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One issue in structural program testing is how to 
select a mimimal set of test paths to meet certain test 
requirements. This is referred to as the optimal path 
set selection problem. The previously proposed 
zero-one optimal path set selection method is a gener- 
alized method that can be applied to most coverage 
criteria. However, the major drawback of this method 
is that for a large program the computation may take 
ten or more hours because the computation is expo- 
nentially proportional to the number of candidate paths 
and proportional to the number of components to be 
covered. To alleviate the drawback, this paper en- 
hances the method by (1) defining five reduction rules, 
and (2) reusing previously selected path sets to reduce 
both the number of candidate paths and the number 
of components to be covered. Since both the number 
of candidate paths and the number of components to 
be covered are reduced, the computation time can be 
greatly reduced. In addition, an efficient approach to 
handling infeasible paths is proposed. An evaluation 
of the enhanced zero-one method, the original 
zero-one method, and a greedy method is executed 
and the result is presented. 0 1997 Elsevier Science 
Inc. 

1. INTRODUCTION 

Structural testing is a well-developed technique ap- 
plied in program validation. In structural testing, 
program structure is mapped to a directed graph in 
which a node represents a code segment while a 
branch directs the transfer of control flow. Without 
loss of generality, it is assumed a sole source node 
and a sole terminal node both exist in the digraph. A 
path, starting from the source node and ending with 
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the terminal node, is a sequence of nodes each 
connected by branches. Using network methodolo- 
gies (Beizer, 1984) (McCabe, 1976), the complete 
path set (i.e., the set containing all paths) can then 
be constructed. Due to conditional branches and 
loops, even a small program may have many paths. 
Thus, all paths testing may be impractical. Instead of 
all paths testing, a subset of the complete path set, 
called a path set, is selected to satisfy the required 
coverage criterion. Assuming that the cost of testing 
each path is the same, the path set satisfying the 
required coverage criterion with minimal number of 
paths is desired. Finding a path set satisfying a 
required coverage criterion with minimal number of 
paths is referred to as optimal path set selection 
problem. 

It is desired that the minimizing test path set does 
not impair the coverage criterion’s ability to detect 
faults. In fact, in a recent empirical study (Wong, et 
al., 19951, the effect of reducing the size of a test 
path set on fault detection, while holding coverage 
constant, was analyzed with regard to the all-uses 
coverage criterion. For the program analyzed, the 
minimizing test path set produced very little or no 
reduction at all in fault detection effectiveness. 

Many approaches (Krause et al., 1973) (Miller et 
al., 1974) (Ntafos and Hakimi, 1979) @rather and 
Myers, 1987) (Wang et al., 1989) (Hsu and Chung, 
1992) to finding a path set satisfying a required 
coverage criterion have been proposed. The zero-one 
optimal path set selection method (Wang et al., 
1989) and the minimum flow method (Ntafos and 
Hakimi, 1979) are the only two that guarantee the 
obtained path set is optimal because they are devel- 
oped on rigid mathematical grounds instead of 
heuristic rules. Comparing these two methods, the 
zero-one optimal path set selection method is more 
powerful than the minimum flow method because it 
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can be applied to a large variety of constraints, cost 
functions, and coverage requirements while the min- 
imum flow method can be applied to all-nodes and 
all-branches coverage criteria only (Lin and Chung, 
1989). 

The major drawback of the zero-one integer pro- 
gramming method is that the required computation 
time is too long. The computation time of the zero- 
one optimal path set selection method is propor- 
tional to (2 lPothl x IComponentl) where IPath repre- 
sents the number of candidate paths while JCompo- 
nentl represents the number of components to be 
covered. Obviously, the computation time can be 
reduced if the number of candidate paths and the 
number of components to be covered are reduced. 
Reducing the number of components is equal to 
decreasing the number of constraints while reducing 
the number of paths is equal to decreasing the 
number of decision variables. A component can be 
removed if and only if the corresponding constraint 
is redundant. Similarly, a candidate path can be 
removed if and only if whether the candidate path 
should be selected or not can be predetermined. 
Based on the concept, this paper proposes: (1) five 
reduction rules, and (2) reusing previously selected 
path sets to reduce both the number of candidate 
paths and the number of components to be covered. 

For the infeasible path problem, (Lin and Chung, 
1989) simply delete the infeasible paths from the 
complete path set, regenerate the coverage fre- 
quency matrix, reformulate the corresponding zero- 
one integer programming model, and then re- 
compute to obtain another new optimal path set. 
The drawback is that it takes too much computation 
time. This paper proposes another approach which 
reuses previously selected feasible paths to reduce 
the long computation. 

Minimization is only worthwhile if the reduction 
in cost derived from reducing the path set compen- 
sates for the cost of doing the minimization. Other- 
wise, the greedy method (Hsu and Chung, 1992) 
which obtains near optimal path set with less com- 
putation time, is more practical. To evaluate the 
enhanced zero-one method, the original zero-one 
method, and a greedy method, four experiments 
have been executed and the result is presented in 
this paper. 

This paper is organized as follows. Section 2 intro- 
duces the zero-one optimal path set selection 
method. Section 3 introduces the five reduction rules. 
Section 4 describes how to reuse previously selected 
path sets to reduce the computation. Section 5 de- 
fines the enhanced zero-one optimal path set selec- 
tion method. Section 6 proposes an enhanced ap- 

proach to solving infeasible path problem. Section 7 
evaluates the enhanced zero-one method, the origi- 
nal zero-one method, and a greedy method. Conclu- 
sion is given in Section 8. An algorithm of the five 
reduction rules is stated in the Appendix. 

2. ZERO-ONE OPTIMAL PATH SET 
SELECTION METHOD (WANG ET AL., 1989) 
(LIN AND CHUNG, 1989) 

2.1 Basic Concept 

At first, the all-branches coverage criterion is used 
as the required coverage criterion to illustrate the 
concept of the zero-one optimal path set selection 
method. In discussion of structural testing, the struc- 
ture of the program under test is usually mapped to 
a program digraph G = (N, B), where N and B 
represent node set and branch set, respectively. 
Without loss of generality, it is assumed a sole 
source node and a sole terminal node both exist in 
the digraph. A path, starting from the source node 
and ending with the terminal node, is a sequence of 
nodes each connected by branches. Using network 
methodologies such as node-reduction (Beizer, 1984) 
or linearly independent circuits (McCabe, 1976), the 
complete path set P, which is defined as the set 
containing all paths, of program digraph G can then 
be constructed. A program with loops may lead to 
an extremely large number of paths. To alleviate this 
problem, it is considered sufficient in practice to 
limit loop iterations up to a constant number. The 
relationship between P and B can be represented 
by a branch-path coverage frequency matrix in which 
the cross entry of the ith row and the jth column 
represents the coverage frequency of path pi over 
branch bj. For example, consider the program di- 
graph in Figure 1, the corresponding branch-path 
coverage frequency matrix is in Figure 2. 

