
WE3D-3 

SCAlTERING OF PLANE WAVES BY METALLIC GRATINGS 

S. T. Peng and C. M. Shiao 

Department of Communication Engineering 
and Center for Telecommunications Research 

National Chiao Tung University 
Hsinchu, Taiwan, ROC 

Abstract 

A new and unifying approach is presented for the 
analysis of plane-wave scattering by metal-strip gratings with 
a complex permittivity to account for their finite 
conductivity. A new set of metal modes is discovered, and 
the method of mode matching is employed for the 
formulation of the boundary-value problem. The effect of 
grating conductivity and thickness on the scattering 
characteristics are systematically examined, including the 
current distribution and power absorption within the metal 
strips. 

A. Introduction 

Grating structures have been used for many 
applications ranging from microwave to optical 
frequencies[ 1-81. In particular, metal-strip gratings offer 
many advantages, such as easy fabrication and flexible 
design to achieve desired electromagnetic characteristics and 
good mechanical strength. In the past, metal-strip gratings 
have been often assumed to have an infinite conductivity and 
also to have a zero thickness, in order to simplify 
mathematical analyses[6-81. These simplifying assumptions 
may be justifiable at the microwave frequencies, but not at 
millimeter-wave frequencies and beyond. 

We present here a new and unifying approach to the 
class of metal-strip gratings which are realistically 
characterized by a finite conductivity and therefore must have 
a non-zero thickness. Specifically, the finite conductivity of 
metal is incorporated as the imaginary part of a complex 
dielectric constant, so that a metal-strip grating may be 
treated as a dielectric structure for which a rigorous 
formulation by the method of mode matching has been well 
developed[2,3]. Thus, the present approach is expected to 
yield accurate electromagnetic fjelds everywhere within a 
grating structure. The main purposes of this work are 
threefold: ( 1 )  to establish a theoretical foundation for the 
analysis of metal-strip gratings from a rigorous point of view, 
(2) to develop a clear physical picture of wave processes 
associated with metal-strip gratings, in order to gain a better 
physical understanding for design considerations, and (3) to 
evaluate accurately the effects of finite conductivity and 
finite thickness of the metal strips on the scattering 
characteristics of metal-strip grating, so that benchmark 
results can be established for a wide frequency range, as 
needed. 

In order to employ the method of mode matching for 
the analysis of metal-strip gratings, we have examined the 
modes in the grating layer, and have discovered a new set of 
modes, in addition to an old (or well-known) set, in the case 

of metal-strip gratings with a high conductivity. A mode in 
the new set has its energy confined mostly inside the metal 
strips, while a mode in the well-known set has its energy 
confined mostIy in the air spaces separating the metal strips. 
Therefore, the former is called a metal mode and the latter an 
air mode. Mathematically, it takes both sets, new and old, 
together to form a complete set of modes, so that the 
electromagnetic fields in the structure can be judiciously 
represented. Physically, since the metal modes are mostly 
confined inside the metal strips, they could contribute 
significantly to the absorption effect of the gratings, which 
remains to be accurately assessed. In the presence of a finite 
conductivity, the energy of an incident plane wave will be 
partially absorbed by the metal strips. With the present 
approach, we can calculate accurately the reflected and 
transmitted energy in the uniform regions on the two sides 
the grating layer; thus, the energy absorbed by the grating can 
be simply and accurately determined from the law of energy 
conservation. The mathematical techniques and physical 
understanding gained from the treatment of the plane-wave 
scattering problem will be very valuable for the analysis and 
design of metal-strip gratings for use as filters or antennas. 

In this paper, we begin, in Section B, with a statement 
of the problem and the method of analysis for the grating 
problem under consideration. The Floquet solutions of the 
grating layer are carefully examined in Section C. The 
physical implications of the air and metal modes are 
explained in terms of the current distributions on the metal 
strips in Section D. Numerical results are given, in Section 
E, for the scattering of a plane wave, first by a single 
interface between a semi-infinite periodic array of metal 
layers and a semi-infinite uniform medium and then by a 
grating of finite thickness sandwiched between two semi- 
infinite uniform dielectric media. Finally, conclusion and 
discussions are given in Section F. 

B. Statement of problem and Method of analysis 

The structure of interest here is sketched in Fig. 1, 
with all the relevant parameters indicated. A grating is 
sandwiched between two semi-infinite media of the (relative) 
dielectric constant &f and E ~ , .  The grating consists of metal 
strips of rectangular cross-section separated by air spaces 
which may be filled with another dielectric and our 
formulation still holds. The air regions have a dielectric 
constant E, and a width w,; the metal strips have a width w,,, 
and a conductivity (T. Including the effect of conductivity, 
the complex dielectric constant of the metal can be written as: 
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where h is the free-space wavelength. Such a 
characterization of metal may also apply to ground plane, if 
present; thus, the ohmic loss of the ground plane can be 
included in our analysis without any extra effort. Finally, the 
grating has a thickness tg, and its period is given by: d = Wa 
-I- w,. 

