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Abstract: It is well known that minimising total 
wire length reduces routing area in a standard cell 
layout. After the placement phase, another 
advanced improvement on total wire length is 
made by assigning the orientations of standard 
cells. In the paper, based on fuzzy c-means clus- 
tering, the authors develop two-way constrained 
fuzzy graph clustering and the transformation 
between the orientation assignment of standard 
cells and the constrained graph bisection to mini- 
mise total wire length. Finally, the proposed algo- 
rithm has tested several standard cell layouts, and 
the experimental results show that the proposed 
algorithm produces significant wire reduction on 
total wire length. 

1 Introduction 

In VLSI physical design, the main object of the place- 
ment phase is to place a given set of circuit modules on 
the chip surface with minimum area or total wire length. 
For most of the placement approaches [l] the centres of 
circuit modules are usually considered as the circuit 
bodies during the placement phase. Thus all the nets 
between the circuit modules must be constructed by con- 
necting these centres. Owing to different estimation 
methods of wire length, the placement results are 
obtained by different placement algorithms. In general, 
all the modules are placed on the chip surface and the 
pins on each module are assigned to the boundary of the 
module to be applied to the routing phase after the place- 
ment phase. Furthermore, it is well known that mini- 
mising total wire length will reduce the routing area in a 
circuit module layout. Hence, one advanced improve- 
ment [2] on total wire length is made by flipping these 
fixed modules with respect to its vertical and/or horizon- 
tal axes of symmetry or rotating the fixed modules by 0, 
90, 180, 270 degrees before the routing phase. In Fig. 1, 
the different orientations of a circuit module and the 
transform diagram between the different orientations is 
illustrated. In general, the orientation assignment of the 
modules, called the orientation problem, is to minimise 
total wire length by further assigning orientations of 
modules. On the other hand, the rotation assignment of 
the modules, called the rotation problem, is to minimise 
total wire length by further assigning rotations of 
modules. 
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Fig. 1 
a Different orientations of a circuit module 
b The transform diagram for different orientations 
R = rotate 90 de-; H = horizontal llip; V = vertical Eip 

For the orientation problem, the flipping operation 
was adopted in standard-cell and gate-array style layout 
systems [3] in 1977. In a macro cell layout, an analytical 
method was proposed to solve the orientation problem 
by M. Yamada and C.L. Liu [4], and several testing 
examples were generated and studied. However, the cost 
function for total wire length is the sum of the squares of 
the wire lengths. The experimental results of these exam- 
ples cannot be compared with other approaches in which 
the cost function is in a different form. In 1989, a neural- 
based method was further proposed by R.L. Hadas and 
C.L. Liu [SI. The orientation problem for a macro cell 
layout is proven to be NP-complete. It was reported that 
the two methods based on simulated annealing and 
neural computation networks produce very good experi- 
mental results. Unfortunately, the computation time of 
the two methods is very long for a large problem. For the 
consideration of computation complexity, a fast heuristic 
algorithm was proposed by X. Yao and C.L. Liu [6]. 
Furthermore, using a graph partitioning technique, the 
problem was also proven to be NP-complete, and a 
graph-based algorithm was proposed in O(n2 log n) by 
Cheng, Hu and Yao [7]. In 1991, Jeong and Kyung pro- 
posed an integer programnming approach [SI to find 
optimal module orientations in a macro cell layout. The 
orientation problem for a standard cell layout and a 
matrix of macro cells is also discussed by Chong and 
Sahni [SI. Polynomial time algorithms were proposed, 
and it was shown that a simple greedy heuristic often 
outperforms the neural network and simulated annealing 
heuristics. 

In this paper, first, based on the hypothesis of the 
Manhattan net model, the orientation problem [lS] in a 
standard cell layout can be divided into the VO problem __ 
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and the HO problem. Furthermore, according to the 
physical property in a standard cell layout, the VO 
problem will be optimally solved in O(n) time. On the 
other hand, based on fuzzy c-means clustering [lo, 111, 
we develop two-way constrained fuzzy graph clustering 
and the transformation between the orientation assign- 
ment of standard cells and the constrained graph bisec- 
tion to minimise total wire length for the HO problem. 
The transformation of the orientation problem based on 
the Manhattan net model and two-way constrained fuzzy 
graph clustering is shown in Fig. 2.  Finally, the proposed 
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Fig. 2 Problem transformation of orientation problem 

algorithm has tested several standard cell layouts, and 
the experimental results show that the proposed algo- 
rithm produces significant wire reduction on total wire 
length. 

