, as indicated in Fig. 7. The total mass 
of the rotor was about 0.852 kg. The disks were used for two magnetic bearings and 
four sensors. 

The shaft was connected to the driving motor by a flexible coupling. The gap 
between the electromagnet and stator was about 1.1 mm. The backup bearings provided 
protection in an emergency if the amplitude exceeded 0.5 mm. The displacements were 
measured by gap sensors of the eddy current type. These signals and the signals of 
the sensor offset input voltages were fed to the geometry compensator, and then the 
error signals were sent to the decentralized state feedback controller. The analog 
controllers consisted of proportional and differential circuits. The control signals from 
the analog controllers were supplied to the electromagnets through power amplifiers. 

In this experiment, the prototype magnetic bearing used was that designed by Lee 
et al. [4, 5]. The displacement stiffness kd was designed as 65,000 N/m and the current 
stiffness ki was designed as 13 N/A; the sensitivity of the sensor was 2000 V/m, i.e. 
gs was equal to 2000, and gd was driven to 2.0. The gains of the four PD-controllers 
were chosen to be kpj = 3.0, and kaj = 2.5, j = 1, 2, 3, 4. 

4.2. Results 

Figure 8 shows the peak-to-peak responses of the rotor in both magnetic bearings 
A and B. This figure shows that this rotor-bearing system operates well. Figure 9 
shows the orbits of the shaft in the positions of the left and right disks at rotating 
speeds ~ -- 2750, 4400, 9860 and 10,020 rpm with a sampling time of 1 msec. These 
experimental results indicate that the displacements remain in the range of 15% of the 
air gap; hence the motion of the rotor is maintained in an acceptably small range and 
the rotor does not collide with the backup bearings. The motion of the left end of the 

FIG. 7. Laboratory test apparatus. 
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shaft is constrained by the flexible coupling, so there is no quick position changing, 
but at the free end of the shaft the orbits show relatively large variation. 

5. CONCLUSIONS 

This paper has presented a controller design for an attractive force-type magnetic 
bearing rotor system. According to the analysis of stability, three types of state feedback 
controllers have been proposed. Decentralized control can be achieved by suitably 
chosen location of the magnetic bearings. Experimental results show that the stability 
of the closed-loop system is maintained, even when the speed of rotation of the rotor 
is varied. 
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