
An Enhanced Zero-One Optimal Path Set
Selection Method

Chyan-Goei Chung and Jen-Gaw Lee
Department of Computer Science and Information Engineering, National Chiao Tung University,
Hsin-Chu, Taiwan, Republic of China

One issue in structural program testing is how to
select a mimimal set of test paths to meet certain test
requirements. This is referred to as the optimal path
set selection problem. The previously proposed
zero-one optimal path set selection method is a gener-
alized method that can be applied to most coverage
criteria. However, the major drawback of this method
is that for a large program the computation may take
ten or more hours because the computation is expo-
nentially proportional to the number of candidate paths
and proportional to the number of components to be
covered. To alleviate the drawback, this paper en-
hances the method by (1) defining five reduction rules,
and (2) reusing previously selected path sets to reduce
both the number of candidate paths and the number
of components to be covered. Since both the number
of candidate paths and the number of components to
be covered are reduced, the computation time can be
greatly reduced. In addition, an efficient approach to
handling infeasible paths is proposed. An evaluation
of the enhanced zero-one method, the original
zero-one method, and a greedy method is executed
and the result is presented. 0 1997 Elsevier Science
Inc.

1. INTRODUCTION

Structural testing is a well-developed technique ap-
plied in program validation. In structural testing,
program structure is mapped to a directed graph in
which a node represents a code segment while a
branch directs the transfer of control flow. Without
loss of generality, it is assumed a sole source node
and a sole terminal node both exist in the digraph. A
path, starting from the source node and ending with

Address comsponaknce to Chyan-Goei Chw Dept. of Computer
Science and lnjknation Engineetig, National Chiao Tung Univer-
sity, Hsinchu, T&an, Rep&k of China. email: kgchung peter-
punk@simm.Scsie.nct~edu.tw

J. SYSTEMS SOFTWARE 1997; 39:145-W
0 1997 Elsevier !kiince Inc. All rights reserved.
655 Avenue of the Americas, New York, NY 10010

the terminal node, is a sequence of nodes each
connected by branches. Using network methodolo-
gies (Beizer, 1984) (McCabe, 1976), the complete
path set (i.e., the set containing all paths) can then
be constructed. Due to conditional branches and
loops, even a small program may have many paths.
Thus, all paths testing may be impractical. Instead of
all paths testing, a subset of the complete path set,
called a path set, is selected to satisfy the required
coverage criterion. Assuming that the cost of testing
each path is the same, the path set satisfying the
required coverage criterion with minimal number of
paths is desired. Finding a path set satisfying a
required coverage criterion with minimal number of
paths is referred to as optimal path set selection
problem.

It is desired that the minimizing test path set does
not impair the coverage criterion’s ability to detect
faults. In fact, in a recent empirical study (Wong, et
al., 19951, the effect of reducing the size of a test
path set on fault detection, while holding coverage
constant, was analyzed with regard to the all-uses
coverage criterion. For the program analyzed, the
minimizing test path set produced very little or no
reduction at all in fault detection effectiveness.

Many approaches (Krause et al., 1973) (Miller et
al., 1974) (Ntafos and Hakimi, 1979) @rather and
Myers, 1987) (Wang et al., 1989) (Hsu and Chung,
1992) to finding a path set satisfying a required
coverage criterion have been proposed. The zero-one
optimal path set selection method (Wang et al.,
1989) and the minimum flow method (Ntafos and
Hakimi, 1979) are the only two that guarantee the
obtained path set is optimal because they are devel-
oped on rigid mathematical grounds instead of
heuristic rules. Comparing these two methods, the
zero-one optimal path set selection method is more
powerful than the minimum flow method because it

0164-1212/97/$17.00
PI1 SO164-1212(96)00169-O

146 J. SYSTEMS SOFTWARE
1997; 391145-164

C.-G. Chung and J.-G. Lee

can be applied to a large variety of constraints, cost
functions, and coverage requirements while the min-
imum flow method can be applied to all-nodes and
all-branches coverage criteria only (Lin and Chung,
1989).

The major drawback of the zero-one integer pro-
gramming method is that the required computation
time is too long. The computation time of the zero-
one optimal path set selection method is propor-
tional to (2 lPothl x IComponentl) where IPath repre-
sents the number of candidate paths while JCompo-
nentl represents the number of components to be
covered. Obviously, the computation time can be
reduced if the number of candidate paths and the
number of components to be covered are reduced.
Reducing the number of components is equal to
decreasing the number of constraints while reducing
the number of paths is equal to decreasing the
number of decision variables. A component can be
removed if and only if the corresponding constraint
is redundant. Similarly, a candidate path can be
removed if and only if whether the candidate path
should be selected or not can be predetermined.
Based on the concept, this paper proposes: (1) five
reduction rules, and (2) reusing previously selected
path sets to reduce both the number of candidate
paths and the number of components to be covered.

For the infeasible path problem, (Lin and Chung,
1989) simply delete the infeasible paths from the
complete path set, regenerate the coverage fre-
quency matrix, reformulate the corresponding zero-
one integer programming model, and then re-
compute to obtain another new optimal path set.
The drawback is that it takes too much computation
time. This paper proposes another approach which
reuses previously selected feasible paths to reduce
the long computation.

Minimization is only worthwhile if the reduction
in cost derived from reducing the path set compen-
sates for the cost of doing the minimization. Other-
wise, the greedy method (Hsu and Chung, 1992)
which obtains near optimal path set with less com-
putation time, is more practical. To evaluate the
enhanced zero-one method, the original zero-one
method, and a greedy method, four experiments
have been executed and the result is presented in
this paper.

This paper is organized as follows. Section 2 intro-
duces the zero-one optimal path set selection
method. Section 3 introduces the five reduction rules.
Section 4 describes how to reuse previously selected
path sets to reduce the computation. Section 5 de-
fines the enhanced zero-one optimal path set selec-
tion method. Section 6 proposes an enhanced ap-

proach to solving infeasible path problem. Section 7
evaluates the enhanced zero-one method, the origi-
nal zero-one method, and a greedy method. Conclu-
sion is given in Section 8. An algorithm of the five
reduction rules is stated in the Appendix.

2. ZERO-ONE OPTIMAL PATH SET
SELECTION METHOD (WANG ET AL., 1989)
(LIN AND CHUNG, 1989)

2.1 Basic Concept

At first, the all-branches coverage criterion is used
as the required coverage criterion to illustrate the
concept of the zero-one optimal path set selection
method. In discussion of structural testing, the struc-
ture of the program under test is usually mapped to
a program digraph G = (N, B), where N and B
represent node set and branch set, respectively.
Without loss of generality, it is assumed a sole
source node and a sole terminal node both exist in
the digraph. A path, starting from the source node
and ending with the terminal node, is a sequence of
nodes each connected by branches. Using network
methodologies such as node-reduction (Beizer, 1984)
or linearly independent circuits (McCabe, 1976), the
complete path set P, which is defined as the set
containing all paths, of program digraph G can then
be constructed. A program with loops may lead to
an extremely large number of paths. To alleviate this
problem, it is considered sufficient in practice to
limit loop iterations up to a constant number. The
relationship between P and B can be represented
by a branch-path coverage frequency matrix in which
the cross entry of the ith row and the jth column
represents the coverage frequency of path pi over
branch bj. For example, consider the program di-
graph in Figure 1, the corresponding branch-path
coverage frequency matrix is in Figure 2.

