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Abstract
This paper proposes a neural network recognition system for hand keying Radio Morse codes.

The system has been trained and tested on real world data recorded from amateur radio Morse
codes. The overall recognizing process can be partitioned into 3 major parts, the preprocessing,
the feature extracting, and the character decoding. The whole operation is able to be performed
in real-time on a PC/486 system. Self-Organizing Maps are used intensively in the recognition
system to adaptively learn the variation of the Morse code signal. The average performance of
the recognition system has been achieved about 96.4% with a rejection rate of 6.5%. It is hoped
that many of the techniques would be applicable to a wide range of DSP and recognition tasks.

1 INTRODUCTION
Having a reliable automatic means of detecting and recognizing radio Morse codes around the clock is
essential for amateur radio communication and national security. We have developed an unsupervised
neural network based hand-keying Morse code recognizer, which runs automatically with an accuracy
better than 96% of correctness and does not get distracted or tired.

According to the amateur radio handbook [5], Morse codes are composed of long and short beeps
( Marks: di & dah) separated by three silent Spaces (i.e. element, character, and word Spaces), and
the duration of these signals should maintain a fixed ratio with each other. In real world, the radio
Morse codes were generated by different people with widely levels of carefulness. Thus, hand-keying
Morse codes were usually listened and recognized by well trained operators. Designing a machine to
recognize Morse code seems a task where "neural net" techniques are expected to be relevant, since
the recognition of codes requires closely mimicking human perception, to deal with low precision data,
and to learn features from examples.

Raymond C. Petit [4] built a circuit to receive radio Morse code signals and output the recognized
text messages on a teleprinter. His approach was l)a.Sed on five rules used to discriminate the element
signals, i.e., di, dah, and 3 kinds of Spaces. A good performance was reported at 25 wpm (word per
minute) at a code-practicing channel: W1AW.

Larry Ashworth [1] built a "detector" to recognize the radio Morse code signals. The recognizer
was implemented by a recognition program on a PC. His circuit was more complex than Raymond's
and needed a PC to execute recognition programs.
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The core concept of the proposed recognizer is based on the Kohonen's Self-Organization Feature
Map to automatically generate thresholdings for Marks and Spaces form the first 40 received Morse
codes. Also, since experienced operators are highly adaptive to the changing of duration length, we
have adapted the LVQ techniques to update the thresholdings while recognizing each codes.

The overall recognizing process can be partitioned into 3 major parts, the preprocessing, the
feature extracting, and the character decoding. In the preprocessing stage, the analog Morse codes
signals are digitized by an A/D converter first, and then are sent to a PC/486 with DSP software
to filter out environmental noise. After the preprocessing, the feature extraction is performed on the
Self-Organization Feature Map networks (implemented by PC software) to identify each beeps to be
either di, dah or Spaces. Finally, the stream of Marks and Spaces are decoded according to the Morse
code book to their corresponding characters. Since the program code was optimized for execution
speed, thus whole operation is able to perform in real time on a PC/486 system.

In the rest of this paper, we will brief the Kohonen's Self-organizing Map in Section 2. Then, the
design of the proposed Morse code recognition system and details of generating thresholds and the
feature extraction are presented in Section 3. In addition, the recognition of a character from the
Morse code stream is presented in this section. Section 4 reports the experiment results, performance
evaluation and comparisons with other methods. Finally, the summary and conclusions are presented
in Section 5.

2 ALGORITHMIC ASPECTS OF SELF-ORGANIZING
MAPS

2.1 Self-Organizing Maps
The basic structure of the SOM [2] consists of two (input and output) layers of neurons (see Figure 1).
Input layer neurons are fully connected to the output layer neurons via weight-links which represent
the "knowledge" that the SOM will generate through learning processes. Output neurons are related
by the neighborhood-links which represent constraints during the SOM learning. As shown in Figure
2, the neighbors of the shaded neuron are the neurons enclosed in the largest hexagon at time t1, and
the neurons enclosed in the the smallest hexagon at time t3 > t1. The shape of the neighborhood
assignments is not limited to hexagon, it can be either a circle or a square. The retrieving and learning
scheme of the SOM are described in the followings.
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Retrieving Phase Suppose that the connectivity pattern and weights of a Self-organizing Map
is known, in response to inputs (patterns), the retrieving phase performs the iterative updating of
activation values of each output neuron based on the following steps to produce the responding outputs:

I Step 1: Compute distance d3 between the input nodes and output node j using

d(y,x) = (w(t) — x)2. (1)

where x2(t) is the input to node i at time t, and w(t) is the weight from input node i to output
node j at time t.