For the all-branches coverage criterion, the opti- 
mal path set selection problem can be defined as 
follows. In the complete path set P, which paths 
should be selected to guarantee that each branch in 
B is covered at least once and the number of se- 
lected paths is minimal? This is a decision problem. 
In the above example, define the variables Xi, i E 
{1,2, * * * , 14), let xi be a decision variable corre- 
sponding to path pi, and Xi = 1, if pi is selected; 0, 
otherwise. Thus, the optimal path set selection prob- 
lem can be formulated as: 

14 

min Z = C xi 
i=l 
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The 2 = Cii lxi represents the number of selected 
paths and the constraint represents the total path 
coverage frequency over each branch is no less than 
one. In this way, the optimal path set selection 
problem is formulated into a zero-one integer pro- 
gramming problem. 

In a generalized form, consider the program di- 
graph G = (N, B) and its complete path set P = 

{P,, Pz, * * * 3 p,}, define a decision variable array 
X(m x 1) = [(xi)], i E {1,2,. . . , m}, and let xi be a 
decision variable corresponding to path pi. The opti- 
ma1 path set selection problem is formulated into a 
zero-one integer programming model as follows: 

m 
min Z = C xi 

i=l 

e s.t. tfijxi 1 1, Vj E {1,2 ,..., IBI}, 
i=l 

xi = Oor 1, iE (1,2 ,..., m}, 

where fij represents the coverage frequency of path 
pi over branch bi, IBI denotes the number of total 
branches, and CT= ifiixi represents the total path 
coverage frequency over branch bj. The model can 
be expressed into matrix form as follows: 

min Z = lTX, 

Figure 1. An example control flow graph. 
s.t. F=X 2 1, xi = Oor 1, iE (1,2 ,..., m}, 

where 1 = [l 1. . . ll’, X(m x 1) = [$X2.. . XJT, 
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Figure 2. Branch-path coverage frequency matrix. 

and 

F(m X IBI> = l(f;j)J = 

F is referred to as coverage frequency matrix. 

2.2 Generalization of the Model 

Consider the facts that (1) different paths may have 
different test costs, and (2) only critical branches 
need to be tested sometimes. Thus, this model 
is generalized as follows: Define a weight matrix 
W(m X n> = [(Wij)l and a cost array C(n X 1) = 
[(ci>], where 0 < ci < m. The objective function is 
generalized as, 2 = CrWrX. Define a coverage re- 
quirement array R(n X 1) = [(ri)], where ri repre- 
sents the coverage requirement for branch i, ri = 0 
or 1. The constraint inequation is generalized as 
FTX 2 R. Thus, the optimal path set selection model 
is generalized as follows: 

min Z = CTWTX, 
s.t. FTX 2 R, 
x = [(Xi)39 xi = Oor 1, i E {1,2 ,..., m). 

In this generalized model, the variable arrays and 
matrices such as C, W, F, and R can be assigned 
specified optimization criteria and test requirements. 

For example, consider the all-nodes coverage crite- 
rion. Define node-path coverage frequency matrix 
F,(m X n> = [(fij)J, where fij stands for coverage 
frequency of path pi over node nj. The constraint 
inequation thus becomes F,‘X 2 1 for the all-nodes 
coverage criterion. How to apply the generalized 
constraint inequation to other coverage criteria and 
how to assign specified optimization criteria are de- 
scribed in detail in (Wang et al., 1989) (Lin and 
Chung, 1989). 

The model definitely has a solution because the 
program under test is assumed well-formed and 
X(m x 1) = [l 1.. . llT is a solution in the worst 
case. Finding a solution of the model is straightfor- 
ward and there are two ways to solve it. One is 
exhaustive enumeration which lists all (2” - 1) 
combinations to check and finds an entire set of 
solutions. The other, finding only one solution, uti- 
lizes the branch-and-bound approach and many ef- 
fective algorithms are available (Hillier and Lieber- 
man, 1980) (Syslo et al., 1983). Among them, the 
Balas’ zero-one additive algorithm is considered to 
be the fastest. The complexity of the zero-one inte- 
ger programming method is proportional to (21P”“‘l 
x ICornponentl) where ]Puthl represents the number 
of candidate paths while IComgonentl represents the 
number of components to be covered. 

The major drawback of the zero-one integer pro- 
gramming method is that the computation time is 
too long because it is proportional to (21P’thl X 
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IComponentl). Obviously, the computation time can 
be reduced if the size of the coverage frequency 
matrix (i.e., the number of rows and the number of 
columns) is reduced. The deletion of a column cor- 
responds to the decrease of a constraint in the 
formulation. A column can be deleted if and only if 
its corresponding constraint is redundant. On the 
other hand, the deletion of a row corresponds to the 
decrease of a decision variable in the formulation. A 
decision variable can be deleted if and only if the 
value of the decision variable can be predetermined. 
In the next section, five reduction rules are devel- 
oped by observing the relationship between candi- 
date paths and the components to be covered. 

3. FIVE RULES TO REDUCE THE 
COMPUTATION 

It is easy to observe that: 

if a component is not required to be covered, the 
component can be ignored in the path selection 
problem, 

if a component is required to be covered and is 
covered by only one path, the path which covers 
the component must be selected, 

if any path covering a component, say ci, also 
covers another component, say cj, then the re- 
quirement that ci and cj must be covered at least 
once can be reduced to ci must be covered at least 
once, and 

if a path, say pi, covers all components covered by 
another path, say pi, and some additional compo- 
nents, then pi can be ignored in the path selection 
problem owing to the existence of pi. 