For the all-branches coverage criterion, the opti-
mal path set selection problem can be defined as
follows. In the complete path set P, which paths
should be selected to guarantee that each branch in
B is covered at least once and the number of se-
lected paths is minimal? This is a decision problem.
In the above example, define the variables Xi, i E
{1,2, * * * , 14), let xi be a decision variable corre-
sponding to path pi, and Xi = 1, if pi is selected; 0,
otherwise. Thus, the optimal path set selection prob-
lem can be formulated as:

14

min Z = C xi
i=l

Optimal Path Set Selection Method J. SYSTEMS SOFIWARE 147
1997; 39145-164

s.t.

-0100100000000000000

1010100000000000000

1001101001000000000

1001110101000000000

1001010010000010101

1001001000101010101

1001010100101010101

1001001000010110101

1001010100010110101

1001010010000011011

1001001000101011011

1001010100101011011

1001001000010111011
1001010100010111011

-7

*

Xl

x2

x3

x4

x5

x6

x7

‘8

x9

X10

x11

x12

x13

x14

2

1

1

1

1

1

1

1

1

1

1

1

1

1
1

The 2 = Cii lxi represents the number of selected
paths and the constraint represents the total path
coverage frequency over each branch is no less than
one. In this way, the optimal path set selection
problem is formulated into a zero-one integer pro-
gramming problem.

In a generalized form, consider the program di-
graph G = (N, B) and its complete path set P =

{P,, Pz, * * * 3 p,}, define a decision variable array
X(m x 1) = [(xi)], i E {1,2,. . . , m}, and let xi be a
decision variable corresponding to path pi. The opti-
ma1 path set selection problem is formulated into a
zero-one integer programming model as follows:

m
min Z = C xi

i=l

e s.t. tfijxi 1 1, Vj E {1,2 ,..., IBI},
i=l

xi = Oor 1, iE (1,2 ,..., m},

where fij represents the coverage frequency of path
pi over branch bi, IBI denotes the number of total
branches, and CT= ifiixi represents the total path
coverage frequency over branch bj. The model can
be expressed into matrix form as follows:

min Z = lTX,

Figure 1. An example control flow graph.
s.t. F=X 2 1, xi = Oor 1, iE (1,2 ,..., m},

where 1 = [l 1. . . ll’, X(m x 1) = [$X2.. . XJT,

148 J. SYSTEMS SOFTWARE
1997,39:145-164

C.-G. Chung and J.-G. Lee

Figure 2. Branch-path coverage frequency matrix.

and

F(m X IBI> = l(f;j)J =

F is referred to as coverage frequency matrix.

2.2 Generalization of the Model

Consider the facts that (1) different paths may have
different test costs, and (2) only critical branches
need to be tested sometimes. Thus, this model
is generalized as follows: Define a weight matrix
W(m X n> = [(Wij)l and a cost array C(n X 1) =
[(ci>], where 0 < ci < m. The objective function is
generalized as, 2 = CrWrX. Define a coverage re-
quirement array R(n X 1) = [(ri)], where ri repre-
sents the coverage requirement for branch i, ri = 0
or 1. The constraint inequation is generalized as
FTX 2 R. Thus, the optimal path set selection model
is generalized as follows:

min Z = CTWTX,
s.t. FTX 2 R,
x = [(Xi)39 xi = Oor 1, i E {1,2 ,..., m).

In this generalized model, the variable arrays and
matrices such as C, W, F, and R can be assigned
specified optimization criteria and test requirements.

For example, consider the all-nodes coverage crite-
rion. Define node-path coverage frequency matrix
F,(m X n> = [(fij)J, where fij stands for coverage
frequency of path pi over node nj. The constraint
inequation thus becomes F,‘X 2 1 for the all-nodes
coverage criterion. How to apply the generalized
constraint inequation to other coverage criteria and
how to assign specified optimization criteria are de-
scribed in detail in (Wang et al., 1989) (Lin and
Chung, 1989).

The model definitely has a solution because the
program under test is assumed well-formed and
X(m x 1) = [l 1.. . llT is a solution in the worst
case. Finding a solution of the model is straightfor-
ward and there are two ways to solve it. One is
exhaustive enumeration which lists all (2” - 1)
combinations to check and finds an entire set of
solutions. The other, finding only one solution, uti-
lizes the branch-and-bound approach and many ef-
fective algorithms are available (Hillier and Lieber-
man, 1980) (Syslo et al., 1983). Among them, the
Balas’ zero-one additive algorithm is considered to
be the fastest. The complexity of the zero-one inte-
ger programming method is proportional to (21P”“‘l
x ICornponentl) where]Puthl represents the number
of candidate paths while IComgonentl represents the
number of components to be covered.

The major drawback of the zero-one integer pro-
gramming method is that the computation time is
too long because it is proportional to (21P’thl X

Optimal Path Set Selection Method J. SYSTEMS SOFTWARE 149
1997; 39:145-164

IComponentl). Obviously, the computation time can
be reduced if the size of the coverage frequency
matrix (i.e., the number of rows and the number of
columns) is reduced. The deletion of a column cor-
responds to the decrease of a constraint in the
formulation. A column can be deleted if and only if
its corresponding constraint is redundant. On the
other hand, the deletion of a row corresponds to the
decrease of a decision variable in the formulation. A
decision variable can be deleted if and only if the
value of the decision variable can be predetermined.
In the next section, five reduction rules are devel-
oped by observing the relationship between candi-
date paths and the components to be covered.

3. FIVE RULES TO REDUCE THE
COMPUTATION

It is easy to observe that:

if a component is not required to be covered, the
component can be ignored in the path selection
problem,

if a component is required to be covered and is
covered by only one path, the path which covers
the component must be selected,

if any path covering a component, say ci, also
covers another component, say cj, then the re-
quirement that ci and cj must be covered at least
once can be reduced to ci must be covered at least
once, and

if a path, say pi, covers all components covered by
another path, say pi, and some additional compo-
nents, then pi can be ignored in the path selection
problem owing to the existence of pi.

Based on these observations, this paper proposes
five reduction rules. To illustrate the five rules for-
mally, the following notation are defined:

Symbol Representation

F(m x n, = [(f;j)] coverage frequency matrix,

R(n x l) = [Cri)l coverage requirement array,
ri = 0 or 1,

Row; 1 the ith row matrix of F,

Cal, 1 the jth column matrix of F,

Rule One &rely Satisfied Constraint). If a com-
ponent is not required to be covered, its correspond-
ing constraint is surely satisfied and thus can be
ignored.
Rule1 If ri = 0, i E {1,2,. . . , n), then (a> delete
Cal,, (b) delete the ith TOW of R (i.e., r,>.

Proof Since rj = 0, the corresponding constraint
of Cal, is CT= 1 fki.xk 2 0. Due to fki r 0, and xk = 0
or 1, k E {1,2 ,..., m), the above constraint is surely
satisfied and thus can be ignored.

Rule ‘ho (Essential Path). A path is essential if
and only if some component is covered by the path
only. For example, assuming that the all-branches
coverage criterion is required, the path p2 = (ace)
in the control flow graph shown in Figure 1 must be
selected because it is the only one passing through
branch c. In addition, after p2 is selected, the
branches a, c, and e can be ignored in the latter
computation because they have been covered by the
selected path p2.
Rule 2
{I,%. . . ,

If lColjl = fk. and fkj 2 1, k E
mLi 65 IL2 ,..., i n , then (a) set xk = 1, (b)

delete Coli and corresponding ri, Vfki 2 1, i E
11,2,. . . , n}, and (c) delete Row,.