2 Problem description and preliminaries 

For a standard cell layout [12], the cells are positioned 
on a fixed chip surface row by row. The cells in one row 
have the same height and are arranged in a good fixed 
order. The pins are only located on top or bottom 
boundaries of cells, and the cells are connected by 
routing the nets among the pins of standard cells. In the 
orientation problem for a standard cell layout, the 
problem is to minimise total wire length or maximise 
wire reduction by further assigning vertical and horizon- 
tal orientations for each cell. In Fig. 3 a standard cell 
layout is shown. 

I I  1 4 1  1 1  

Fig. 3 Standard cell layout 

2.1 Wire length estimation 
For the orientation problem, the objective function is to 
minimise total wire length in a standard cell layout. 
Hence, to estimate the wire length of a net becomes 
important for computing total wire length in a standard 
cell layout. In general, the Manhattan path is usually 
applied to model the wire behaviour of a net in the 
routing phase. Thus, for any connecting net, we assume 
that the minimum Manhattan distance of a net is the 
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wire length of the net. For any two connecting points 
located at ( x ,  y )  and (U, U), the minimum Manhattan dis- 
tance is obtained as I x - U 1 + 1 y - U I. In general, the 
nets can be divided into two-pin nets and multiple-pin 
nets. For a two-pin net N whose pins are ( x i ,  y l )  and ( x 2 ,  
y2),  the wire length will be measured as Len (N) = I x 1  
- x 2  I + I y ,  - y 2  I. On the other hand, for one multipin 

net N, the minimum Manhattan distance of the net is the 
length of the minimum rectilinear Steiner tree of the net. 
It is well known that the minimum rectilinear Steiner tree 
problem [13] is an NP-complete problem. Hence, it is 
further assumed that the wire length of the net is the 
length of the minimum rectilinear spanning tree (MRST) 
of the net. A multiple-pin net N will be decomposed into 
several two-pin nets using an MRST model [14], and the 
wire length is the sum of the wire lengths of the decom- 
posed two-pin nets, such as 

LenO\I)= 1 { I x i - x j I + I Y i - Y j I l  
( i .  1) E NYRST 

where N,,,, is a set of two-pin nets using an MRST 
model for a multiple-pin net N. The nets in Fig. 3 are 
routed by an MRST model and shown in Fig. 4. 

Fig. 4 Estimation of routing nets by M R S T  model 

2.2 Orientation problem 
Formally speaking, for the orientation problem, each 
standard cell S has an orientation state (ps, qs), p s ,  
4. E (0, l} ,  and the states (ps, qs) = (0, 0), (1, 0), (0, 1) and 
(1, I), respectively, denote no flip, one horizontal flip, one 
vertical flip and both horizontal and vertical flips, respec- 
tively, for cell S. Let pin (x, y )  locate on a standard cell S 
whose centre is ( x s ,  yJ;  the co-ordinates (x ,  2y, - y )  and 
(2x ,  - x,  y), respectively, are the positions of the pin (x ,  y )  
by a vertical flip and a horizontal flip, respectively. Thus, 
the co-ordinate of the pin (x, y )  can be generalised as (x’ ,  

Flg. 5,  the co-ordinate change by a horizontal or vertical 
flip is shown. 

Y’) = ( x  + 2PS(X, 4. Y + 24,(Ys - Y)), Ps, 4. E (0, 11.. In 

(Ps. e,=co,o, i (ps,  qs)=(l. 0)  

I 
Fig. 5 Position change by a horizontal or urnticalflip 
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Owing to the assumptions of Manhattan distance and 
MRST net model, it is clear that any horizontal (vertical) 
flip only changes the horizontal (vertical) wire length of 
the nets in a standard cell layout. Therefore, the orienta- 
tion problem will be further divided into two independ- 
ent subproblems: the horizontal orientation (HO) 
problem and the vertical orientation (VO) problem. For 
the HO problem, the co-ordinate of the pin (x ,  y )  will be 
generalised as (x', y') = ( x  + 2ps(x, - x) ,  y) ,  ps E (0, 1). 
On the other hand, for the VO problem, the Co-ordinate 
of the pin (x ,  y) will be generalised as (x', y') = (x .  y + 2qdy, - y)),  qs E { O ,  I}. Let a set of two-pin nets in a 
standard cell layout be defined as { 1, 2, . . . , m }  and a set 
of standard cells be defined as { 1,2, . . . , n} .  By the gener- 
alised co-ordinate form of any pin, the total wire length 
Lgen(HO) and Lnem(V0) in a standard cell layout for the 
HO problem and the VO problem are computed as 

