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Attribute reduction is very important in rough set-based data analysis (RSDA) because it can be used to
simplify the induced decision rules without reducing the classification accuracy. The notion of reduct
plays a key role in rough set-based attribute reduction. In rough set theory, a reduct is generally defined
as a minimal subset of attributes that can classify the same domain of objects as unambiguously as the
original set of attributes. Nevertheless, from a relational perspective, RSDA relies on a kind of depen-
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Decision analysis o - L. ..
Fuzzy sets compared, the greater the probability that the dependency will hold. Thus, elimination of condition

attributes may cause more object pairs to violate the dependency principle. Based on this observation,
a reduct can be defined alternatively as a minimal subset of attributes that does not increase the num-
ber of objects violating the dependency principle. While the alternative definition coincides with the
original one in ordinary RSDA, it is more easily generalized to cases of fuzzy RSDA and relational data
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1. Introduction

The rough set theory proposed by Pawlak (1982) provides an
effective tool for extracting knowledge from data tables. As noted
in Pawlak (1991), knowledge is deep-seated in the classification
capabilities of human beings. A classification is simply a partition
of a universe. Thus, in rough set theory, objects are partitioned into
equivalence classes based on their attribute-values, which are
essentially functional information associated with the objects.
Many databases only contain functional information about objects;
however, data about the relationships between objects has become
increasingly important in decision analysis. A remarkable example
is social network analysis, in which the principal types of data are
attribute data and relational data.

To represent attribute data, a data table in rough set theory con-
sists of a set of objects and a set of attributes, where each attribute
is viewed as a function from the set of objects to the domain of val-
ues of the attribute. Hence, such data tables are also called func-
tional information systems (FIS), and rough set theory can be
viewed as a theory of functional granulation. Recently, granulation
based on relational information between objects, called relational
granulation, was proposed by Liau and Lin (2005). To facilitate
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the study of relational granulation, it is necessary to represent
and reason about data in relational information systems (RIS)
(Fan et al., 2006).

Interestingly, several RISs can usually be derived by comparing
the attribute-values of objects in an FIS, thereby providing a rela-
tional perspective on the original FIS. For example, when rough
set theory is applied to multi-criteria decision analysis (MCDA), it
is crucial that preference-ordered attribute domains and decision
classes be considered (Greco et al., 1999, 2001, 2008, 2010, Slowin-
ski et al., 2009, Fortemps et al., 2008). The original rough set theory
cannot handle inconsistencies arising from violations of the
dominance principle due to its use of the indiscernibility relation.
Therefore, in the dominance-based rough set approach (DRSA),
the indiscernibility relation is replaced by a dominance relation
to solve the multi-criteria sorting problem; and the data table is
replaced by a pairwise comparison table to solve multi-criteria
choice and ranking problems. A pairwise comparison table is
actually a kind of RIS derived from the original multi-criteria deci-
sion data, which is usually represented as an FIS.

Rough set-based data analysis (RSDA) addresses the fundamen-
tal issue of attribute reduction in information systems. By using
attribute reduction techniques, the decision rules extracted from
an information system can be simplified without reducing the
accuracy of the classification. The key notions in rough set-based
attribute reduction are reduct and core. Intuitively, a reduct is an
essential part of an information system that suffices to define all
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the basic categories occurring in the system; whereas the core is, in
a certain sense, the most important part of the system.
Traditionally, reduct is defined with respect to FISs in rough set
theory. However, from the relational perspective of FIS mentioned
above, RSDA actually relies on a kind of dependency principle. That
is, the relationship between the class labels of a pair of objects de-
pends on component-wise comparison of their condition attri-
butes. The larger the number of condition attributes compared,
the greater the probability that the dependency will hold. Thus,
eliminating condition attributes may cause more object pairs to
violate the dependency principle. Based on this observation, a re-
duct can be defined alternatively as a minimal subset of attributes
that does not increase the number of objects violating the depen-
dency principle. While the alternative definition coincides with
the original one in ordinary RSDA, it can be easily generalized to
cases of fuzzy RSDA and relational data analysis. In this paper,
we elaborate on the relational perspective of attribute reduction
in different kinds of information systems.

The remainder of this paper is organized as follows. In Section 2,
we review several variants of information systems, including FIS
and RIS. In Section 3, we present a general framework of
attribute reduction from the relational perspective of information
systems. In Section 4, we instantiate the framework to different
kinds of information systems. Section 5 contains some concluding
remarks.

2. Information systems

Information systems are fundamental to rough set theory (Paw-
lak, 1991). In this section, we review several variants of FIS used in
rough set theory and the RIS proposed by Fan et al. (2006).

2.1. Functional information systems

In data mining problems, data is usually provided in the form of
a data table, which is formally defined as an attribute-value infor-
mation system, and taken as the basis of the approximation space
in rough set theory (Pawlak, 1991). To emphasize the fact that each
attribute in an attribute-value system is associated with a function
on the set of objects, we call such systems functional information
systems.

Definition 1. A functional information system (FIS)! is a quadruple
Ty = (U, A {Vili e A}, {fili € A}),

where U is a nonempty set, called the universe; A is a nonempty fi-
nite set of attributes; for each i € A, V; is the domain of values for i;
and for each i € A, f; : U — V; is a total function.

In an FIS, the information about an object consists of the values
of its attributes. Thus, given a subset of attributes B C A, we can

define the information function associated with B as
ITlfB U — HiEBvi'
Infy(x) = (fi(X));cp- (1)

Example 1. Let us consider the problem of ranking scientific
journals. Assume that Table 1 is an FIS containing data about six
journals, whose condition attributes are impact factor and citation
half-life and decision attribute is the rank. Thus, in this FIS, we
have U={1,2,...,6}, A={1,2,d}, V;=[0,10] for i=1, 2, and
Vy={a,b,c}, and f; is specified in Table 1.