Based on these observations, this paper proposes 
five reduction rules. To illustrate the five rules for- 
mally, the following notation are defined: 

Symbol Representation 

F(m x n, = [(f;j)] coverage frequency matrix, 

R(n x l) = [Cri)l coverage requirement array, 
ri = 0 or 1, 

Row; 1 the ith row matrix of F, 

Cal, 1 the jth column matrix of F, 

Rule One &rely Satisfied Constraint). If a com- 
ponent is not required to be covered, its correspond- 
ing constraint is surely satisfied and thus can be 
ignored. 
Rule1 If ri = 0, i E {1,2,. . . , n), then (a> delete 
Cal,, (b) delete the ith TOW of R (i.e., r,>. 

Proof Since rj = 0, the corresponding constraint 
of Cal, is CT= 1 fki.xk 2 0. Due to fki r 0, and xk = 0 
or 1, k E {1,2 ,..., m), the above constraint is surely 
satisfied and thus can be ignored. 

Rule ‘ho (Essential Path). A path is essential if 
and only if some component is covered by the path 
only. For example, assuming that the all-branches 
coverage criterion is required, the path p2 = (ace) 
in the control flow graph shown in Figure 1 must be 
selected because it is the only one passing through 
branch c. In addition, after p2 is selected, the 
branches a, c, and e can be ignored in the latter 
computation because they have been covered by the 
selected path p2. 
Rule 2 
{I,%. . . , 

If lColjl = fk. and fkj 2 1, k E 
mLi 65 IL2 ,..., i n , then (a) set xk = 1, (b) 

delete Coli and corresponding ri, Vfki 2 1, i E 
11,2,. . . , n}, and (c) delete Row,. 

Proof: 

(1) 

(2) 

(3) 

Since the jth component is covered by path pk 
only, the jth constraint fkix, 2 1 can be satis- 
fied only &hen xk = 1. -’ ‘_ 

Let fki be any non-zero entry of Rowk, 

{1,2,..., n}, its corresponding constraint is: 

5 friX, =fiiX, + ... +f/& + ... +fmiXm 2 1. 
r=l 

iE 

Since fki 2 1, if xk = 1, the constraint is satis- 
fied. Let F’ represent the matrix obtained from 
F after deleting the corresponding columns of 
fki, Vfki 2 1, i E [l, 2, . . . , n}. Any solution of 
(F’jTX 2 1 with xk = 1 also satisfies FTX 2 1. 
This implies that if xk = 1 is predetermined, the 
constraint is redundant and thus its correspond- 
ing Coli can be deleted. 

Let F’(m x n’) represent the matrix obtained 
from F after deleting the corresponding columns 
Of fki, Vf~i 2 1, i E {1,2,. . . , n). The constraint 
inequation of (F ‘jTX 2 1 is 

t frjxr =fijxl + a.. +fmjn, 2 1, vj E {1,2, . . .) n’). 
r=l 

Since IRow, = 0, i.e., fkj = 0, Vj E {1,2,. . ., n’}, 
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the above expression is equivalent to: 

E frjXr = fijnl + *‘* +fik- l)jx(k-1) 

r=l 

+f(k+l)jX(k+l) *** +fmjXm 2 1, 

VjE {1,2 ,..., n’). 

Thus, Row, can be deleted. 

Rule Three (Dominating Component / Domi- 
nating Column). A component, say ci, dominates 
another component, say cj, if and only if any path 
covering ci also covers cj. For example, in Fig. 1, the 
branch f dominates branch d because any path 
covering f also covers d. If f has been covered by 
some selected path, d is covered too. Thus the 
requirement that d must be covered at least once 
can be ignored if f is required to be covered at least 
once. 
RuZe3 Zf ~COZ~I > 0, ICOZjl > 0, ~ndf,j 2 fki, Vk 
E {1,2,..., ml, then delete COlj, delete rj. 

Proof The constraint of COli is: 

m 
C fkiXk 2 1 

k-l 
Constraint(l) 

The constraint of Colj is: 

k?lfkjxk 2 1 Constraint(2) 

d 

Sincef,.-fki~0,Vk~{1,2,...,m}andxi=Oor 
I, i E (1, 2,. . . , m}, cr= I(fkj - f&k 2 0. Since 

cr=,(fkj - fkijxk = Cr=lf&jX& - zz=,_fkiX&, 

crc lf&jX& 2 crc If&ix& Inequation (1) 

Inequation (1) implies that any solution satisfying 
Constraint (1) also satisfies Constraint (2). That is, 
Constraint (2) is redundant and thus can be deleted. 

Note that, once reduction rule 3 is applied, the 
remaining components are equal to the “uncon- 
strained duas” mentioned in (Marre and Bertolino, 
1996) if the required coverage criterion is all-uses 
and are also equal to the “essential branches” men- 
tioned in (Chusho, 1987) if the required coverage 
criterion is all-branches. The difference is that the 
proposed technique is based on the relation between 
path and components while the others are based on 
graph theory. 

Rule Four (Dominating Path / Dominating Row). 
Path pi dominates path pi if and only if pi covers 
both all pi’s components and some additional com- 
ponents. In this situation, pj can be ignored owing 
to the existence of pi. For example, in the program 
digraph shown in Figure 3, path p2 = (abcdbce) 
dominates p, = (abce) because p2 covers both the 
routine of p1 and an additional loop (dbc). Thus p1 
can be ignored in the path selection problem be- 
cause the path p2 is involved in the consideration. 
Rule4 Zffi& 2 fik, Vk E (1,2,. . . , n), then (a) set 
Xi = 0, (b) delete ROWi. 

p,=abce 
p,=abcdbce 
p,=abcdbcdbce 
p,=abcdbcdbcdbce 
p,=abcdbcdbcdbcdbce 
p,=abcdbcdbcdbcdbcdbce 
p,=abcdbcdbcdbcdbcdbcdbce 
p,=abcdbcdbcdbcdbcdbcdbcdbc 

Figure 3. A control flow graph and path list. 
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proof: Assume that X = (x,, x2,. . . , x,JT with 
Xj = 1 is a feasible solution of FrX 2 1. If X is 
modified to be X’ with xi = 0 and xi = 1, the X’ 
also satisfies FrX 2 1 because the components cov- 
ered by X are also covered by X’. That is, X’ is also 
a feasible solution. This means that we can set 
xj = 0 and delete Rowj from the matrix without 
affecting the solution of the problem. 