In an attempt to understand the general wave 
phenomena taking place in a grating structure, particularly 
the induced currents and the absorption effect due to the 
finite conductivity of the metal strips, we shall restrict 
ourselves to the class of gratings which consist of metal strips 
of rectangular cross-section. The approach is to characterize 
the metal realistically with a finite conductivity which is 
incorporated as the imaginary part of a complex dielectric 
constant, as given by (1). Therefore, metal gratings may be 
treated as dielectric structures which have been extensively 
studied in the past[l-51. In particular, a rigorous formulation 
of dielectric gratings by the method of mode matching has 
been presented recently for the general case of oblique 
incidence[5]. Specifically, in the rigorous formulation, a 
grating structure is decomposed into constituent parts or 
regions. A general solution for every constituent region can 
be expressed as a superposition of a complete set of modes 
which are easily determined, and the overall structure is then 
formulated as a boundary-value problem from which the 
scattering characteristics of grating structures are determined. 
Here, the structure under consideration consists of a periodic 
layer sandwiched between two semi-infinite uniform media. 
The electromagnetic fields in the uniform media on the two 
sides of the grating layer are well known; in fact, each 
medium can be represented by an input impedance or 
admittance for a given plane wave. Therefore, there remain 
only two key steps to the construction of field solutions in a 
grating structure: (1) the determination of a complete set of 
characteristic solutions or mode functions of the periodic 
layer, and (2) the formulation of grating Waveguides as a 
rigorous boundary-value problem[5]. While these steps have 
been well understood, the characteristic solutions for metal 
gratings of high conductivity remain to be carefully 
examined, as explained next. 

C. Modes in the grating region 

The Floquet modes of a periodic arrays of dielectric 
layers have been well known in the literature. Since the 
dielectric constant of a good conductor can be represented by 
a complex number with a large imaginary part, as given in 
(I), a periodic array of metal layers can be viewed as an 
infinite medium with a periodically varying dielectric 
constant, and the Floquet modes of the periodic medium can 
readily be obtained. From such a viewpoint, we show here 
that there exist two different sets of characteristic or Floquet 
modes for the grating layer. To determine the characteristic 
solutions of a grating with two alternating dielectric strips of 
rectangular cross-section, it is sufficient to consider a 
periodic array of alternating dielectric layers for which a 
closed-form dispersion relation has been obtained[ 1-33] in 
the form: 

sin Kad, sin K,d, = Q (cos %da cos h d ,  - cos ~ d )  (2) 

In the case where one of the two media is a good 
conductor and the other is a good dielectric, we have: Z, << 
Z, and Q <e 1. Therefore, the term on the right-hand side of 
the equality in (2) is numerically small. In particular, in the 
limiting case of perfect conductor, Z, = 0 and Q as defined 
by (3) vanishes. From (2), we then obtain the two 
independent equations: 

sin Kada = 0 (4) 

Evidently, each of the two equations may be regarded as the 
dispersion relation of an ideal parallel-plate waveguide, and 
will yield a set of modes. For simplicity, the modes of the air 
region will be referred to as the air modes and those of the 
metal region as the metal modes. The air modes form a set of 
ideal waveguide modes, and so do the metal modes. The set 
of air modes should have been expected, but the existence of 
the metal modes which exist inside the perfect conductors is 
quite surprising at the first sight. In the extreme case of 
infinite conductivity, the set of metal modes still exists, but 
its existence is immaterial and may be ignored. However, 
such a new set of metal modes can not be ignored in the case 
of finite conductivity. The inclusion of the new set of metal 
modes makes the present work unique in the analysis of 
metal-strip gratings. The air modes and the metal modes 
together form a complete set of mode functions for judicious 
representations of fields in the grating layer, in order to 
formulate metal-strip gratings as a boundary-value problem. 

D. Current Distributions on Metal Strips 

With the electric field of a mode determined in the 
previous sections, the current on the metal strip can be related 
simply to the local electric field by: 

I(r) = (TEW (6) 

where J is the current-density vector, E is the electric-field 
vector, L is the position vector, and d is the conductivity of 
the metal. For a good conductor, (3 is very large; as an 
example, for copper, (T = 6 ~ 1 0 ~  S/mm in the millimeter 
wavelength range. For a TE mode, the electric field is 
polarized in the y-direction, so that the induced current can 
flow freely along the metal strip and is expected to have a 
considerable effect on the ohmic loss of the microstrip lines. 

With this approach, the electromagnetic fields inside 
the grating layer can be conveniently represented as a 
superposition of the complete set of modes, including the two 
subsets of air modes and metal modes. Once the fields in the 
grating layer are determined, the induced currents on the 
metal strips can be obtained simply by multiplying the 
electric field by the conductivity of the metal. Since the 
mode functions of the periodic array of metal layers can be 
determined exactly, the superposition of the air and metal 
modes will make it very easy to visualize the current 
distributions on the metal strips, thereby establishing a clear 
physical picture of the induced currents on the metal strips. 

