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Tone Recognition of Continuous Mandarin 
Speech Based on Neural Networks 

Sin-Homg Chen, Senior Member, IEEE, and Yih-Ru Wang 

Abstract-Several neural network-based tone recognition schemes for 
continuous Mandarin speech are discussed. A basic MLP tone recognizer 
using recognition features extracted from the processing syllable is first 
introduced. Then, some additional features extracted from neighboring 
syllables are added to compensate for the coarticulation effect. It is then 
further improved to compensate for the effect of sandhi rules of tone 
pronunciation by including tone information of neighboring syllables. The 
recognition criterion is now changed to find the best tone sequence that 
minimizes the total risk that simultaneously considers tone recognition of 
all syllables in the input utterance. Last, two approaches using HCNN and 
HSMLP, respectively, to model the intonation pattern as a hidden Markov 
chain for assisting tone recognition are proposed. The effectiveness of 
these schemes was confirmed by simulations on a speaker-independent 
tone recognition task. A recognition rate of 86.72% was achieved. 

I. INTRODUCTION 
Tone recognition is an important task in Mandarin speech recog- 

nition because Mandarin Chinese is a tonal language. Each character 
is pronounced as a monosyllable with which a tone associates. This 
means the tonality of a monosyllable is also lexically meaningful. 
Basically, there are only five lexical tones which are commonly 
labeled in sequence from Tone 1 to Tone 5. The tonality of a 
monosyllable is mainly characterized by the shape of its fundamental 
frequency (FO) contour. Although a previous study [ I ]  concluded 
that the FO contour of each of the first four tones can be simply 
represented by a single standard pattem, as shown in Fig. I ,  tone 
recognition in continuous speech is not a trivial problem. This is 
because tone pattems of syllables in continuous Mandarin speech are 
subject to various modifications. First, the pronunciation of a Tone 5 
is usually highly context dependent so that its FO contour pattem 
is relatively arbitrary. This makes Tone 5 difficult to recognize. 
Second, the tone pattem of a syllable may be seriously affected by 
the tones of neighboring syllables. This effect is commonly known 
as sandhi rules [2]. Third, coarticulation effect can make the FO 
contour shape of a syllable be affected by the FO contour pattems 
of neighboring syllables. Fourth, FO contour pattems of stressed 
syllables are generally quite different from unstressed ones. Fifth, the 
FO contours of all syllables in a sentential utterance are seriously 
adjusted to meet the intonation pattem of the sentence. Besides, 
some other factors, such as the semantics and the emotional status 
of speaker, can also affect the pronunciations of tones pattems of 
syllables. Therefore, tone recognition for continuous Mandarin speech 
is a complicated task. To our knowledge, there have been few studies 
on this problem [3]-[5].  In this correspondence, we study the problem 
using neural network-based pattem recognition technique. Several 
multilayer perceptron (MLP) based tone recognition schemes are 
proposed to compensate for the effects of some tone modification 
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Fig. 1. Standard FO contour pattems of the first four tones. 

Fig. 2. Block diagram of the basic tone recognition scheme. 

factors discussed above. They include the coarticulation effect and the 
sandhi rules from neighboring syllables as well as the effect caused 
by the intonation pattem of a sentential utterance. 

11. THE BASIC TONE RECOGNITION SCHEME 

Fig. 2 shows the block diagram of the basic tone recognition 
scheme. It is composed of four parts: preprocessing, smoothing and 
segmentation, normalization and feature extraction, and MLP-based 
pattem recognition. The speech signal is the first signal preprocessed 
to extract some parameters. Preprocessing consists of LP-filtering at 
4 kHz, sampling at IO  kHz, A/D conversion into 12-b data, and 
detection of pitch and log-energy for every 40-ms frame at a rate of 
50 Hz. Here, the SIIT algorithm [6] is employed for pitch detection. 
Because pitch does not exist in unvoiced and silence parts, the pitch 
contour of each sentential utterance is now divided into segments. 
A smoothing algorithm operating on a segment-by-segment basis is 
applied to correct some pitch detection errors. Because a segment may 
still be composed of pitch contours of several connected syllables, 
more finely segmenting it into syllable segments is necessary. Due to 
the fact that finer segmentation of a continuous utterance into syllable 
segments is more suitably done in the subsystem of recognizing 408 
base syllables, we simply do the finer segmentation manually in this 
study. Finally, all pitch contours of monosyllables are converted into 
FO contours. 