Proof:

(1)

(2)

(3)

Since the jth component is covered by path pk
only, the jth constraint fkix, 2 1 can be satis-
fied only &hen xk = 1. -’ ‘_

Let fki be any non-zero entry of Rowk,

{1,2,..., n}, its corresponding constraint is:

5 friX, =fiiX, + ... +f/& + ... +fmiXm 2 1.
r=l

iE

Since fki 2 1, if xk = 1, the constraint is satis-
fied. Let F’ represent the matrix obtained from
F after deleting the corresponding columns of
fki, Vfki 2 1, i E [l, 2, . . . , n}. Any solution of
(F’jTX 2 1 with xk = 1 also satisfies FTX 2 1.
This implies that if xk = 1 is predetermined, the
constraint is redundant and thus its correspond-
ing Coli can be deleted.

Let F’(m x n’) represent the matrix obtained
from F after deleting the corresponding columns
Of fki, Vf~i 2 1, i E {1,2,. . . , n). The constraint
inequation of (F ‘jTX 2 1 is

t frjxr =fijxl + a.. +fmjn, 2 1, vj E {1,2, . . .) n’).
r=l

Since IRow, = 0, i.e., fkj = 0, Vj E {1,2,. . ., n’},

150 J. SYSTEMS SOFlWAFtE
1997; 39145-164

C.-G. Chung and J.-G. Lee

the above expression is equivalent to:

E frjXr = fijnl + *‘* +fik- l)jx(k-1)

r=l

+f(k+l)jX(k+l) *** +fmjXm 2 1,

VjE {1,2 ,..., n’).

Thus, Row, can be deleted.

Rule Three (Dominating Component / Domi-
nating Column). A component, say ci, dominates
another component, say cj, if and only if any path
covering ci also covers cj. For example, in Fig. 1, the
branch f dominates branch d because any path
covering f also covers d. If f has been covered by
some selected path, d is covered too. Thus the
requirement that d must be covered at least once
can be ignored if f is required to be covered at least
once.
RuZe3 Zf ~COZ~I > 0, ICOZjl > 0, ~ndf,j 2 fki, Vk
E {1,2,..., ml, then delete COlj, delete rj.

Proof The constraint of COli is:

m
C fkiXk 2 1

k-l
Constraint(l)

The constraint of Colj is:

k?lfkjxk 2 1 Constraint(2)

d

Sincef,.-fki~0,Vk~{1,2,...,m}andxi=Oor
I, i E (1, 2,. . . , m}, cr= I(fkj - f&k 2 0. Since

cr=,(fkj - fkijxk = Cr=lf&jX& - zz=,_fkiX&,

crc lf&jX& 2 crc If&ix& Inequation (1)

Inequation (1) implies that any solution satisfying
Constraint (1) also satisfies Constraint (2). That is,
Constraint (2) is redundant and thus can be deleted.

Note that, once reduction rule 3 is applied, the
remaining components are equal to the “uncon-
strained duas” mentioned in (Marre and Bertolino,
1996) if the required coverage criterion is all-uses
and are also equal to the “essential branches” men-
tioned in (Chusho, 1987) if the required coverage
criterion is all-branches. The difference is that the
proposed technique is based on the relation between
path and components while the others are based on
graph theory.

Rule Four (Dominating Path / Dominating Row).
Path pi dominates path pi if and only if pi covers
both all pi’s components and some additional com-
ponents. In this situation, pj can be ignored owing
to the existence of pi. For example, in the program
digraph shown in Figure 3, path p2 = (abcdbce)
dominates p, = (abce) because p2 covers both the
routine of p1 and an additional loop (dbc). Thus p1
can be ignored in the path selection problem be-
cause the path p2 is involved in the consideration.
Rule4 Zffi& 2 fik, Vk E (1,2,. . . , n), then (a) set
Xi = 0, (b) delete ROWi.

p,=abce
p,=abcdbce
p,=abcdbcdbce
p,=abcdbcdbcdbce
p,=abcdbcdbcdbcdbce
p,=abcdbcdbcdbcdbcdbce
p,=abcdbcdbcdbcdbcdbcdbce
p,=abcdbcdbcdbcdbcdbcdbcdbc

Figure 3. A control flow graph and path list.

Optimal Path Set Selection Method

proof: Assume that X = (x,, x2,. . . , x,JT with
Xj = 1 is a feasible solution of FrX 2 1. If X is
modified to be X’ with xi = 0 and xi = 1, the X’
also satisfies FrX 2 1 because the components cov-
ered by X are also covered by X’. That is, X’ is also
a feasible solution. This means that we can set
xj = 0 and delete Rowj from the matrix without
affecting the solution of the problem.

Rule Five (Zero Row). Path pi is a zero path if
and only if it does not cover any component. This
situation happens after Rule 2 is applied while the
essential path also dominates another path. In this
case, the zero path can be directly deleted without
affecting the problem solution.
Rule 5

11,z. *. ,

Zf fij = 0, Vj E (1, 2, . . . , n), i E
m}, then (a) delete Rowi, (b) set xi = 0.

proof

(1) The constraint inequation of FTX 2 1 is

tfkjxkrl, VjE{1,2 ,..., n).
k=l

Since lRow,l = 0, i.e., fij = 0, Vj E (1,2 ,..., n},
the above inequation is equivalent to:

t fkjXk = fijxl + .‘. +&i- l)jx(i- 1) + fii+ l)jx(i+ 1) ***

k=l

(2)

+f*jX* 2 l, Vj E {1,2 ,..., n}.

Thus, Row, can be deleted.

Both xi = 0 and xi = 1 satisfy all constraints of
FTX 2 1. However, xi = 0 must be chosen to
obtain a minimal number of selected paths.

Among the five reduction rules, rule one should
be applied first, and then the other four rules should
be applied repeatedly until none of the rules can be
activated. A formal algorithm is stated in the Ap-
pendix to demonstrate how to apply the reduction
rules. Rule 1 is not included in the algorithm be-
cause it is very simple and should be applied in
advance.

In order to show how effective the five reduction
rules are, an example is given below. A software
package LINDO (Linear INteractive Discrete Opti-
mizer) (Schrage, 19871, which applies Balas’ algo-
rithm, is used to solve the formulated zero-one inte-
ger programming problems. Consider the control
flow graph shown in Figure 1, assuming that the
all-branches coverage criterion is required. Based on

J. SYSTEMS SOFTWARE 151
1997; 39~145-164

the branch-path coverage frequency matrix shown in
Figure 2, the optimal path set selection problem is
formulated in LINDO as follows:

MZN X1+X2+X3+X4+X5+X6+X7+X8
+x9 +x10 +x11 + x12 +x13 + x14

SUBJECT TO
X2+X3+X4+X5+X6+X7+X8+X9+X10

+Xll+X12+X13+X14>=1
Xl>=1
x2>=1

X3+X4+X5+X6+X7+X8+X9+X10+X11
+X12+X13+X14>=1

Xl+X2+X3+X4>=1
x4+x5+x7+x9+x1o+x12+x14>=1
X3+X6+X8+Xll+X13>=1
x4+x7+x9+x12+x14>=1
x5+x10>=1
x3+x4>=1
X6+X7+Xll+X12>=1
X8+X9+X13+X14>=1
X6+X7+Xll+X12>=1
X8+X9+X13+X14>=1
X5+X6+X7+X8+X9+X10+X11+X12

+x13+x14>=1
X1O+X11+X12+X13+X14>=1
X5+X6+X7+XB+X9>=1
X1O+X11+X12+X13+X14>=1
X5+X6+X7+X8+X9+X10+X11+X12

+x13 + x14 > = 1.