! Originally called information systems, data tables, knowledge representation
systems, or attribute-value systems in rough set theory.

Table 1

An FIS of the data about 6 journals.
U A

f I fa

1 3.5 5.5 a
2 3.5 5.5 a
3 2.0 1.5 a
4 2.0 1.5 b
5 2.0 1.0 a
6 2.0 1.0 b

2.2. Relational information systems

Though much information associated with individual objects is
given in a functional form, it is sometimes more natural to repre-
sent such information in a relational form. For example, in a demo-
graphic database, it is more natural to represent the parent-child
relationship as a relation between individuals, instead of an attri-
bute of the parent or the child. In some cases, it may be necessary
to use relational information simply because the exact values of
some attributes are not available. For example, we may not know
the exact ages of two individuals, but we do know which one is
older. These considerations motivate the following definition of
an alternative kind of information system called an RIS.

Definition 2. A relational information system (RIS) is a quadruple
T, = (U A, {Hili € A}, {rili € A}),

where U and A are defined as above; for each i € A, H; is a set of rela-
tional indicators; and for each i€A, r; : Ux U— H; is a total
function.

Arelational indicator in H; is used to indicate the extent or degree to
which two objects are related according to an attribute i. Thus,
r{x,y) denotes the extent to which x is related to y on the attribute
i. If H;={0,1}, then, for any x, y € U, x is said to be i-related to y iff
r{x,y) = 1. In most cases, several RISs can be derived from a given
FIS by comparing the attribute-values of objects in the FIS.

Example 2. Continuing with Example 1, assume that we are
interested in the pairwise comparison of the journals, instead
of their real attribute values. Then, we may derive an RIS
T, = (U,A,{Hj|i € A},{r;| i € A}) from the original FIS, where U and A
are defined as in Example 1, H;={0,1}, and r; : U x U - {0,1} is
defined by

rixy) =1+ fix) = iy),

fori=1,2and ry(x,y)=1iff x=aory=corx=y=h.

Mathematically, an RIS can be viewed as a special case of an FIS
if we consider the Cartesian space U x U as a universe in itself.
However, such a viewpoint ignores a subtle difference between
FIS and RIS. That is, the objects in the universe of an FIS are sup-
posed to be independent entities, whereas the pairs in the Carte-
sian space of an RIS may be inter-dependent. For example, if r; is
a symmetric relation, then the pairs (x,y) and (y,x) should have
the same indicator value with respect to r; in the RIS, while x and
y are totally distinct objects.

On the other hand, an FIS Tr=(U,A,{Vi|i € A},{fili € A}) can be
seen as a special case of an RIS T, = (U,A,{H;|i € A},{ri|i € A}) if we
take H;=V;u{—} and define ry(x,x) =fi(x) and ri(x,y)=— if x # y.
While this transformation seems somewhat trivial, an interesting
fact is that more natural RIS may arise from a given FIS if the do-
mains of attributes possess some kind of structure. As shown in
Example 2, the RIS arises naturally from the original FIS due to
the order structure of the domains of attributes. Indeed, most
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variants of the information systems considered in this paper exhi-
bit such a structure, and we actually utilize the derived RIS to de-
fine the general framework of attribute reduction. However, we
note that the derived RIS is usually secondary in the sense that
we can not restore the original FIS from the derived RIS.? For exam-
ple, even though we know the relative order of the impact factors
of the six journals in Example 2, we can not obtain their real values
from the RIS.

2.3. Variants of information systems

In the definition of primitive FIS, the domain V; of each attribute
is simply a set of values without any structure. However, in many
practical applications, natural structures are usually imposed on
the domains of attributes. This results in many variants of the
primitive FIS. We review the main variants in this subsection.

2.3.1. Preference-ordered decision table

For MCDA problems, each object in a decision table can be seen
as a sample decision, and each condition attribute can be regarded
as a criterion for the decision. Since a criterion’s domain of values is
usually ordered according to the decision-maker’s preferences,
each V; is endowed with a binary relation ;. Thus, a preference-
ordered decision table (PODT) is an FIS Tp=(UA{(Vi=ilie
A} {fili € A}). The relation =; is called a weak preference relation or
outranking on V;, and represents a preference over the domain of
values of the criterion i (Slowinski et al., 2002). For x, y € U,
f{x) =; f(y) means that “x is at least as good as y with respect to cri-
terion i”. The weak preference relation =; is supposed to be a com-
plete preorder, i.e., a complete, reflexive, and transitive relation. In
addition, we assume that the domain of the decision attribute is a
finite set V;={1,2,...,n} such that r is strictly preferred to s if r>s
for any r, s € V. Thus, the weak preference relation >4 is defined as
r =45 iff r > s; consequently, =4 is a total order. Intuitively, for a
condition criterion i and an object x, fi(x) denotes the evaluation
of the object with respect to the criterion i; and for the decision
attribute d, f4(x) represents the assignment of x to a decision label
in Va.

2.3.2. Uncertain and multi-valued information systems

When each attribute’s domain of values is the powerset of an-
other base domain, we can model both uncertain and multi-valued
information systems. Let us consider an FIS T; = (U,A,{2"]i e
A}, {fili € A}).Itis an uncertain information system (UIS) if it is inter-
preted disjunctively (Kryszkiewicz and Rybinski, 1996a,b, 1998). In
other words, we do not know the exact value of attribute i of the
object x, but we do know that the value is in the set fj(x). By con-
trast, Ty is a multi-valued information system (MVIS) if it is inter-
preted conjunctively. This means that all the values in fi(x) are
deemed to be the values of attribute i of object x. For example, if
iis the course(s) taken by x, then in an MVIS, f(x) = {Algebra, Algo-
rithm, PL} means that x takes all these courses.