. Step 2: Select node j as the responding output node with the minimum distance d3 among all
the output nodes (winner take all).

Learning Phase Based on the Kohonen's algorithm, the learning phase performs the iterative
updating of the link weights for all the connections between input and output layers. The learning
phase usually involves two steps: In the first step, the input training patterns are presented to the
network as the retrieving phase, and then the responding output node j is selected. In the second
step, the weights are updated for node j according to the following rules:

w(t + 1) = w(t) + i(t)(x — w(t)), if j E I\TE(t), (2)
w(t + 1) = w(t), otherwise. (3)

Where w(t + 1) is the weights from x to the output node y, 0 < r(t) < 1 is the learning rate that
decreasing in time, and NE3(t) is the neighborhood assignment of neuron j, including j. The training
ends when i(t) = 0.

Finally, the distribution of the output neurons will approximate the distribution of input data.
If we want the distribution of the map neurons to be globally optimal, NE3(t) should be set large
initially, and i(t) reduces slowly to zero.

2.2 Fine Thning of the Map by Learning Vector Quantization (LVQ)
methods

Fine tuning of the SOM weights can be done by assigning the class that are associated with the
codeword closest to the input vector. The classification accuracy can be improved if the w(t) are
updated according to the Learning-VQ algorithm [3]. The idea is to adjust codebook vectors away
from the decision surface to approximate the classification boundaries more accurately. Let w(t) be
the codehook vector closest to x. By applying a training vector x whose classification is known, we
can update w(t) as follows:

w(t + 1) = w(t) + a'(t){x — w(t)], if x is correctly classified, (4)
w(t + 1) = w(t) — /3(t)[x — w(t)], if x is misclassified, (5)
w1(t+1)=w1(t), fora11ic. (6)

Here, 0 < a(t), ,(t) < 1 are learning rates decreasing in time. This algorithm tends to reduce the
point density of the w around the Bayesian decision surface.
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Figure 3: Signal Preprocessing.

3 THE DESIGN OF THE MORSE CODE
RECOGNITION SYSTEM

The overall recognizing process can be partitioned into 3 major parts, the preprocessing, the feature
extracting, and the character decoding.
3.1 Preprocessor
As shown in Figure 3, the first part of our system is the preprocessor which determines and extracts
the central frequency of the input signals. First, the Fourier transform operation is performed on
the radio signal, then a frequency component which has a "relative high" energy is selected as the
central frequency f2 for tracing. Based on the the central frequency f, a bandpass filter (BPF) with
a bandwidth BW is determined. The second step of the preprocessing is to extract the monitored
signal using the BPF with the center frequency at and bandwidth BW.

The third step of the preprocessing is to adjust the signal level, i.e. to eliminate the fading effect.
Here, an Automatic Gain Controller (AGC) is used. The gain is computed by

G(t) = rnax(Gmax, th' (t\ (7)
eflv I

Where Grnax 5 the upper gain limit to prevent the signal from being over amplified, and
which is computed by a rectifier envelope detector is the envelope of the bandpass filtered signal. The
preprocessing steps are depicted in Figure 3.

3.2 Feature extractor
For the Morse code recognition, its features are the amplitude and the duration of the Mark and
Space signals as shown in Figure 4. The amplitude is used to distinguish Marks from Spaces, and the
duration is used to distinguish di from dah, and to distinguish element, character, and word Spaces
from each other.

Similar to the concept of the Schmitt trigger [7], we use two thresholds to binarize the signal to
increase its immunity to noise.

If the levels of the Mark and Space are fixed at two different values, using two fixed thresholds is
sufficient to binarize the signals, as shown in Figure 5. Since the gain of the AGC is limited, when
the signal level is too small to be amplified to an appropriate level, or the level difference between
Marks and Spaces become too low, using two fixed thresholds would not he suitable, as depicted in
Figure 6. In order to produce a proper result, two "adaptive" thresholds are used, i.e. Thh(t) and
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Th10(t). These two thresholds will adapt themselves (using LVQ algorithm) according to the signal
levels. Figure 7 depicts the extraction of a low level Mark.

Sometimes, due to a 'sudden' change in signal amplitude, the AGC in the preprocessor and the
adaptive binarizer together still can not produce proper results. After two Marks were detected, the
Space signal between them is checked to see if the Space signal is too short? If the Space is too short,
two Marks will he bridged by reclassifying the space into a Mark, and a single longer Mark is formed.
On the other hand, if a temporary noise induces a large amplitude within a Space, short Marks will
be detected and they will be ironed flat to form a correct Space signal.