Rule Five (Zero Row). Path pi is a zero path if 
and only if it does not cover any component. This 
situation happens after Rule 2 is applied while the 
essential path also dominates another path. In this 
case, the zero path can be directly deleted without 
affecting the problem solution. 
Rule 5 

11,z. *. , 

Zf fij = 0, Vj E (1, 2, . . . , n), i E 
m}, then (a) delete Rowi, (b) set xi = 0. 

proof 

(1) The constraint inequation of FTX 2 1 is 

tfkjxkrl, VjE{1,2 ,..., n). 
k=l 

Since lRow,l = 0, i.e., fij = 0, Vj E (1,2 ,..., n}, 
the above inequation is equivalent to: 

t fkjXk = fijxl + .‘. +&i- l)jx(i- 1) + fii+ l)jx(i+ 1) *** 

k=l 

(2) 

+f*jX* 2 l, Vj E {1,2 ,..., n}. 

Thus, Row, can be deleted. 

Both xi = 0 and xi = 1 satisfy all constraints of 
FTX 2 1. However, xi = 0 must be chosen to 
obtain a minimal number of selected paths. 

Among the five reduction rules, rule one should 
be applied first, and then the other four rules should 
be applied repeatedly until none of the rules can be 
activated. A formal algorithm is stated in the Ap- 
pendix to demonstrate how to apply the reduction 
rules. Rule 1 is not included in the algorithm be- 
cause it is very simple and should be applied in 
advance. 

In order to show how effective the five reduction 
rules are, an example is given below. A software 
package LINDO (Linear INteractive Discrete Opti- 
mizer) (Schrage, 19871, which applies Balas’ algo- 
rithm, is used to solve the formulated zero-one inte- 
ger programming problems. Consider the control 
flow graph shown in Figure 1, assuming that the 
all-branches coverage criterion is required. Based on 
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the branch-path coverage frequency matrix shown in 
Figure 2, the optimal path set selection problem is 
formulated in LINDO as follows: 

MZN X1+X2+X3+X4+X5+X6+X7+X8 
+x9 +x10 +x11 + x12 +x13 + x14 

SUBJECT TO 
X2+X3+X4+X5+X6+X7+X8+X9+X10 

+Xll+X12+X13+X14>=1 
Xl>=1 
x2>=1 

X3+X4+X5+X6+X7+X8+X9+X10+X11 
+X12+X13+X14>=1 

Xl+X2+X3+X4>=1 
x4+x5+x7+x9+x1o+x12+x14>=1 
X3+X6+X8+Xll+X13>=1 
x4+x7+x9+x12+x14>=1 
x5+x10>=1 
x3+x4>=1 
X6+X7+Xll+X12>=1 
X8+X9+X13+X14>=1 
X6+X7+Xll+X12>=1 
X8+X9+X13+X14>=1 
X5+X6+X7+X8+X9+X10+X11+X12 

+x13+x14>=1 
X1O+X11+X12+X13+X14>=1 
X5+X6+X7+XB+X9>=1 
X1O+X11+X12+X13+X14>=1 
X5+X6+X7+X8+X9+X10+X11+X12 

+x13 + x14 > = 1. 

After 12 iteration steps, LINDO renders the follow- 
ing solution: 

OBJECTZVE FUNCTION VALUE 6 
URUBLE VALUE VAZU4BLE VYLUE 

Xl l.OOOOOO X8 .OOOOOO 
x2 l.OOOoOO x9 .OOOOOO 
x3 .OOOOOO x10 .OOOOOO 
x4 1.OOOOOO x11 .OOOOOO 
X5 1.OOOOOO x12 .OOOOOO 
X6 1.OOOOOO x13 1.OOOOOO 
x7 .OOOOOO x14 .OOOOOO 

The paths whose corresponding decision variable’s 
value = 1.OOOOOO are selected. That is pr, pz, p4, 
ps, p6, p13 are selected in the optimal path set. 

Now, the five reduction rules are applied. In this 
example, since branch b is uniquely covered by p1 
and branch c is uniquely covered by p2, by rule 2, p1 
and pz are essential paths and thus must be se- 
lected. After setting xi = 1, xa = 1, deleting the 
columns whose corresponding branches (a, b, c, e) 
are covered by p1 and p2, and the rows correspond- 
ing to p1 and pz, the reduced coverage frequency 
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matrix is as follows: 

Path \ Branch dfghi 

p3 = adgje 1 0 1 0 0 

p4 = adfhje 1 1 0 1 0 

p5 = adfioqs 11001 

PS = adgkmoq 1 0 1 0 0 

p, = adfhkmoqs 1 10 1 0 

pa = adglnoqs 1 0 1 0 0 

ps = adfhlnoqs 1 1 0 1 0 

pi0 = adfioprs 1 1 0 0 1 

pii = adgkmoprs 1 0 1 0 0 

By rule 3, since branches d, f, m, n, o, r, s are same. However, the size of the coverage frequency 
dominated by branches g, h, k, I, k, p, q, respec- matrix is reduced from 14 x 19 to 12 X 8, and the 
tively, the columns of branches d, f, m, n, o, r, s can number of iteration steps in LINDO is decreased 
be deleted. The further reduced matrix is as follows: from 12 to 9. 

I 

p,i = adgkmoprs 1 0 0 0 1 0 1 0 

pi2 = adfhkmoprs 0 1 0 0 1 0 1 0 

P,~ = adglnoprs 10000110 

p14 = adfhhroprs 01000110 

Since no more reduction rule can be applied, 
LINDO is used again but only the reduced matrix is 
considered. After 9 iteration steps, LINDO renders 
OLUECTIVE FUNCTION VALUE 4, with p3, pr, 
plo, and p14 selected. Together with pre-selected p1 
and pz, the total number of selected paths is six. 

Note that before and after the reduction rules are 
applied, the value of the objective function is the 

opqrs 

4. REUSE OF PREVIOUSLY SELECTED 
PATH SETS 

In structural program testing, the steps are: 

5. 

6. 

select a coverage criterion, 
find a path set satisfying the selected coverage 
criterion, 
generate a corresponding test case for each se- 
lected path, 
exercise each test case and check whether the 
corresponding path is executed and whether the 
output is the same as the expected, 
if errors are detected, make an error report (sup- 
pose that the tester is not the debugger), 
if the coverage criterion is deemed sufficient, stop 
the testing; otherwise, select a strong coverage 
criterion and then repeat steps 2-6. 

A coverage criterion, say C,, is stronger than 
(subsumes) another coverage criterion, say C,, if 
and only if any path set satisfying C, also satisfies 
C,. Many testing criteria have been compared using 
the subsumption relation (Rapps and Weyuker, 
1985). 

