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Abstract Let n and k be positive integers with n − k ≥ 2. The arrangement graph
An,k is recognized as an attractive interconnection networks. Let x, y, and z be three
different vertices of An,k . Let l be any integer with dAn,k

(x,y) ≤ l ≤ n!
(n−k)! − 1 −

dAn,k
(y, z). We shall prove the following existance properties of Hamiltonian path:

(1) for n − k ≥ 3 or (n, k) = (3,1), there exists a Hamiltonian path R(x,y, z; l) from
x to z such that dR(x,y,z;l)(x,y) = l; (2) for n − k = 2 and n ≥ 5, there exists a Hamil-
tonian path R(x,y, z; l) except for the case that x, y, and z are adjacent to each other.
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1 Introduction

In this paper, a network is represented as an acyclic undirected graph. We follow the
graph definitions and notation used in Bondy and Murty (1976). Let G = (V ,E) be a
graph where V is a finite set and E is a subset of {(a, b) | (a, b) is an unordered pair
of V }. We say that V is the vertex set and E is the edge set. We also use V (G) and
E(G) to denote the vertex set and edge set of a graph G, respectively. Two vertices
u and v are adjacent if (u, v) ∈ E. A vertex v is a neighbor of u if v is adjacent
to u. We use NbdG(u) to denote the neighborhood set {v | (u, v) ∈ E(G)}. The de-
gree of a vertex u in G, denoted by degG(u), is |NbdG(u)|. A graph is k-regular if
degG(u) = k for every vertex u in G. A path is a sequence of adjacent vertices, writ-
ten as 〈v0, v1, . . . , vm〉, in which all the vertices v0, v1, . . . , vm are distinct except that
possibly v0 = vm. We also write the path as 〈v0,P , vm〉, where P = 〈v0, v1, . . . , vm〉.
The length of a path P , denoted by l(P ), is the number of edges in P . Let u and v be
two vertices of G. The distance between u and v denoted by dG(u, v) is the length of
the shortest path of G joining u and v. The diameter of a graph G, denoted by D(G),
is max{dG(u, v) | u,v ∈ V (G)}. A cycle is a path with at least three vertices such that
the first vertex is the same as the last one. A Hamiltonian cycle is a cycle of length
|V (G)|. A Hamiltonian path is a path of length |V (G)| − 1.

The interconnection network has been an important research area for parallel and
distributed computer systems. The graph embedding problem is to ask if the guest
graph is a subgraph of a host graph. An important benefit of the graph embeddings
is that we can apply existing algorithm for guest graphs to host graphs. Therefore,
the graph embedding problem is a central issue in evaluating a network and has
attracted a burst of studies in recent years. Cycle networks and path networks are
suitable for designing simple algorithms with low communication costs. The cycle
embedding problem, which deals with all possible lengths of the cycles in a given
graph, is investigated in a lot of interconnection networks (Day and Tripathi 1992;
Germa et al. 1998; Hwang and Chen 2000; Li et al. 2003; Ma et al. 2007). The
path embedding problem, which deals with all possible lengths of the paths be-
tween given two vertices in a given graph, is investigated in a lot of interconnec-
tion networks (Chang et al. 2004; Fan et al. 2007; Li et al. 2003; Ma and Xu 2006;
Xu and Xu 2007).

The hypercube and the star graph (Akers et al. 1986; Akers and Krishnamurthy
1989) are important families of interconnection networks. The hypercube possesses
many good properties and is implemented in many multiprocessor systems. Akers
et al. (1986) proposed the star graph, which has smaller degree, diameter, and aver-
age distance than the hypercube while reserving symmetry properties and desirable
fault-tolerant characteristics. As a result, the star graph has been recognized as an
alternative to the hypercube. However, the hypercube and the star are less flexible
in adjusting their sizes. The arrangement graph was proposed by Day and Tripathi
(1992) as a generalization of the star graph. It is more flexible in its size than the star
graph.

For the path embedding problem on the arrangement graphs, in Teng et al. (2008),
it is proved that between any two distinct vertices x and y of the arrangement graph
An,k , there exists a path Pl(x,y) of length l with dAn,k

(x,y) ≤ l ≤ |V (An,k)| − 1 =



J Comb Optim (2012) 24:627–646 629

n!
(n−k)! − 1. It would be interesting to extend Pl(x,y) by including all the vertices in

V (An,k) − V (Pl(x,y)) and terminating at a desired vertex z.
Let x, y, and z be three different vertices of An,k . Let l be any integer with

dAn,k
(x,y) ≤ l ≤ n!

(n−k)! − 1 − dAn,k
(y, z). For n − k ≥ 3 or (n, k) = (3,1), we

shall prove that there exists a Hamiltonian path R(x,y, z; l) from x to z such that
dR(x,y,z;l)(x,y) = l. For n−k = 2 and n ≥ 4, we shall prove that there exists a Hamil-
tonian path R(x,y, z; l) from x to z such that dR(x,y,z;l)(x,y) = l except for the case
that x, y, and z are adjacent to each other.

In the following section, we introduce the definition of the arrangement graphs.
In Sect. 3, we introduce another property, called 2RP, for arrangement graphs An,k .
Then we apply the 2RP-property to prove the aforementioned property. We prove that
any An,k satisfies the 2RP-property if n−k ≥ 2 and (n, k) /∈ {(3,1), (4,2)} in Sect. 4.

2 Arrangement graphs

Assume that n and k are two positive integers. Let 〈n〉 and 〈k〉 denote the sets
{1,2, . . . , n} and {1,2, . . . , k}, respectively. The vertex set of the arrangement graph
An,k , V (An,k) = {p | p = p1p2 · · ·pk with pi ∈ 〈n〉 for 1 ≤ i ≤ k and pi �= pj if
i �= j} and the edge set of An,k , E(An,k) = {(p,q) | p,q ∈ V (An,k), p and q differ in
exactly one position}. Figure 1 illustrates A4,2. By definition, An,k is a regular graph
of degree k(n − k) with n!

(n−k)! vertices. In Day and Tripathi (1992), it is proved that

An,k is vertex symmetric and edge symmetric. Moreover, An,1 is isomorphic to the
complete graph Kn. Furthermore, An,n−1 is isomorphic to the famous n-dimensional
star graph (Akers et al. 1986; Akers and Krishnamurthy 1989) if we allow k = n − 1.

Let i and j be two positive integers with 1 ≤ i, j ≤ n, and k be an integer with
k > 1. Let V (Ai

n,k) = {p | p = p1p2 · · ·pk and pk = i}. Let Ai
n,k denote the sub-

graph of An,k induced by V (Ai
n,k). It is easy to see that each Ai

n,k is isomorphic
to An−1,k−1. Thus, An,k can be recursively constructed from n copies of An−1,k−1.
Each Ai

n,k represents a subcomponent of An,k . Let I be a subset of {1,2, . . . , n}. We

use AI
n,k to denote the subgraph of An,k induced by

⋃
i∈I V (Ai

n,k). For |I | < n, AI
n,k

Fig. 1 A4,2
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is called an incomplete arrangement graph. We use Ei,j to denote the set of edges
between Ai

n,k and A
j
n,k . The following lemmas can be easily proved by definition.

Lemma 1 Let i be any integer with 1 ≤ i ≤ k. Let P(i) be the function defined on
V (An,k) into itself by assigning x = x1x2 · · ·xk to y = y1y2 · · ·yk where yi = xk ,
yk = xi , and yj = xj if j /∈ {i, k}. Then P(i) is an isomorphism of An,k .

Lemma 2 Let n and k be two positive integers with n− k ≥ 2, and let i and j be two
distinct elements of 〈n〉. Then |Ei,j | = (n−2)!

(n−k−1)! . Suppose that (u,v) and (u′,v′) are

distinct edges in Ei,j . Then {u,v} ∩ {u′,v′} = ∅. Moreover, (u,u′) ∈ E(Ai
n,k) if and

only if (v,v′) ∈ E(A
j
n,k).

Lemma 3 D(An,k) = � 3k
2 �, as shown in Day and Tripathi (1992).

Lemma 4 As shown in Teng et al. (2008), let u ∈ V (Ai
n,k) and v ∈ V (A

j
n,k) be two

vertices in An,k for some i, j ∈ 〈n〉 with i �= j . Then a shortest path M connecting u
to v can be written as 〈u,P1,u′,v′,P2,v〉 such that (1) 〈u,P1,u′〉 is a path in Ai

n,k ,

(2) 〈v′,P2,v〉 is a path in A
j
n,k , and (3) l(P2) ≤ 1.

Let u ∈ V (Ai
n,k) for some i ∈ 〈n〉. We use Ni(u) and N∗(u) to denote the neigh-

bors of u in V (Ai
n,k) and V (An,k)−V (Ai

n,k), respectively. We call vertices in N∗(u)

the outer neighbors of u. It follows from the definitions, |Ni(u)| = (k − 1)(n − k)

and |N∗(u)| = n − k. We define the adjacent subcomponent AS(u) of u as {j | u is
adjacent to some vertices in A

j
n,k and u /∈ V (A

j
n,k)}. By the definitions, |AS(u)| =

|N∗(u)| = n − k. The following lemma can easily be proved by definition.

Lemma 5 Suppose that k ≥ 2, n − k ≥ 2, and i ∈ 〈n〉. Let u and v be two distinct
vertices in Ai

n,k with d(u,v) = 1. Then |AS(u) ∩ AS(v)| = n − k − 1 and AS(u) �=
AS(v).

Lemma 6 Suppose that k ≥ 2 and n − k ≥ 2. Let u and v be two distinct ver-
tices in An,k . Then |NbdAn,k

(u) ∩ NbdAn,k
(v)| = n − k − 1 if dAn,k

(u,v) = 1, and
|NbdAn,k

(u) ∩ NbdAn,k
(v)| ≤ 2 if dAn,k

(u,v) = 2.

Proof Suppose that dAn,k
(u,v) = 1. Let u = x1x2 · · ·xk . By Lemma 1, we may as-

sume that v = xk+1x2 · · ·xk with x1 �= xk+1. Obviously, NbdAn,k
(u) ∩ NbdAn,k

(v) =
{xix2 · · ·xk | k + 2 ≤ i ≤ n}. Thus |NbdAn,k

(u) ∩ NbdAn,k
(v)| = n − k − 1.