3.3 Recognizer
The recognizer is divided into two parts, namely the element recognizer and the character recognizer
as shown in Figure 8. The element recognizer classifies the binarized signals into Marks or Spaces,
and then the character recognizer matches a stream of Marks or Spaces from the element recognizer
according to Morse code book to decide which character that the code stream represents.

3.3.1 Element recognizer
Due to the different operators' keying-style, keying-speed, and skill, the human-keyed duration ratio
does not follow the radio Morse code rules strictly. Therefore, we need a learning scheme to adapt
the actual Marks and Spaces ratio.

We use SOMs to construct the element recognizer. The weights of these SOMs are initiated
according to the data received at the beginning of messages. A simple clustering algorithm is use to
initialize the weight values of the SOMs, in order to speed up initializing processes and preventing
misclassifying of early input data.

In the first trying of designing SOMs, two SOM nets are used to recognize Marks and Spaces
respectively. One SOM generates the threshold Thmi3 for recognizing of Ml and M3, another SOM
generates the thresholds Th13 for Si and 53, and Th537 for 53 and 57. Since it can not distinguish 53
from S7 good enough, we made slight changes on the SOM for recognizing Spaces. A SOM is design
to generate only one threshold Th313 to separate Si from others, i.e., both S3 and S7. Then, another
SOM is designed to distinguish S3 and S7 with a threshold Th537 of the average length of S3 times
1.4. With this modification, the element recognizer improves greatly.
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3.3.2 Character recognizer
When the element signals are identified, the recognized Marks and Spaces are collected in a buffer.
Then, If an S3 (character Space) or an 57 (word space) is received, they are matched with the codes
in the Morse code book.

If the character recognizer can not match the code stream with a character in the code book, we
could adapt heuristic rules to "correct some possible misclassifying Marks and Spaces in the code
stream by the element recognizer, then try to match them with the code book again. This process
could improve final recognition rate and also it may induce serious mistakes in the final result, since
any misclassification will cause the message to be interpreted to the wrong meaning. Therefore, it is
better to reject the code stream as an error, and leave it to the operator to listen and to recognize the
radio Morse code signals.

The objective is not simply to maximize the number of classified codes, nor to minimize the number
of errors. The objective is to minimize the error of the whole operation, which is a tradeoff between
the rejection rate and the error rate.

3.4 The integrated Morse code recognition system
Figure 9 illustrates the overall system configuration. The received radio Morse codes signals are
digitized at 4KHz sampling rate by an A/D converter. The digitized Morse code signals then are sent
to a PC/486 for feature extraction and character recognition processings. Since the program code was
optimized for execution speed, thus the whole operation was able to perform in real time.
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Table 1 : Five-rule method recognition rates.

Data Char# Bit# Mark-e% Spac
Si->
S37

e-e%
S37

I ->S1

Reject% Char-e% Postedit-e9j Comment

1 108 427 0.0 0.7 ' 2.3 15.7 1.9 2.8
2 168 688 0.4 0.0 8.0 4.2 9.5 10.1 Difficult to p.e.
3 168 665 8.0 8.9 0.2 1.8 42.9 44.0 Unrecognizable
4 152 554 0.9 9.6 0.0 0.0 42.8 44.1 Unrecognizable
5 156 660 0.3 8.5 4.6 23.1 26.3 31.4 Unrecognizable
6 124 529 1.5 2.1 0.6 4.8 3.2 1.6
7 152 611 0.2 0.2 3.9 19.1 3.9 3.3 Mosttextconnected
8 176 681 5.1 6.8 0.1 2.8 35.8 35.8 Unrecognizable
9 192 726 2.5 4.4 0.1 1.6 24.0 24.5 Unrecognizable
10 136 564 0.0 1.2 1.6 14.7 3.7 2.9

Averag 153 610 1.9 4.2 2.1 8.8 19.4 20.1 Correct rate: 79.9%

4 EXPERIMENTAL RESULTS AND COMPARISONS

In this section, we present oniy the experiments of the element recognizer, since it is the core
of the recognition system. Three different approaches include the five-rule method by Raymond [4],
multi-layer perceptron (MLP) neural network, and the proposed Self-Organizing Map (SOM) neural
network were simulated and their performances were compared.