Assume that C, is the next selected coverage 
criterion while Pi is an optimal path set for the 
previously selected coverage criterion C,. To find an 
optimal path set for C,, a new coverage frequency 
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matrix is built, zero-one integer programming model 
is formulated, and then LINDO is used to obtain the 
solution. Assuming that the reduction rules are not 
used, the computation for C, is longer than that for 
C, because the stronger the coverage criterion is, 
the larger the number of components to be covered 
is. For example, consider the program digraph shown 
in Figure 1, the number of nodes is 13 (see Figure 4) 
while that of branches is 19 (see Figure 2). 

To decrease the long computation for C,, the size 
of the corresponding coverage frequency matrix must 
be reduced. In addition to the five reduction rules, 
previously selected path sets should also be reused. 
To reuse previously selected path sets, the relation- 
ship between different coverage criteria and corre- 
sponding coverage frequency matrices should be 
studied. Different coverage criteria are focused on 
different types of program components, but no mat- 
ter what coverage criterion is required, the corre- 
sponding optimal path set is selected from the same 
complete path set. Thus, a program has different 
coverage frequency matrices for different coverage 
criteria with the same number and elements of rows 
(candidate paths) but different number and ele- 
ments of columns (components to be covered). 

path set of the next coverage criterion with maximal 
number of previously selected paths is desired be- 
cause minimal number of new paths are to be tested 
and thus minimal number of new test cases are to be 
generated. The best case is to reuse all previously 
selected paths and select an optimal path set from 
the remaining paths to cover remaining components. 
In this way, the information of previously selected 
path sets can be reused to reduce the size of cover- 
age frequency matrix, and thus the computation. 

Assume that the previously selected path set is P, 
while the coverage frequency matrix corresponding 
to the next coverage criterion is F. The rows of F 
can be partitioned into two groups: the paths in P,, 
and the paths not in P,. The components to be 
covered can also be partitioned into two groups: the 
components covered by P, and the components not 
covered by P,. Thus, F can be reorganized as: 

Path \ Components Components 
Component not covered by P, covered by PI 

Paths in P, All-Zero F,& j> 
Paths not in P, F&j) 1 F&, j> 1 

Since the optimal path sets are selected from the Since only the components not covered by the 
same complete path set, some previously selected paths in P, must be covered by the newly added 
and tested paths may also appear in the optimal paths, the zero-one optimal path set selection 
path set for the next coverage criterion. The optimal method should be applied to the reduced coverage 

FiglIlT 4. Node 

pll=adglnoprs 

pl.+=adfhlnoprs 110 11 10 111 1 I I 

-path coverage frequency matrix. 
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Figure 5. Reduced branch-path cover: 
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frequency matrix F&j) instead of F. The compu- 
tation to find an optimal path set for F,,(i, j) is 
certainly less than that for F. Consider the control 
flow graph shown in Figure 1, assuming that the 
previously selected optimal path set for the all-nodes 
coverage criterion is PI = {p4, p12, p14}, after delet- 
ing the rows corresponding to the paths in PI and 
the branches covered by the paths in PI, the size of 
the branch-path coverage frequency matrix is re- 
duced from a 14 X 19 matrix (see Figure 2) to a 
11 x 5 matrix (see Figure 5). Since the obtained 
optimal path set covers all components not covered 
by PI, the union of the obtained path set and P, 
satisfies the all-branches coverage criterion. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

C, be the next selected coverage criterion, 

F be the coverage frequency matrix for C,, 

Y be any optimal path set satisfying C,, 

F’ be the reduced matrix of F derived by deleting 
the rows whose corresponding paths are in PI and 
the columns whose corresponding components are 
covered by the paths in PI, 

X be an optimal path set found by applying the 
zero-one integer programming method to F’, 

A - B represent the path set which contains the 
paths in path set A but not also in path set B, 

I path-setI represent the number of paths in a given 
path set. 

Show that 1x1 I IY - P,I. 
Proof F can be re-organized as follows: 

Path \ Components Components 
Component not covered by P, covered by PI 

Pl 
P - P, 

All Zero 

F,,(i, j) 

F,&i, j) 

F&G, j) 

The minimal requirement for the obtained path Y can be partitioned into: paths also in PI (i.e., 
set is that the number of paths in it is no more than Y n PI) and paths not also in PI (i.e., Y - PII. The 
the number of newly selected paths in any optimal components covered by P, can be partitioned into: 
path set found by existing optimal path set selection covered by Y and not covered by Y. Thus, F can be 
methods; otherwise, the tester must spend more further re-organized as follows: 

C.-G. Chung and J.-G. Lee 

time to generate corresponding test cases. The satis- 
faction of this requirement can be proven as follows: 
Let 

P be the complete path set, 

C, be the previously satisfied coverage criterion, 

PI be the previously selected optimal path set 
satisfying C,, 

%h \?omionent Components not covered by P, Components Covered by P, I 



If we delete the Y n P, row (i.e., the shadowed 
row) and the components covered by Y n P, (i.e., 
the shadowed column), the reduced coverage fre- 
tuencv matrix is: 

Components 
Path \ Components Covered by P, 

Component not covered but Not 

by PI Covered by 
Y n P, 

F&j) 

F&j) 

F&j) 

Optimal Path Set Selection Method 

The path set Y - P, can be treated as a path set 
selected from the P - P, which covers the compo- 
nents listed in the reduced coverage frequency ma- 
trix. 

The path set X is an optimal path set satisfying 
the following reduced coverage frequency matrix: 

Components not 
Path \ Component covered by P, 

Y - PI F&j) 

P - P, &(i, j> 

Since the components covered by X are only a 
subset of the components covered by Y - P,. If 
IY - PII < 1x1, it means that there exists a path set 
Y - P,, which is also selected from P - P,, covering 
all the components covered by X but the number of 
contained paths is less than X. This contradicts with 
the fact that X is an “optimal” (remember that 
optimal means minimal) path set. So, 1x1 I JY - PII. 

The meaning of 1x1 < JY - PII is not only that we 
can efficiently find a path set to satisfy a stronger 
coverage criterion but also the number of the needed 
test cases is reduced, although the path set PI + X 
is not always an optimal path set for the next cover- 
age criterion. 