2.3.3. Proximity-based and metric-based information systems

When each V; is endowed with a (crisp) reflexive and symmetric
relation ~;, we call Ty=(U,A{(Vi~)|i € A} {fili € A}) a proximity-
based information system (PIS). For example, if the attribute i de-
notes a location, there may be a (qualitative) nearness relation be-
tween different locations in V.. On the other hand, an FIS
Tr=(U,A{(V3,6;)|i € A}, {fil i € A}) is called a metric-based information
system (MIS) if there is a metric §; : V; x V; - [0,1] between ele-

2 In some cases, we can obtain an FIS isomorphic to the original one from the
derived RIS. See Fan et al. (2006) for further details.

Table 2
Example of an UIS and a POUDT.
U A
fi f fa
1 [46,50] [48,52] 4
2 [44,48] [48,50] 4
3 [45,52] 44 3
4 26 [28,35] 3
5 30 [26,32] 2
6 [24,27] 33 [2,3]
7 16 [10,16] [2,3]
8 24 10 [2,3]

ments of V. A typical example is the case where V; is the Euclidean
space and ¢; is the distance metric.

2.3.4. Preference-ordered uncertain decision table

Although the PODT can represent multi-criteria decision cases
effectively, it inherits the restriction of the classical FIS, which
means that uncertain information can not be represented. As UISs
generalize FISs, PODTs can be generalized to preference-ordered
uncertain decision tables (POUDTs). Formally, a POUDT is an FIS
T; = (U,A, {2"1]i € A}, {=i]i € A}, {fi|i € A}), where, as in the case of
a UIS, each domain of attributes is the power set of some base do-
main; and as in the case of a PODT, each base domain V; is endowed
with a weak preference relation ;. The intuition about a POUDT is
that the evaluation of a criterion i for an object x belongs to fi(x),
although the evaluation is not known exactly. Furthermore, we as-
sume that for each criterion i, the space V; x V; is endowed with a
uniform measure ;. Thus, for each bounded subset F C V; x V,,
wi(F) is a non-negative real number. When V; is a finite set, we take
ui(F) as the cardinality of F; and when V; is a real interval, we take
Wi(F) as the area of F. The measure is used to compare two subsets
of V; based on the weak preference relation ;.

Example 3. Let us consider an example extracted from (Dem-
bczynski et al. (2009)). Table 2 is a UIS containing eight objects
with interval evaluations and assignments. Since an interval is a
subset of the domain, it is in fact an instance of a UIS. Furthermore,
a natural ordering is endowed with the underlying domain of
criteria, i.e., the set of real numbers. In other words, we assume
that r =;s iff r > s. Therefore, the table is also an instance of a
POUDT. This is simply a generic example for illustrative purposes.
However, it is straightforward to convert it into a real-world
example by assigning appropriate interpretations to the criteria.
For instance, in the financial domain, we can consider the data in
Table 2 as evaluations of mortgage applications. Then, the criteria
may represent the income of the applicants and the value of the
target houses. Moreover, due to privacy concerns, it has been
suggested that precise values should be replaced by uncertain ones
for some sensitive attributes like personal income when a data
table is released for analysis (Sweeney, 2002a,b, Wang et al., 2004,
2006, 2007). Thus, this kind of POUDT may arise naturally in such
context.

3. Dependency constraints and attribute reduction in
information systems

3.1. Dependency constraints and the consistency of information
systems

Let us consider an FIS Ty= (U,A,{Vi|i € A},{fi|i € A}), where A can
be partitioned into a set of condition attributes C and a decision
attribute d, i.e., A=Cu{d}. Such an FIS is also called a decision
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table. Hereafter, we only consider decision tables; thus, when we
discuss an FIS, we assume that its set of attributes is A=Cu {d}.
We further assume that there is a common set of relational indica-
tors H such that, for each i € A, there exists a comparison operator
0; : f{U) x f(U) - H. Note that we intentionally define the domain
of 0; as f(U) x f{U) instead of V; x V; because, in some information
systems studied in this paper, f{U) is a subset of 2" instead of V.
Let ® = (0;)ica; then, @ can induce a transformation from the given
FIS to an RIS O(Ty) = (U,A,H,{ri|i € A}), where r(x,y) = fi(x)0:fi(y). By
convention, we use the infix notation instead of the prefix notation
for 0. As in the case of FIS, we define the information function asso-
ciated with a subset of attributes B for the system ©(Ty) as Infp :
U2 N H\B\’

InfB(xsy) = (fl(x)()Lfl(y))leB (2)

To aggregate the results of comparing different attributes, we
need an associative and commutative aggregation operator ® :
H? - H on the set of relational indicators. Since ® is associative
and commutative, we can write ((h; ® hy)---®hg) as ®(hy,. .., hy).
Let = CH x H be a binary implication relation on H, and let
B C C be a subset of condition attributes. Then, we can define a
binary relation ®g - (B,d) CU x U as follows:

{(X,y)\@lnfg(x,y):>rd(x7y)7x€U,y€U}, (3)

where we use the infix notation for the implication relation =. We
say that a pair of objects (x,y) satisfies the Do -. (B, d)-dependency
constraint if (x,y) € Do~ (B,d). For a binary relation R C U x U,
let R7, R—, and R® denote {x|Vy(x)y)< R}, {x|Vy(y,x) <R}, and
R™ N R~ respectively. Then, an object x is Dy . - (B, d)-consistent if
X€ Dogs- (B»d)b-

Example 4. Continuing with Examples 1 and 2, let us assume that
O is the transformation that changes the FIS in Example 1 to the
RIS in Example 2. Then, H = {0,1} and B = {1,2} imply that Infz(x,y) =
{(x,¥)|x,y € U,x < y}. Consequently, Dg s~ (B,d) = U x U —{(4,5)},
Dow~(B,d)~ ={1,2,3,5,6}, Dos~(Bd)~ ={1, 2,3,4,6}, and
the set of consistent objects is {1,2,3,6}.