After 12 iteration steps, LINDO renders the follow-
ing solution:

OBJECTZVE FUNCTION VALUE 6
URUBLE VALUE VAZU4BLE VYLUE

Xl l.OOOOOO X8 .OOOOOO
x2 l.OOOoOO x9 .OOOOOO
x3 .OOOOOO x10 .OOOOOO
x4 1.OOOOOO x11 .OOOOOO
X5 1.OOOOOO x12 .OOOOOO
X6 1.OOOOOO x13 1.OOOOOO
x7 .OOOOOO x14 .OOOOOO

The paths whose corresponding decision variable’s
value = 1.OOOOOO are selected. That is pr, pz, p4,
ps, p6, p13 are selected in the optimal path set.

Now, the five reduction rules are applied. In this
example, since branch b is uniquely covered by p1
and branch c is uniquely covered by p2, by rule 2, p1
and pz are essential paths and thus must be se-
lected. After setting xi = 1, xa = 1, deleting the
columns whose corresponding branches (a, b, c, e)
are covered by p1 and p2, and the rows correspond-
ing to p1 and pz, the reduced coverage frequency

152 J. SYSTEMS SOFlWARJ?
1997, 39145-164

C.-G. Chung and J.-G. Lee

matrix is as follows:

Path \ Branch dfghi

p3 = adgje 1 0 1 0 0

p4 = adfhje 1 1 0 1 0

p5 = adfioqs 11001

PS = adgkmoq 1 0 1 0 0

p, = adfhkmoqs 1 10 1 0

pa = adglnoqs 1 0 1 0 0

ps = adfhlnoqs 1 1 0 1 0

pi0 = adfioprs 1 1 0 0 1

pii = adgkmoprs 1 0 1 0 0

By rule 3, since branches d, f, m, n, o, r, s are same. However, the size of the coverage frequency
dominated by branches g, h, k, I, k, p, q, respec- matrix is reduced from 14 x 19 to 12 X 8, and the
tively, the columns of branches d, f, m, n, o, r, s can number of iteration steps in LINDO is decreased
be deleted. The further reduced matrix is as follows: from 12 to 9.

I

p,i = adgkmoprs 1 0 0 0 1 0 1 0

pi2 = adfhkmoprs 0 1 0 0 1 0 1 0

P,~ = adglnoprs 10000110

p14 = adfhhroprs 01000110

Since no more reduction rule can be applied,
LINDO is used again but only the reduced matrix is
considered. After 9 iteration steps, LINDO renders
OLUECTIVE FUNCTION VALUE 4, with p3, pr,
plo, and p14 selected. Together with pre-selected p1
and pz, the total number of selected paths is six.

Note that before and after the reduction rules are
applied, the value of the objective function is the

opqrs

4. REUSE OF PREVIOUSLY SELECTED
PATH SETS

In structural program testing, the steps are:

5.

6.

select a coverage criterion,
find a path set satisfying the selected coverage
criterion,
generate a corresponding test case for each se-
lected path,
exercise each test case and check whether the
corresponding path is executed and whether the
output is the same as the expected,
if errors are detected, make an error report (sup-
pose that the tester is not the debugger),
if the coverage criterion is deemed sufficient, stop
the testing; otherwise, select a strong coverage
criterion and then repeat steps 2-6.

A coverage criterion, say C,, is stronger than
(subsumes) another coverage criterion, say C,, if
and only if any path set satisfying C, also satisfies
C,. Many testing criteria have been compared using
the subsumption relation (Rapps and Weyuker,
1985).

Assume that C, is the next selected coverage
criterion while Pi is an optimal path set for the
previously selected coverage criterion C,. To find an
optimal path set for C,, a new coverage frequency

Optimal Path Set Selection Method J. SYSTEMS SOFTWARE 153
1997; 39:145-164

matrix is built, zero-one integer programming model
is formulated, and then LINDO is used to obtain the
solution. Assuming that the reduction rules are not
used, the computation for C, is longer than that for
C, because the stronger the coverage criterion is,
the larger the number of components to be covered
is. For example, consider the program digraph shown
in Figure 1, the number of nodes is 13 (see Figure 4)
while that of branches is 19 (see Figure 2).

To decrease the long computation for C,, the size
of the corresponding coverage frequency matrix must
be reduced. In addition to the five reduction rules,
previously selected path sets should also be reused.
To reuse previously selected path sets, the relation-
ship between different coverage criteria and corre-
sponding coverage frequency matrices should be
studied. Different coverage criteria are focused on
different types of program components, but no mat-
ter what coverage criterion is required, the corre-
sponding optimal path set is selected from the same
complete path set. Thus, a program has different
coverage frequency matrices for different coverage
criteria with the same number and elements of rows
(candidate paths) but different number and ele-
ments of columns (components to be covered).

path set of the next coverage criterion with maximal
number of previously selected paths is desired be-
cause minimal number of new paths are to be tested
and thus minimal number of new test cases are to be
generated. The best case is to reuse all previously
selected paths and select an optimal path set from
the remaining paths to cover remaining components.
In this way, the information of previously selected
path sets can be reused to reduce the size of cover-
age frequency matrix, and thus the computation.

Assume that the previously selected path set is P,
while the coverage frequency matrix corresponding
to the next coverage criterion is F. The rows of F
can be partitioned into two groups: the paths in P,,
and the paths not in P,. The components to be
covered can also be partitioned into two groups: the
components covered by P, and the components not
covered by P,. Thus, F can be reorganized as:

Path \ Components Components
Component not covered by P, covered by PI

Paths in P, All-Zero F,& j>
Paths not in P, F&j) 1 F&, j> 1

Since the optimal path sets are selected from the Since only the components not covered by the
same complete path set, some previously selected paths in P, must be covered by the newly added
and tested paths may also appear in the optimal paths, the zero-one optimal path set selection
path set for the next coverage criterion. The optimal method should be applied to the reduced coverage

FiglIlT 4. Node

pll=adglnoprs

pl.+=adfhlnoprs 110 11 10 111 1 I I

-path coverage frequency matrix.

154 J. SYSTEMS SOFIWARE
1597; 39145164

Figure 5. Reduced branch-path cover:
trk.

-
i

0 -
0 -
0 -
1 -
0 -
0 -
0 -
0 -
1 -
0 -
0 -

:e f

0

0

0

1

1 3 1

1

1

0

0

0

ma-

frequency matrix F&j) instead of F. The compu-
tation to find an optimal path set for F,,(i, j) is
certainly less than that for F. Consider the control
flow graph shown in Figure 1, assuming that the
previously selected optimal path set for the all-nodes
coverage criterion is PI = {p4, p12, p14}, after delet-
ing the rows corresponding to the paths in PI and
the branches covered by the paths in PI, the size of
the branch-path coverage frequency matrix is re-
duced from a 14 X 19 matrix (see Figure 2) to a
11 x 5 matrix (see Figure 5). Since the obtained
optimal path set covers all components not covered
by PI, the union of the obtained path set and P,
satisfies the all-branches coverage criterion.