Suppose that dAn,k
(u,v) = 2. Let u = x1x2 · · ·xk . By Lemma 1, we may assume

that either v = xk+1xk+2x3 · · ·xk or v = x2xk+1x3 · · ·xk with xk+1 �= x1, xk+1 �= x2,

xk+2 �= x1, and xk+2 �= x2. Obviously,

NbdAn,k
(u) ∩ NbdAn,k

(v)

=
{ {x1xk+2x3 · · ·xk, xk+1x2x3 · · ·xk} if v = xk+1xk+2x3 · · ·xk

{x1xk+1x3 · · ·xk} if v = x2xk+1x3 · · ·xk

Thus |NbdAn,k
(u) ∩ NbdAn,k

(v)| ≤ 2. �
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3 The 2RP-property and applications

3.1 The 2P-property and the 2RP-property

In Teng et al. (2007, 2008), we have the following result.

Lemma 7 Let u, v, x, and y be any four distinct vertices of An,k with n − k ≥ 2.
Suppose that I ⊆ 〈n〉 with |I | ≥ 2. Then there exist two disjoint paths P1 and P2 such
that (1) P1 is a path joining u to v, (2) P2 is a path joining x to y, and (3) P1 ∪ P2

spans AI
n,k .

As a corollary, we observed that the arrangement graphs An,k satisfy the following
property: Let u, v, x, and y be any four distinct vertices of An,k with n − k ≥ 2. Then
there exist two disjoint paths P1 and P2 such that (1) P1 is a path joining u to v,
(2) P2 is a path joining x to y, and (3) P1 ∪ P2 spans An,k .

We refer the above property as the 2P-property of the arrangement graphs. Obvi-
ously, l(P1) ≥ dAn,k

(u,v), l(P2) ≥ dAn,k
(x,y), and l(P1) + l(P2) = n!

(n−k)! − 2. We
expect that both l(P1) and l(P2) can be any integers satisfying the above constraints.
Such expectation is almost true for (n, k) /∈ {(3,1), (4,2)}. In A5,2, let u = 15,
v = 25, x = 35, and y = 45. Obviously, dA5,2(u,v) = 1 and dA5,2(x,y) = 1. By
brute force, we can find P1 and P2 with (l(P1), l(P2)) ∈ {(1,17), (2,16), (3,15), . . . ,

(17,1)} − {(2,16), (16,2)}. Note that {x,y} = NbdA5,2(u) ∩ NbdA5,2(v) and we can
not find P1 with l(P1) = 2.

Now, we propose the 2RP-property of An,k : Let u, v, x, and y be any four distinct
vertices of An,k . Let l1 and l2 be two integers with l1 ≥ dAn,k

(u,v), l2 ≥ dAn,k
(x,y),

and l1 + l2 = n!
(n−k)! − 2. Then there exist two disjoint paths P1 and P2 such that

(1) P1 is a path joining u to v with l(P1) = l1, (2) P2 is a path joining x to y with
l(P2) = l2, and (3) P1 ∪ P2 spans An,k except for the following cases: (a) l1 = 2 with
dAn,k

(u,v) ≤ 2 and {x,y} ⊇ NbdAn,k
(u) ∩ NbdAn,k

(v); (b) l2 = 2 with dAn,k
(x,y) ≤ 2

and {u,v} ⊇ NbdAn,k
(x) ∩ NbdAn,k

(y).

Lemma 8 (Hsu et al. 2004) Let F ⊂ V (An,k) with |F | ≤ k(n − k) − 3. Then there
exists a Hamiltonian path of An,k − F joining any two distinct vertices of An,k − F .

Lemma 9 Suppose that k ≥ 2, n − k ≥ 2 and I ⊆ 〈n〉 with |I | ≥ 1. Then AI
n,k is

Hamiltonian connected.

Proof For |I | = 1, AI
n,k is isomorphic to An−1,k−1. By Lemma 8, AI

n,k is Hamiltonian

connected. Assume that |I | ≥ 2. Let x and y be two arbitrary vertices in AI
n,k . Let u

and v be two adjacent vertices in AI
n,k − {x,y}. By Lemma 7, there exist two disjoint

paths P1 and P2 such that (1) P1 joins x to u, (2) P2 joins v to y, and (3) P1 ∪P2 spans
AI

n,k . Obviously, the path 〈x,P1,u,v,P2,y〉 forms a Hamiltonian path of AI
n,k . �

Theorem 1 The arrangement graph An,k satisfies the 2RP-property if and only if
n − k ≥ 2 and (n, k) /∈ {(3,1), (4,2)}.
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We prove the theorem by induction. However, the proof of the theorem is rather
long. We prove it in Sect. 4.

3.2 The applications of the 2RP-property

Now we apply the 2RP-property of An,k to prove some properties of An,k . Suppose
that u, v, x, and y are any four distinct vertices of a graph G. Then G is globally two-
equal-disjoint path coverable if there exist two disjoint paths P and Q such that (1) P

joins u and v, and Q joins x and y, (2) l(P ) = l(Q), and (3) P ∪ Q spans G. Lai and
Hsu study the property on the crossed cube, the twisted cube, and the Möbius cube
in Lai and Hsu (2008). Applying the 2RP-property of An,k , we have the following
corollary.

Corollary 1 The arrangement graph An,k is globally two-equal-disjoint path cover-
able for k ≥ 2, n − k ≥ 2, and (n, k) �= (4,2).

One of the major requirements in designing an interconnection network is the
Hamiltonian property. The Hamiltonian property is fundamental to the deadlock-free
routing algorithms of distributed systems. Recently, further attempts at Hamiltonian
problems led some research into the study of super-Hamiltonian graphs, such as pan-
positionable Hamiltonian graphs and panconnected graphs. A Hamiltonian graph G

is panpositionable if for any two different vertices u and v of G and for any in-
teger l satisfying d(u, v) ≤ l ≤ |V (G)|

2 , there exists a Hamiltonian cycle HC of G

such that the relative distance between u and v on HC is l. A graph G is pancon-
nected if there exists a path of length l joining any two different vertices u and v

with d(u, v) ≤ l ≤ |V (G)| − 1. We show some interesting properties about super-
Hamiltonian for An,k by applying the 2RP-property.

Lemma 10 Suppose that n − k ≥ 2. Assume that x, y, and z are three different ver-
tices of the arrangement graph An,k with dAn,k

(x, z) ≥ 2 and (n, k) �= (4,2). Let l

be any integer with dAn,k
(x,y) ≤ l ≤ n!

2(n−k)! . Then there exists a Hamiltonian path
R(x,y, z; l) from x to z such that dR(x,y,z;l)(x,y) = l.

Proof Since dAn,k
(x, z) ≥ 2, k �= 1. Thus, deg(v) = k(n − k) ≥ 4 for any vertex v in

An,k . We choose a vertex w as follows: Suppose that dAn,k
(x,y) ≥ 3. We choose any

vertex w in NbdAn,k
(y) − {z}. Suppose that dAn,k

(x,y) = 2. We choose any vertex w
in NbdAn,k

(y) − {z} such that dAn,k−{w}(x,y) = 2. Suppose that dAn,k
(x,y) = 1. By

Lemma 6, there exists a vertex p in NbdAn,k
(x)∩ NbdAn,k

(y). We can choose a vertex
w in NbdAn,k

(y)−{p, z}. By Theorem 1, there exist two disjoint paths P1 and P2 such
that (1) P1 is a path joining x to y with l(P1) = l, (2) P2 is a path joining w to z with
l(P2) = n!

(n−k)! − l − 2, and (3) P1 ∪ P2 spans An,k . Obviously, 〈x,P1,y,w,P2, z〉
forms the required Hamiltonian path. �

Lemma 11 Suppose that n − k ≥ 2 and (n, k) /∈ {(4,2), (3,1)}. Assume that x, y,
and z are three different vertices of the arrangement graph An,k with dAn,k

(x,y) ≤
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dAn,k
(y, z), dAn,k

(x, z) = 1, and {z} �= NbdAQn,k
(x)∩ NbdAQn,k

(y). Then for any inte-

ger l with dAn,k
(x,y) ≤ l ≤ n!

2(n−k)! there exists a Hamiltonian path R(x,y, z; l) from
x to z such that dR(x,y,z;l)(x,y) = l.

Proof Since {z} �= NbdAQn,k
(x) ∩ NbdAQn,k

(y), we can choose a vertex w in
NbdAn,k

(y) − {z}. By Theorem 1, there exist two disjoint paths P1 and P2 such that
(1) P1 is a path joining x to y with l(P1) = l, (2) P2 is a path joining w to z with
l(P2) = n!

(n−k)! − l − 2, and (3) P1 ∪ P2 spans An,k . Obviously, 〈x,P1,y,w,P2, z〉
forms the required Hamiltonian path. �

Theorem 2 Assume that n − k ≥ 3 or (n, k) = (3,1). Let x, y, and z be three
different vertices of An,k . Let l be any integer with dAn,k

(x,y) ≤ l ≤ n!
(n−k)! − 1 −

dAn,k
(y, z). Then there exists a Hamiltonian path R(x,y, z; l) from x to z such that

dR(x,y,z;l)(x,y) = l.

Proof Obviously, the theorem holds for (n, k) = (3,1). Assume that n−k ≥ 3. Let x,
y, and z be three different vertices of the arrangement graph An,k . By the symmetric
role between x and z, we can assume that l ≤ n!

2(n−k)! .
Suppose that dAn,k

(x, z) ≥ 2. By Lemma 10, there exists a Hamiltonian path
R(x,y, z; l) from x to z such that dR(x,y,z;l)(x,y) = l. Suppose that dAn,k

(x, z) = 1.
By Lemma 6, |NbdAn,k

(x)∩NbdAn,k
(z)| ≥ 2. Thus, {z} �= NbdAQn,k

(x)∩NbdAQn,k
(y).

By Lemma 11, there exists a Hamiltonian path R(x,y, z; l) from x to z such that
dR(x,y,z;l)(x,y) = l.

The theorem is proved. �

Suppose that x and y are any two adjacent vertices in An,k with n − k = 2
and n ≥ 4. By Lemma 6, there is only one vertex z in NbdAn,k

(x) ∩ NbdAn,k
(y).