LGeAHO) = { I xi + 2 ~ J x s  - xi) - xj  
(is, h) E Sn.t 

- 2Pt(X, - X j )  I + I Y i  - Y j  I 1 

LgeAVO) = 1 { I xi - xj I + I ~i  + - ~ i )  

P I ,  P z ,  . . . 1  P .  E (0, 1) 

(is. h) E S..t 

- Yj - 2qt(Yt - Yj) I 1 
41, qz , f . .  , 4" E (0, 1) 

+ 2 ~ s ( x s  - xi), Yi + 2qscYs - Yi)) and .it = (xj  + 2 ~ t b t  
where (i,, j,) represents one two-pin net whose pin is = (x i  

- xj),  y j  + 2q,(y, - y j ) )  are located on cell S and T, 
respectively, and S,,, is a set of two-pin nets after the 
transformation of the MRST net model. 

From another viewpoint of minimising total wire 
length for the orientation problem, it is clear that mini- 
mising total wire length corresponds to maximising total 
wire reduction in a standard cell layout. Hence, the 
objective functions in a standard cell layout for the HO 
problem and the VO problem will be modelled as maxi- 
mising L,,,(HO) and Lred(VO): 

L,=AHO)= 1 { I X ~ - X ~ I - I X ~ + ~ P J X , - X J  
0,. h) E S..t 

- xj  - 2 ~ X x t  - xj)  I }  
P 1 , P Z , . . . , P n E { 0 ,  1) 

Lred(V0)  = 1 {IYi - Y ~ I  - Iyi + 2qs(Ys - Y J  
(is, 6)  E S..t 

- Y j  - %tbt - Y j )  I 1 
41, qz,  ..., 4. E (0, 1) 

In addition to the flipping direction, the HO problem 
and the VO problem are the same problem. The follow- 
ing definitions are applied to solve the HO problem and 
the VO problem at the same time. Given a two-pin net 
N,, the pins ( x f .  y;) and (xf ,  yf) are located on cell S and 
T whose centres are ( x ~ ,  yJ and ( x t ,  yr),  respectively. 

Definition I: If cell S is flipped by a horizontal orienta- 
tion state ps and cell T is flipped by a horizontal orienta- 
tion state p t  , the horizontal net reduction NRh,,(S@J, 
T(p,), N,) for Ni is defined as (see Fig. 6) 

NRhor(%& T@t), Ni) 
= 1x1 - Xf I  + Iyf - yfI 

- I x:  + 2p,(xt - x f )  - xi - 2p,(x, - x i )  I 
- lYfY -Y:I 

= Ixf - .:I - Ixf + 2pxx, - xf) - x: - 2p3(x, - . : ) I  
IEE Proc.-Comput. Digit. Tech., Vol. 142, N o ,  2, March I995 

Furthermore, the horizontal flip reduction FRb,(S@,), 
T@,)) for cell S and T is defined as 

FRbr(S@s) ,  T@,)) = 1 NRher(Shsh T@t), Ni) 
Ni E (S. T) 

i ,,'j .1' i ,Ik z 
a C d b 

U U U w 
Fig. 6 Net reduction 
P NR,,(S(O), T(1A 9 = Len ( i )  - Len (11 
b NR&(I), T(OA 11 = Len (11 - Len (k) 
c NR,,(S(OA T(1L 0 = Len ( i )  - Len (0 
d NR,(S(I), T(O), ij = Len ( i j  -Len (m) 

where (S, T) is a set of two-pin nets whose pins are 
located on cell S and T, respectively. By similar defini- 
tions, NR,,,(S(q,), T b ) ,  N i )  and FR,,(S(q,), T(q,)) are 
defined as 

N R d S ( q 3 ,  T(qr), Nil 

= I Yf - YS I - I Yf + 2q ,b ,  - Y3 - Y: - M Y ,  - Y9 I 
and 

FRodS(qs) ,  T(qt)) = 1 NRoer(S(qs), T(qt), Ni) 
Ni E (S. T) 

Definition 2: After cell S has been horizontally flipped, 
the co-ordinate of the pin ( x i ,  y:) in the net Ni is modified 
as (2x,  - x: ,  y:). If cell T is further flipped by a horizontal 
flip, the virtual horizontal net reduction VNRh,,(S, T, Ni) 
for net Ni is defined as (see Fig. 7) 