.

.

.

.

.

.

.

.

.

.

C, be the next selected coverage criterion,

F be the coverage frequency matrix for C,,

Y be any optimal path set satisfying C,,

F’ be the reduced matrix of F derived by deleting
the rows whose corresponding paths are in PI and
the columns whose corresponding components are
covered by the paths in PI,

X be an optimal path set found by applying the
zero-one integer programming method to F’,

A - B represent the path set which contains the
paths in path set A but not also in path set B,

I path-setI represent the number of paths in a given
path set.

Show that 1x1 I IY - P,I.
Proof F can be re-organized as follows:

Path \ Components Components
Component not covered by P, covered by PI

Pl
P - P,

All Zero

F,,(i, j)

F,&i, j)

F&G, j)

The minimal requirement for the obtained path Y can be partitioned into: paths also in PI (i.e.,
set is that the number of paths in it is no more than Y n PI) and paths not also in PI (i.e., Y - PII. The
the number of newly selected paths in any optimal components covered by P, can be partitioned into:
path set found by existing optimal path set selection covered by Y and not covered by Y. Thus, F can be
methods; otherwise, the tester must spend more further re-organized as follows:

C.-G. Chung and J.-G. Lee

time to generate corresponding test cases. The satis-
faction of this requirement can be proven as follows:
Let

P be the complete path set,

C, be the previously satisfied coverage criterion,

PI be the previously selected optimal path set
satisfying C,,

%h \?omionent Components not covered by P, Components Covered by P, I

If we delete the Y n P, row (i.e., the shadowed
row) and the components covered by Y n P, (i.e.,
the shadowed column), the reduced coverage fre-
tuencv matrix is:

Components
Path \ Components Covered by P,

Component not covered but Not

by PI Covered by
Y n P,

F&j)

F&j)

F&j)

Optimal Path Set Selection Method

The path set Y - P, can be treated as a path set
selected from the P - P, which covers the compo-
nents listed in the reduced coverage frequency ma-
trix.

The path set X is an optimal path set satisfying
the following reduced coverage frequency matrix:

Components not
Path \ Component covered by P,

Y - PI F&j)

P - P, &(i, j>

Since the components covered by X are only a
subset of the components covered by Y - P,. If
IY - PII < 1x1, it means that there exists a path set
Y - P,, which is also selected from P - P,, covering
all the components covered by X but the number of
contained paths is less than X. This contradicts with
the fact that X is an “optimal” (remember that
optimal means minimal) path set. So, 1x1 I JY - PII.

The meaning of 1x1 < JY - PII is not only that we
can efficiently find a path set to satisfy a stronger
coverage criterion but also the number of the needed
test cases is reduced, although the path set PI + X
is not always an optimal path set for the next cover-
age criterion.

5. ENHANCED ZERO-ONE OPTIMAL PATH
SET SELECTION METHOD

Adding the five reduction rules and reusing previ-
ously selected path sets, the original zero-one opti-
mal path set selection method is enhanced as fol-
lows:
For the first selected coverage criterion: (usually the
all-statements coverage criterion)

Step 1: generate a corresponding coverage fre-
quency matrix,

Step 2: apply the five reduction rules to reduce the
matrix size,

Step 3:

Step 4:

J. SYSTEMS SOFTWARE 155
1997; 39~145-164

translate the reduced coverage frequency
matrix into constraint inequalities (each col-
umn corresponds to a constraint inequation),
and translate the goal that the number of
selected paths is minimal into objective
function, and
solve the formulated zero-one integer pro-
gramming model by available package (for
example LINDO).

For the next selected stronger coverage criterion,
add the following step between step 1 and step 2:

l Eliminate the rows corresponding to the paths in
the previously selected path sets and the columns
corresponding to the components covered by the
paths in the previously selected path sets.

6. INFEASIBLE PATH CONSIDERATION

As in practice, the program digraph rather than the
program itself is referred in the discussion of struc-
tural testing. However, as is pointed out by (Ntafos
and Kakimi, 19791, infeasible paths may exist. Inclu-
sion of infeasible test paths is meaningless. Identifi-
cation of infeasible paths is an undecidable problem
and is still under study (Gabow et al., 1976) (Hedley
and Hennell, 1985).

An intuitive approach is deleting the infeasible
paths from the complete path set, regenerating the
coverage frequency matrix, reformulating the zero-
one integer programming model, and then recom-
puting to select another optimal path set (Lin and
Chung, 1989). The drawback is that once an infeasi-
ble path is found, the whole process is repeated with
almost the same complexity (since only the infeasi-
ble paths are deleted) and computation time.

Similar to. the idea of reusing previously selected
path sets mentioned in Section 4, the feasible paths
in the optimal path set, which contains infeasible
paths, can be reused. That is, we just have to find
some new test paths from the remaining unselected
paths to cover the components that are covered by
the infeasible test paths only. An enhanced ap-
proach is proposed as follows:

1.

2.

delete the rows corresponding to infeasible paths
that are in the optimal path set from the coverage
frequency matrix,
delete the rows corresponding to feasible paths
that are in the optimal path set and the columns
corresponding to the components covered by fea-
sible paths that are in the optimal path set from
the coverage frequency matrix,

156 J. SYSTEMS SOFTWAEIE
1997; 39145-164

if any column becomes empty (i.e., all entries in
the column are zero), report the corresponding
component as a “candidate” of infeasible compo-
nent and then delete the empty column,
find a new optimal path set from the reduced
coverage frequency matrix,
repeat this procedure until the new optimal path
set does not contain any infeasible path.

Step 3 takes infeasible components into consider-
ation. It is sometimes quite difficult for the tester to
identify them because there may be a large number
of paths covering a component and a component is
infeasible if and only if all of the associated paths
are infeasible. Since the coverage frequency matrix
does not necessarily represent all paths (as men-
tioned in section 2.1, loop iterations are limited up
to a constant number), the component whose corre-
sponding column is zero. (i.e., all entries in the
column are zero) is only a candidate of infeasible
component. Intuitively, if no iteration instruction is
involved or the tester inputs the correct iteration
count, the matrix can be used to identify infeasible
components while the tester has identified all the
infeasible paths. Note that, once a candidate of
infeasible component has been reported, the optimal
path set obtained does not cover the corresponding
component.

The final test path set is the union of the feasible
paths in the optimal path sets that have been se-
lected. Of course, if no infeasible path has ever been
included, the final test, path set is optimal. Even
after the enhanced approach is applied, the final test
path set is still nearly optimal. To be more clear, a
special case is given below to show that once the
enhanced approach is applied, the final test path set
is not guaranteed to be optimal. Assume that the
original coverage frequency matrix is as follows:

a Iblcld(
Pl 0 0 1 1

P2 1 1 0 0 -
I I

P3 1 0 1 1 1 1 1 0

P4 I 1 I 0 I 0 I l I
Assume that the originally selected optimal path set
is {p3, p4} and p3 is infeasible. By the enhanced
approach, the rows corresponding to p3 and p4 are
deleted but only the columns corresponding to the
components covered by p4 are deleted from the
coverage frequency matrix. The reduced coverage

C.-G. Chung and J.-G. Lee

frequency matrix is as follows:

HI

Obviously, the new optimal path set is (pl,p,}.
Together with the feasible path in the originally
selected optimal path set, the final test path set is
{pl, p2, p4). However, {pl, p2} is a path set covering
all components with only two paths. Thus, once the
enhanced approach is applied, the final test path set
is not guaranteed to be optimal. In general, how-
ever, the final test path set is always nearly optimal
especially for the case that the originally selected
optimal path set contains many test paths and only
one or two are infeasible.

