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adaptation is required to achieve performance; therefore, there is a 
performance versus stability tradeoff. 

The fact that stability has been found to depend on the maximum 
rate of quantizer step size decrease is also of interest. This appears to 
be a justification of the shape of the quantizer scaling factor curves 
used in Jayant “one-word memory” type adaptive quantization. 

ADPCM structures with some alternative approaches to the basic 
quantizer step size adaptation idea are under consideration. The 
theory presented here suggests that step size variation reductions 
will improve stability, and alternative adaptation approaches could 
maintain performance. 
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Generalized Minimal Distortion Segmentation 
for ANN-based Speech Recognition 

Sin-Horng Chen and Wen-Yuan Chen 

Abstract-A generalized minimal distortion segmentation algorithm is 
proposed to solve the time alignment problem for ANN-based speech 
recognition. By modeling dynamics of spectral information of an acous- 
tic segment with smooth curves obtained by orthonormal polynomial 
expansion, a speech signal is optimally divided into segments and then 
recognized by an MLP recognizer. Experimental results showed that the 
proposed method outperforms the standard CDHMM method. 

I. INTRODUCTION 
Temporal information processing is still a difficult problem to solve 

for artificial neural network (ANN) based speech recognition. The 
difficulty mainly lies in the use of fixed network structure for most 
existing ANN-based speech recognition systems such that the time- 
alignment problem is still not properly solved. One way to solve the 
problem is by using a hybrid approach in which a time-normalization 
preprocessing is attached to the neural network. The input speech 
signal is preprocessed to extract a fixed number of feature vectors to 
be fed into the neural net for recognition. Many time-normalization 
preprocessing methods had been studied in the past [1]-[4]. Among 
them, the minimal distortion segmentation (MDS) [3] is a promising 
method. It is based on the quasistationary assumption of the speech 
signal to model each utterance with a sequence of acoustic segments 
within which signal characteristics remain considerably uniform. 
The MDS algorithm is a recursive procedure that determines a 
set of segment boundaries such that the accumulated distortion of 
representing feature vectors in each segment with their average is 
minimum. 

This correspondence introduces a new time-normalization prepro- 
cessing method for ANN-based speech recognition. It is a general- 
ization of the conventional MDS. Instead of representing all feature 
vectors in a segment by their average, a set of smooth curves obtained 
by orthonormal polynomial expansions is used to approximate the 
feature contours of the segment. Because each segment usually 
comprises only a single acoustic event, an orthonormal polynomial 
expansion using a few low-order coefficients is good enough to curve 
fit each feature contour of a segment. The task of the generalized min- 
imal distortion segmentation (GMDS) then becomes to find the set of 
boundaries that minimizes the accumulated distortion of orthonormal 
polynomial transforms for all segments. After determining segment 
boundaries, coefficients of orthonormal polynomial expansions of all 
segments are combined to form a feature vector for word recognition. 
The conventional MDS is a special case of the GMDS because only 
the zeroth-order coefficient is used in the orthonormal polynomial 
expansion. Similar work on this idea has been done on HMM’s 
by Deng [ 5 ] .  Several advantages of the proposed method can be 
found. First, the dynamics of the speech signal of each segment have 
been properly modeled in the segmentation process. Second, fewer 
segments or input parameters are needed to divide an utterance for 
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the same distortion level. Third, both static and dynamic features of 
spectral information for speech recognition are directly extracted in 
the GMDS algorithm. No resampling for feature extraction is needed 
~31. 

11. THE GMDS ALGORITHM 

We first review the MDS algorithm proposed by Svendsen and 
Soong [3]. Similar work can also be found in [4]. For an input utter- 
ance XI, XZ, . . . , XT, the task is to divide it into n7 nonoverlapping 
quasistationary segments. Assume that the ith segment starts at frame 
e , - ]  + 1 and ends at frame e, .  Here, we simply set eo = 0 and 
e,,, = T. One approach to solve this problem is to find a set of 
segment boundaries {e 1 ,  e2 ,  . . . , ern- 1 } that minimizes the following 
total distortion: 

" 8  r 

*=1  , , = c , _ l + l  

where C ,  is the generalized center of the ith segment for the distortion 
measure d( . .  .). The MDS algorithm is a dynamic programming 
procedure that efficiently finds the set of the optimal segmentation 
boundaries. It uses the following recursive formula to calculate the 
optimal partial distortion D(  e,)  accumulated from the starting frame 
of the utterance to frame e,:  

e ,  

D ( e , )  = m i n ( D ( e , - l ) +  4xn.C,)} (2) 

with the initial condition given as D ( e 0 )  = 0. After calculating the 
total distortion D ( e m ) ,  the optimal segmentation boundaries can be 
obtained by backtracking. 