Obviously, there exists no Hamiltonian path R(x,y, z; l) from x to z such that
dR(x,y,z;l)(x,y) = 2. Thus, the above theorem does not hold if n − k = 2 and n ≥ 4.
Yet, we still can easily get the following theorem by Lemmas 10 and 11.

Theorem 3 Assume that n − k = 2 with n ≥ 5. Let x, y, and z be three different ver-
tices of An,k . Let l be any integer with dAn,k

(x,y) ≤ l ≤ n!
(n−k)! − 1 −dAn,k

(y, z). Then
there exists a Hamiltonian path R(x,y, z; l) from x to z such that dR(x,y,z;l)(x,y) = l

except for the case that x, y, and z are adjacent to each other.

In Fig. 1, we can check that dA4,2(12,41) = 2, and there exists no path of length 2
joining 12 to 41 in A4,2 − {42}. Thus, there exists no Hamiltonian path P of A4,2

joining 42 to 41 such that dP (42,13) = 2. Moreover, consider that dA4,2(42,12) = 1
and dA4,2(12,13) = 1. There exists no path of length 3 joining 42 to 12 in A4,2 −{12}
and there exists no path of length 3 joining 12 to 13 in A4,2 −{42}. Thus, there exists
no Hamiltonian path P of A4,2 joining 42 to 13 such that dP (42,13) ∈ {3,8}. Thus,
the above theorem does not hold for (n, k) = (4,2).

With Theorems 2 and 3, we reprove the following theorems about the panposition-
able Hamiltonian property and the panconnected property in Teng et al. (2008).
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Theorem 4 Suppose that n − k ≥ 2. Assume that x and y are two different vertices
of An,k . Let l be any integer with dAn,k

(x,y) ≤ l ≤ n!
2(n−k)! . Then there exists a Hamil-

tonian cycle C(x,y; l) such that dC(x,y;l)(x,y) = l.

Proof Obviously, the theorem holds for (n, k) = (3,1) and (4,1). By brute force, we
can check that the theorem holds for (n, k) = (4,2). Thus, we assume that n ≥ 5.
Suppose that n − k ≥ 3 or n − k = 2 with (x,y) /∈ E(An,k). We choose z as any
vertex of NbdAn,k

(x) − {y}. Otherwise, we choose z as any vertex in NbdAn,k
(x) −

NbdAn,k
(y). By Theorems 2 and 3, there exists a Hamiltonian path R(x,y, z; l) from x

to z such that dR(x,y,z;l)(x,y) = l. Obviously, 〈x,R(x,y, z; l), z,x〉 forms the required
Hamiltonian cycle. �

Theorem 5 Suppose that n − k ≥ 2. Assume that x and y are two different vertices
of An,k . Then there exists a path of length l joining x and y with dAn,k

(x,y) ≤ l ≤
n!

(n−k)! − 1.

Proof Obviously, the theorem holds for (n, k) = (3,1) and (4,1). By brute force,
we can check that the theorem holds for (n, k) = (4,2). Thus, we assume that
n ≥ 5. Suppose that n − k ≥ 3 or n − k = 2 with (x,y) /∈ E(An,k). We choose
z as any vertex of NbdAn,k

(y) − {x}. Otherwise, we choose z as any vertex in
NbdAn,k

(y) − NbdAn,k
(x). Suppose that dAn,k

(x,y) ≤ l ≤ n!
(n−k)! − 2. By Theorems 2

and 3, there exists a Hamiltonian path R(x,y, z; l) = 〈x,P1,y,P2, z〉 from x to z such

that dR(x,y,z;l)(x,y) = l. Obviously, 〈x,P1,y〉 forms the required path. Suppose that
l = n!

(n−k)! − 1. By Lemma 8, there exists a Hamiltonian path HP from x to y such

that l(HP) = n!
(n−k)! − 1. Thus the theorem is proved. �

4 Proof of Theorem 1

Since A3,1 contains exactly three vertices, it is meaningless to discuss the 2RP-
property. Now we prove that A4,2 does not satisfy the 2RP-property. Let u = 12,
v = 13, x = 24, and y = 34 be four vertices in A4,2. Let t be any integer with
3 ≤ t ≤ 7, and w = 14. Since NbdA4,2(w) = {u,v,x,y}, we can not find two dis-
joint paths P1 and P2 such that (1) P1 is a path joining u to v with l(P1) = t , (2) P2
is a path joining x to y with l(P2) = |V (A4,2)| − t − 2, and (3) P1 ∪ P2 spans A4,2.

For n ≥ 4, n − k ≥ 2, and (n, k) �= (4,2), we shall prove that An,k satisfies the
2RP-property by induction. The induction basis are An,1 with n ≥ 4, A5,2, A5,3, and
A6,2. Since An,1 is isomorphic to Kn, An,1 satisfies 2RP-property for n ≥ 4. By brute
force with a computer program, we can check that A5,2, A5,3, and A6,2 satisfy the
2RP-property. Now, we assume that An−1,k−1 satisfies the 2RP-property with n ≥ 6
and n − k ≥ 2. We claim that An,k also satisfies the 2RP-property.

Assume that u, v, x, and y are any four distinct vertices of An,k . Let l1 and l2
be any two positive integers with l1 + l2 = n!

(n−k)! − 2 such that l1 ≥ dAn,k
(u,v),

l2 ≥ dAn,k
(x,y), and l1 + l2 = n!

(n−k)! − 2. Without loss of generality, we assume that

l1 ≥ l2. Thus, l2 ≤ n!
2(n−k)! − 1.
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We first consider the case l2 = 1 with dAn,k
(x,y) = 1. We set P2 = 〈x,y〉. Ob-

viously, k(n − k) − 3 ≥ 2 for n > 5 and n − k ≥ 2. By Lemma 8, there exists a
Hamiltonian path P1 of An,k − V (P2) joining u to v. Obviously, P1 and P2 form the
required paths.

Then we consider the case l2 = 2 with dAn,k
(x,y) ≤ 2 such that u /∈ NbdAn,k

(x) ∩
NbdAn,k

(y) and v /∈ NbdAn,k
(x) ∩ NbdAn,k

(y). Suppose that w ∈ NbdAn,k
(x) ∩

NbdAn,k
(y). We set P2 = 〈x,w,y〉. Obviously, k(n − k) − 3 ≥ 3 for n > 5 and

n − k ≥ 2. By Lemma 8, there exists a Hamiltonian path P1 of An,k − V (P2) joining
u to v. Obviously, P1 and P2 form the required paths.

Finally, we consider that l2 > max{2, dAn,k
(x,y)}. Let a, b, c, and d be the indices

such that u is a vertex in Aa
n,k , v is a vertex in Ab

n,k , x is a vertex in Ac
n,k , and y

is a vertex in Ad
n,k . By Lemma 1, we may assume that a �= b. Depending on the

distribution of a, b, c, and d , we have five cases. In each case, we have some subcases
depending on the length of l2. The reader can easily get the idea of the proof once
s/he understand the first case.

In the following proof, we shall write l2 as q(l2)
(n−1)!
(n−k)! + r(l2) with 0 ≤ q(l2) ≤

�n
2 � and 0 ≤ r(l2) <

(n−1)!
(n−k)! . That is, q(l2) and r(l2) is the quotient and remainder of

l2 divided by |V (An−1,k−1)| = (n−1)!
(n−k)! , respectively.

Case 1 a, b, c, and d are four distinct elements in 〈n〉.
Subcase 1.1 q(l2) = 0 and r(l2) ≤ (n−1)!

2(n−k)! + D(An,k). See Fig. 2(a) for an illustra-
tion. By Lemma 4, there exists a shortest path connecting x and y with the form
〈x,M1,y′,y′′,M2,y〉 such that (1) M1 is a path in Ac

n,k , (2) M2 is a path in Ad
n,k ,

and (3) l(M2) ≤ 1 with y′ ∈ V (Ac
n,k) and y′′ ∈ V (Ad

n,k). Let I = 〈n〉 − {b, c, d}.
Since |Ec,I | = (n−3)(n−2)!

(n−k−1)! > max{n − k − 1,2} + 3, there exist (w,w′) and (z, z′)
in Ec,I such that {w, z} ⊂ V (Ac

n,k) − {x,y′} and {w′, z′} ⊂ V (AI
n,k) − {u} with

{w, z} � NbdAn,k
(x) ∩ NbdAn,k

(y′). Obviously, (n−1)!
(n−k)! − r(l2) − 1 ≥ � 3k

2 �. By

Lemma 3, (n−1)!
(n−k)! − r(l2) − 1 ≥ D(An,k). By induction, there exist two paths Q1

and Q2 such that (1) Q1 is a path joining x to y′ with l(Q1) = r(l2) − 1 if
l(M2) = 0, and l(Q1) = r(l2)−2 if l(M2) = 1, (2) Q2 is a path joining w to z with
l(Q2) = (n−1)!

(n−k)! − r(l2) − 1 if l(M2) = 0, and l(Q2) = (n−1)!
(n−k)! − r(l2) if l(M2) = 1,

and (3) Q1 ∪ Q2 spans Ac
n,k . By Lemma 2, |Eb,d | = (n−2)!

(n−k−1)! > 3, hence there

exists (p,p′) in Eb,d such that p ∈ V (Ad
n,k) − {y,y′′} and p′ ∈ V (Ab

n,k) − {v}.
Again, there exists (q,q′) in Ed,I such that q ∈ V (Ad

n,k) − {p,y,y′′} and q′ ∈
V (AI

n,k) − {u,w′, z′}. By Lemma 8, there exists a Hamiltonian path H1 join-

ing p to q in Ad
n,k − {y,y′′}, and there exists a Hamiltonian path H2 joining p′

to v in Ab
n,k . By Lemma 7, there exist two disjoint paths S and T such that

(1) S is a path joining u to w′, (2) T is a path joining z′ to q′, and (3) S ∪ T

spans AI
n,k . We set P1 = 〈u, S,w′,w,Q2, z, z′, T ,q′,q,H1,p,p′,H2,v〉 and set

P2 = 〈x,Q1,y′,y′′,M2,y〉. Obviously, P1 and P2 form the required paths.
Subcase 1.2 q(l2) = 0 with r(l2) ≥ (n−1)!