The FO contour of each sentential utterance is then normalized 
by its own means to reduce interspeaker variability. Features for 
tone recognition are then extracted from the normalized FO contours 
and the log-energy contours of syllables. In the basic scheme, 
only features extracted from the processing syllable were used. 
They include the duration of the FO contour of the syllable, the 
means of three uniformly divided log-energy subcontours, and the 
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intercepts and slopes of three uniformly divided FO subcontours 
[7]. These features are then fed into an MLP pattern recognizer 
for tone recognition. The MLP is a two-layer network with a 
single hidden layer. It consists of five output nodes corresponding 
to five tones. Each neuron output is the sigmoid function of the 
weighted summation of inputs. The MLP recognizer is trained by the 
backpropagation (BP) rule [8], which minimizes the mean squared 
error between the feedfonvard outputs and the desired targets. 

111. THE SCHEMES THAT COMPENSATE THE COARTICULATION EFFECT 

As mentioned previously, coarticulation from neighboring syllables 
will make tone pattem of a syllable change in shape or in level 
to interfere with tone discrimination. Two types of coarticulation 
are considered. The first one is due to the continuation of the 
articulation process. Significance of this type of coarticulation usually 
depends on the relationship between the processing syllable and 
its neighbors. Basically, syllables within a polysyllabic phrase are 
tightly coupled together so that the coarticulation is severe. The FO 
contours of these syllables will be distorted in shape so that they 
can be smoothly transitmitted from one syllable to another. Another 
type of coarticulation is caused by the sandhi rules [2].  In this case, 
tone pattem of a syllable is simply affected by tones of neighboring 
syllables. Sometimes, the tone pattern of a syllable can be totally 
changed to another tone pattern. For example, a well-known sandhi 
rule tells that a Tone 3 will be changed to Tone 2 as it follows 
another Tone 3. Sometimes, the classification of these two types of 
coarticulation are not clear. 

Two tone recognition schemes that compensate for effects of these 
two types of coarticulation are studied. The first one is a scheme that 
is directly extended from the basic scheme discussed previously by 
adding contextual acoustic features extracted from the two nearest 
neighboring syllables to cope with the first type of coarticulation. It 
is then further improved in the second scheme by additionally adding 
tones of the two nearest neighboring syllables as input features to 
compensate for the effect of sandhi rules. They are discussed in 
more detail as follows. 

In the first scheme, some contextual features extracted from 
neighboring syllables are additionally fed into the MLP recognizer 
to help the tone recognition. They include 

1) the three features (i.e., log-energy, FO mean, and slope) ex- 
tracted from the last subsegment of the preceding syllable 

2) the three features extracted from the first subsegment of the 
following syllable 

3) log energies and durations of both unvoiced/silence segments 
before and after the processing syllable 

4) two binary indicators. 
Among them, the six features in 1 )  and 2) are the primary features 
for coping with the first type of coarticulation. The two features in 3) 
are used to implicitly represent the tightness of relationships between 
the processing syllable and the two nearest neighbors. The last two 
features are, respectively, used to indicate whether the processing 
syllable is the first or last syllable of the input sentential utterance. 