7. EVALUATION

Minimization is only worthwhile if the reduction in
cost derived from reducing the path set compensates
for the cost of doing the minimization. Otherwise,
greedy methods, which obtain near optimal path set
with less computation time, is more practical.

Four experiments have been executed to evaluate
the original zero-one method, the enhanced zero-one
method, and the greedy method proposed by (Hsu
and Chung, 1992). The greedy method selects a path
a time and the path to be selected is always the one
covering most remaining uncovered components.

These four experiments first apply the three dif-
ferent methods to obtain an optimal path set for the
all-nodes coverage criterion (the result is shown in
Table 1) and then to obtain an optimal path set for
the all-edges coverage criterion (the result is shown
in Table 2).

In Table 1, consider the enhanced zero-one
method, the five reduction rules are applied first and
then LINDO is used if there are any components
not covered yet. Except for the fourth experiment,
once the five reduction rules are applied, the opti-
mal path set will be obtained (i.e., LINDO is not
used at all). For the original zero-one method,
LINDO is used to obtain the optimal path set. The
LINDO used in these four experiments is a student
edition for the IBM PC which can only handle 200
variables (i.e., 200 paths), therefore it cannot handle
the fourth experiment. .

In Table 2, consider the enhanced zero-one
method, the previously selected path set is reused to
reduce the size of the coverage frequency matrix and
then the five reduction rules are applied. In these
four experiments, once the five reduction rules are

Optimal Path Set Selection Method J. SYSTEMS SOFIWARE 157
1997; 39:145-164

Table 1. Experiment Result for All-Nodes Coverage Criterion

Enhanced Original Greedy
Zero-One Method Zero-One Method Method

The time the The time the
The time it takes optimization The size of the optimization The size of The time to derive The size of path

All-Nodes to appty the five takes with the resulting path takes without the resulting the path set with set derived by
Coverage reduction rules reduction set the reduction path set greedy method greedy method

Experiment 1 182 No 2 paths 5950 2 paths 116 3 paths
3 paths micro {Pl, P3) micro IPl, P3I micro 1~1, ~2, ~31
8 nodes second second second

Experiment 2 452 No 2 paths 1365 2 paths 207 2 paths
8 paths micro (P5, P71 micro {~5, ~8) micro (P3, P51
9 nodes second second second

Experiment 3 1112 No 3 paths 10908 3 paths 402 3 paths
14 paths micro {p4, P12, P14) micro (~1, ~8, ~121 micro tpl, p8,pl21
13 nodes second second second

Experiment 4 60072 6008 6 paths LINDO No 9512 6 paths
218 paths micro micro (~173, ~176, Cannot handle! micro (~15,~21, ~30,
28 nodes second second p191,p197, second p33, p99, p155I

~203, ~215)

applied, the path set will be obtained (i.e., LINDO is
not used at all). For the original zero-one method,
LINDO is used to obtain the optimal path set. The
student edition LINDO can not handle the fourth
experiment because the number of paths is more
than two hundred.

These four experiments are executed on an IBM
compatible PC with Intel Pentium 100 CPU and 16
Mega RAM. The control flow graphs used in experi-
ment 1, 2, 3 and 4 are shown in Figure 6, Figure 7,
Figure 1, and Figure 8.

From the experiment result, it is obvious that the
enhanced zero-one method does greatly enhance the
original zero-one method by both reducing the com-
putation time and the number of new paths to test.
In addition, as shown in the fourth experiment, the
enhanced zero-one method can handle the cases
that can not be handled by the original zero-one
method. Compared with the greedy method, the
enhance zero-one method has the following two
advantages: (1) For the first coverage criterion, the
enhanced zero-one method guarantees the path set
obtained is optimal while the greedy method does
not, (2) For the. second and subsequent coverage
criterion, the enhanced zero-one method requires
less computation time than the greedy method be-
cause previously selected path sets are reused to
reduce the size of the corresponding coverage fre-
quency matrix.

8. CONCLUSION

Usually, applying structural testing to a program is
an iterative process. At first a weak coverage crite-

rion is selected (e.g., all statements coverage), once
it is satisfied, a stronger coverage criterion is re-
quired. For each coverage criterion, a path set is
selected to satisfy the requirement and if the se-
lected path set includes infeasible paths, another
path set is selected again. Assuming that the cost of
testing each path is the same, the path set satisfying
the coverage criterion with minimal number of paths
is desired. Finding a path set satisfying a required
coverage criterion with minimal number of paths is
referred to as “optimal path set selection problem”.
The zero-one optimal path set selection method is a
generalized method that can not only be applied in
structural testing to find an optimal path set satisfy-
ing the required coverage criterion but also in re-
gression testing to find a minimal number of previ-
ously executed test cases to fully retest every af-
fected program element at least once (Fischer, 1977)
(Fischer et al., 1981) (Hartmann and Robson, 1990).
The major drawback of this method is that for a
large program the computation may take ten or
more hours because the computation is exponen-
tially proportional to the number of paths and pro-
portional to the number of components. Due to the
iterative nature of structural testing, the long com-
putation becomes a serious problem that must be
enhanced.

The enhanced zero-one optimal path set method
can speed up the structural program testing process
by: (1) For the first selected coverage criterion, the
five reduction rules are applied ahead and then the
zero-one optimal path set selection method is used
to efficiently find an optimal path set. (2) For each
next selected coverage criterion, the previously se-

T
ab

le
 2

.
E

xp
er

im
en

t
R

es
ul

t
fo

r
A

ll
-E

dg
es

 C
ov

er
ag

e
C

ri
te

ri
on

E
nh

an
ce

d
O

ri
gi

na
l

G
re

ed
y

Z
er

o-
O

ne

M
et

ho
d

Z
er

o-
O

ne

M
et

ho
d

M
et

ho
d

T
he

 t
im

e
it

T
he

 t
im

e
to

T

he
 s

ir
e

ta
ke

s
to

de

ri
ve

th

e
T

he
 s

ir
e

of

of
 t

he

ap
pt

y
th

e
T

he
 t

im
e

th
e

T
he

 t
im

e
th

e
pa

th

se
t

pa
th

se

t
m

at
ri

x
fi

ve

op
tim

iz
at

io
n

T
he

 s
ir

e
op

tim
iz

at
io

n
T

he
 s

ir
e

of

T
he

 s
ir

e
of

w

ith

de
ri

ve
d

by

T
he

 s
ir

e
of

A

ll-
E

dg
es

af

te
r

re
du

ct
io

n
ta

ke
s

w
ith

 t
he

of

 n
ew

ly

ta
ke

s
w

ith
ou

t
th

e
re

su
lti

ng

ne
w

ly

gr
ee

dy

gr
ee

dy

ne
w

ly

C
ov

er
ag

e
re

us
e

ru
le

s
re

du
ct

io
n

se
le

ct
ed

pa

th

th
e

re
du

ct
io

n
pa

th

se
t

se
le

ct
ed

pa

th

m
et

ho
d

m
et

ho
d

se
le

ct
ed

pa

th

E
xp

er
im

en
t

1
ro

w
=

1
0

N
o

1
pa

th

59
09

3

pa
th

s
1

pa
th

12

2
3

pa
th

s
0

pa
th

3

pa
th

s
co

1
=

 1

Il
lh

O

{p
2)

l
&
I
O

(P
l,

P2
, P

31

(p
2)

m

iC
r0

(P

l,
P2

, P
3)