I."Rho,(S, T, Ni) 
= NRhor(S(1), T(1), Nil - NRhor(s(l), T(O), Ni) 

a b C 

Fig. 7 Virtual net reduction 
(I VNR,(S, T, i )  = Len (i') - Len(j) 
b VNR,(T, S, i) = Len (i') - Len ( k )  
e VNR,,(S, T, 13 = Len (i*) - Len (0 
d i"R.,(T, S, i) = Len (i') - Len (m) 

By similar definitions, VNRh,,(T, S, NJ, 
and VNR,,,(T, S, Ni) are defined as: 

VN 

f i* i 



Ni) and NRver(S(l), T(O), Ni) = VNR,,,(T, S, Ni), for each 
N, E (S, T), cells S and T will be vertically independent 
(see Fig. 8). 

Lemma I ;  Any two standard cells are vertically indepen- 
dent. 

a 
Fig. 8 Cell independennce 
o Horidontal mll independence 
b Vertical a l l  independence 

b 

Proof; For a standard cell layout, the pins are only 
located on top or bottom boundaries of cells, so two pins 
on any net will be located on top or bottom boundaries 
of cells. For any net N, on cells S and T, it is clear that 

NR,dS(O), T(1), Nil = YNR,,(S, T, Nil 

= height of standard cell T 
or - (height of standard cell T) 

and 

NR,,,(T(O), S(1), Ni) = YNR,,,(T, S ,  Nil 
= height of standard cell S 

or - (height of standard cell S) 

Therefore, any two standard cells are vertically indepen- 
dent. QED 

3 

Consider an edge-weighted undirected graph G(V, E) and 
a set of clustering constraints CC in which any pair of 
vertices is not grouped into the same cluster, where V = 
{xl, x,, . .., xn}, E = {yl, y, ,  ... , y,} and the edge weight 
matnx is C(G). Based on fuzzy c-means clustering, 
two-way constrained fuzzy graph clustering for G is pro- 
posed and applied to constrained graph bisection as 
follows. 

3.1 Fuzzy membership and constraint 
Let Rf be the set of non-negative reals, and M,, be the 
set of real 2 x n matrices. Every function U,: V + CO, 11 is 
said to assign the grade of fuzzy membership onto each 
x k  in V. In general, the fuzzy function ui is called the ith 
fuzzy set of V. For fuzzy graph clustering, it is desired to 
partition V by means of fuzzy sets. Hence, two-way fuzzy 
graph clustering is to partition V by two fuzzy sets. Based 
on fuzzy c-means clustering, there will exist several con- 
straints among the fuzzy memberships of V as follows. 
Given an edge-weighted graph G(V, E), two-way fuzzy 
graph clustering of V will be represented by a fuzzy mem- 
bership matrix U E M,, whose entries satisfy the follow- 
ing conditions : 

(1) Row i of U, say U, = (Uil ,  ui2), exhibits the ith fuzzy 
set of v. 

(2) Column j of U, say Uj = (Ulj ,  exhibits the 
values of the two fuzzy sets of x j  in V. 

Constrained fuzzy graph clustering and graph 
bisection 
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(3) uIk shall be interpreted as uXxk), the value of the 
fuzzy membership of the ith fuzzy set for xk. 

(4) The sum of the values of fuzzy memberships for 
each xk is 1 (column sum E, uik = 1 Vk). 

( 5 )  No fuzzy set is empty (row sum ck uik > 0 Vi. 
(6) No fuzzy set is all of V (row sum uik < n Vi). 

3.2 Clustering distance 
Owing to the primary min-cut operation in two-way 
graph partitioning, it is desirable that any pair of vertices 
with larger weight will be grouped into the same cluster 
to reduce the partitioning cut. Hence, the larger the 
weight of one edge, the smaller is the clustering distance 
between the mapped pair of vertices. Based on this 
hypothesis, the clustering graph G(V, E) is generated by 
modifying all the edge weights in G(V, E). For the edge 
{i, j }  in G, the edge weight cij is defined as 

,, { l/(cij - cmin + 1) if cmin < 1 
if cmin > 1 

c ! .  = 
l / C i j  

where c,. is the ijth entry of the matrix C(G) and cmin = 
Min {c i j i .  