In the second scheme, tones of the two nearest neighboring 
syllables are also used as the input features to assist the tone 
recognition. Due to the fact that tones of neighboring syllables are 
either not known in advance or can only be estimated from previous 
recognition, tone recognitions for all syllables in an input utterance 
cannot be done independently. A different recognition procedure 
based on the decision rule of minimal total risk is therefore employed. 
First, rather than directly taking the MLP as a tone recognizer, it 
should be regarded as a mechanism of computing the risk of tone 
trigram comprising tones of the processing syllable and its two 

nearest neighbors. Second, define an objective function for the whole 
input sentential utterance by accumulating risks of all tone trigrams 
in the utterance. Specifically, given the feature vector sequence 
(-Ti( j)),=l,!y of the input sentential utterance, the objective function 
for the candidate tone sequence (T( j ) ) ,= l ,y  is defined as 

Here, the output of neural network O , ( x ( j ) , T ’ ( j  - l ) .T ( j  + 1))  is 
a function of the tone-trigram ( T ( j  - l ) .T ( j )  = tone i . T ( j  + l ) ) ,  
and t < ( j )  is the desired output of the ith output neuron for the 
j t h  syllable. An optimization procedure is applied to find the best 
tone sequence (f( j ) ) J = l  .Y that minimizes the objective function. 
In practical implementation, this can be efficiently accomplished by 
dynamic programming. We note that a simple linguistic constraint is 
additionally added in the search of the best tone sequence to inhibit 
Tone 5 as the tone of the first syllable because it can never happen 
in natural Mandarin speech. 

I v .  THE SCHEMES THAT COPE WITH THE 
EFFECT OF THE INTONATION PATTERN 

Other than the coarticulation effect, the intonation pattem of 
sentence pronunciation is also an important factor to be considered 
in tone recognition of continuous Mandarin speech. For instance, the 
intonation pattem for a declarative sentence generally makes the FO 
contour of the utterance decline gradually. Variations on FO contour 
caused by tonality as well as other factors are superimposed on the 
intonation pattern and, hence, make the tone recognition problem 
of continuous Mandarin speech more difficult. In this section, the 
tone recognition schemes that cope with the difficulty resulting from 
the intonation pattem of sentence pronunciation is studied. Two 
approaches using a hidden control neural net (HCNN) and a hidden 
state multilayer perceptron (HSMLP) are proposed. The basic idea 
is to model the global intonation pattern of a sentential utterance as 
a hidden Markov chain and use a separate recognizer in each state 
for tone discrimination. 

First, the approach using HCNN [9] is discussed. The structure 
of an HCNN is like an MLP except that it additionally consists 
of some neurons called hidden control units in the input layer. 
Rather than connecting to input features, these hidden control units 
are untouchable and used to generate state-specified information for 
controlling the neural network to make it vary with time to time align 
with the input feature sequence. Therefore, an HCNN acts just like a 
finite-state MLP with outputs depending on both input features and 
state-specified information generated by hidden control units. In our 
application, the HCNN is regarded as a sequence of tone recognizers 
that are time aligned with the hidden Markov chain modeling the 
intonation pattern. Fig. 3(a) displays the schematic diagram of the 
HCNN used in our study. It is a left-to-right, three-layer network 
with single state transition. Hidden control signals assigned to each 
state are represented by “grandmother-cell’’ representation, i.e., all 
bits are equal to ‘0’ except the one associated with the current state 
being set to ‘1.’ 

The training procedure of the HCNN comprises two steps: segmen- 
tation and model updating. The first step is to optimally segment the 
input sentential utterance into several states with the tone sequence 
known. The second step is to update the HCNN model-based neural 
network by using the state sequence found from the segmentation 
result. In recognition phase, the task is to find the best pair of tone and 
state sequences for the input test utterance using an optimal searching 
process. An objective function is defined to evaluate the cost for each 
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Fig. 3. Schematic diagrams of the schemes using (a) HCNN and (b) HSMLP. 

pair of admissible sequence. The criterion is then to find the best pair 
of tone and state sequences that minimizes the objective function. 
The following criterion is used: 

min I?( S. TIX) 
S .T 

where 

R(S.TIX) = 
.‘v‘ i 

~ ~ { ( o , ( ~ ( 7 l ) , T ( f ?  - l ) . T ( J l + l ) , S ( ~ I ) ) - ~ , ( ~ ) ) * }  
, $ = I  ,=1 

is the objective function with S = ( . 4 n ) ) T t = l , . y ,  T = (T(n)) ,2=l , ly ,  
and X = ( ~ ( I I ) ) ~ ~ ~ ~ , ~ ~  denoting the state sequence, the tone 

TABLE I 
DISTRIBUTIONS OF FIVE TONES IN THE TRAINING AND TEST SETS 

I I Tone 1 I Tone 2 I Tone 3 I Tone 4 I Tone 5 I Total I 

sequence, and the input feature vector sequence, respectively. In prac- 
tical realization, the searching process can be efficiently accomplished 
by a dynamic programming (DP) procedure. 