2(n−k)! + D(An,k) + 1, or q(l2) = 1 with

r(l2) < D(An,k). See Fig. 2(b) for an illustration. By Lemma 2, |Ec,d | =
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Fig. 2 Illustrations for Case 1 in Theorem 1

(n−2)!
(n−k−1)! > 2. Hence there exists (r, s) in Ec,d such that r ∈ V (Ac

n,k) − {x}
and s ∈ V (Ad

n,k) − {y}. By Lemma 2, |Eb,d | = (n−2)!
(n−k−1)! > 3. Again there ex-

ists (p,p′) in Eb,d such that p ∈ V (Ad
n,k) − {s,y} and p′ ∈ V (Ab

n,k) − {v}. Let

I = 〈n〉 − {b, c, d}. Since |Ec,I | = (n−3)(n−2)!
(n−k−1)! > max{n − k − 1,2} + 3, there ex-

ist (w,w′) and (z, z′) in Ec,I such that {w, z} ⊂ V (Ac
n,k) − {r,x} and {w′, z′} ⊂

V (AI
n,k)−{u} with {w, z} � NbdAn,k

(x)∩NbdAn,k
(r). By induction, there exist two

paths Q1 and Q2 such that (1) Q1 is a path joining x to r with l(Q1) = (n−1)!
2(n−k)! −1,

(2) Q2 is a path joining w to z with l(Q2) = (n−1)!
2(n−k)! − 1, and (3) Q1 ∪ Q2

spans Ac
n,k . Again, there exists (q,q′) in Ed,I such that q ∈ V (Ad

n,k) − {p, s,y}
and q′ ∈ V (AI

n,k) − {u,w′, z′} with {p,q} � NbdAn,k
(s) ∩ NbdAn,k

(y). By induc-
tion, there exist two paths R and R′ such that (1) R is a path joining s to y
with l(R) = r(l2) − (n−1)!

2(n−k)! − 1 if q(l2) = 0, and l(R) = r(l2) + (n−1)!
2(n−k)! − 1 if

q(l2) = 1, (2) R′ is a path joining p to q with l(R′) = 3(n−1)!
2(n−k)! − r(l2) − 1 if

q(l2) = 0, and l(R′) = (n−1)!
2(n−k)! − r(l2) − 1 if q(l2) = 1, and (3) R ∪ R′ spans

Ad
n,k . By Lemma 9, there exists a Hamiltonian path H joining p′ to v in Ab

n,k . By
Lemma 7, there exist two disjoint paths S and T such that (1) S is a path joining
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u to w′, (2) T is a path joining z′ to q′, and (3) S ∪ T spans AI
n,k . We set P1 =

〈u, S,w′,w,Q2, z, z′, T ,q′,q,R′,p,p′,H,v〉 and set P2 = 〈x,Q1, r, s,R,y〉. Ob-
viously, P1 and P2 form the required paths.

Subcase 1.3 q(l2) > 0 and D(An,k) ≤ r(l2) ≤ (n−1)!
2(n−k)! + D(An,k). See Fig. 2(c) for

an illustration. By Lemma 2, |Ec,d | = (n−2)!
(n−k−1)! > 2. Hence there exists (z, z′) in

Ec,d such that z ∈ V (Ac
n,k)−{x} and z′ ∈ V (Ad

n,k)−{y}. Let I ⊂ 〈n〉− {a, b, c, d}
with |I | = q(l2) − 1, and let J = 〈n〉 − (I ∪ {c, d}). Obviously, there exist (p,p′)
and (q,q′) in Ed,J such that {p,q} ⊂ V (Ad

n,k) − {y, z′} and {p′,q′} ⊂ V (AJ
n,k) −

{u,v} with {p,q} � NbdAn,k
(y) ∩ NbdAn,k

(z′). By induction, there exist two paths
R and R′ such that (1) R is a path joining z′ to y with l(R) = r(l2), (2) R′ is a
path joining p to q with l(R′) = (n−1)!

(n−k)! − r(l2) − 2, and (3) R ∪ R′ spans Ad
n,k .

By Lemma 9, there exists a Hamiltonian path H joining x to z in A
I∪{a}
n,k . By

Lemma 7, there exist two disjoint paths S and T such that (1) S is a path joining
u to q′, (2) T is a path joining p′ to v, and (3) S ∪ T spans AJ

n,k . We set P1 =
〈u, S,q′,q,R′,p,p′, T ,v〉 and set P2 = 〈x,H, z, z′,R,y〉. Obviously, P1 and P2

form the required paths.
Subcase 1.4 q(l2) > 0 with r(l2) ≥ (n−1)!

2(n−k)! + D(An,k) + 1, or q(l2) > 1 with

r(l2) < D(An,k). See Fig. 2(d) for an illustration. Let e ∈ 〈n〉 − {a, b, c, d}. There
exists (r, r′) in Ec,e such that r ∈ V (Ac

n,k) − {x} and r′ ∈ V (Ae
n,k). Again, there

exists (s, s′) in Ed,e such that s ∈ V (Ad
n,k) − {v} and s′ ∈ V (Ae

n,k) − {r′}. Let

I ⊂ 〈n〉 − {a, b, c, d, e} with |I | = q(l2) − 1 if r(l2) ≥ (n−1)!
2(n−k)! + D(An,k) + 1

and |I | = q(l2) − 2 if r(l2) < D(An,k). Let J = 〈n〉 − (I ∪ {b, c, d, e}). Obvi-
ously, there exist (w,w′) and (z, z′) in Ec,J such that {w, z} ⊂ V (Ac

n,k) − {r,x}
and {w′, z′} ⊂ V (AJ

n,k) − {u} with {w, z} � NbdAn,k
(x) ∩ NbdAn,k

(r). Again, there

exists (p,p′) in Ed,J such that p ∈ V (Ad
n,k)−{s,y} and p′ ∈ V (AJ

n,k)−{w′, z′}. By
induction, there exist two paths Q1 and Q2 such that (1) Q1 is a path joining x to r
with l(Q1) = (n−1)!

2(n−k)! − 1, (2) Q2 is a path joining w to z with l(Q2) = (n−1)!
2(n−k)! − 1,

and (3) Q1 ∪ Q2 spans Ac
n,k . Obviously, there exists (q,q′) in Eb,d such that q ∈

V (Ad
n,k)−{p, s,y} and q′ ∈ V (Ab

n,k)−{v} with {p,q} � NbdAn,k
(s)∩ NbdAn,k

(y).
Again, by induction, there exist two paths R and R′ such that (1) R is a path join-

ing s to y with l(R) = r(l2) − (n−1)!
2(n−k)! − 1 if r(l2) ≥ (n−1)!

2(n−k)! + D(An,k) + 1, and

l(R) = r(l2) + (n−1)!
2(n−k)! − 1 if r(l2) < D(An,k), (2) R′ is a path joining p to q with

l(R′) = 3(n−1)!
2(n−k)! − r(l2)− 1 if r(l2) ≥ (n−1)!

2(n−k)! +D(An,k)+ 1, and l(R′) = (n−1)!
2(n−k)! −

r(l2) − 1 if r(l2) < D(An,k), and (3) R ∪ R′ spans Ad
n,k . By Lemma 9, there exists

a Hamiltonian path H joining r′ to s′ in A
I∪{e}
n,k , and there exists a Hamiltonian

path H ′ joining q′ to v in Ab
n,k . By Lemma 7, there exist two disjoint paths S and

T such that (1) S is a path joining u to z′, (2) T is a path joining w′ to p′, and
(3) S ∪ T spans AJ

n,k . We set P1 = 〈u, S, z′, z,Q2,w,w′, T ,p′,p,R′,q,q′,H ′,v〉
and set P2 as 〈x,Q1, r, r′,H, s′, s,R,y〉. Obviously, P1 and P2 form the required
paths.

Case 2 a = c and b = d .
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Subcase 2.1 q(l2) = 0 and r(l2) ≤ (n−1)!
2(n−k)! + D(An,k). By Lemma 4, there ex-

ists a shortest path connecting x and y with the form 〈x,M1,y′,y′′,M2,y〉 such
that (1) M1 is a path in Aa

n,k , (2) M2 is a path in Ab
n,k , and (3) l(M2) ≤ 1

with y′ ∈ V (Aa
n,k) and y′′ ∈ V (Ab

n,k). Let I = 〈n〉 − {a, b}. Obviously, there ex-

ists an edge (z, z′) ∈ Ea,I such that z ∈ V (Aa
n,k) − {x,y′,u} and z′ ∈ V (AI

n,k)

with {u, z} � NbdAn,k
(x) ∩ NbdAn,k

(y′). By induction, there exist two paths Q1

and Q2 such that (1) Q1 is a path joining x to y′ with l(Q1) = r(l2) − 1 if
l(M2) = 0, and l(Q1) = r(l2)− 2 if l(M2) = 1, (2) Q2 is a path joining u to z with

l(Q2) = (n−1)!
(n−k)! − r(l2) − 1 if l(M2) = 0, and l(Q2) = (n−1)!

(n−k)! − r(l2) if l(M2) = 1,

and (3) Q1 ∪ Q2 spans Aa
n,k . Again, there exists (w,w′) in Eb,I such that w ∈

V (Ab
n,k) − {v,y,y′′} and w′ ∈ V (AI

n,k) − {z′}. By Lemma 8, there exists a Hamil-

tonian path H joining w to v in Ab
n,k − {y,y′′}. By Lemma 9, there exists a Hamil-

tonian path H ′ joining z′ to w′ in AI
n,k . We set P1 = 〈u,Q2, z, z′,H ′,w′,w,H,v〉

and set P2 = 〈x,Q1,y′,y′′,M2,y〉. Obviously, P1 and P2 form the required paths.
Subcase 2.2 q(l2) = 0 with r(l2) ≥ (n−1)!