3.2. Attribute reduction

Let B be a subset of attributes and let i be an attribute in B. Then,
we say that i is relationally dispensable in B (with respect to the
dependency constraint oo (B,d))® if Do (B-{i},d) =
Do« (B,d); otherwise, i is relationally indispensable in B. The set of
attributes B is relationally independent if each i< B is relationally
indispensable in B; otherwise B is relationally dependent. The set of
attributes B C Cis a relation-based reduct of the FIS Ty if B is relation-
ally independent and Dg . (B,d) = Do~ (C,d). The set of all rela-
tionally indispensable attributes in C is called the relation-based
core of Ty, and is denoted by RCORE(Ty). Analogously, we can define
an object-based reduct and core by replacing Dgs - (B — {i},d) =
Do,0-(B,d) with Dg g~ (B—{i},d)” = Ds~(B,d)” and D~ (B,
d) = Do~ (C,d) with Dgs-(B,d)° =Dy (C,d)” in the above
definitions. The object-based core of Ty is denoted by CCORE(Ty). An
obvious relation exists between these two types of reducts and
cores.

Proposition 1
1. For any relation-based reduct B, there must exist an object-based

reduct B’ such that B C B. In other words, every relation-based

3 Hereafter, we omit the qualifier “with respect to the dependency constraint ... ",
when it is clear from the context.

reduct can be shrunk to an object-based reduct. By contrast, not
every object-based reduct is a subset of some relation-based reduct.
2. CCORE(T) C RCORE(Ty)

Before proceeding, we must consider two assumptions regard-
ing the aggregation operator ® and the implication relation =,
called monotonicity and decomposability respectively.

(Mon) For all hl, hz, and h3 € H, if h1 = h3, then h] & hz = h3.
(Decom) For all hy, hy, and h; € H, if hy ® h, = hs, then hy = hs or
hz = h3.

The monotonicity assumption is mandatory for the definition of a
reduct; indeed, all real cases that we consider in the next section
satisfy this assumption. On the other hand, decomposability does
not hold for all the cases considered in the next section. If the
assumption does hold, we can use the discernibility matrix pro-
posed by Skowron and Rauszer (1991) to find the reduct and core
of a system. The relation-based discernibility matrix of T is defined
aSEle:UXU—>2C:

0, if Yhe H h = r4(x,y)
{i € CIri(x,y) = rq(x,y)}, otherwise

Then, we have the following proposition.
Proposition 2. If ® and = satisfy both the monotonicity and
decomposability assumptions, then

71,0 = {

1. an attribute i< RCORE(Ty) iff there exist xy €U such that
I, (x,y) = {i} and

2. a subset of attributes B is a relation-based reduct of Ty iff AB is a
prime implicant of the propositional formula A{\ Zr,(x,y)Ix,
y €U, I, (x,y)#0}.

An analogous result holds for an object-based reduct and core if we
replace the definition of &, with that of the object-based discernibil-
ity matrix as follows:

0, if Yhe H h = r4(x,y)
orx,y ¢ Des-(C,d)°~
otherwise

QT[(X',y) =
{i e Cri(x,y) = ra(x,)},

4. Case studies

In the general framework presented in Section 3, there are three
parameters for the dependency constraint, i.e., @ (including the
range H), ®, and =. We now show that different RSDA solutions
for attribute reduction can be derived through the instantiations
of the three parameters. The cases considered in this section can
be divided into two types of systems based on the instantiations
of H, ®, and =:

1. The crisp type: H={0,1}, ® is the Boolean conjunction A, and =
is the material implication of Boolean logic —. For this type of
system, we abbreviate the dependency constraint Dg - as
Co. Note that the decomposability assumption always holds
for this type of system, so the discernibility matrix method
can be applied.

2. The fuzzy type: H=[0,1], ® is a t-norm,* and = is the <relation
on the unit interval. For this type of system, we abbreviate the
dependency constraint Des - as &, The decomposability
assumption holds for this type of system when the t-norm

4 For the properties of t-norms, readers may refer to any standard reference on
fuzzy logic, such as (Hajek, 1998).
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® =min. Thus, in the case of ® = min, the discernibility matrix
method can be applied.

4.1. Classical rough set approach

The basic construct of rough set theory is an approximation
space, which is defined as a pair (U,R), where U is a finite universe
and R C U x U is an equivalence relation on U. We write an equiv-
alence class of R as [x]y if it contains the element x. For an approx-
imation space (U,R) and an arbitrary concept X C U, we are
interested in defining X based on the equivalence classes of R.
We say that X is R-definable if X is a union of some R-equivalence
classes; otherwise X is R-undefinable. The R-definable concepts
are also called R-exact sets, whereas R-undefinable concepts are
said to be R-inexact or R-rough sets. A rough set can be approxi-
mated from below and above by two exact sets. The lower and
upper approximations of X are denoted by R X and RX respectively,
and defined as follows:

RX = {x € U|[x|y C X},
RX = {x e U|[x]; N X # 0}.

The main concept of the classical rough set approach (CRSA) is
based on the definition of the indiscernibility relation. Let
Tr=(U,A,{Vi|i € A},{fili € A}) be a decision table and B C A be a sub-
set of attributes. Then, the indiscernibility relation with respect to B
is defined on U as follows:

ind(B) = {(x,y)|x,y € U.fi(x) = fi(y)Vi € B}.