2 ZaZm Q = -  

Z i + &  

Consider now the contributions of the air modes to 
the current distribution on the metal strips. For simplicity, let 
us restrict ourselves here to the case of TE polarization. In 
this case, we have only a single component of the electric 
field and the current flows only along the strips. The electric 

(3) 

where Za is the wave impedance (with respect to the X- 
direction) of the air region and Z, is that of the metal region. 
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fields due to the air modes near the metal edges are 
proportional to the skin depth, which is very small, as 
expected. However, the current due to such a weak field can 
be rather large, because of the high conductivity. As the 
conductivity is increased, so is the current density. In the 
limit of infinite conductivity, the current density becomes 
singular, as is well known. Since the total singular current 
must include the contributions from all the air modes, the 
singular behavior of the current density on a metal strip can 
be easily attributed to the air modes, and this provides a 
simple explanation of the existence of the large edge currents 
on the metal strips for the case of TE modes. On the other 
hand, the electric field of a metal mode varies sinusoidally 
over the broad surfaces of the strip, and each metal mode will 
induce a current distribution in the same fashion. Once the 
amplitudes of the modes are determined for a given source of 
excitation, the total surface current will be a superposition of 
the individual currents as contributed from all the metal 
modes. This explain that the induced current varies 
sinusoidally on the broad surfaces of the metal strips. 

E. Numerical Results 

We have carried out extensive numerical data for the 
scattering of plane waves by metal-strip gratings, under 
various operating conditions. The convergence of the 
numerical analysis has been carefully investigated and the 
criterion for convergence has been established. The scattered 
power and absorbed power are systematically evaluated for 
both polarizations, and they are shown to agree exceedingly 
well with available data for idealized structure[6]. With the 
present approach, we are able to study the effect of 
conductivity and thickness of the grating. As an illustration, 
Fig. 2 shows the frequency dependence of the reflected 
power for the scattering of a plane wave by a periodic array 
of semi-infinite metal layers in air, for both polarizations. 
The plane wave is incident from the uniform air region at the 
normal incidence. At low frequencies, all modes are below 
cutoff, except for the TEM mode. Thus, the TE incident 
wave is almost totally reflected, while the TM incident wave 
may be transmitted through the TEM mode, depending on the 
width of the metal strips. On the other hand, at high 
frequencies, many higher-order modes may be propagating in 
the air regions of the periodic array, and the reflected power 
is almost proportional to the ratio of the width of the metal 
strip to the period of the grating, as physically expected. 
Furthermore, it should be pointed out that the rapid variations 
of the curves can be identified with the cutoff conditions of 
both modes of the parallel-plate waveguide and the space 
harmonics in the uniform air region. 

Fig. 3 shows the results for the scattering of a plane 
wave by a metal grating of finite thickness, for different 
values of conductivity. The grating thickness chosen here is 

tg = mm, which is extremely small. In the case of very 
high conductivity, (J = 3 . 9 6 ~ 1 0 ~  S/mm, the reflected and 
transmitted power are plotted with the solid lines and they are 
found to be in agreement with those of perfect-conductor 
case. When the conductivity is reduced to the value 
corresponding to that of aluminum, CJ = 1 . 4 5 ~ 1 0 ~  S/mm, the 
reflected and transmitted power are plotted with the dashed 
lines. In this case, the reflected power is decreased, while the 
transmitted power is increased, as expected. Finally, when 
the conductivity is further reduced to the value, CJ = 2 . 0 ~ 1 0 ~  
S/mm for a relatively poor conductor, the reflected and 
transmitted power are plotted with the dotted lines. In this 

case, the effect of the grating is greatly diminished, as 
expected. 

Fig. 4 shows the surface distributions of the current 
component flowing across the metal strips, for the case of 
TM incident wave. The current distributions is symmetrical 
for the case of normal incidence and become asymmetrical 
for an oblique incidence. This can be easily explained in 
terms of the symmetries of the metal modes. These results 
demonstrate the powerfulness of the present approach. More 
results together with their physical meanings will be 
discussed in the presentation. 

F. Conclusion and Discussions 

We have carried out extensive numerical data for the 
scattering of plane waves by metal-strip gratings, under 
various operating conditions. The convergence of the 
numerical analysis has been carefully investigated and the 
criterion for convergence has been established. The scattered 
power and absorbed power are systematically evaluated for 
both polarizations, and they are shown to agree exceedingly 
well with available data for idealized structure. With the 
present approach, we are able to study the effect of 
conductivity and thickness of metal gratings; for the first time 
in the literature, we are able to determine the actual current 
distributions in the metal strips. 
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Fig. 1. Configuration of metallic grating 
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Fig. 2 Reflected power vs. wavelength for the 

scattering of a plane wave at  normal incidence 
by a semi-infinite grating. The parameters of 
the grating are: w, = 0.6mm and w, = 0.4 mm. 
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Fig. 3 Scattered power of zeroth order vs. wavelength 
for a plane wave at normal incidence. Pr is the 
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