We now discuss the proposed GMDS algorithm. The basic idea 
of the algorithm is explained as follows. The speech signal is a 
dynamic signal in nature. As an utterance is divided into segments, 
it is more suitable to regard each segment as a dynamic signal rather 
than treating it as a static one. Therefore, instead of representing 
each parameter contour of a segment by a constant curve as in the 
case of the MDS, it is better to approximate it by a smooth curve. 
Distortion can hence be reduced owing to the better curve fitting. 
In this study, the smooth curve is an approximation of the original 
parameter contour obtained by an orthonormal polynomial expansion 
using several low-order coefficients. Specifically, let a parameter 
contour of a segment with length + 1 frames be denoted by 
f ( n / S ) .  1 1  = 0. ....AV. The smooth curve used to approximate it 
can then be expressed by 

n = c , - l + l  

0 5 n 5 :Y (3) 

where 

and r is the order of the orthonormal polynomial expansion. As 
r = 2, the first three basis functions Q,( $) of the orthonormal 
polynomial transform can be found in [6].  The distortion between 
the reconstructed smooth curve f (n / lV)  and the original contour 
f( 17/-\-) is defined as 

(4) 

Assume that there are 11 spectral parameter contours in each segment. 
The total accumulated distortion for a candidate set of segmentation 

speech signal 
I 
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' recognized word 
Fig. 1 .  Block diagram of the proposed speech recognition system. 

boundaries can be expressed as 

( 5 )  
where N ,  = e,  - e,-l is the duration of the ith segment, and 
fk ( ) and fk ( N,--l ) are, respectively, the kth original 
and the kth reconstructed spectral contours of the ith segment. 
Similar dynamic programming procedure like the MDS algorithm is 
employed in the GMDS algorithm to find the best set of segment 
boundaries. We note that coefficients of orthonormal polynomial 
expansions of feature contours in all segments of the optimal segmen- 
tation can also be obtained at the end of the GMDS algorithm. These 
coefficients are then combined to form an m p ( r  + 1)-dimensional 
feature vector to be fed into the MLP for speech recognition. The 
block diagram of the proposed ANN-based speech recognition system 
is clearly shown in Fig. 1 .  

n - c ~- 1 - 1 ~ r L - e , - l - l  

111. EXPERIMENTS 

A database containing utterances of ten isolated Mandarin digits 
was used in the following simulations to validate the proposed 
recognition method. It was uttered by 100 speakers including 50 
male and 50 female. Each speaker uttered these 10 digits six times 
on different days, with the first four repetitions being taken as the 
training data and the remaining two as the testing data. The phonetic 
symbols of these ten Mandarin digits are summarized in Table I, and 
the experimental condition is listed in Table 11. 

Taken as a reference for performance comparison, a recognition 
method based on the conventional continuous density hidden Markov 
model (CDHMM) was first tested. In this method, each isolated digit 
was modeled by a left-to-right network with single state transition. 
The number of states was varied from two to six. The observation 
features in each state were modeled by a five mixture Gaussian 
distribution. Recognition results are shown in Fig. 2. In order to dis- 
tinguish between the contributions of the ANN and of the polynomial 
representation of the feature contour to the performance improvement 
achieved in the test to be discussed later by our proposed system, a 
recognition test by the generalized CDHMM [5] was also performed. 
In this approach, each feature contour of a state was described by 
a polynomial instead of a constant. The conventional CDHMM is 
a special case of the generalized CDHMM using the zeroth-order 
polynomial expansion. Results of the generalized CDHMM using 
the first- and second-order polynomial expansions are also shown in 
Fig. 2. Both cases of the generalized CDHMM method performed 
much better than the CDHMM method. 
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Isolated Mandarin Digits 

TABLE I 
PHONETIC SYMBOLS OF MANDARIN DIGITS (THE 
PHONETIC SYMBOLS ARE IN THE YALE SYSTEM) 

variables/frame 

Digit Yale 

16 log-compressed energy 

I&n 0 
1 I 

2 e7 
3 s a l  
4 S? 

5 y1 
6 IZU 
7 chT 
8 bZi 
9 jiou 

- 

V 

Tone Description 

- high level 

, high rising 
V low rising 

1. high falling to low 

speakers 

sampling I 20 kHz, 16 bit I 

Validation of the GMDS algorithm on segmentation and feature 
extraction was then investigated. Average curve-fitting distortions for 
various segmentations conditions are displayed in Fig. 3. We found 
from the figure that the average curve-fitting distortion decreases as 
more coefficients of orthonormal polynomial expansion are used. A 
typical example of segmentation and feature extraction by the GMDS 
algorithm is displayed in Fig. 4. Since constant curves obtained 
by the zeroth-order orthonormal polynomial expansion 3 are poor 
approximations of the original spectral contours, it is improper to 
directly take their coefficients as recognition features. On the contrary,’ 
the curves obtained by orthonormal polynomial expansions using 
coefficients up to the second order fit well with the original spectral 
contours. Their coefficients are therefore suitable to be directly taken 
as recognition features. Because the total number of eecognition 
features may affect the performance as well as the complexity of 
a recognizer, we therefore compare the average distortions of the 
above three cases based on the same total number of coefficients. 
Fig. 5 shows the relation of the average distortion to the total number 
of coefficients. It can be seen from the figure that the second-order 
orthonormal polynomial expansion still performs better. 

recognition 
rate (%) 

99. 

98. 

97. 

96. 