5. ENHANCED ZERO-ONE OPTIMAL PATH 
SET SELECTION METHOD 

Adding the five reduction rules and reusing previ- 
ously selected path sets, the original zero-one opti- 
mal path set selection method is enhanced as fol- 
lows: 
For the first selected coverage criterion: (usually the 
all-statements coverage criterion) 

Step 1: generate a corresponding coverage fre- 
quency matrix, 

Step 2: apply the five reduction rules to reduce the 
matrix size, 

Step 3: 

Step 4: 
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translate the reduced coverage frequency 
matrix into constraint inequalities (each col- 
umn corresponds to a constraint inequation), 
and translate the goal that the number of 
selected paths is minimal into objective 
function, and 
solve the formulated zero-one integer pro- 
gramming model by available package (for 
example LINDO). 

For the next selected stronger coverage criterion, 
add the following step between step 1 and step 2: 

l Eliminate the rows corresponding to the paths in 
the previously selected path sets and the columns 
corresponding to the components covered by the 
paths in the previously selected path sets. 

6. INFEASIBLE PATH CONSIDERATION 

As in practice, the program digraph rather than the 
program itself is referred in the discussion of struc- 
tural testing. However, as is pointed out by (Ntafos 
and Kakimi, 19791, infeasible paths may exist. Inclu- 
sion of infeasible test paths is meaningless. Identifi- 
cation of infeasible paths is an undecidable problem 
and is still under study (Gabow et al., 1976) (Hedley 
and Hennell, 1985). 

An intuitive approach is deleting the infeasible 
paths from the complete path set, regenerating the 
coverage frequency matrix, reformulating the zero- 
one integer programming model, and then recom- 
puting to select another optimal path set (Lin and 
Chung, 1989). The drawback is that once an infeasi- 
ble path is found, the whole process is repeated with 
almost the same complexity (since only the infeasi- 
ble paths are deleted) and computation time. 

Similar to. the idea of reusing previously selected 
path sets mentioned in Section 4, the feasible paths 
in the optimal path set, which contains infeasible 
paths, can be reused. That is, we just have to find 
some new test paths from the remaining unselected 
paths to cover the components that are covered by 
the infeasible test paths only. An enhanced ap- 
proach is proposed as follows: 

1. 

2. 

delete the rows corresponding to infeasible paths 
that are in the optimal path set from the coverage 
frequency matrix, 
delete the rows corresponding to feasible paths 
that are in the optimal path set and the columns 
corresponding to the components covered by fea- 
sible paths that are in the optimal path set from 
the coverage frequency matrix, 
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if any column becomes empty (i.e., all entries in 
the column are zero), report the corresponding 
component as a “candidate” of infeasible compo- 
nent and then delete the empty column, 
find a new optimal path set from the reduced 
coverage frequency matrix, 
repeat this procedure until the new optimal path 
set does not contain any infeasible path. 

Step 3 takes infeasible components into consider- 
ation. It is sometimes quite difficult for the tester to 
identify them because there may be a large number 
of paths covering a component and a component is 
infeasible if and only if all of the associated paths 
are infeasible. Since the coverage frequency matrix 
does not necessarily represent all paths (as men- 
tioned in section 2.1, loop iterations are limited up 
to a constant number), the component whose corre- 
sponding column is zero. (i.e., all entries in the 
column are zero) is only a candidate of infeasible 
component. Intuitively, if no iteration instruction is 
involved or the tester inputs the correct iteration 
count, the matrix can be used to identify infeasible 
components while the tester has identified all the 
infeasible paths. Note that, once a candidate of 
infeasible component has been reported, the optimal 
path set obtained does not cover the corresponding 
component. 

The final test path set is the union of the feasible 
paths in the optimal path sets that have been se- 
lected. Of course, if no infeasible path has ever been 
included, the final test, path set is optimal. Even 
after the enhanced approach is applied, the final test 
path set is still nearly optimal. To be more clear, a 
special case is given below to show that once the 
enhanced approach is applied, the final test path set 
is not guaranteed to be optimal. Assume that the 
original coverage frequency matrix is as follows: 

a Iblcld( 
Pl 0 0 1 1 

P2 1 1 0 0 - 
I I 

P3 1 0 1 1 1 1 1 0 

P4 I 1 I 0 I 0 I l I 
Assume that the originally selected optimal path set 
is {p3, p4} and p3 is infeasible. By the enhanced 
approach, the rows corresponding to p3 and p4 are 
deleted but only the columns corresponding to the 
components covered by p4 are deleted from the 
coverage frequency matrix. The reduced coverage 
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frequency matrix is as follows: 

HI 

Obviously, the new optimal path set is (pl,p,}. 
Together with the feasible path in the originally 
selected optimal path set, the final test path set is 
{pl, p2, p4). However, {pl, p2} is a path set covering 
all components with only two paths. Thus, once the 
enhanced approach is applied, the final test path set 
is not guaranteed to be optimal. In general, how- 
ever, the final test path set is always nearly optimal 
especially for the case that the originally selected 
optimal path set contains many test paths and only 
one or two are infeasible. 

7. EVALUATION 

Minimization is only worthwhile if the reduction in 
cost derived from reducing the path set compensates 
for the cost of doing the minimization. Otherwise, 
greedy methods, which obtain near optimal path set 
with less computation time, is more practical. 

Four experiments have been executed to evaluate 
the original zero-one method, the enhanced zero-one 
method, and the greedy method proposed by (Hsu 
and Chung, 1992). The greedy method selects a path 
a time and the path to be selected is always the one 
covering most remaining uncovered components. 

These four experiments first apply the three dif- 
ferent methods to obtain an optimal path set for the 
all-nodes coverage criterion (the result is shown in 
Table 1) and then to obtain an optimal path set for 
the all-edges coverage criterion (the result is shown 
in Table 2). 

In Table 1, consider the enhanced zero-one 
method, the five reduction rules are applied first and 
then LINDO is used if there are any components 
not covered yet. Except for the fourth experiment, 
once the five reduction rules are applied, the opti- 
mal path set will be obtained (i.e., LINDO is not 
used at all). For the original zero-one method, 
LINDO is used to obtain the optimal path set. The 
LINDO used in these four experiments is a student 
edition for the IBM PC which can only handle 200 
variables (i.e., 200 paths), therefore it cannot handle 
the fourth experiment. . 