Due to the fact that feature vectors of two nearest neighboring 
syllables are also taken as input features, the first and the last syllables 
of the input utterance are specially treated. Two separate states are 
used for them. All other states are used for intermediate syllables. 

Another approach using HSMLP is now discussed. An HSMLP is 
composed of a sequence of MLP, which is shown in Fig. 3(b). Each 
MLP is taken as a tone recognizer for a state of intonation pattem. 
The structure of the HSMLP is similar to the linked predictive neural 
net (LPNN) [IO] except that all MLP’s are taken as tone classifiers 
instead of predictors. The basic idea of using HCNN and HSMLP to 
model the hidden Markov chain representing an intonation pattem is 
the same. The main difference between them is that the HCNN uses 
the same set of weights for all states, whereas the HSMLP uses a 
different set of weights for different states. Due to their similarity, 
the same training and recognition methods for HCNN can be applied 
to the HSMLP. 

V. SIMULATIONS 
The effectiveness of these tone recognition schemes discussed 

above was examined by simulations. Two databases were used in 
the following experiments. One is for the training and the other for 
the testing. These two databases comprise well-designed, phonetic- 
balanced declarative sentential utterances and are composed of almost 
all 408 types of base syllables of Mandarin speech. The number of 
syllables in an utterance ranges from 6 to 19. There are, in total, 1268 
utterances in the training database. They were uttered by 45 speakers 
including 30 male and 15 female. The database for testing consists 
of 189 utterances generated by the same 45 speakers. All utterances 
were spoken naturally. The speaking rate of an utterance ranges from 
2.5 to 4.5 syllables per second. The distribution of five tones in these 
two databases are shown in Table I. We found that Tone 5 is less 
frequently appeared in both databases. 

First, the basic tone recognition scheme using features extracted 
only from the currently processing syllable was tested. Following the 
same method used in [7], ten recognition features were extracted for 
each syllable. By using an MLP with single hidden layer, the best 
recognition rate is 80% for the inside test and 76% for the outside 
test. Comparing with the isolated-syllable case discussed in [7], the 
performance degrades about 15% for the inside test and 17% for 
the outside test. Therefore, tone recognition for continuous Mandarin 
speech is not a trivial problem. 

Then, the scheme to compensate the coarticulation effect using ad- 
ditional features extracted from neighboring syllables was examined. 
A total of 22 input features including ten from the processing syllable, 
ten from context, and two indicators were used. A recognition rate 
of 82% was achieved for the outside test. It is much better than that 
of the basic scheme. By error analysis, we found that the recognition 
rate for Tone 3 in the experiment is very low when it is followed by 
another Tone 3. This mainly resulted from the well-known sandhi rule 
for tone pair 3-3. The sandhi rule indicates that when a syllable of 
Tone 3 precedes another Tone 3, it will be pronounced approximately 
as Tone 2. It is therefore no longer distinguishable from Tone 2 by 
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no. of hidden neurons 

HCNN inside test 

outside test 

TABLE I1 

FEATURES (SCHEME 1) A N D  NEIGHBORING TONES (SCHEME 2) 
(unit : %) 