Furthermore, the clustering distance between any pair 
of unconnected vertices in G can be computed by 
running the shortest-path algorithm for G .  On the other 
hand, if there exists one clustering constraint between any 
pair of vertices, the clustering distance is assigned a very 
large number to avoid grouping the two vertices into the 
same cluster. Therefore, for two-way constrained fuzzy 
graph clustering, the clustering distance di, between any 
pair of vertices, i and j ,  in G is further defined as 

if the pair of vertices i and j is 
in CC 

if { i, j }  is in E and the pair of 
vertices i and j is in CC 

Short-Path(i, j )  if {i, j }  is not in E and the pair 
of vertices i and j is in CC 

where Short-Path@, t )  represents the sum of weights on 
the shortest path from vertex s to t. 

3.3 Two-way constrained fuzzy graph clustering 
Based on fuzzy c-mean clustering and the definition of 
the clustering distance, two-way constrained fuzzy graph 
clustering will be transformed into the minimisation of a 
mathematical function J(U, U). Let U be a two-way fuzzy 
graph clustering for G and U = (ul, U,) be the two cluster 
centres, where U, E V and u1 # U,. The ith clustering func- 
tion J i :  M,, x V + R +  is defined as JdU, v i )  = E= (uik)2(dik)2. Furthermore, the clustering function 
J :  M,, x V 2  -+ R+ is defined as 

dij = { 

J(U, 1)) = JI(U, u1) + JAU, 02) 

" 2  

= c c (Uit)2(d,32 
k = l  i = l  

w h e r e U E M 2 , , u E V 2 w i t h u i E V ,  1 < i < 2 a n d d i k =  
l /xk - uill is the clustering distance between xk and U,. In 
this function, the squared clustering distance is weighted 
by the 2nd power of the membership of vertex xk in the 
ith cluster. Thus, the minimisation of the function J(U, U) 
produces a fuzzy membership matrix U that is optimal in 
a generalised least-squared error. 

Basically, from the construction of the clustering func- 
tion, the function J(U, U) is a nonlinear multivariable 
function so that it is difficult to minimise J(U, U). In 
general, for the minimisation of such a function J(U, U), a 
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variable-iterative optimisation approach on U and U is 
applied to approximate the minimum of the clustering 
function. Hence, the necessary conditions of U and U in 
the variable-iterative optimisation approach are given as 
follows. 

Lemma 2: Consider the following problem. 
Minimise J( U, U), 

subject to: 
0 < uik < 1, for 1 < k < n, 1 < i < 2 

U1k + U2k = 1 for 1 < k < n 

where U is fixed; then U = { U i k }  is a global minimum of 
the problem 

If (Xk # U1 AND Xk # U2)  

for 1 < i < 2 , 1 <  k < n d:k * d& U. = 
" di(d:k + dZk) 

Otherwise 

Uik = 1 if xk  = v i ,  

= o  if xk  # ui 
for 1 < i < 2 , 1 <  k < n 

Lemma 3: Consider the following problem 
Minimise J(U, U) 

subject to: 

O<u, < 1 for 1 < k < n ,  1 < i < 2  

ulk + u2k = 1 for 1 < k < n 
where U is fixed; then U = (ul, u2) is a global minimum of 
the problem if 

0. = x .  
1 J  

(uik)2(djk)z for 1 < i < 2, x j  E V 
x$ {k:l } 

As mentioned above, two-way constrained fuzzy graph 
clustering via the iterative optimisation of J(U, U) 
produces a fuzzy membership matrix U for V. The 
basic steps of the algorithm Two- 
Way-Constrained-Fuzzy-Graph-Clustering (TCFGC) 
are given as follows. 

Algorithm Two-Way-Constrained-Fuzzy-Graph- 

Input: an edge-weighted undirected graph G(V, E) and a 

Begin 

Clustering (TCFGC) 

set of clustering constraints CC; 

(1) Determine the clustering distance djj between x i  

(2) Initialise an arbitrary partition and establish a 

(3) Calculate the centres U = (ul, u2)  using U as 

and x j ,  1 < i, j < n; 

fuzzy membership matrix U; 

follows: 
(1) Determine u l l  and u12 such that J1(U, uI1)  is the 

(2) Determine uZ1 and u z 2  such that J2(U, uzl) is the 
least and Jl(U, u12) is the second least, 

least and J2(U, uZ2)  is the second least, 
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(3) If@,, # u 2 d  Then U = ( u l l r  uzl); 
Elseif(J,(U, ul1)  + JAU, uZ2)  

Then U = (U,,, u Z z ) ;  
Else U = (uz1, u12); 

-= J 2 ( U  U211 + Jl(Q u12)) 

Endif 
Endif 

as follows: 
(4) Calculate a new fuzzy matrix U' using U = (ul, u 2 )  

If (Xk # U1 AND X I  # 0 2 )  