In other words, x and y are B-indiscernible if they have the same
values with respect to all the attributes in B. Consequently, for each
B C A, (U,ind(B)) is an approximation space in rough set theory.
Thus, we write BX and BX for ind(B)X and ind(B)X respectively. Let
U/d denote the family of equivalence classes of ind({d}); then, the
B-positive region of Ty, denoted by POSk(Ty), is defined as

POSy(Ty) = | J BX.
XeU/d

In CRSA, an attribute i e B is dispensable if POSg_;(Tf) = POSp(Ty),
and the definition of independence is as above. Then, a set of attri-
butes B C C is a reduct of Ty if B is independent and POSg(Ty) = -
POS{Ty). The core of Ty is simply the set of all indispensable
attributes in C.

Let B be a subset of C. Then, an object x is B-consistent (with re-
spect to the decision attribute d) if [X]ingz) C [X]ind((ay); Otherwise, x
is B-inconsistent. In other words, x is a B-consistent object in a deci-
sion table if, for all y € U, (x,y) satisfies the following B-indiscern-
ibility principle:

(x,y) € ind(B) = (x,y) € ind({d}).

In other words, the objects that have the same values as x in terms
of the condition attributes should have the same decision class
assignment as x.

Let ©. denote (=;)ica, Where =; is the identity relation on Vi
Then, it is straightforward to prove the following lemma.

Lemma 1. For any subset of attributes B and any x, y € U,
1. (x,y) satisfies the B-indiscernibility principle iff (x,y) € €o_(B,d)
and

2. x is a B-consistent object iff x € €o_(B,d)” iff x € POS(Ty).

From this lemma, it is straightforward to derive the following
theorem.

Theorem 1. A subset of attributes B is a reduct (resp. the core) of Tyin
CRSA iff it is an object-based reduct (resp. the object-based core) of Ty
with respect to the €o_(C,d) dependency constraint.

Example 5. Continuing with Example 1, let C be the set of all con-
dition attributes. Then, each entry (x,y) of the following matrix

denotes (fi(x) = fi(y), fo(x) = f2(¥), fa(X) = fa(¥))-

1 2 3 4 5 6
1 (1,1,1) (1,1,1) (0,0,1) (0,0,0) (0,0,1) (0,0,0)
2 (1,1,1) (1,1,1) (0,0,1) (0,0,0) (0,0,1) (0,0,0)
3 (0,01) (001) (1,1,1) (1,1,0) (1,0,1) (1,0,0)
4 (0,000 (0,00) (1,1,0) (1,1,1) (1,0,0) (1,0,1)
5 (0,0,1) (0,01) (1,0,1) (1,0,0) (1,1,1) (1,1,0)
6 (0,000 (0,00 (1,00) (1,0,1) (1,1,0) (1,1,1)

Thus, since ® is the Boolean conjunction and = is the material
implication, we have (x,y) € €o_(C,d) = U* —{(3,4),(4,3),
(5,6),(6,5)} iff (x,y) satisfies the C-indiscernibility principle and
Co_(C,d)° ={1,2} = POSc(Ty). Let B={1}; then we can see that
Co_(B.d) = U* — {(3.4).(4.3).(5.6),(6.5).(5,4), (4,5),(3,6),(6,3)}
and €y_(B,d)” = {1,2}. Thus, B is an object-based reduct, but not a
relation-based reduct. In the same way, we can see that B’ = {2} is
both an object-based reduct and a relation-based reduct. Conse-
quently, @ =CCORE(T;) C RCORE(T;)=B'. Therefore, the example
confirms Proposition 1.

Example 6. Continuing with Example 5, since the Boolean con-
junction and implication satisfy monotonicity and decomposability
assumptions, we can use the discernibility matrix method to find
the reducts and the core. First, the relation-based discernibility
matrix is constructed as follows®:

1 2 3 4 5 6
1 0 0 0 {f1.f2} 0 {f1.f2}
2 0 0 0 {f1.f2} 0 {f1.f2}
3 0 0 0 0 0 {2}
4 {fi.f2} {f1.f2} 0 0 {2} 0
5 1] U] 0 {2} 0 0
6 {fi.f2} {fi.f2} {2} 0 0 0

Thus, RCORE(Ty) = {f>} because {f,} is the only singleton in the dis-
cernibility matrix, and {f;} is a relation-based reduct since f, is
the only prime implicant of the propositional formula A{\ 77, (x,
Ny eU,gr(xy) # 0} = (fi VL) Af, =f. Furthermore, since
Co_(C,d)” ={1,2}, the object-based discernibility matrix is con-
structed as follow:

1 2 3 4 5 6
1 0 0 0 {f1.f2} 0 {fi.f2}
2 0 0 0 {f1.f2} 0 {fi.f2}
3 0 1] 1] 1] 1] 1]
4 {f1.12} {f1.f2} U] 0 0 0
5 0 ] U] ] 0 0
6 {f1.f2} {f1.f2} 0 0 0 0

5 Note that, to avoid confusion, we intentionally write the attributes as f; instead of
simply i.
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Thus, CCORE(Ty) = @ since no singleton appears in the matrix; and
both {f;} and {f,} are object-based reducts because f; and f, are both
prime implicants of the propositional formula A{V Zr,(x,y)lx,
yeU . 2r,(x.)#0}t =fiVfo.

4.2. Dominance-based rough set approach

In this subsection, we consider the dominance-based rough set
approach (DRSA) proposed by Greco et al. (2001). Let
Tr=(U,A{(Vi,=:)| i € AL {fili € A}) be a PODT and let P be a subset
of criteria. Then, we can define the P-dominance relation
Dp C U x U as follows:

(x,y) € Dp <= fi(x)=ifi(y)Vi € P.