2(n−k)! + D(An,k) + 1, or q(l2) = 1 with

r(l2) < D(An,k). Obviously, there exists (w,w′) in Ea,b such that w ∈ V (Aa
n,k) −

{u,x} and w′ ∈ V (Ab
n,k) − {v,y}. Let I = 〈n〉 − {a, b}. There exists (z, z′) in Ea,I

such that z ∈ V (Aa
n,k) − {u,w,x} and z′ ∈ V (AI

n,k) with {u, z} � NbdAn,k
(x) ∩

NbdAn,k
(w). By induction, there exist two paths Q1 and Q2 such that (1) Q1

is a path joining x to w with l(Q1) = (n−1)!
2(n−k)! − 1, (2) Q2 is a path joining u

to z with l(Q2) = (n−1)!
2(n−k)! − 1, and (3) Q1 ∪ Q2 spans Aa

n,k . Again, there exists

(p,p′) in Eb,I such that p ∈ V (Ab
n,k) − {v,w′,y} and p′ ∈ V (AI

n,k) − {z′} with
{p,v} � NbdAn,k

(w′) ∩ NbdiAn,k
(y). By induction, there exist two paths R and

R′ such that (1) R is a path joining w′ to y with l(R) = r(l2) − (n−1)!
2(n−k)! − 1 if

q(l2) = 0, and l(R) = r(l2) + (n−1)!
2(n−k)! − 1 if q(l2) = 1, (2) R′ is a path joining p

to v with l(R′) = 3(n−1)!
2(n−k)! − r(l2) − 1 if q(l2) = 0, and l(R′) = (n−1)!

2(n−k)! − r(l2) − 1

if q(l2) = 1, and (3) R ∪ R′ spans Ab
n,k . By Lemma 9, there exists a Hamiltonian

path H joining z′ to p′ in AI
n,k . We set P1 = 〈u,Q2, z, z′,H,p′,p,R′,v〉 and set

P2 = 〈x,Q1,w,w′,R,y〉. Obviously, P1 and P2 form the required paths.
Subcase 2.3 q(l2) > 0 and D(An,k) ≤ r(l2) ≤ (n−1)!

2(n−k)! + D(An,k). Let e ∈ 〈n〉 −
{a, b} such that e ∈ AS(y). There exists (y,y′) in Eb,e such that y′ ∈ V (Ae

n,k).
Again, there exists (w,w′) in Ea,e such that w ∈ V (Aa

n,k) − {u,x} and w′ ∈
V (Ae

n,k)−{y′}. Let I ⊂ 〈n〉− {a, b, e} with |I | = q(l2)− 1, and let J = 〈n〉− (I ∪
{a, b, e}). Obviously, there exists (z, z′) in Ea,J such that z ∈ V (Aa

n,k) − {u,w,x}
and z′ ∈ V (AJ

n,k) with {u, z} � NbdAn,k
(x) ∩ NbdAn,k

(w). Again, there exists

(p,p′) in Eb,J such that p ∈ V (Ab
n,k) − {v,y} and p′ ∈ V (AJ

n,k) − {z′}. By in-
duction, there exist two paths Q1 and Q2 such that (1) Q1 is a path joining x to w
with l(Q1) = r(l2), (2) Q2 is a path joining u to z with l(Q2) = (n−1)!

(n−k)! − r(l2)− 2,
and (3) Q1 ∪Q2 spans Aa

n,k . By Lemma 8, there exists a Hamiltonian path R join-

ing p to v in Ab
n,k −{y}. By Lemma 9, there exists a Hamiltonian path H joining w′
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to y′ in A
I∪{e}
n,k , and there exists a Hamiltonian path H ′ joining z′ to p′ in AJ

n,k . We
set P1 = 〈u,Q2, z, z′,H ′,p′,p,R,v〉 and set P2 = 〈x,Q1,w,w′,H,y′,y〉. Obvi-
ously, P1 and P2 form the required paths.

Subcase 2.4 q(l2) > 0 with r(l2) ≥ (n−1)!
2(n−k)! + D(An,k) + 1, or q(l2) > 1 with

r(l2) < D(An,k). Let e ∈ 〈n〉 − {a, b}. There exists (r, r′) in Ea,e such that
r ∈ V (Aa

n,k) − {u,x} and r′ ∈ V (Ae
n,k). Again, there exists (s, s′) in Eb,e such that

s ∈ V (Ab
n,k) − {v,y} and s′ ∈ V (Ae

n,k) − {r′}. Let I ⊂ 〈n〉 − {a, b, e} with |I | =
q(l2) − 1 if r(l2) ≥ (n−1)!

2(n−k)! + D(An,k) + 1 and |I | = q(l2) − 2 if r(l2) < D(An,k).

Let J = 〈n〉 − (I ∪ {a, d, e}). Obviously, there exists (z, z′) in Ea,J such that z ∈
V (Aa

n,k)−{r,u,x} and z′ ∈ V (AJ
n,k) with {u, z} � NbdAn,k

(x)∩NbdAn,k
(r). Again,

there exists (p,p′) in Eb,J such that p ∈ V (Ab
n,k)−{s,v,y} and p′ ∈ V (AJ

n,k)−{z′}
with {p,v} � NbdAn,k

(s) ∩ NbdAn,k
(y). By induction, there exist two paths Q1 and

Q2 such that (1) Q1 is a path joining x to r with l(Q1) = (n−1)!
2(n−k)! − 1, (2) Q2

is a path joining u to z with l(Q2) = (n−1)!
2(n−k)! − 1, and (3) Q1 ∪ Q2 spans Aa

n,k .
Again, by induction, there exist two paths R and R′ such that (1) R is a path join-
ing s to y with l(R) = r(l2) − (n−1)!

2(n−k)! − 1 if r(l2) ≥ (n−1)!
2(n−k)! + D(An,k) + 1, and

l(R) = r(l2) + (n−1)!
2(n−k)! − 1 if r(l2) < D(An,k), (2) R′ is a path joining p to v with

l(R′) = 3(n−1)!
2(n−k)! − r(l2)− 1 if r(l2) ≥ (n−1)!

2(n−k)! +D(An,k)+ 1, and l(R′) = (n−1)!
2(n−k)! −

r(l2) − 1 if r(l2) < D(An,k), and (3) R ∪ R′ spans Ab
n,k . By Lemma 9, there exists

a Hamiltonian path H joining r′ to s′ in A
I∪{e}
n,k , and there exists a Hamiltonian path

H ′ joining z′ to p′ in AJ
n,k . We set P1 = 〈u,Q2, z, z′,H ′,p′,p,R′,v〉 and set P2

as 〈x,Q1, r, r′,H, s′, s,R,y〉. Obviously, P1 and P2 form the required paths.

Case 3 a = c, a �= d , and b �= d .

Subcase 3.1 q(l2) = 0 and r(l2) ≤ (n−1)!
2(n−k)! + D(An,k). By Lemma 4, there ex-

ists a shortest path connecting x and y with the form 〈x,M1,y′,y′′,M2,y〉 such
that (1) M1 is a path in Aa

n,k , (2) M2 is a path in Ad
n,k , and (3) l(M2) ≤ 1 with

y′ ∈ V (Aa
n,k) and y′′ ∈ V (Ad

n,k). Let I = 〈n〉 − {a, d}. Obviously, there exists

an edge (z, z′) ∈ Ea,I such that z ∈ V (Aa
n,k) − {x,y′,u} and z′ ∈ V (AI

n,k) − {v}
with {u, z} � NbdAn,k

(x) ∩ NbdAn,k
(y′). By induction, there exist two paths Q1

and Q2 such that (1) Q1 is a path joining x to y′ with l(Q1) = r(l2) − 1 if
l(M2) = 0, and l(Q1) = r(l2) − 2 if l(M2) = 1, (2) Q2 is a path joining u to
z with l(Q2) = (n−1)!

(n−k)! − r(l2) − 1 if l(M2) = 0, and l(Q2) = (n−1)!
(n−k)! − r(l2) if

l(M2) = 1, and (3) Q1 ∪ Q2 spans Aa
n,k . Again, there exist (p,p′) and (q,q′) in

Ed,I such that {p,q} ⊂ V (Ad
n,k) − {y,y′′} and {p′,q′} ⊂ V (AI

n,k) − {v, z′}. By

Lemma 8, there exists a Hamiltonian path H joining p to q in Ad
n,k − {y,y′′}. By

Lemma 7, there exist two disjoint paths S and T such that (1) S is a path join-
ing z′ to p′, (2) T is a path joining q′ to v, and (3) S ∪ T spans AI

n,k . We set
P1 = 〈u,Q2, z, z′, S,p′,p,H,q,q′, T ,v〉 and set P2 = 〈x,Q1,y′,y′′,M2,y〉. Ob-
viously, P1 and P2 form the required paths.

Subcase 3.2 q(l2) = 0 with r(l2) ≥ (n−1)!
2(n−k)! + D(An,k) + 1, or q(l2) = 1 with

r(l2) < D(An,k). Obviously, there exists (w,w′) in Ea,d such that w ∈ V (Aa
n,k) −
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{u,x} and w′ ∈ V (Ad
n,k) − {y}. Let I = 〈n〉 − {a, d}. There exists (z, z′) in

Ea,I such that z ∈ V (Aa
n,k) − {u,w,x} and z′ ∈ V (AI

n,k) − {v} with {u, z} �
NbdAn,k

(x) ∩ NbdAn,k
(w). By induction, there exist two paths Q1 and Q2 such

that (1) Q1 is a path joining x to w with l(Q1) = (n−1)!
2(n−k)! − 1, (2) Q2 is a path

joining u to z with l(Q2) = (n−1)!
2(n−k)! − 1, and (3) Q1 ∪ Q2 spans Aa

n,k . Again,

there exist (p,p′) and (q,q′) in Ed,I such that {p,q} ⊂ V (Ad
n,k) − {w′,y} and

{p′,q′} ⊂ V (AI
n,k) − {v, z′} with {p,q} � NbdAn,k

(w′) ∩ NbdAn,k
(y). By induc-

tion, there exist two paths R and R′ such that (1) R is a path joining w′ to y

with l(R) = r(l2) − (n−1)!
2(n−k)! − 1 if q(l2) = 0, and l(R) = r(l2) + (n−1)!

2(n−k)! − 1 if

q(l2) = 1, (2) R′ is a path joining p to q with l(R′) = 3(n−1)!
2(n−k)! − r(l2) − 1 if

q(l2) = 0, and l(R′) = (n−1)!
2(n−k)! − r(l2) − 1 if q(l2) = 1, and (3) R ∪ R′ spans Ad

n,k .
By Lemma 7, there exist two disjoint paths S and T such that (1) S is a path join-
ing z′ to p′, (2) T is a path joining q′ to v, and (3) S ∪ T spans AI

n,k . We set
P1 = 〈u,Q2, z, z′, S,p′,p,R′,q,q′, T ,v〉 and set P2 = 〈x,Q1,w,w′,R,y〉. Obvi-
ously, P1 and P2 form the required paths.