In Table 2, consider the enhanced zero-one 
method, the previously selected path set is reused to 
reduce the size of the coverage frequency matrix and 
then the five reduction rules are applied. In these 
four experiments, once the five reduction rules are 
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Table 1. Experiment Result for All-Nodes Coverage Criterion 

Enhanced Original Greedy 
Zero-One Method Zero-One Method Method 

The time the The time the 
The time it takes optimization The size of the optimization The size of The time to derive The size of path 

All-Nodes to appty the five takes with the resulting path takes without the resulting the path set with set derived by 
Coverage reduction rules reduction set the reduction path set greedy method greedy method 

Experiment 1 182 No 2 paths 5950 2 paths 116 3 paths 
3 paths micro {Pl, P3) micro IPl, P3I micro 1~1, ~2, ~31 
8 nodes second second second 

Experiment 2 452 No 2 paths 1365 2 paths 207 2 paths 
8 paths micro (P5, P71 micro {~5, ~8) micro (P3, P51 
9 nodes second second second 

Experiment 3 1112 No 3 paths 10908 3 paths 402 3 paths 
14 paths micro {p4, P12, P14) micro (~1, ~8, ~121 micro tpl, p8,pl21 
13 nodes second second second 

Experiment 4 60072 6008 6 paths LINDO No 9512 6 paths 
218 paths micro micro (~173, ~176, Cannot handle! micro (~15,~21, ~30, 
28 nodes second second p191,p197, second p33, p99, p155I 

~203, ~215) 

applied, the path set will be obtained (i.e., LINDO is 
not used at all). For the original zero-one method, 
LINDO is used to obtain the optimal path set. The 
student edition LINDO can not handle the fourth 
experiment because the number of paths is more 
than two hundred. 

These four experiments are executed on an IBM 
compatible PC with Intel Pentium 100 CPU and 16 
Mega RAM. The control flow graphs used in experi- 
ment 1, 2, 3 and 4 are shown in Figure 6, Figure 7, 
Figure 1, and Figure 8. 

From the experiment result, it is obvious that the 
enhanced zero-one method does greatly enhance the 
original zero-one method by both reducing the com- 
putation time and the number of new paths to test. 
In addition, as shown in the fourth experiment, the 
enhanced zero-one method can handle the cases 
that can not be handled by the original zero-one 
method. Compared with the greedy method, the 
enhance zero-one method has the following two 
advantages: (1) For the first coverage criterion, the 
enhanced zero-one method guarantees the path set 
obtained is optimal while the greedy method does 
not, (2) For the. second and subsequent coverage 
criterion, the enhanced zero-one method requires 
less computation time than the greedy method be- 
cause previously selected path sets are reused to 
reduce the size of the corresponding coverage fre- 
quency matrix. 

8. CONCLUSION 

Usually, applying structural testing to a program is 
an iterative process. At first a weak coverage crite- 

rion is selected (e.g., all statements coverage), once 
it is satisfied, a stronger coverage criterion is re- 
quired. For each coverage criterion, a path set is 
selected to satisfy the requirement and if the se- 
lected path set includes infeasible paths, another 
path set is selected again. Assuming that the cost of 
testing each path is the same, the path set satisfying 
the coverage criterion with minimal number of paths 
is desired. Finding a path set satisfying a required 
coverage criterion with minimal number of paths is 
referred to as “optimal path set selection problem”. 
The zero-one optimal path set selection method is a 
generalized method that can not only be applied in 
structural testing to find an optimal path set satisfy- 
ing the required coverage criterion but also in re- 
gression testing to find a minimal number of previ- 
ously executed test cases to fully retest every af- 
fected program element at least once (Fischer, 1977) 
(Fischer et al., 1981) (Hartmann and Robson, 1990). 
The major drawback of this method is that for a 
large program the computation may take ten or 
more hours because the computation is exponen- 
tially proportional to the number of paths and pro- 
portional to the number of components. Due to the 
iterative nature of structural testing, the long com- 
putation becomes a serious problem that must be 
enhanced. 

The enhanced zero-one optimal path set method 
can speed up the structural program testing process 
by: (1) For the first selected coverage criterion, the 
five reduction rules are applied ahead and then the 
zero-one optimal path set selection method is used 
to efficiently find an optimal path set. (2) For each 
next selected coverage criterion, the previously se- 
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Figure 6. The control flow graph used in experiment one. 

Figure 8. The control flow graph used in experiment four. 

lected path sets are reused, the five reduction rules 
are applied, and then the zero-one optimal path set 
selection method is applied to efficiently find an 
optimal path set. (3) If the obtained path set in- 
cludes infeasible paths, the enhanced approach to 
handling infeasible paths is applied to speed up the 
recomputation process. In regression testing, the five 
reduction rules are applied ahead and then the 
zero-one optimal path set selection method is used 
to efficiently find a minimal number of previously 
executed test cases to fully retest every affected 
program element at least once. 
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APPENDIX: ALGORITHM FOR REDUCTION RULES 2-5 

Input: F,m,n,X 
F is the coverage frequency matrix obtained after applying reduction rule 1. 
m is the number of rows of F. 
n is the number of columns of F. 
X(m X 1) is the path number list. 
// consider the case that the paths may not be arranged as pl, p2,. . . , pm. 

Output: F’, m’, n’, X’ 
F’ is the reduced coverage frequency matrix. 
m’ is the number of rows of F’. 
n’ is the number of columns of F’. 
X’(m’ x 1) is,the reduced path number list. 

Procedure Rule 2-5(array F, int m, int n, array X, var array F’, var int m’, var int n’, var array X’) 

1 
int Col_Sum[n] = (0, 0, . . . , 0); // Summation of each column 
int Row_Sum[m] = (0, 0, . . . , 0); // Summation of each row 
For (int row = 1; row I m; row + + ) 
For(intcol=l;col<n;col++) 
If (f(row,col) # 0) 
( 
Row_Sum[row] = Row_Sum[row] + ffrow,col); 
Col_Sum[col] = Col_Sum[coll + f(row,colk 
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// If a row, say i, is deleted, the corresponding Row_Sum[i] will be set zero and each nonzero entry 
// of the ith row will be set zero, too. The same approach is applied to column deletion, too. 
//Since the rows with Row_Sum = = 0 will be skipped in the afterward checking, rule 5 can be 
//handled automatically. The same approach is applied to the columns with Cal-Sum = = 0. 
Flag = 1; // Once a reduction rule is activated, set Flag = 1. 
While (Flag = = 1) // Flag = = 1 means at least one reduction rule is activated in the last iteration 