Otherwise 

U; = 1 

= o  
if xk  = ui 
if xk  # ui 
for 1 < i < 2,1< k < n 

(5 )  Compare uik and uik, for 1 < i < 2, 1 < k < n; if Ilu; 
- #;kll < E, stop; otherwise, U = U', and Goto step 

(3). 
End 

3.4 Constrained graph bisection 
Since the algorithm TCFGC generates two groups of 
fuzzy memberships in U for G, the constrained graph 
bisection of G will be obtained by further processing the 
two groups of fuzzy memberships. Basically, according to 
the values of these fuzzy memberships in the first group, 
the vertices in V can be sorted decreasingly into a vertex 
list. Clearly, the vertex list indicates the possibility of 
belonging to the first cluster. In contrast, the vertex list 
also indicates the possibility of not belonging to the 
second cluster. Finally, for the constrained graph bisec- 
tion, the vertex list is further separated into two vertex 
subsets with even size. Here, the steps of the algorithm 
Constrained-Graph-Bisection are described as follows. 

Algorithm Constrained-Graph-Bisection 
Input: A fuzzy membership matrix U = { U i k }  of G ;  
Begin 

(1) Sort the vertex set {xl, x2,  . . . , xn} according to the 
fuzzy memberships, u l i ,  1 < i < n, in the first group 
and construct a vertex list x:, x: , . . . , x: ; 

(2) Partition the vertex set {xl, x 2 , .  .., x,} into {x:, 
. . . , x $ ~ }  and { x : ~ ~  + . . . , x:} ,  and calculate the cut 
of the partition. 

Orientation assignment of standard cells 

End 

4 

For the orientation assignment of standard cells, the 
orientation problem has been divided into the HO 
problem and the VO problem according to the intro- 
duction of the Manhattan net model. Furthermore, by 
Lemma 1, any two standard cells are vertically independ- 
ent for the VO problem. Therefore, the VO problem will 
be solved by independently assigning vertical orientations 
of standard cells in O(n) time, where n is the number of 
standard cells. Clearly, the orientation problem in a 
standard cell layout focuses on the HO problem. In this 
paper we develop the transformation between the assign- 
ment of horizontal orientations and the constrained 
graph bisection problem to assign horizontal orientations 
of standard cells. 

First, by the relation of horizontal independence, all 
the standard cells will be divided into several horizontal 
dependent groups for the HO problem. It is clear that if 

161 



two cells are located on two groups, the two cells will be 
independently assigned horizontal orientations. Further- 
more, for the assignment of horizontal orientations in 
one dependent group, the standard cells and the horizon- 
tal wire reduction between any pair of standard cells in 
this group are applied to construct an edge-weighted 
undirected graph. Hence, all the horizontal dependent 
groups are applied to construct independent edge- 
weighted undirected graphs. 

Basically, the transformation between the ith depend- 
ent group and an edge-weighted undirected graph GAV, 
E) are divided into two separate steps: vertex construc- 
tion and edge construction. In the vertex construction 
step, the cells in the ith group are numered as 1, 2, 3, ..., 
n,, where n, is the number of cells in this group. As men- 
tioned above, each standard cell S has two horizontal 
states, pa = 0 and 1. Thus each cell S in the group will be 
mapped into two vertices, S(0) and S(1), in G i .  Clearly, 
the number of vertices in Gi is 2ni .  On the other hand, in 
the edge construction step, the horizontal wire reduction 
between any pair of standard cells is applied to reflect the 
possible flipping reduction for the two cells. For any pair 
of vertices, S(p,) and T(p,), if S # T, one edge between 
S(p,), and T(p,) is constructed and the weight assigned by 
FRh0,(S(p,), T(p,). On the other hand, if S = T, one clus- 
tering constraint between S(pJ and T(p,) is Constructed. 
Since there are no two horizontal states on one cell at the 
same time, the clustering constraint shows that S(pJ and 
Tb,) are partitioned into the same cluster. Hence, for Gi,  
a set of clustering constraints CC, is constructed. Clearly, 
the number of clustering constraints in Gi is n,. In Fig. 9 
one horizontal dependent group and the constructed 
graph will be illustrated. 

Basically, from the construction of GAV, E), it will take 
O(nJ to number the standard cells in the ith group and 
construct the vertex set V in the vertex construction step. 
Furthermore, in the edge construction step, it will take 
O(n:) time to construct the weighted edges E and a set of 
clustering constraints CCi in Gi . Therefore, for a stand- 
ard cell layout, it will take ci O(nf) time to transform all 
independent groups in the HO problem into edge- 
weighted graphs. In the worst case, the time complexity 
of the transformation is O(n2), where n is the number of 
standard cells in a standard cell layout. 