When (x,y) € Dp, we say that x P-dominates y, and that y is P-dom-
inated by x. We usually use the infix notation xDpy to denote
(x,y) € Dp. Although each =; is a complete preorder, the dominance
relation may be a preorder. If P = {i} is a singleton, we write D; in-
stead of Dy;. The basic principle underlying DRSA is called the dom-
inance principle. Let P denote a subset of condition criteria. Then, the
dominance principle with respect to P can be expressed for x, y € U
as follows:

XDpy = xDgy.

The principle states that if x P-dominates y (i.e., x is at least as good
as y with respect to all criteria in P), then x should be assigned to a
decision class at least as good as the class assigned to y.

In CRSA, a consistent object must satisfy the indiscernibility
principle; however, in DRSA, we require adherence to the domi-
nance principle. Thus, an object x is P-consistent in Ty if for all
y € U, we have

(xDpy = xDay) A (yDpx = yDyX);

otherwise, x is P-inconsistent. Note that the dominance principle im-
plies the indiscernibility principle because of the reflexivity of the
dominance relation and the antisymmetry of =.

Given the dominance relation Dp, the P-dominating set and P-
dominated set of x are defined, respectively, as

Dy (x) = {y € UlyDpx}
and
D; (x) = {y € U|xDpy}.

In addition, for each t € V,; we define the decision class Cl; as
{x € U|fy(x) = t}. Then, the upward and downward unions of classes
can be defined as

a: =Ja
s=t

and

a; =Ja,

s<t

respectively. Based on the P-dominating sets and P-dominated sets,
we can define the P-lower and P-upper approximations of CI; and
CIS for each t € V, as follows:

P(CI7) = {x e UDF(x) CCI7 },

P(Cl7) = {x € U|D, (x) N CI; #0},

B(af) — {xeU|D;(x)cCl?},

T)(af) = {x € U|D;j (x) N CI7 #0}.

The P-boundaries of CI and CI5 are then defined as

Bnp(CI7) = P(CI7) — P(CI})

and
By (€ ) = P(cl; ) — P(cT;),

respectively. Let Cl = {Cl,|t € V;} denote the partition of the universe
U into decision classes. Then, the quality of the approximation of the
partition Cl based on the set of criteria P can be defined as the ratio

yp(Cl) = - (UtEVdBnP (CltTL)]U Utev, Bre (le))| .

Note that yp(Cl) is equal to the ratio of P-consistent objects in the
universe U.

In DRSA, a criterion i € P is dispensable if yp_g;(Cl) = yp(Cl), and
the definition of independence is as above. Then, a set of criteria
P C Cis a reduct of Ty if P is independent and yp(Cl) = y(Cl). The
core of Ty is again the set of all indispensable attributes in C.

Let @, denote (=;)ica. Then, we have the following lemma.

Lemma 2. For any subset of criteria P and any x, y € U,

1. (x,y) satisfies the dominance principle with respect to P iff
(x,y) € €o_(P,d) and
2. x is a P-consistent object iff x € €o_(P,d)".

From this lemma, we can easily derive the following theorem

Theorem 2. A subset of criteria P is a reduct (resp. the core) of Ty in
DRSA iff it is an object-based reduct (resp. the object based core) of Ty
with respect to the €g_(C,d) dependency constraint.

4.3. Tolerance-based rough set approach

The tolerance-based rough set approach (TRSA) replaces the
indiscernibility relation in CRSA with a tolerance relation, i.e., a
reflexive and symmetric (but not necessarily transitive) binary
relation (Skowron and Stepaniuk, 1996). TRSA can be applied to
UIS or PIS. If Tyis a PIS (U, A, {(Vi, ~)|i € A} {fili € A}), it is straightfor-
ward to obtain a similarity relation ~; for each i € A. On the other
hand, if Tr is a UIS (U,A,{2"1]i € A}, {fili € A}), we can define
~i C 2% x 2V as F~; G iff FN G # (. In both cases, we have a rela-
tion ~; defined over the domain f(U) for each i € A.

Once the relation ~; is defined, a tolerance relation sim(B) C
U x U can be derived for each subset of attributes B as follows:

sim(B) = {(x,y)Ix,y € U, fi(x)~ifi(y)Vi € B}.

Consequently, for each B C A, (U,sim(B)) is a tolerance-based
approximation space.

Let [x]simes) = (¥|(x,y) € sim(B)} denote the tolerance class of an
object x with respect to the relation sim(B). Then, the lower and
upper approximations of any X c U in the space (U,sim(B)), de-
noted by BX and B'X respectively, are defined as in CRSA, except
that the equivalence classes are replaced by tolerance classes.
The B-positive region of Ty in TRSA, denoted by POSy(Ty), is defined
as POSy(Ty) = Uxcy,«B:X. Hereafter, the notions of reduct and core
are defined in the same way as in CRSA. Let us define the B-toler-
ance principle for x, y € U as follows:

(x,y) € sim(B) = (x,y) € ind({d}).

Then, it is obvious that, in TRSA, the B-positive region is also the set
of all B-consistent objects, where an object x is B-consistent if, for
any object y, both (x,y) and (y,x) satisfy the B-tolerance principle.

Let us define @. as ((~;)icc:=4)- Then, with an analogous argu-
ment to that used in the case of CRSA, we can derive the following
lemma and theorem.
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Lemma 3. For any subset of attributes B and any x, y € U,

1. (x,y) satisfies the B-tolerance principle iff (x,y) € €o_(B,d);
2. x is a B-consistent object iff x € €o_(B,d)” iff x € POS(Ty).

Theorem 3. A subset of attributes B is a reduct (resp. the core) of Trin
TRSA iff it is an object-based reduct (resp. the object-based core) of Tf
with respect to the €o_(C,d) dependency constraint.