95. 

94. 

U 

,- 

state 
2 3 4 5 6 

standard CDHMM 
generalized CDHMM with first order -* generalized CDHMM with second order 

Fig. 2. Recognition results of the standard CDHMM and the generalized 
CDHMM. The observation features in each state are modeled by a five mixture 
Gaussian distribution. 
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Fig. 3. 
test data. 

Average distortion of orthonormal polynomial transforms on inside 

The recognition method that combines the GMDS segmentation 
and the MLP-based recognition was then tested. Two types of 
MLP’s were adopted in this study. One is a three-layer MLP with 
two hidden layers comprising 30 and ten nodes, respectively, and 
another is a two-layer MLP with one hidden layer comprising 40 
nodes. Both of these two MLP’s were trained by the well-known 
backpropagration algorithm [7] .  In the training, both the learning rate 
and the momentum factor are initially set to 0.3 and then linearly 
decayed as training progresses. Experimental results are shown in 
Fig. 6(a) for the system using three-layer MLP and in Fig. 6(b) for 
that using two-layer MLP. It can be seen from Fig. 6 that, for both 
MLP’s, the cases of using the GMDS with I’ = 1 and I’ = 2 always 
have better recognition results than the case of using the GMDS 
with I’ = 0 (or the MDS). Comparing the results shown in Figs. 2 
and 6, we found that the proposed approach with I’ = 1 and r = 2 
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(e) 
Example of the GMDS algorithm. The utterance (a Mandarin syllable 

/sin/) is segmented into three ;arts: (a) Spectrogram; (b) original first 
band output contour. The reconstructed first band contour and the segment 
boundaries using (c) zeroth-, (d) first-, and ( e )  second-order orthonormal 
polynomial expansion. 

always outperforms the standard CDHMM method and is comparable 
to the generalized CDHMM method. This shows that using segmental 
features, like the coefficients of orthonormal polynomial expansions 
used in this study, as recognition features is of great advantage in 
speech recognition. 

In above studies, three recognition schemes including the standard 
CDHMM method, the generalized CDHMM method, and the MLP- 

average 
distortion (1 0-2 ) 

1 2 1 1  E!3 

3. :i 2. 

8 
* 
0 * 
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L ' x  

o x  
0 

no. of 
64 96 128 144 160 192 240 parameters 

0 first order 
0 second order 

Fig. 5. 
same number of coefficients. 

Comparison of the averaged curve fitting distortion based on the 

based recognizer with the GMDS algorithm have been discussed. It 
is important to know whether or not the differences among them are 
statistically significant. The best results of these three schemes were 
therefore chosen to compare with each other using the McNemar test 
[ 8 ] .  Suppose that the true error rates of two testing schemes are, 
respectively, 111 and p 2 .  We would like to test the null hypothesis: 

Ho : 111 = 112 = p (6) 

Equations used to compute the probability p can be found in [ 8 ] .  HO 
is rejected when p is less than some significance level n (typical 
values of CI are 0.005, 0.01, or 0.001). Results of the McNemar 
test on these three schemes are listed in Table 111. From Table 111, 
we have the confidence to say that the difference in performance 
between the MLP recognizer with the GMDS algorithm and the 
generalized CDHMM method is not statistically significant, and 
both of them perform much better than the standard CDHMM 
method. This also reconfirms our previous conclusion that the novel 
polynomial representation of feature contour makes a contribution to 
an improvement in recognition performance. 

IV. DISCUSSION 

The proposed GMDS may also be applied to large-vocabulary 
word recognition, or continuous speech recognition by combining it 
with subword-based speech recognizers such as the sequential MLP 
recognizer [9], the segment-based DTW recognizer, etc. A possible 
approach is to first segment speech signals of all training utterances 
into phone-like subword units by the GMDS algorithm. After ex- 
tracting features from these phone-like segments, the subword-based 
recognizer can then be properly trained. In the recognition test, a 
dynamic programming procedure or the level-building technique [ 101 
can be applied to best match the testing utterance with the recognizer. 
An efficient recognition test can also be used by presegmenting 
the testing utterance using the GMDS algorithm and setting these 
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Fig. 6. Recognition results of the proposed method with varying order of 
orthonormal polynomial and segment: (a) Two hidden layers MLP comprising 
30 and ten hidden nodes: (b) one hidden layer MLP comprising 40 hidden 
nodes. 

TABLE 111 
RESULTS OF THE MCNEMAR’S TEST FOR THE STANDARD 

CDHMM, THE GENERALIZED CDHMM, AND THE GMDS 

standard 
CDHMM 
C I  

GMDSy 

p =9.67 IO-’ 

generalized 
CDHMM 
C I  

p = 0.728 

standard 
CDHMM , 
C I  . 

C : Correct 
generalized c [ 1 I : Incorrect 

CDHMM I 

p = 5.67 x lo-’’ 

segmentation boundaries as candidates of subword unit boundaries. 
This work merits further study. 

Mr. S. Chang for his help in getting the results of the CDHMM 
methods. Useful comments made by the anonymous reviewers are 
greatly appreciated. 
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