Subcase 3.3 q(l2) > 0 and D(An,k) ≤ r(l2) ≤ (n−1)!
2(n−k)! + D(An,k). Obviously, there

exists (w,w′) in Ea,d such that w ∈ V (Aa
n,k) − {u,x} and w′ ∈ V (Ad

n,k) − {y}.
Let I ⊂ 〈n〉 − {a, b, d} with |I | = q(l2) − 1, and let J = 〈n〉 − (I ∪ {a, d}). There
exists (z, z′) in Ea,J such that z ∈ V (Aa

n,k)−{u,w,x} and z′ ∈ V (AJ
n,k)−{v} with

{u, z} � NbdAn,k
(x) ∩ NbdAn,k

(w). By induction, there exist two paths Q1 and Q2

such that (1) Q1 is a path joining x to w with l(Q1) = r(l2), (2) Q2 is a path joining

u to z with l(Q2) = (n−1)!
(n−k)! − r(l2) − 2, and (3) Q1 ∪ Q2 spans Aa

n,k . By Lemma 9,

there exists a Hamiltonian path H joining w′ to y in A
I∪{d}
n,k , and there exists a

Hamiltonian path H ′ joining z′ to v in AJ
n,k . We set P1 = 〈u,Q2, z, z′,H ′,v〉 and

set P2 = 〈x,Q1,w,w′,H,y〉. Obviously, P1 and P2 form the required paths.

Subcase 3.4 q(l2) > 0 with r(l2) ≥ (n−1)!
2(n−k)! + D(An,k) + 1, or q(l2) > 1 with

r(l2) < D(An,k). Let I ⊂ 〈n〉 − {a, b, d} with |I | = q(l2) if r(l2) ≥ (n−1)!
2(n−k)! +

D(An,k) + 1 and |I | = q(l2) − 1 if r(l2) < D(An,k). Let J = 〈n〉 − (I ∪ {a, d}).
Obviously, there exists (r, r′) in Ea,I such that r ∈ V (Aa

n,k) − {u,x} and r′ ∈
V (AI

n,k). Again, there exists (z, z′) in Ea,J such that z ∈ V (Aa
n,k) − {u, r,x}

and z′ ∈ V (AJ
n,k) − {v} with {u, z} � NbdAn,k

(x) ∩ NbdAn,k
(r). By induction,

there exist two paths Q1 and Q2 such that (1) Q1 is a path joining x to r with
l(Q1) = (n−1)!

2(n−k)! − 1, (2) Q2 is a path joining u to z with l(Q2) = (n−1)!
2(n−k)! − 1,

and (3) Q1 ∪ Q2 spans Aa
n,k . Obviously, there exists (s, s′) in Ed,I such that

s ∈ V (Ad
n,k) − {y} and s′ ∈ V (AI

n,k) − {r′}. Again, there exist (p,p′) and (q,q′)
in Ed,J such that {p,q} ⊂ V (Ad

n,k) − {s,y} and {p′,q′} ⊂ V (AJ
n,k) − {v, z′} with

{p,q} � NbdAn,k
(s) ∩ NbdAn,k

(y). By induction, there exist two paths R and

R′ such that (1) R is a path joining s to y with l(R) = r(l2) − (n−1)!
2(n−k)! − 1 if

r(l2) ≥ (n−1)!
2(n−k)! + D(An,k) + 1, and l(R) = r(l2) + (n−1)!

2(n−k)! − 1 if r(l2) < D(An,k),

(2) R′ is a path joining p to q with l(R′) = 3(n−1)!
2(n−k)! − r(l2) − 1 if r(l2) ≥
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(n−1)!
2(n−k)! + D(An,k) + 1, and l(R′) = (n−1)!

2(n−k)! − r(l2) − 1 if r(l2) < D(An,k), and

(3) R ∪ R′ spans Ad
n,k . By Lemma 9, there exists a Hamiltonian path H join-

ing r′ to s′ in AI
n,k . Again, by Lemma 7, there exist two disjoint paths S and

T such that (1) S is a path joining z′ to p′, (2) T is a path joining q′ to v, and
(3) S ∪ T spans AJ

n,k . We set P1 = 〈u,Q2, z, z′, S,p′,p,R′,q,q′, T ,v〉 and set P2

as 〈x,Q1, r, r′,H, s′, s,Q1,y〉. Obviously, P1 and P2 form the required paths.

Case 4 a �= c, b �= c, and c = d .

Subcase 4.1 q(l2) = 0 and r(l2) ≤ (n−1)!
2(n−k)! . Obviously, there exist two vertices

{w, z} ⊂ V (Ac
n,k)−{x,y} such that {w, z} � NbdAn,k

(x)∩NbdAn,k
(y) and {w, z} �⊆

Nc(u) ∪ Nc(v). Let I = 〈n〉 − {c}. There exist two edges (w,w′) and (z, z′) in
Ec,I such that {w′, z′} ⊂ V (AI

n,k). By induction, there exist two paths Q1 and Q2

such that (1) Q1 is a path joining w to z with l(Q1) = (n−1)!
(n−k)! − r(l2) − 2, (2)

Q2 is a path joining x to y with l(Q2) = r(l2), and (3) Q1 ∪ Q2 spans Ac
n,k . By

Lemma 7, there exist two disjoint paths S and T such that (1) S is a path join-
ing u to w′, (2) T is a path joining z′ to v, and (3) S ∪ T spans AI

n,k . We set
P1 = 〈u, S,w′,w,Q1, z, z′, T ,v〉 and set P2 as Q2. Obviously, P1 and P2 form the
required paths.

Subcase 4.2 q(l2) = 0 with r(l2) >
(n−1)!

2(n−k)! , or q(l2) = 1 with r(l2) < max{3,

dAn,k
(x,y)}. There exist two vertices w and z in Ac

n,k − {x,y} such that {a, b} �⊆
AS(w), {a, b} ⊆ AS(z), and z /∈ Nc(u)∪Nc(v). By induction, there exist two paths
Q1 and Q2 such that (1) Q1 is a path joining w to z with l(Q1) = (n−1)!

2(n−k)! − 1,

(2) Q2 is a path joining x to y with l(Q2) = (n−1)!
2(n−k)! − 1, and (3) Q1 ∪ Q2

spans Ac
n,k . Since l(Q2) = (n−1)!

2(n−k)! − 1, we can write Q2 as 〈x,Q1
2, r, s,Q2

2,y〉
for some vertices r and s such that {u,v} � NbdAn,k

(r)∪NbdAn,k
(s). By Lemma 5,

|AS(r) ∩ AS(s)| = n − k − 1. Let e ∈ AS(r) ∩ AS(s) for some e ∈ 〈n〉 − {c}. Let r′
be the vertex adjacent to r in Ae

n,k and s′ be the vertex adjacent to s in Ae
n,k . By

Lemma 2, dAn,k
(r′, s′) = 1. Then consider the following subcases.

Subcase 4.2.1 e ∈ {a, b}. Without loss of generality, we assume that e = a.
Obviously, there exists a vertex t ∈ V (Aa

n,k) − {u, r′, s′} such that {r′, s′} �

NbdAn,k
(u) ∩ NbdAn,k

(t), v /∈ Nb(t), dAn,k
(w, t) > 2, and dAn,k

(z, t) > 2. By in-
duction, there exist two paths R and R′ such that (1) R is a path joining u to
t with l(R) = 3(n−1)!

2(n−k)! − r(l2) − 2 if q(l2) = 0, and l(R) = (n−1)!
2(n−k)! − r(l2) − 2

if q(l2) = 1, (2) R′ is a path joining r′ to s′ with l(R′) = r(l2) − (n−1)!
2(n−k)! if

q(l2) = 0, and l(R′) = (n−1)!
2(n−k)! + r(l2) if q(l2) = 1, and (3) R ∪ R′ spans Aa

n,k .

Let I = 〈n〉 − {a, c}. We have {w, z} �⊆ Nc(v), v /∈ Nb(t), dAn,k
(w, t) > 2 and

dAn,k
(z, t) > 2. Hence there exist (w,w′), (z, z′) in Ec,I , and (t, t′) in Ea,I such

that {w′, z′, t′} ⊂ V (AI
n,k) − {v}. By Lemma 7, there exist two disjoint paths S

and T such that (1) S is a path joining t′ to w′, (2) T is a path joining z′ to v,
and (3) S ∪ T spans AI

n,k . We set P1 = 〈u,R, t, t′, S,w′,w,Q1, z, z′, T ,v〉 and

set P2 = 〈x,Q1
2, r, r′,R′, s′, s,Q2

2,y〉. Obviously, P1 and P2 form the required
paths.
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Subcase 4.2.2 e /∈ {a, b}. Since {a, b} �⊆ AS(w), there exists a vertex w′ ∈ V (A
f
n,k)

adjacent to w for some f ∈ 〈n〉−{a, b, c, e}. Since b ∈ AS(z) and z /∈ Nc(v), there
exists z′ in V (Ab

n,k) − {v} adjacent to z. By Lemma 9, there exists a Hamiltonian

path H joining z′ to v in Ab
n,k . Obviously, there exist p and q in V (Ae

n,k) −
{r′, s′} such that b /∈ AS(p) ∪ AS(q), {u,w′} � NbdAn,k

(p) ∪ NbdAn,k
(q), and

{p,q} � NbdAn,k
(r′) ∩ NbdAn,k

(s′). Let I = 〈n〉 − {b, c, e}. Thus there exist
(p,p′) and (q,q′) in Ee,I such that {p′,q′} ⊂ V (AI

n,k) − {u,w′}. By induc-
tion, there exist two paths R and R′ such that (1) R is a path joining p to q
with l(R) = 3(n−1)!

2(n−k)! − r(l2) − 2 if q(l2) = 0, and l(R) = (n−1)!
2(n−k)! − r(l2) − 2

if q(l2) = 1, (2) R′ is a path joining r′ to s′ with l(R′) = r(l2) − (n−1)!
2(n−k)! if

q(l2) = 0, and l(R′) = (n−1)!
2(n−k)! + r(l2) if q(l2) = 1, and (3) R ∪ R′ spans Ae

n,k .
By Lemma 7, there exist two disjoint paths S and T such that (1) S is a
path joining u to p′, (2) T is a path joining q′ to w′, and (3) S ∪ T spans
AI

n,k . We set P1 = 〈u, S,p′,p,R,q,q′, T ,w′,w,Q1, z, z′,H,v〉 and set P2 as

〈x,Q1
2, r, r′,R′, s′, s,Q2

2,y〉. Obviously, P1 and P2 form the required paths.