4.4. Fuzzy rough set approach

While TRSA deals with the crisp tolerance relation, the fuzzy
similarity relation plays an important role in MIS and MVIS. Let
Tr= (U, A{(V;,8)li € A} {fili € A}) be an MIS. Then, we can define a
fuzzy similarity relation =; Vix Vi—[0,1] as (v ~iw)=
1 — 8{(v1,22). On the other hand, if Ty = (U, A, {2"1]i € A}, {fili € A})
is an MVIS such that each underlying domain V; is finite, then we
can define a fuzzy similarity relation ~; : 2" x 21 — [0,1] by using
the Jaccard index (Jaccard, 1908)

[FNG]
[FUG]|’

szG =

or the simple matching coefficient (Sokal and Sneath, 1963)

_|IFNG|+[FNG]
Vil '

Once a fuzzy relation ~; over the domain f;(U) is given for each
i € A, a fuzzy similarity relation fsim(B) : U x U — [0,1] can be de-
rived for each subset of attributes B as follows:

Sim(B)(x,y) = @ieafi(x)~ifi(v)-

Attribute reduction in the fuzzy rough set approach (FRSA) can be
defined with the help of the fuzzy similarity relation. However, un-
like in crisp cases, we do not define the reduct and core from the po-
sitive region of the system, since the region is a fuzzy subset of the
universe. Instead, we adopt the following B-gradualness principle:

Sim(B)(x,y) < fsim(d)(x,y),

F%iG

which means that the greater the similarity between the values of
the condition attributes, the more similar the decisions will be.
An object is B-fuzzily consistent if for any y € U, both (x,y) and
(y,x) satisfy the B-gradualness principle. The set of all B-fuzzily
consistent objects of Ty (no matter whether it is an MVIS or an
MIS) is denoted by FCONg(Ty). An attribute i € B is dispensable if
FCONg_(ij(Ty) = FCONg(Ty). Every minimal subset B C C such that
FCONG(Ty) = FCONA(Ty) is a reduct of T, and the core of Ty is still the
set of all indispensable attributes in C.

Let @, denote (=;)jca. Then, the following lemma and theorem
can be derived:

Lemma 4. For any subset of attributes B and any x, y € U,

1. (x,y) satisfies the B-gradualness principle iff (x,y) € §o_(B,d);
2. X € Fo_(B,d)” iff x € FCONg(Ty).

Theorem 4. A subset of attributes B is a reduct (resp. the core) of Trin
FRSA iff it is an object-based reduct (resp. the object-based core) of Ty
with respect to the §,_(C,d) dependency constraint.

4.5. Fuzzy dominance-based rough set approach
Because a POUDT is essentially a combination of a UIS and a

PODT, it is appropriate to use the fuzzy dominance-based rough
set approach (FDRSA) for decision analysis of POUDT. The objects

in a POUDT may have imprecise evaluations with respect to the
condition criteria and imprecise assignments to the decision clas-
ses. Thus, the dominance relation between objects can not be
determined with certainty. Instead, we define a degree of domi-
nance between two objects with respect to each criterion i based
on the associated measures u;.

Let Tr = (U,A, {2"1]i € A}, {i]i € A}, {fi]i € A}) be a POUDT with
the uniform measure y; being associated with V; x V; for i€ A.
Then, we first define the fuzzy preference relation with respect
to the criterion i as ==; : 2" x 2" — [0,1] such that for all F, G C V;,

V1, V)| mits, 1 €F, 15 € GY)

— {(
PRt = 1(F % G)

Fig. 1 shows an example of computing the fuzzy preference relation,
where the real evaluation of x with respect to criterion i, denoted by
s(x), is in a continuous interval fi(x)=[l,uy]. In this example,
fix)=fi(y) is the ratio of the area of ABC over the area of ABDE,
ie., Z(L‘T:’{y) Next, by applying the fuzzy preference relation on each
criterion, we can define a fuzzy P-dominance relation for any subset
of criteria P. The fuzzy P dominance relation FDp : U x U — [0,1] is

defined as

FDp(x,y) = Qier(fi(X)Zfi(¥)),

if x # y and FDp(x,x) =1 for x € U.

The P-gradual dominance principle is then defined for each x,
y € Uas FDp(x,y) < FD4(x,y), and an object x is P-consistent in terms
of FDRSA if, for any y € U, both (x,y) and (y,x) satisfy the P-gradual
dominance principle. The principle means that if x is more domi-
nant than y in the evaluations of P, then x is given a higher class
assignment than y. The set of all P-consistent objects in the POUDT
Ty is denoted by GDCONp(Ty). As above, a criterion i € P is dispens-
able if GDCONp_;(Ty) = GDCONy(Ty). Every minimal subset P C C
such that GDCONp(Ty) = GDCON((Ty) is a reduct of T; and the core
of Ty is still the set of all indispensable attributes in C.

Let @ denote (;);.4. Then, by definition, &, _(P,d) contains all
pairs (xy) that satisfy @ir(f(0)Zi(v) < (fa(X)=fa(y)). However,
according to the definition of ;, (x,x) does not necessarily satisfy
the &, _(P,d)-dependency constraint, but it trivially satisfies the
P-gradual dominance principle. To circumvent this incompatibility,
we slightly extend &, (P,d) with these trivial pairs. Thus, we
define -

() >s(y)

ll u)(

Fig. 1. The degree of dominance between x and y.
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o (P.d) = Fe_(P,d) U{(x,X)[x € U}.

Then, the following lemma and theorem can be derived:

Lemma 5. For any subset of criteria P and any x, y € U,

1. (x,y) satisfies the dominance

(x,y) € xgi (P,d) and
2. x (05 (P.d)) " iff x € GDCONK(T))

P-gradual principle

iff

Theorem 5. A subset of criteria P is a reduct (resp. the core) of Ty in
FDRSA iff it is an object-based reduct (resp. the object-based core) of
T; with respect to the §, (C,d) dependency constraint.