1 no. of hidden neurons I 60 I 70 1 80 I 90 1 

RECOGNITION RATES OF THE SCHEMES USING CONTEXT 

65 70 75 80 90 

92.26 92.30 92.34 

85.26 84.70 85.78 

simply using acoustic information. To prevent the MLP recognizer 
from being polluted by these distorted patterns of Tone 3, the tonality 
of some syllables in these two databases was changed from Tone 3 to 
Tone 2 in advance. Specifically, all tone bigrams of 3-3 were manually 
labeled as 2-3, and all tone trigrams of 3-3-3 were labeled as 3-2-3. 
About 3 and 3.8% syllables were changed from Tone 3 to Tone 2 in 
the training and the testing databases, respectively. After making the 
tone change, experimental results by the same recognition scheme 
are shown in the second and third rows of Table 11. A recognition 
rate of 84.16% was achieved when 70 hidden units were used. By 
comparing with the previous experiment, we found that not only the 
recognition rate for Tone 3 was improved significantly, but those for 
Tone 2 and Tone 5 were improved as well. Due to its effectiveness, 
the tone modification was applied for all the following experiments. 

Then, the scheme to compensate for the effect of sandhi rules 
by adding tones of two nearest neighboring syllables was tested. 
Ten more input features were added for indicating tones of both 
the preceding and the following syllables. A dynamic programming 
procedure was employed to determine the tone sequence for all 
syllables in the input utterance based on the criterion of minimal 
accumulated risk. Experimental results are shown in the fourth and 
fifth rows of Table 11. A recognition rate of 84.80% was achieved 
when 80 hidden units were used. 

Finally, the scheme to compensate the intonation pattern was tested. 
In both cases using HCNN and HSMLP, the intonation pattern was 
modeled by a five-state Markov chain with one state for the beginning 
syllable, one state for the ending syllable, and three states for all 
intermediate syllables. Experimental results are displayed in Table 
111. Recognition rates of 85.78 and 86.72% were achieved for the 
cases of using HCNN and HSMLP, respectively. The performance is 
better than that obtained in the previous experiment. The effectiveness 
of the scheme is further analyzed by examining the recognition rates 
of syllables located in different parts of utterances. Table IV lists 
the recognition rates of inside test for syllables in three uniformly 
partitioned parts of utterances. It can be seen from the table that the 
recognition rates for both the second and the third parts of utterances 
were improved when the scheme using HCNN or HSMLP was used. 
This confirmed that the scheme can partially compensate the effect 
of intonation pattern. We finally check the recognition rates for five 
tones. Table V lists the recognition rates of five tones for the scheme 
using HSMLP. It is found that the performances for Tones 1, 2. and 
4 are very good, but the recognition rates for Tones 3 and 5 are still 
far below the average. This mainly results from the relatively high 
variabilities of F0 contour patterns for both Tones 3 and 5. 

HSMLP 

VI. CONCLUSIONS 

Several tone recognition schemes based on artificial neural net- 
works have been discussed in this correspodence. Both the coar- 
ticulation from neighboring context and the intonation pattern of 
sentence pronunciation had been considered. Experimental results 

~ ~ ~~ 

inside test 90.92 90.75 90.85 

outside test 85.78 86.72 86.62 

Scheme 2 

hidden units position of syllable in the sentence 

number first 1/3 middle 1/3 last 1/3 

80 88.86 86.03 80.03 

HSMLP 

1 HCNN I 90 I 89.10 1 86.54 1 82.29 1 
70 89.10 87.16 84.38 

input 

tone 

Recognition result (W) 
Tone 1 I Tone 2 I Tone 3 1 Tone 4 I Tone 5 1 i 1 88: 1 4.5 1 0.7 1 :=i: 1 I 89.9 4.2 

1.0 13.6 76.6 2.3 6.3 

4 

5 

4.3 1.5 2.9 90.1 1.1 

2.1 9.3 11.3 6.2 71.1 

have confirmed that these two effects can be properly compensated 
for. A recognition rate of 86.72% was achieved. 

One possible way to further improve the performance of the system 
is by incorporating more linguistic information, such as phrasal 
information and syntactical information, to the system. However, 
this cannot be independently accomplished without considering the 
recognition of 408 Mandarin base syllables. Therefore, we will further 
study this problem in future research on continuous Mandarin speech 
recognition that integrates tone and base-syllable recognition. 
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