Subcase 4.3 q(l2) > 0 and max{3, dAn,k
(x,y)} ≤ r(l2) ≤ (n−1)!

2(n−k)! . Obviously, there
exist two adjacent vertices r and s in V (Ac

n,k) − {x,y} such that e ∈ AS(r) ∩ AS(s)
for some e ∈ 〈n〉 − {a, b, c}. Let r′ be the vertex adjacent to r in Ae

n,k and s′ be the
vertex adjacent to s in Ae

n,k . By Lemma 2, dAn,k
(r′, s′) = 1. Again, there exist two

vertices {p,q} ⊂ V (Ae
n,k)−{r′, s′} such that {p,q} � NbdAn,k

(r′)∩NbdAn,k
(s′) and

{p,q} � NbdAn,k
(u) ∪ NbdAn,k

(v). Let I ⊆ 〈n〉 − {a, b, c, e} with |I | = q(l2) − 1
and J = 〈n〉 − (I ∪ {c, e}). Thus there exist two edges (p,p′) and (q,q′) in Ee,J

such that {p′,q′} ⊂ V (AJ
n,k) − {u,v}. By induction, there exist two paths Q1 and

Q2 such that (1) Q1 is a path joining p to q with l(Q1) = (n−1)!
(n−k)! − r(l2) − 2,

(2) Q2 is a path joining r′ to s′ with l(Q2) = r(l2), and (3) Q1 ∪ Q2 spans Ae
n,k .

By Lemma 7, there exist two disjoint paths H1 and H2 such that (1) H1 is a path
joining x to r, (2) H2 is a path joining s to y, and (3) H1 ∪H2 spans A

I∪{c}
n,k . Again,

by Lemma 7, there exist two disjoint paths S and T such that (1) S is a path joining
u to p′, (2) T is a path joining q′ to v, and (3) S ∪ T spans AJ

n,k . We set P1 =
〈u, S,p′,p,Q1,q,q′, T ,v〉 and set P2 = 〈x,H1, r, r′,Q2, s′, s,H2,y〉. Obviously,
P1 and P2 form the required paths.

Subcase 4.4 q(l2) > 0 with r(l2) >
(n−1)!

2(n−k)! , or q(l2) > 1 with r(l2) < max{3,

dAn,k
(x,y)}. Let e be an element in 〈n〉 − {a, c}. Obviously, there exists an

edge (r,w) ∈ Ec,e such that r ∈ V (Ae
n,k) and w ∈ V (Ac

n,k) − {x,y}. Obviously,
there exists a vertex s ∈ V (Ae

n,k) adjacent to r such that f ∈ AS(s) for some

f ∈ 〈n〉 − {a, b, c, e}. Thus there exists an edge (s, s′) ∈ Ee,f such that s ∈
V (Ae

n,k)−{r} and s′ ∈ V (A
f
n,k). Obviously, there exists an edge (z, z′) ∈ Ec,f such

that z ∈ V (A
f
n,k) − {s′} and z′ ∈ V (Ac

n,k) − {w,x,y}. Let I ⊆ 〈n〉 − {a, b, c, e, f }
with |I | = q(l2) − 1 and J = 〈n〉 − (I ∪ {a, c, e, f }). Again, there exist two
vertices {p,q} ⊂ V (Ae

n,k) − {r, s} such that {p,q} � NbdAn,k
(r) ∩ NbdAn,k

(s),
v /∈ NbdAn,k

(p)∪ NbdAn,k
(q), J ∩ AS(p) �= ∅, and J ∩ AS(q) �= ∅. Obviously, there

exist two edges {(p,p′), (q,q′)} ⊆ Ee,J such that {p′,q′} ⊂ V (AJ
n,k) − {v}. By in-
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duction, there exist two paths R and R′ such that (1) R is a path joining p to q
with l(R) = 3(n−1)!

2(n−k)! − r(l2) − 2 if r(l2) >
(n−1)!

2(n−k)! , and l(R) = (n−1)!
2(n−k)! − r(l2) − 2

if r(l2) < max{3, dAn,k
(x,y)}, (2) R′ is a path joining r to s with l(R′) = r(l2) −

(n−1)!
2(n−k)! if r(l2) >

(n−1)!
2(n−k)! , and l(R′) = (n−1)!

2(n−k)! +r(l2) if r(l2) < max{3, dAn,k
(x,y)},

and (3) R ∪ R′ spans Ae
n,k . Again, there exists an edge (u′,v′) ∈ Ea,f such

that u′ ∈ V (Aa
n,k) − {u} and v′ ∈ V (A

f
n,k) − {s′, z}. Obviously, there exists a

vertex t ∈ V (A
f
n,k) − {s′,v′, z} such that {t,v′} � NbdAn,k

(s′) ∩ NbdAn,k
(z), v /∈

NbdAn,k
(t), and J ∩ AS(t) �= ∅. Thus there exists an edge (t, t′) in Ef,J such

that t′ ∈ V (AJ
n,k) − {p′,q′,v}. By induction, there exist two paths Q1 and Q2

such that (1) Q1 is a path joining s′ to z with l(Q1) = (n−1)!
2(n−k)! − 1, (2) Q2 is

a path joining v′ to t with l(Q2) = (n−1)!
2(n−k)! − 1, and (3) Q1 ∪ Q2 spans A

f
n,k .

By Lemma 7, there exist two disjoint paths H1 and H2 such that (1) H1 is a
path joining x to w, (2) H2 is a path joining z′ to y, and (3) H1 ∪ H2 spans
AI

n,k . By Lemma 9, there exists a Hamiltonian path H3 joining u to u′ in Aa
n,k .

Again, by Lemma 7, there exist two disjoint paths S and T such that (1) S is
a path joining t′ to q′, (2) T is a path joining p′ to v, and (3) S ∪ T spans
AJ

n,k . We set P1 = 〈u,H3,u′,v′,Q2, t, t′, S,q′,q,R,p,p′, T ,v〉 and set P2 as
〈x,H1,w, r,R′, s, s′,Q1, z, z′,H2,y〉. Obviously, P1 and P2 form the required
paths.

Case 5 a = c = d .

Subcase 5.1 q(l2) = 0 and r(l2) ≤ (n−1)!
2(n−k)! . Let e be an element in 〈n〉 − {a, b}.

Obviously, there exists an edge (w, z) in Ea,e such that w ∈ V (Aa
n,k) − {x,y,u}

and z ∈ V (Ae
n,k). By induction, there exist two paths Q1 and Q2 such that (1)

Q1 is a path joining u to w with l(Q1) = (n−1)!
(n−k)! − r(l2) − 2, (2) Q2 is a path

joining x to y with l(Q2) = r(l2), and (3) Q1 ∪ Q2 spans Aa
n,k . Let I = 〈n〉 − {a}.

By Lemma 9, there exists a Hamiltonian path R of AI
n,k joining z to v. We set

P1 = 〈u,Q1,w, z,R,v〉 and set P2 as Q2. Obviously, P1 and P2 form the required
paths.

Subcase 5.2 q(l2) = 0 with r(l2) >
(n−1)!

2(n−k)! , or q(l2) = 1 with r(l2) < max{3,

dAn,k
(x,y)}. Obviously, there exists a vertex z in V (Aa

n,k) − {u,x,y} such that
v /∈ NbdAn,k

(z). By induction, there exist two paths Q1 and Q2 such that (1) Q1

is a path joining u to z with l(Q1) = (n−1)!
2(n−k)! − 1, (2) Q2 is a path joining x

to y with l(Q2) = (n−1)!
2(n−k)! − 1, and (3) Q1 ∪ Q2 spans Aa

n,k . Since l(Q2) > 2,

we can write Q2 as 〈x,Q1
2, r, s,Q2

2,y〉 for some vertices r and s such that v /∈
NbdAn,k

(r)∪ NbdAn,k
(s). By Lemma 5, |AS(r)∩ AS(s)| = n− k − 1 ≥ 1. There ex-

ists an element e ∈ AS(r)∩AS(s). Obviously, e �= a. Let r′ be the vertex adjacent to
r in Ae

n,k , and s′ be the vertex adjacent to s in Ae
n,k . By Lemma 2, dAn,k

(r′, s′) = 1.
Then consider the following subcases.

Subcase 5.2.1 e = b. Since |N∗(z)| = n − k ≥ 2, there exists a vertex t ∈
N∗(z) in A

f
n,k for some f ∈ 〈n〉 − {a, b}. Obviously, there exists a vertex

z′ ∈ V (Ab
n,k) − {s′, r′,v} such that {z′,v} � NbdAb

n,k
(r′) ∩ NbdAb

n,k
(s′) and f ∈
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AS(z′) with t /∈ Nf (z′). Let t′ be the vertex in A
f
n,k adjacent to z′. By induc-

tion, there exist two paths R and R′ such that (1) R is a path joining z′ to v
with l(R) = 3(n−1)!

2(n−k)! − r(l2) − 2 if q(l2) = 0, and l(R) = (n−1)!
2(n−k)! − r(l2) − 2

if q(l2) = 1, (2) R′ is a path joining r′ to s′ with l(R′) = r(l2) − (n−1)!
2(n−k)! if

q(l2) = 0, and l(R′) = (n−1)!
2(n−k)! + r(l2) if q(l2) = 1, and (3) R ∪R′ spans Ab

n,k . By

Lemma 9, there exists a Hamiltonian path S of A
〈n〉−{a,b}
n,k joining t to t′. We set

P1 = 〈u,Q1, z, t, S, t′, z′,R,v〉 and set P2 = 〈x,Q1
2, r, r′,R′, s′, s,Q2

2,y〉. Obvi-
ously, P1 and P2 form the required paths.