{ 
Flag = 0; 
(reduction ruIe 2: essential path) 
For (co1 = 1; co1 I n; co1 + + ) // check each column to find essential path 
If (Col_Sum[col] f 0) 

{ 
essential-row = -1; 
For (row = 1; row I m; row+ + ) 
If (f(row,col) = = Col_Sum[col])- 

( 
essential-row = row; 
Break; 

1 
If (essential-row + - 1) 
{// delete the columns covered by the essential row 
For (tmp_col = 1; tmp-co1 I n; tmp_col+ + ) 
If Messential_row,tmp_col) # 0) 
For (row = 1; row I m; row+ + ) 
If (Krow,tmp_col) + 0) 

{ 
Row_Sum[row] = Row_Sum[rowl - f(row,tmp_col); 
Col_Sum[tmp_col] = Col_Sun$tmp_coll - RrowJmp-col); 
f(row,tmp_col) = 0; 

I 
// print out the selected essential path 
Cout -K “The” +K xessential_row] =Z “th path is selected.” < “ \ n”; 
Flag = 1; 

1 
(reduction rule 3: dominating column) 
For (col_one = 1; col_one < n; col-one + + ) 
For (col_two = col_one + 1; col_two I n; col_two+ + ) 
If ((Col_Sum[col_two] Z 0) & &tCol_Sum[col_onel Z ON 
1 
dominate-flag = 0; 
// The dominate-flag is used to record the dominating relationship 
// between col_one and col_two that have been checked so far. 
// If dominate-flag = = 0, col_one is equal to col_two. 
// If dominate flag = = 1, col_one dominates col_two. 
// If dominate-flag = = 2, col-two dominates col-one. 
// If the dominating,relationship does not exist, set dominate-flag = - 1 and skip the loop 

For(row=l;rowsm;row++) 
If (Row_Sum[rowl # 0) 
{ 
If Mrow,col_onel < f(row,col__twoN 
1 
If (dominate-flag = = 0) 
dominate-flag = 1; 

If (dominate_flag = = 2) 
1 
dominate-flag = - 1; 
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Break; 

If (ff row,col_one) > ff row,col_two) 
( 

If (dominate-flag = = 0) 
dominate-flag = 2, 

If (dominate-flag = = 1) 

1 
dominate-flag = - 1; 
Break; 

] 
] 

] 
If ((dominate-flag = = l)lKdominate_flag = = 0)) 
{// delete col_two 
For (row = 1; row I m; row + + ) 
If (f(row,col_two) # 0) 

{ 
Row_Sum[row] = Row_Sum[row] - Arow,col_two); 
Col_Sun$xl_two] = Col_Sumkol_tsvol - f(row,col_two); 
Arow,col_two) = 0; 

Flag = 1; 

] 
If (dominate-flag = = 2) 
(// delete col_one 
For (row = 1; row < m; row + + 1 
If (f(row,col_one) # 0) 
1 
Row_Sum[row] = Row_Sum[row] - f(row,col_one); 
Col_Sumkol_one] = Col_Sum[col_one] - Arow,col_one); 
f(row,col_one) = 0; 

] 
Flag = 1; 

(reduction rule 4: dominating row) 
For (row-one = 1; row-one < m; row-one+ + ) 
For (row_two = row-one + 1; row_two zz m; row_two+ + ) 
If ((Row_Sum[row_two] # 0) & &(Row_SumIrow_onel f 0)) 

{ 
dominate-flag = 0; 
// The dominate-flag is used to record the dominating relationship 
// between row-one and row-two that have been checked so far. 
// If dominate-flag = = 0, row-one is equal to row-two. 
// If dominate-flag = = 1, row-one dominates row-two. 
// If dominate-flag = = 2, row_two dominates row-one. 
// If the dominating relationship does not exist, set dominate-flag = - 1 and skip the loop 
For(col=l;col<n;col++) 
If (Col_Sum[col] + 0) 
( 
If (f(row_one,col) > f(row_two,col) 
( 
If (dominate-flag = = 0) 
dominate-flag = 1; 

If (dominate-flag = = 2) 
1 
dominate-flag = - 1; 
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Break; 

] 
If (f(row_one,col1 < f(row_two,col)) 
I 
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If (dominate_flag = = 0) 
dominate-flag = 2; 

If (dominate-flag = = 1) 
{ 
dominate-flag = - 1; 
Break; 

] 

]] 
If ((dominate-flag = = l)lKdominate_flag = 0)) 
( //delete row_two 
For (co1 = 1; co1 I n; co1 + + 1 
If (f(row_two,col) # 0) 
t 
Row_Sum[row_twol = Row_Sum[row_two] - f(row_two,col); 
Col_Sum[col] = Col_Sum[col] - f(row_two,col); 
f(row_two,col) = 0; 

] 
Flag = 1; 
] 
If (dominate-flag = = 2) 
{ // delete row-one 
For (co1 = 1; co1 I n; co1 + + ) 
If (f(row_one,col) # 0) 
1 
Row_Sum[row_onel = Row_Sum[row_one] - f(row_one,col); 
Col_Sum[coll = Col_Sum[col] - Arow_one,col); 
f(row_one,col) = 0; 

] 
Flag = 1; 
] 

1 
]// End of While(Flag = = 1) 
// Copy undelete (i.e., non-empty) rows and columns of F to F’, 
// Copy undeleted rows of X to X’ 
m’ = @ 

For (in; row = 1; row I m; row + + ) 
If (Row_Sum[rowl # 0) 
m’ = m’ + 1. 

n’=Q ’ 

For (int co1 = 1; co1 I n; co1 + + ) 
If (col_sum[coll # 0) 
n’ = n’ + 1. 

F’ = new ar&m’,n’]; 
X’ = new array[m’]; 
int new-row = 1; 
For (old-row = 1; old-row I m; old-row + + ) 
If (Row_Sum[old_row] # 0) 
1 
X’[new_row] = xold_row3; 
int new-co1 = 1; 
For (old_col = 1; old_col I n; old_col+ + ) 
If (Col_Sum[old_col] + 0) 
{ 
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f’(new_row,new_col) = f(old_row,old_col); 
new-co1 = new201 + 1; 

1 
new-row = new-row + 1; 

}i/ End of the procedure 
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