Based on the construction of all the independent 
graphs with clustering constraints, it is clear that the con- 
strained graph bisection for Gi forms two kinds of orien- 
tation assignments for the ith independent group. 
Furthermore, one of the two kinds of orientation assign- 
ments is successfully decided by comparing total wire 
length for the ith independent group. Therefore, the HO 
problem in a standard cell layout is transformed into the 
constrained graph bisection problem for all the con- 
structed graphs. Since the HO problem is transformed 
into the constrained graph bisection problem, as men- 
tioned above, the solution of the constrained graph bisec- 
tion is obtained by the application of two-way 
constrained fuzzy graph clustering. If the constrained 
graph bisection has been obtained for all constructed 
graphs, the HO problem in a standard cell layout is 
solved. Now, the algorithm Orientation-Assignment 
describes the solution of the orientation problem in a 
standard cell layout as follows. 

Algorithm Orientation-Assignment 
Input: A standard cell layout; 
Begin 

Assign vertical orientations of standard cells; 
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All the standard cells are separated into several 
horizontal dependent groups according to the 
relation of horizontal dependence; 
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0 6 14 
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b 
Fig. 9 
(I HO problem for one horizontal dependent group 

Net I :  (I. 9H2.4) , .  . . .  , 
Net 2: (2, 13)-(5,4) 
Net 3: (4.9)-(9, 13) 
Net 4: (5.9)-(9.0) 
Net 5: (6,9)-(4,4) 
Net 6:(7,9)-(11,4) 
Net7:(1,0)-(9,9) 
Net 8:  (7,4)-(10,9) 
Net9:(13,4)-(11, 13) 
Net 10: (3,0)-(8,4) 

b Mapped edge-weighted graph 
w , , , = o , w , , , = o , w , , , = o  
w , , , = o , w , , , = o , w , , , = o  
w,.2. = -4, w,,3. = -2, w,,4. = 0 
w2,,. = 0, w2,,. = 4, w2,4. = -2 
K, ,. = -2, w3,z. = -4, W3,& = -2 
w., ,. = -8, w4, 1. = - 2, w4, ). = 0 
w, . , , .= -4 ,w  ,.,,. = - 2 , w  ,.,*. = - 8  
w,, ,. = 0, w2,4* - 0, w, .,,. = -4 

For (any horizontal dependent group) 
Begin 

Transform the dependent group into an 
edge-weighted graph with clustering 
constraints; 

the weighted graph; 

for the mapped group according to the result of 
the constrained graph bisection; 

Solve the constrained graph bisection problem for 

Assign horizontal orientations of standard cells 

End 
End 

5 Experimental results 

The algorithm Orientation-Assignment and an optimal 
exhaustive algorithm have been implemented using 
standard C language and run on a SUN workstation 
under the Berkeley 4.2 UNIX operating system. Owing to 
the lack of benchmarks for the orientation assignment of 
standard cells, we create some standard cell layouts to 
measure the performance of the proposed algorithm. 
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Tabla 1 : Experimental results 

Example Cells Initial Optimal Our proposed algorithm 
length 

Length Reduction Length Reduction yOorim., 

EX1 12 183 154 15.9% 154 15.9% 100% 
EX2 24 417 349 16.3% 352 15.6% 95.6% 
EX3 36 725 615 15.2% 618 14.8% 97.3% 
EX4 48 1073 814 24.1% 821 23.5% 97.3% 
EX5 60 1394 979 29.8% 979 29.8% 100% 

Furthermore, for any tested standard cell layout, we 
define the optimal ratio yOptimal to measure the optimal 

ive algorithm for one tested layout, such as 

degree of the proposed algorithm to the optimal exhaust- Yoptimar(~X) = dnew-optiml(EX) 100% 
doptimaXEX) 

b a 
Fig. 10 
a Initial configuration of example EX1 
b Final orientation assignment 

0 

b 

Fig. 11 
(1 Initial configuration of example EX5 
b Final orientation assignment 
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where dopti,,,,,l(Ex) is the wire reduction of the layout Ex 
by an optimal exhaustive algorithm and dnem-optiml(Ex) is 
the wire reduction of the layout Ex by the proposed algo- 
rithm. 