Subcase 5.2.2 e �= b. Since |N∗(z)| = n − k ≥ 2, there exists a vertex t ∈ N∗(z)
in A

f
n,k for some f ∈ 〈n〉 − {a, e}. By Lemma 6, |NbdAe

n,k
(r′) ∩ NbdAe

n,k
(s′)| =

n − k − 1. Obviously, |Ee,g| − (n − k − 1) = (n−2)!
(n−k−1)! − (n − k − 1) > 3 for

some g ∈ 〈n〉 − {a, b, e}. Thus there exist two vertices p and w in Ae
n,k − {r′, s′}

such that {p,w} � NbdAn,k
(r′) ∩ NbdAn,k

(s′) and g ∈ AS(p) ∩ AS(w). There exist
two edges (p,p′) and (w,w′) in Ee,g . By induction, there exist two paths R and
R′ such that (1) R is a path joining p to w with l(R) = 3(n−1)!

2(n−k)! − r(l2) − 2 if

q(l2) = 0, and l(R) = (n−1)!
2(n−k)! − r(l2) − 2 if q(l2) = 1, (2) R′ is a path joining

r′ to s′ with l(R′) = r(l2) − (n−1)!
2(n−k)! if q(l2) = 0, and l(R′) = (n−1)!

2(n−k)! + r(l2) if
q(l2) = 1, and (3) R ∪ R′ spans Ae

n,k . By Lemma 7, there exist two disjoint paths
S and T such that (1) S is a path joining t to p′, (2) T is a path joining w′ to v, and
(3) S ∪ T spans A

〈n〉−{a,e}
n,k . We set P1 = 〈u,Q1, z, t, S,p′,p,R,w,w′, T ,v〉 and

set P2 as 〈x,Q1
2, r, r′,R′, s′, s,Q2

2,y〉. Obviously, P1 and P2 form the required
paths.

Subcase 5.3 q(l2) = 1 and max{3, dAn,k
(x,y)} ≤ r(l2) ≤ (n−1)!

2(n−k)! . Obviously, there
exists a vertex u′ ∈ NbdAa

n,k
(u) in Aa

n,k −{x,y} such that u′ /∈ N∗(v). By Lemma 8,

there exists a Hamiltonian path H of Aa
n,k − {u,u′} joining x to y. We can write

H as 〈x,H 1, r, s,H 2,y〉 for some vertices r and s such that v /∈ NbdAn,k
(r) ∪

NbdAn,k
(s). By Lemma 5, |AS(r)∩AS(s)| = n−k −1 ≥ 1. There exists an element

e ∈ AS(r) ∩ AS(s). Obviously, e �= a. Let r′ be the vertex adjacent to r in Ae
n,k and

s′ be the vertex adjacent to s in Ae
n,k . By Lemma 2, dAn,k

(r′, s′) = 1. Then consider
the following subcases.

Subcase 5.3.1 e = b. Since |N∗(u′)| = n − k ≥ 2, there exists a vertex z ∈ N∗(u′)
in A

f
n,k for some f ∈ 〈n〉 − {a, b}. Let v′ be a vertex in Ab

n,k − {r′, s′,v} such that

{v,v′} � NbdAb
n,k

(r′) ∩ NbdAb
n,k

(s′) with z /∈ Nf (v′). Let t be the vertex in A
g
n,k

adjacent to v′ for some g ∈ 〈n〉 − {a, b}. By induction, there exist two paths Q1
and Q2 such that (1) Q1 is a path joining r′ to s′ with l(Q1) = r(l2) + 2, (2) Q2
is a path joining v′ to v with l(Q2) = (n−1)!

(n−k)! − r(l2) − 4, and (3) Q1 ∪ Q2 spans

Ab
n,k . By Lemma 9, there exists a Hamiltonian path R of A

〈n〉−{a,b}
n,k joining z to t.

We set P1 = 〈u,u′, z,R, t,v′,Q2,v〉 and set P2 = 〈x,H 1, r, r′,Q1, s′, s,H 2,y〉.
Obviously, P1 and P2 form the required paths.

Subcase 5.3.2 e �= b. Since |N∗(u′)| = n − k ≥ 2, there exists a vertex z ∈ N∗(u′)
in A

f
n,k for some f ∈ 〈n〉 − {a, e}. Since u′ /∈ N∗(v), z �= v. By Lemma 6,
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|NbdAe
n,k

(r′) ∩ NbdAe
n,k

(s′)| = n − k − 1. Obviously, |Ee,g| − (n − k − 1) =
(n−2)!

(n−k−1)! − (n − k − 1) > 3 for some g ∈ 〈n〉 − {a, b, e, f }. Thus there ex-
ist two vertices t and w in Ae

n,k − {r′, s′} such that {t,w} � NbdAn,k
(r′) ∩

NbdAn,k
(s′) and g ∈ AS(t) ∩ AS(w). Let t′ and w′ be the vertices in A

g
n,k such

that {(t, t′), (w,w′)} ⊆ Ee,g . By induction, there exist two paths Q1 and Q2 such
that (1) Q1 is a path joining r′ to s′ with l(Q1) = r(l2) + 2, (2) Q2 is a path
joining w to t with l(Q2) = (n−1)!

(n−k)! − r(l2) − 4, and (3) Q1 ∪ Q2 spans Ae
n,k . By

Lemma 7, there exist two disjoint paths S and T such that (1) S is a path joining
z to w′, (2) T is a path joining t′ to v, and (3) S ∪T spans A

〈n〉−{a,e}
n,k . We set P1 =

〈u,u′, z, S,w′,w,Q2, t, t′, T ,v〉 and set P2 as 〈x,H 1, r, r′,Q1, s′, s,H 2,y〉. Ob-
viously, P1 and P2 form the required paths.

Subcase 5.4 q(l2) > 1 and max{3, dAn,k
(x,y)} ≤ r(l2) ≤ (n−1)!

2(n−k)! . Let I ⊆ 〈n〉 −
{a, b} with |I | = q(l2) and J = 〈n〉 − (I ∪ {a}). Obviously, there exists an edge
(t, z) ∈ Ea,J such that z ∈ V (Aa

n,k) − {x,y,u} and t ∈ V (AJ
n,k) − {v} with z /∈

NbdAn,k
(x) ∩ NbdAn,k

(y). By induction, there exist two paths Q1 and Q2 such that

(1) Q1 is a path joining u to z with l(Q1) = (n−1)!
(n−k)! − r(l2) − 2, (2) Q2 is a path

joining x to y with l(Q2) = r(l2), and (3) Q1 ∪ Q2 spans Aa
n,k . We write Q2 as

〈x,Q1
2, r, s,Q2

2,y〉 for some vertices r and s. Since |AS(r)| = |AS(s)| = n − k ≥ 2,

there exists a vertex r′ adjacent to r in Ae
n,k and a vertex s′ adjacent to s in A

f
n,k for

some {e, f } ⊆ 〈n〉−{a, b}. By Lemma 9, there exists a Hamiltonian path S of AI
n,k

joining r′ to s′, and there exists a Hamiltonian path T of AJ
n,k joining t to v. We

set P1 = 〈u,Q1, z, t, T ,v〉 and set P2 = 〈x,Q1
2, r, r′, S, s′, s,Q2

2,y〉. Obviously, P1
and P2 form the required paths.

Subcase 5.5 q(l2) > 0 with r(l2) >
(n−1)!

2(n−k)! , or q(l2) > 1 with r(l2) < max{3,

dAn,k
(x,y)}. Obviously, there exists an edge (t, z) ∈ Ea,b such that z ∈ V (Aa

n,k) −
{x,y,u} and t ∈ V (Ab

n,k)−{v}. By induction, there exist two paths Q1 and Q2 such

that (1) Q1 is a path joining u to z with l(Q1) = (n−1)!
2(n−k)! − 1, (2) Q2 is a path join-

ing x to y with l(Q2) = (n−1)!
2(n−k)! − 1, and (3) Q1 ∪ Q2 spans Aa

n,k . We write Q2 as

〈x,Q1
2, r, s,Q2

2,y〉 for some vertices r and s. Since |AS(r)| = |AS(s)| = n − k ≥ 2,

there exist a vertex r′ adjacent to r in Ae
n,k and a vertex s′ adjacent to s in A

f
n,k

for some {e, f } ⊆ 〈n〉 − {a, b}. Obviously, there exists a vertex s ∈ V (Ae
n,k) adja-

cent to r such that f ∈ AS(s) for some f ∈ 〈n〉 − {a, b, c, e}. Again, there exists
a vertex w ∈ V (Ae

n,k) adjacent to r′ such that f ∈ AS(w) with s′ /∈ NbdAn,k
(w).

There exist two vertices p and q in Ae
n,k such that g ∈ AS(p) ∩ AS(q) for some

g ∈ 〈n〉 − {a, b, e, f }, and {p,q} � NbdAn,k
(w) ∩ NbdAn,k

(r′). Let w′ be the vertex

in A
f
n,k − {s′} such that (w,w′) ∈ Ee,f . There exist two edges (p,p′) and (q,q′)

in Ee,g such that {p′,q′} ⊆ V (A
g
n,k). Let I ⊆ 〈n〉 − {a, b, e, g} with |I | = q(l2) if

r(l2) >
(n−1)!

2(n−k)! , and |I | = q(l2) − 1 if r(l2) < max{3, dAn,k
(x,y)}. By Lemma 9,

there exists a Hamiltonian path H joining w′ to s′ in AI
n,k . By induction, there exist

two paths R and R′ such that (1) R is a path joining r′ to w with l(R) = r(l2) −
(n−1)!

2(n−k)! if r(l2) >
(n−1)!

2(n−k)! , and l(R) = (n−1)!
2(n−k)! + r(l2) if r(l2) < max{3, dAn,k

(x,y)},
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(2) R′ is a path joining q to p with l(R′) = 3(n−1)!
2(n−k)! − r(l2) − 2 if r(l2) >

(n−1)!
2(n−k)! ,

and l(R′) = (n−1)!
2(n−k)! − r(l2)−2 if r(l2) < max{3, dAn,k

(x,y)}, and (3) R ∪R′ spans
Ae

n,k . Let J = 〈n〉 − (I ∪ {a, e}). By Lemma 7, there exist two disjoint paths S

and T such that (1) S is a path joining p′ to v, (2) T is a path joining t to q′, and
(3) S ∪ T spans AJ

n,k . We set P1 = 〈u,Q1, z, t, T ,q′,q,R′,p,p′, S,v〉 and set P2

as 〈x,Q1
2, r, r′,R,w,w′,H, s′, s,Q2

2,y〉. Obviously, P1 and P2 form the required
paths.

Thus Theorem 1 holds.
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