0

9
br

an
ch

es

se
co

nd

se
co

nd

se
co

nd

E
xp

er
im

en
t

2
ro

w
=

6
0

N
o

1
pa

th

78
29

2

pa
th

s
1

pa
th

24

2
2

pa
th

s
1

pa
th

8p
at

hs

co
1

=
 1

lll

iC
r0

(p

2)

l&
IO

w

,
P

51

(P
4)

Il

liC
rO

w

,
P5

)
(p

4)

11
 b

ra
nc

he
s

se
co

nd

se
co

nd

se
co

nd

E
xp

er
im

en
t

3
ro

w
-1

1
22

1
N

o
4

pa
th

s
13

6

pa
th

s
5

pa
th

s
45

2
6

pa
th

s
3

pa
th

s
14

 p
at

hs

co
1

=
 5

U

liC
IO

(P

l,
P2

,
l&

IO

(P
l,

P2
, p

4,

I&
X

0
tp

2,
 P

3,
 P

5)

19
 b

ra
nc

he
s

se
co

nd

P5
, p

6)

se
co

nd

P5
, P

6,
 P

13
)

se
co

nd

{P
lp

$2
$p

5,

E
xp

er
im

en
t

4
ro

w
 =

 2
12

44

33

N
o

3
pa

th
s

L
IN

D
O

N

o
12

10
2

8
pa

th
s

3
pa

th
s

21
8

pa
th

s
co

1
=

 4

l&
IO

%
pl

js
q6

C
an

no

t
U

liC
rO

{P

l,
Pl

5,

41
 e

dg
es

se

co
nd

ha

nd
le

!
se

co
nd

P

21
, P

30
,

~3
3,

 ~
36

,
~9

9,
 ~

15
8)

Optimal Path Set Selection Method J. SYSTEMS SOFTWARE 159
1997; 39145-164

Figure 6. The control flow graph used in experiment one.

Figure 8. The control flow graph used in experiment four.

lected path sets are reused, the five reduction rules
are applied, and then the zero-one optimal path set
selection method is applied to efficiently find an
optimal path set. (3) If the obtained path set in-
cludes infeasible paths, the enhanced approach to
handling infeasible paths is applied to speed up the
recomputation process. In regression testing, the five
reduction rules are applied ahead and then the
zero-one optimal path set selection method is used
to efficiently find a minimal number of previously
executed test cases to fully retest every affected
program element at least once.

ACKNOWLEDGMENT

This research was supported by the National Science Coun-
cil, the Republic of China, under Grant NSC83-@ID&
EDD9-047.

REFERENCES

FI 7. The control flow graph used in experiment three.

B. Beizer, Software Testing Techniques, Data System Ana-
lysts Inc., Pennsanken, New Jersey, 1984.

T. Chusho, Test data selection and quality estimation
based on the concept of essential branches for path
testing. IEEE Trans. Sojbvare Eng., vol. SE-13, W-517,
May (1987).

160 J. SYSll34S SOFIWARE
1997; 39945164

K. F. Fischer, A Test Case Selection Method for The
Validation of Software Maintenance Modifications,
IEEE COMPSAC 77 Int. Conf. Procs., Nov. 1977, pp.
421426.

K. F. Fischer, F. Raji, and A. Chruscicki, A Methodology
for Re-testing Modified Software, Proc. Nat’1 TeZecomm.
Conf., CS Press, Los Alamitos, Calif., 1981, pp. B6.3.1-6.

H. N. Gabow, S. N. Maheshwari, and L. J. Osterweil, On
Two Problems in the Generation of Program Test Paths.
IEEE Trans. Software Eng., vol. SE-2(3), 227-231, Sept.
(1976).

Hartmann and D. J. Robson, Techniques for Selective
Revalidation. IEEE Software 1, 31-36 (1990).

D. Hedley and M. A. Hennell, The Causes and Effects of
Infeasible Path in Computer Programs, IEEE Proceed-
ings of 8th International Conference on Software Engineer-
ing, Aug., 1985, pp. 259-266.

S. Hillier and G. J. Lieberman, Introduction to Operations
Research, 3rd edition, Holden-Day Inc., California, 1980,
pp. 714-740.

S. Y. Hsu and C. G. Chung, A Heuristic Approach to Path
Selection Problem in Concurrent Program Testing, in
Proc. the 3rd Workshop on Future Trends of Distributed
Computing Systems, Taipei, Taiwan, April, pp. 86-92,
1992.

W. Krause, R. W. Smith, and M. A. Goodwin, Optimal
Software Test Planning Through Automated Network
Analysis, IEEE Proceedings of the 1973 Symposium on
Computer Software Reliability, New York, 1973, pp.
18-22.

J. C. Lin and C. G. Chung, Zero-One Integer Program-
ming Model in Path Selection Problem of Structural
Testing, in IEEE Proceeding COMPSAC 89, Nov. 1989,
pp. 618-627.

C.-G. Chung and J.-G. Lee

M. Marre and A. Bertolino, Unconstrained Duas and
Their Use in Achieving All-Uses Coverage, Proceedings
of the 1996 International Symposium on Software Testing
and Analysis (ZSSTA), pp. 147-157, Jan. 1996.

J. McCabe, A Complexity Measure. IEEE Trans. Sofrware
Eng. vol. SE-2(4), 308-320, Dec. (1976).

E. F. Miller, M. R. Paige, J. B. Benson, and W. R.
Wisehart, Structural Techniques of Program Validation,
Digest of Papers, COMPCON, Feb. 1974, pp. 161-164.

C. Ntafos and S. L. Hakimi, On Path Cover Problems in
Digraphs and Applications to Program Testing. IEEE
Trans. Sofiare Eng. vol. SE-5(5), 520-529, Sep. (1979).

R. E. Prather and J. P. Myers, Jr., The Path Prefix Soft-
ware Testing Strategy. IEEE Trans. Software Eng., vol.
SE-13(7), 761-766, July (1987).

Rapps and E. J. Weyuker, Selecting Software Test Data
Using Data Flow Information. IEEE Trans. Software
Eng., vol. SE-11(4), 367-375, April (1985).

Schrage, User’s Manual for Linear, Integer, and Quadratic
Programming with Lindo, 3rd ed., The Scientific Press,
Palo Alto, CA, 1987.

M. Syslo, N. Deo, and J. S. Kowalik, Zero-One Integer
Programming, in Dkcrete Optimization Algotithms, Pren-
tice-Hall, U.S.A., 1983, pp. 100-113.

H. S. Wang, S. R. Hsu, and J. C. Lin, A Generalized
Optimal Path-Selection Model for Structural Testing,
Journal of Systems and Software, 55-63, July (1989).

W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur,
Effect of test set minimization on fault detection effec-
tiveness. In Proceedings of the 17th International Confer-
ence on Software Engineering (ZCSE 95), pp. 41-50, April
1995.

APPENDIX: ALGORITHM FOR REDUCTION RULES 2-5

Input: F,m,n,X
F is the coverage frequency matrix obtained after applying reduction rule 1.
m is the number of rows of F.
n is the number of columns of F.
X(m X 1) is the path number list.
// consider the case that the paths may not be arranged as pl, p2,. . . , pm.