For all the tested examples, according to the definition 
of the optimal ratio, all the optimal ratios are computed. 
From the numerical results on 50 tested examples, it is 
clear that the proposed algorithm has solved the orienta- 
tion problem in a standard cell layout with 95% - 100% 
optimal ratio. In Table 1 the numerical results of some 
tested examples with the range of different sizes are com- 
puted and listed. In Fig. 10 the orientation problem for 
example EX1 with 12 standard cells is solved optimally 
by the proposed algorithm. Furthermore, example EX5 
with 60 standard cells is also assigned optimal orienta- 
tions of standard cells, the initial configuration and the 
optimal solution being shown in Fig. 11. 

6 Conclusion 

In standard cell design style, the main objective of the 
placement phase is to position a set of standard cells on 
the chip surface with minimum area or total wire length. 
It is well known that minimising total wire length reduces 
routing area in a standard cell layout. After the place- 
ment phase, another advanced improvement on total 
wire length is done by assigning the orientations of 
standard cells. In this paper, first, based on the hypothe- 
sis of the Manhattan net model, the orientation problem 
in a standard cell layout can be divided into the VO 
problem and the HO problem. Furthermore, according 
to the physical property in a standard cell layout, the VO 
problem is solved optimally in O(n) time. On the other 
hand, based on fuzzy c-means clustering, we develop 
two-way constrained fuzzy graph clustering and the 
transformation between the orientation assignment of 
standard cells and the constrained graph bisection to 
minimise total wire length for the HO problem. Finally, 
the proposed algorithm has tested several standard cell 
layouts, and the experimental results show that the pro- 
posed algorithm produces significant wire reduction on 
total wire length. 

7 References 

1 WONG, D.F., and LIU, C.L.: ‘A new algorithm for floorplan 
design’. 23rd Design automation conference, 1986, pp. 101-107 

2 PREAS, B., and LORENZETTI, M. (Ed.): ‘Physical design automa- 
tion of VLSI systems’(Benjamin/Cummings, Menlo Park, CA, 1988) 

3 PERSKY, G., DEUTSCH, D.N., and SCHWEIKERT, D.G.: 
‘LTX-A minicomputer-based system for automatic LSI layout’. 14th 
Design automation conference, 1977, pp. 217-255 

4 YAMADA, M., and LIU, C.L.: ‘An analytical method for optimal 
module orientation’. International symposium on Circuits and 
Systems, 1988, pp. 1679-1682 

163 



5 HADAS, R.L., and LIU, C.L.: ‘Solution to the module orientation 
and rotation problem by neural computation networks’. 26th Design 
automation conference, 1989, pp. 400-405 

6 YAO, X., and LIU, C.L.: ‘Solution of a module orientation and 
rotation problem’. European Design automation conference, 1990, 
pp. 584-588 

7 CHENG, C.K., HU, T.C., and YAO, S.Z.: ‘The modular orientation 
of VLSl layout’. International symposium on Circuits and systems, 
1990, pp. 1600-1603 

8 JEONG, J.C., and KYUNG, C.M.: ‘Finding optimal module orien- 
tations in macro cell placement’. International symposium on Cir- 
cuits and Systems, 1990, pp. 3118-3121 

9 CHONG, K., and SAHNI, S.: ‘Minimizing total wire length by flip- 
ping modules’, I E E E  Trans., 1993, CAD-12, pp. 167-175 

10 ISMAIL, M.A., and SELIM, S.Z.: ‘Fuzzy C-means: optimality of 
solutions and effective termination of the algorithm’, Pattern 
Recognit., 1986, 19, pp. 481-485 

164 

11 KIM, T., BEZDEK, J.C., and HATHAWAY, R.J.: ‘Optimality tests 
for fixed points of the fuzzy C-means algorithm’, Pattern Recognit., 

12 DUNLOP, A.E.: ‘A procedure for placement of standard cell VLSI 
circuits’, I E E E  Trans., 1985, CAD4, pp. 92-98 

13 GAREY, M.R., and JOHNSON, D.S.: ‘Computer and intract- 
ability: a guide to the theory of NP-completeness’ (W.H. Freeman 
New York, NY, 1979) 

14 PREAS, B.T., and KARGER, P.G.: ‘Automatic placement: a review 
of current techniques’. 23rd Design automation conference, 1986, pp. 
622-629 

15 YAN, J.T., and HSIAO, P.Y.: ‘Orientation assignment of standard 
cells using a fuzzy mathematical transformation’. IEEE 
TENCON94,1994, pp. 1014-1019 

1988,21, pp. 651-663 

I E E  Prof.-Comput. Digit. Tech., Vol. 142, No. 2, March 1995 