4.1 Testing results of three methods
4.1.1 Five-rule element-recognizer
The five heuristic rules used to recognize the class of the elements are:
Let m(n), s(n), and rndah denote the lengths of the nth received Mark, the nth received Space, and
the last dah, respectively.

1. If m(n) � 2 * m(n — 1), then rn(n) is classified into a dah.

2. If rn(n) n(n — 1), then rn(n) is classified into a dot.

3. If 2 * m(n — 1) > m(n) > * rn(n — 1 ), then m(n) is classified into the same class as m(rt — 1).

4. If s(n) � * mdah, s(n) is classified into a character Space.

5. If s(n) 2 2 * 77dah, s(n) is classified into a word Space.

Table 1 lists the testing results of the five-rule recognition method. In the table, 'Bit#' is the
number of the Mark/space pairs. 'Mark-e%' is the Mark error rate. In Space error rate 'Space-e%',
left column is the rate that an Si is misclassified into a.n S3 or 57, and the right column, the rate
that an 53 or S7 is misclassified into an Si . 'Reject%' is the reject rate, 'Char-e%' is the character
error rate, and 'Postedit-e%' is the character error rate after manual postprocessing (rejected data
are counted as errors in this column). Note that the first two error rates (Mark-e% and Space-e%)
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Table 2: MLP recognition rates.

Data# Char# Bit# Mark-e% Space-e%
Si-> ;S37
S37 • ->S1

Reject% Char-e%

Postedite%

Comment

1 108 427 0.9 3.7 4.4 17.6 13.0 18.5
2 168 688 1.2 0.9 1.5 7.1 4.2 8.3
3 168 665 2.7 0.3 1.7 3.0 14.9 18.5
4 152 554 1.1 2.7 0.5 0.0 11.2 7.2 All connected
5 156 660 0.8 7.6 2.7 7.1 25.0 23.7 All connected
6 124 529 0.4 0.4 3.6 9.7 0.8 4.8
7 152 611 0.5 0.8 3.1 11.8 1.3 7.9
8
9
10

176
192
136

681
726
564

1.6
1.2
0.9

0.9
0.4
4.3

1 3.1
1.8
1.6

7.4
3.1
9.6

10.8
10.9
13.2

17.6
11.5
11.0

Average
correct rate

;;e;;e:i.i 1.1 r2: •3:5 or 87J%

do not count the errors introduced by the preprocessor and the feature extractor, but the latter three
column(Reject %, Char-e%, and Postedit-e%) have.

As shown in Table 1, some input data works well, but most of the input data are not recognizable.
This phenomena could come from this method's high sensitivity to outlier's Mark and Space signals.
For example, if a rather short dot is received at some time, then the following dots with normal
duration will be recognized into dahs according to rule 1 . Space signals have these problems, also.

4.1.2 Multilayer perceptron element recognizer
We also applied the Multilayer Perceptron (MLP) [6]to recognize the Mark and Space elements. The
MLP has two layers of neurons in addition to the input layer. The input layer contains 17 nodes, the
data come from the feature extractor are sequentially piped into the input nodes. The hidden layer
contains 10 nodes and the output layer contains 2 (for Ml, M3) or 3 (for Si, 53, and 57) nodes.

Table 2 lists the testing results on the ten data sets. The character error rate is about 10.5%,
which is rather high. After post-processing, the error rate is still at 12.9%. Like the five-rule element
recognizer, MLP element recognizer also makes a lot of errors which are unal)le to be recovered. We
also tried other MLP structures with a larger scaling and recognition windows and different hidden
units. However, their results are still not encouraging.

We would like to give some explanations to this result. First, the MLP may be over-trained, or
there are not enough training data. Second, the structure of the MLP we used may be not suitable
for this application. In summary. the behaviour of MLP neural networks can not be easily controlled
and there is no systematic procedures for improving its performance currently.

4.1.3 SOM element recognizer
The recognition rate of the SOM element recognizer are listed in Table 3.

Compared to the previous two approaches, the SOM error rates are the lowest. It rejects 7.4% of
the data, and makes less than 2.5% of errors. In addition, lots of the rejected data can be recovered
and the post-edited error rate is about 5.4%.
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Table 3: SOM recognition rates.