Output: F’, m’, n’, X’
F’ is the reduced coverage frequency matrix.
m’ is the number of rows of F’.
n’ is the number of columns of F’.
X’(m’ x 1) is,the reduced path number list.

Procedure Rule 2-5(array F, int m, int n, array X, var array F’, var int m’, var int n’, var array X’)

1
int Col_Sum[n] = (0, 0, . . . , 0); // Summation of each column
int Row_Sum[m] = (0, 0, . . . , 0); // Summation of each row
For (int row = 1; row I m; row + +)
For(intcol=l;col<n;col++)
If (f(row,col) # 0)
(
Row_Sum[row] = Row_Sum[row] + ffrow,col);
Col_Sum[col] = Col_Sum[coll + f(row,colk

Optimal Path Set Selection Method J. SYSTEMS SOFTWARE 161
1997; 39:145-164

// If a row, say i, is deleted, the corresponding Row_Sum[i] will be set zero and each nonzero entry
// of the ith row will be set zero, too. The same approach is applied to column deletion, too.
//Since the rows with Row_Sum = = 0 will be skipped in the afterward checking, rule 5 can be
//handled automatically. The same approach is applied to the columns with Cal-Sum = = 0.
Flag = 1; // Once a reduction rule is activated, set Flag = 1.
While (Flag = = 1) // Flag = = 1 means at least one reduction rule is activated in the last iteration

{
Flag = 0;
(reduction ruIe 2: essential path)
For (co1 = 1; co1 I n; co1 + +) // check each column to find essential path
If (Col_Sum[col] f 0)

{
essential-row = -1;
For (row = 1; row I m; row+ +)
If (f(row,col) = = Col_Sum[col])-

(
essential-row = row;
Break;

1
If (essential-row + - 1)
{// delete the columns covered by the essential row
For (tmp_col = 1; tmp-co1 I n; tmp_col+ +)
If Messential_row,tmp_col) # 0)
For (row = 1; row I m; row+ +)
If (Krow,tmp_col) + 0)

{
Row_Sum[row] = Row_Sum[rowl - f(row,tmp_col);
Col_Sum[tmp_col] = Col_Sun$tmp_coll - RrowJmp-col);
f(row,tmp_col) = 0;

I
// print out the selected essential path
Cout -K “The” +K xessential_row] =Z “th path is selected.” < “ \ n”;
Flag = 1;

1
(reduction rule 3: dominating column)
For (col_one = 1; col_one < n; col-one + +)
For (col_two = col_one + 1; col_two I n; col_two+ +)
If ((Col_Sum[col_two] Z 0) & &tCol_Sum[col_onel Z ON
1
dominate-flag = 0;
// The dominate-flag is used to record the dominating relationship
// between col_one and col_two that have been checked so far.
// If dominate-flag = = 0, col_one is equal to col_two.
// If dominate flag = = 1, col_one dominates col_two.
// If dominate-flag = = 2, col-two dominates col-one.
// If the dominating,relationship does not exist, set dominate-flag = - 1 and skip the loop

For(row=l;rowsm;row++)
If (Row_Sum[rowl # 0)
{
If Mrow,col_onel < f(row,col__twoN
1
If (dominate-flag = = 0)
dominate-flag = 1;

If (dominate_flag = = 2)
1
dominate-flag = - 1;

162 J. SYSTEMS SOFIWARE
1997; 39:145-164

C.-G. Chung and J.-G. Lee

Break;

If (ff row,col_one) > ff row,col_two)
(

If (dominate-flag = = 0)
dominate-flag = 2,

If (dominate-flag = = 1)

1
dominate-flag = - 1;
Break;

]
]

]
If ((dominate-flag = = l)lKdominate_flag = = 0))
{// delete col_two
For (row = 1; row I m; row + +)
If (f(row,col_two) # 0)

{
Row_Sum[row] = Row_Sum[row] - Arow,col_two);
Col_Sun$xl_two] = Col_Sumkol_tsvol - f(row,col_two);
Arow,col_two) = 0;

Flag = 1;

]
If (dominate-flag = = 2)
(// delete col_one
For (row = 1; row < m; row + + 1
If (f(row,col_one) # 0)
1
Row_Sum[row] = Row_Sum[row] - f(row,col_one);
Col_Sumkol_one] = Col_Sum[col_one] - Arow,col_one);
f(row,col_one) = 0;

]
Flag = 1;

(reduction rule 4: dominating row)
For (row-one = 1; row-one < m; row-one+ +)
For (row_two = row-one + 1; row_two zz m; row_two+ +)
If ((Row_Sum[row_two] # 0) & &(Row_SumIrow_onel f 0))

{
dominate-flag = 0;
// The dominate-flag is used to record the dominating relationship
// between row-one and row-two that have been checked so far.
// If dominate-flag = = 0, row-one is equal to row-two.
// If dominate-flag = = 1, row-one dominates row-two.
// If dominate-flag = = 2, row_two dominates row-one.
// If the dominating relationship does not exist, set dominate-flag = - 1 and skip the loop
For(col=l;col<n;col++)
If (Col_Sum[col] + 0)
(
If (f(row_one,col) > f(row_two,col)
(
If (dominate-flag = = 0)
dominate-flag = 1;

If (dominate-flag = = 2)
1
dominate-flag = - 1;

Optimal Path Set Selection Method

Break;

]
If (f(row_one,col1 < f(row_two,col))
I

J. SYSTEMS SOFIWARE 163
1997; 39145-164

If (dominate_flag = = 0)
dominate-flag = 2;

If (dominate-flag = = 1)
{
dominate-flag = - 1;
Break;

]

]]
If ((dominate-flag = = l)lKdominate_flag = 0))
(//delete row_two
For (co1 = 1; co1 I n; co1 + + 1
If (f(row_two,col) # 0)
t
Row_Sum[row_twol = Row_Sum[row_two] - f(row_two,col);
Col_Sum[col] = Col_Sum[col] - f(row_two,col);
f(row_two,col) = 0;

]
Flag = 1;
]
If (dominate-flag = = 2)
{ // delete row-one
For (co1 = 1; co1 I n; co1 + +)
If (f(row_one,col) # 0)
1
Row_Sum[row_onel = Row_Sum[row_one] - f(row_one,col);
Col_Sum[coll = Col_Sum[col] - Arow_one,col);
f(row_one,col) = 0;

]
Flag = 1;
]

1
]// End of While(Flag = = 1)
// Copy undelete (i.e., non-empty) rows and columns of F to F’,
// Copy undeleted rows of X to X’
m’ = @

For (in; row = 1; row I m; row + +)
If (Row_Sum[rowl # 0)
m’ = m’ + 1.

n’=Q ’

For (int co1 = 1; co1 I n; co1 + +)
If (col_sum[coll # 0)
n’ = n’ + 1.

F’ = new ar&m’,n’];
X’ = new array[m’];
int new-row = 1;
For (old-row = 1; old-row I m; old-row + +)
If (Row_Sum[old_row] # 0)
1
X’[new_row] = xold_row3;
int new-co1 = 1;
For (old_col = 1; old_col I n; old_col+ +)
If (Col_Sum[old_col] + 0)
{

164 J. SYSTEMS SOFTWARE
WI; 391145164

f’(new_row,new_col) = f(old_row,old_col);
new-co1 = new201 + 1;

1
new-row = new-row + 1;

}i/ End of the procedure

C.-G. Chung and J.-G. Lee