Example 7. Continuing with Example 3, according to the defini-
tion of =, we can construct the following matrix, whose (x,y)-entry

~1

denotes (fi (X) .1 (V). L(X)Z22(0). fa(X) Zafa V).

277
5. Conclusion

We have presented an abstract framework that defines object-
based and relation-based reducts for attribute reduction in rough
set theory. The framework unifies different rough set approaches
for attribute reduction in various kinds of information systems
from a relational perspective. While the object-based reduct en-
sures that consistent objects remain unchanged during the elimi-
nation of dispensable attributes, the relation-based reduct
requires that the pairs of objects satisfying some particular con-
straint must be retained.

The value of our framework is twofold. On one hand, the unifor-
mity of the framework explicates the common principle behind a
variety of rough set approaches for attribute reduction and high-
lights their differences. The common principle indicates that attri-
bute reduction amounts to finding reducts that preserve certain
kinds of dependency constraints between condition and decision
attributes. These dependency constraints are characterized by the
relational comparators between the attribute-values of objects,

1 2 3 4 5 6 7 8
1 - 3.3,1) 2.1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
2 t.1.1) (&.1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
3 (4,0,0)" (42,0,0)° - (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
4 (0,0,0) (0,0,0) (0,0,1) - (0,12, 1) 2.2,1) (1,1,1) (1,1,1)
5 (0,0,0) (0.0,0) (0.0,0) (0,%,0)" - (1,0,0) (1.1,0) (1.1,0)
6 (0,0,0) (0,0,0) (0,0,0) (.5,0) (0,1,1) - (1,1, (1,1,
7 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,) - 0.1,
8 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (1,0,3)" -

Note that we leave all entries (x,x) blank because all such pairs
trivially belong to the (extended) dependency constraint; there-
fore, we do not bother to calculate their fuzzy dominance values.
Let us take a closer look at the calculation process of some entries
in the matrix. For example, f1(6) = [24,27] and f(4) = 26 imply that

14({26} x [24,26]) 2624 2
(h(HZ:)1(6)) = 1,({26} x [24,27)) 2724 3’

so the first component of the tuple in (4,6) is 2. Another example is
(f2(2)=,f>(1)) which is equal to [48,50]=,[48,52] and is an instance

of Fig. 1, where 1[,=48, u,=50, and u,=52. Thus,
(£2(2)z2f2(1)) = 27554 = 4 which is exactly the second component

of the tuple in (2,1).

Now, let C be the set of all condition attributes and let ® be the
Lukasiewicz t-norm, i.e., a ® b=max(x +y — 1,0). Then, it is clear
that the only pairs violating the dependency constraint are (5,7),
(5,8), (6,4), (6,7), (6,8) (the underlined entries in the matrix),
which are also exactly the pairs that violate the C-gradual
dominance principle. Thus, we verify Lemma 5(1). In addition, it
is easy to verify that &} (C,d))” = GDCON¢(Ty) = {1,2,3}, as is
expected by Lemma 5(2). Let P={1} and P’ = {2}. Then, in addition
to the underlined entries, the *_entries (341 ), (3,2), (5,6), (8,7)
violate the §/,_(P,d) constraint and the -entries (5,4), (6,4)
violate the &5 (P',d) constraint. Thus, the unique relation-based
reduct of the POUDT is C. Furthermore, §& (P,d))" =
GDCONp(Ty) =0 and }_(P',d))" = GDCONp (Ty) = {1,2,3}, so P’
is a unique object-based reduct, which is also exactly the reduct
according to FDRSA.

the operations used to aggregate the results of comparisons, and
the implication functions of the aggregated results. By changing
the three parameters, we can instantiate the general framework
to a particular rough set approach for attribute reduction in a spe-
cial kind of information system. Thus, we have common ground to
compare the differences between these approaches.

On the other hand, the generality of the framework extends the
application scope of rough set approaches. In our case studies, we
investigate the notions of reduct and core in different FIS, so only
the object-based reduct and core are considered. In other words,
the RIS ©(Ty) only plays an auxiliary role in the study of an FIS Ty
Nevertheless, when we consider a primitive RIS, say, the repre-
sentation of a social network, we may be interested in the discov-
ery of rules in the form A;cpri(x,y) — ra(x,y). In such cases, it is
more appropriate to consider attribute reduction with the rela-
tion-based reduct and core. While this is a theoretical framework,
its practical implication is that many existing techniques, such as
the discernibility matrix approach, can be easily adapted to new
applications.

In addition, the current definition of RIS can only be applied to
the representation of binary relations. However, for complex
networks, we may have to represent high-dimensional relations.
Because of the generality of our framework, it seems quite feasi-
ble that it can be used to represent such complex relational net-
works and thereby facilitate knowledge reduction in network
mining tasks. Let us be more specific on this point and express
it in a formal logical language. All dependency constraints in this
paper can be expressed as a first-order logic formula with two
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free variables® @g(x,y), where B is the set of condition attributes in
the formula. For example, the indiscernibility constraint can be
written as

Psx,y) = Nfitx) =fiy) — d(x) = d(y),

ieB

where each f; and d are function symbols corresponding to the attri-
butes. Now, let us consider a complex social network. A k-ary rela-
tion among the individuals in such a network can be represented as
a k-place predicate symbol in first-order logic. Thus, various depen-
dency constraints in a complex social network can be expressed as
first-order logic formulas with a set of predicate symbols of arbi-
trary arity. Consequently, we can extend the application scope of
rough set approaches from attribute reduction in functional infor-
mation systems to knowledge reduction in complex relational
networks.
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