Data# Char# Bit# Mark-e% Spa
Si->
S37

ce-e%
! S37

->S1

Reject% Char-e% Postedit-e% Comment

1 108 427 0.0 0.0 2.3 18.2 1.9 7.4
2 168 688 0.1 0.0 0.1 1.2 3.6 5.4
3 168 665 0.2 0.0 0.0 0.0 6.5 7.7
4
5

152
156

554
660

0.0
0.2

0.2
1 .1

' 0.0'
2.4

0.0
20.1

2.0
1 .3

3.3
5. 1 Most texts connected

6 124 529 0.0 0.2i 0.6 4.8 0.8 0.8
7 152 611 0.0 0.0 : 1.6 10.5 0.0 5.3
8
9
10

Average

176
192
136

153

681
726
564

610

0.0
0.0
0.0

0.05

0.3
0.1
0.2

0.2

0.3
: 0.0' 1.8

109

4.5
0.0

14.0

7.4

2.8
5.7
0.0

23

10.2
83
00
5A

Average
correct rate

94%

4.2 Comparisons and evaluations
For element signals (Marks and Spaces), SOM has the mininmm error rates. This indicates that SUMs
are able to capture the signal features. For character recognition (with or without postprocessed),
SUM also has the minimum error rates. For reject rates, three approaches all are about the same
(five-rule method is the highest). One possible reason to this result may be the inherent ambiguity of
the element signals.

For precisely keyed signals, the five-rule method is the fastest method. However it is too sensitive
to outlier, which happens frequently in real word. Therefore, it is restricted for practical applications.
As shown in Table 2, the results of MLP is not good. The SUM, compared to other two approaches,
is the best approach to Morse code recognition, either' in recognition rate or computation load. And
it also has the learning ability to catch the variation of the input signals. The comparisons are
summarized in Table 4.

4.3 Large data set tests
We have also tried another 26 data sets of total 6940 characters using SUM element recognizer to
further benchmark its performance. The system run in real time to decode these radio signals. In
average, the reject rate was about 6.5%, the character error rate was 2%. After postprocessing, the
error rate was 3.6%. These values were better than previous results.

4.4 Discussions
Setting proper parameter value is very important for training and retrieving of a neural network. In
SUM, the learning rates c and 8 are even more critical to the final recognition results. What are the
best values for this purpose? Is there a range of values for and j3 that will provide the network for
adequate performance? We have used the same ten experiment data sets as Section 4.1 to compute
the character error rate with respect to a and that varies from 0 through 1.

As shown in Figure 10, we see that Mark signal has a rather fia.t distribution of error rate along
the a axis. If c is set too large, the network will be very sensitive to outlier as five-rule recognizer.
Therefore, a smaller value is preferred. For /3 parameter. when 3 increases, the error rare increases.
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Table 4: Experiment results comparison.

Five Rules MLP SOM

Sensitivity to outlier High Depends Low

Data preparation No Yes No

Ease of training No training Difficult Easy

Ease of control Easy Difficult Medium

Computation load Very low High Medium

Test results Poor Poor Good

Therefore, the region of the minimum error rate for /3 is about in [0.05, 0.1], which was chosen to our
previous experiment value ( = 0.1, /3 = 0.03).
For Space signals, the behaviour of c is about the same as mark's. However, as we see a sharp
rising of error rate when a small o value is set. This means the space signals are highly sensitive to
the parameter setting. The best value is about in [0.1, 0.3]. Again, our previous experiment value
( a = 0.1 ) was chosen in this interval. For 3, the Space recognition error rate increases when
increases. A good value for /3 can be in the range of [0.025, 0.1] (experiment value was 0.02).

In these figures, there is no place where zero error rate is. This means that Mark and Space signals
were ambiguous of themselves. Hence, using the SOMs alone to perform the whole recognition task
is not enough. It seems that certain high level recognition techniques, such as language models and
AT methodologies are needed.

5 CONCLUSIONS
An automatic Morse code recognition system was built and it could run in real time to decode the
radio Morse code signals. The system could automatically trace the incoming Morse code signals
\Tith different central frequency, and reject Morse code like noisy signals. And, SOM neural networks
were used intensively in generating various classification thresholds. We have obtained very good
results on this difficult task. Our methods include low-precision and analog processing, massively
parallel computation, extraction of biologically-motivated features, and learning from examples. We
emphasize that classica.1 engineering. signal processing, and the latest learning-from-examples methods
were all absolutely necessary. Without the careful engineering, a direct adaptive network attack would
not succeed, but by the same token, without learning from a very large database, it would have been
excruciating to engineering a sufficiently accurate representation of the probability space.
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Figure 10: Character error rate vs. different SUM parameter values.
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