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Recently the wavelet-based contourlet transform (WBCT) is adopted for image coding because it matches
better image textures of different orientations. However, its computational complexity is very high. In
this paper, we propose three tools to enhance the WBCT coding scheme, in particular, on reducing its
computational complexity. First, we propose short-length 2-D filters for directional transform. Second,
the directional transform is applied to only a few selected subbands and the selection is done by a
mean-shift-based decision procedure. Third, we fine-tune the context tables used by the arithmetic coder
in WBCT coding to improve coding efficiency and to reduce computation. Simulations show that, at com-
parable coded image quality, the proposed scheme saves over 92% computing time of the original WBCT
scheme. Comparing to the conventional 2-D wavelet coding schemes, it produces clearly better subjective
image quality.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Wavelet-based image coding method becomes a popular image
compression topic in recent years [1,2]. For example, it was
adopted by JPEG2000 [2] as an international image coding stan-
dard. Typical wavelet-based image coding scheme consists of three
stages: two-dimensional discrete wavelet transform (2-D DWT),
quantization, and arithmetic coding [2]. A digital image is first
transformed by 2-D DWT to produce a set of transform coefficients.
After quantization, these coefficients are compressed to a binary
stream by an entropy coding tool.

However, the 2-D DWT is inefficient in representing the edge
signals that are not aligned with the vertical or the horizontal axes
[3]. Many 2-D directional transforms have thus been developed to
solve this problem [5–8], [13–19]. Among them, the wavelet-based
contourlet transform (WBCT) [19] technique has the critical-sam-
pling property, consumes comparatively less computational
power, and requires no side information for decoding. Therefore,
we focus on WBCT in this study.

The arithmetic coding methods [9,10,21,22,33–35] are com-
monly adopted to compress the transformed/quantized coeffi-
cients. Particularly, the embedded block coding with optimized
truncation (EBCOT) [9] technique was adopted by JPEG2000. It
was originally designed for intra-subband coding. In this study,
ll rights reserved.

Hang).
we adopt ESCOT (3-D embedded subband coding with optimized
truncation) [33], which is an extension of EBCOT to inter-frame
video coding, because our future work is targeting at video coding.

Combining WBCT and ESCOT, a WBCT image coding scheme can
achieve a better coding performance than a regular 2-D DWT im-
age coding scheme. However, there are a few issues in the existing
WBCT coding schemes. They need a large amount of computations
because the existing WBCT directional filters have a large support.
And, we found that for a specific picture, some WBCT frequency
subbands do not need further directional transform. Furthermore,
the context table in ESCOT needs adjustment to match the charac-
teristics of quantized WBCT coefficients.

To solve these issues, we propose three tools in this paper to en-
hance the WBCT image coding scheme. First, we suggest a set of
short-length 2-D directional filters [38] and verify their perfor-
mance. Second, we design a mean-shift-based decision scheme to
dynamically select the proper subbands for directional transform
[39]. Third, we re-design the context tables of ESCOT to match
the data directionality. With these tools, our proposed scheme re-
duces 92% or higher the computational complexity of the original
WBCT image coding scheme at similar visual quality [38].

The rest of this paper is organized as follows. Literature reviews
and detailed problem statements are given in Section 2 and Section
3 describes the use of short-length 2-D filters. Section 4 presents a
mean-shift-based decision algorithm for choosing the proper
subbands for directional transform. Section 5 illustrates new entro-
py-coding context tables that are optimized for compressing the
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filtered coefficients. Experimental results are shown in Section 6.
Finally, Section 7 concludes this paper.
2. Literature reviews and problem statements

Wavelet-based image coding systems typically consist of trans-
form, quantization, and entropy coding. In this section, we briefly
review the evolvement of directional transforms from 2-D DWT
to WBCT. Then, we summarize the operations of ESCOT. When
we put these two elements together, they form a conventional
WBCT scheme.
2.1. Literature review: directional transform

2-D DWT is the tensor product of two one-dimensional discrete
wavelet transforms (1-D DWT), and the Daubechies 9-7 wavelet filter
is often in use. 1-D DWT can represent the piecewise smooth 1-D
signals by a few coefficients [2]. But the outputs of 2-D DWT would
contain many small coefficients for 2-D edges when these edges are
not aligned with the vertical or the horizontal axes [3]. If we quan-
tize these coefficients to zero, the coded image shows Gibbs artifacts
along the edges [4]. To solve this problem, 2-D multiresolution
transforms such as the spatial-domain multiresolution directional
transform (SMDT) and the frequency-domain multiresolution direc-
tional transform (FMDT) [20] have been developed to improve the
directionality of 2-D DWT. SMDT uses the adaptive directional 1-D
DWT to align with the image texture direction [5–8]. In this way,
SMDT can pack the signal energy into a few subbands. But it needs
a huge amount of computation to decide a suitable direction and
it also requires extra side information for carrying the direction
information. On the other hand, FMDT uses a set of pre-selected 2-
D filters to perform multiresolution directional decomposition
[11–17]. Each filter corresponds to a basis function with specific
spatial direction and resolution. FMDT can represent 2-D directional
texture patterns by relatively few large coefficients. It needs less
computational power and requires no side information for decod-
ing. Therefore, we focus on the FMDT approach in this study.

2-D DWT and Laplacian pyramid (LP) [21] are two frequently
used multiresolution transforms. Fig. 1(a) shows the filter bank
structure of a 2-D DWT. After transform, it outputs four subband
signals – HL (the horizontal high-pass and vertical low-pass sub-
band signal), LH (the horizontal low-pass and vertical high-pass
subband signal), HH (the horizontal high-pass and vertical high-
pass subband signal), and LL (the horizontal low-pass and vertical
low-pass subband signal). G1(z)�G4(z) are the filters with specific
pass bands and their output frequency partitions are given in
Fig. 1(b). D2 represents the decimation matrix, and D2 = 2I2, where
I2 is an identity matrix. 2-D DWT is a critical-sampling transform
that keeps the same amount of data after one transform.
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Fig. 1. (a) Filter bank structure of a 2-D DWT. (b) Frequency partitions produced by 2-D
In contrast, Fig. 1(c) shows a typical LP wavelet system that
does not satisfy the critical-sampling condition. It decomposes
the input into one low-pass subband signal, LL, and one high-pass
subband signal, H. F1(z) is the corresponding synthesis filter for the
analysis filter G1(z). Fig. 1(d) shows the frequency partition of these
two subbands. When the synthesized subband signal LL is sub-
tracted from the original input, it produces the high-pass subband
signal H. Without down-sampling, subband H is free from fre-
quency scrambling. In this case, the LP system behaves as an
over-sampling transform and it increases 25% data size after the
transform.

The subband signal LL in LP (Fig. 1(c)) is identical to the subband
signal LL in 2-D DWT when their G1(z) and D2 are the same. That is,
these two LL signals occupy the same frequency partition as in
Fig. 1(b) and Fig. 1(d), respectively. In a multi-level 2-D DWT, the
subband signal LL produced by the first 2-D DWT is further pro-
cessed by the sub-sequent 2-D DWT’s. Likewise, in a multi-level
LP, the LL subband signal may be further processed by sub-sequent
LP.

In the several variations of FMDT, contourlet transform (CT)
[3][11] and wavelet-based contourlet transform (WBCT) [17] adopt
the directional filter banks (DFB) structure [22] as shown in
Fig. 2(a), where four 2-D filters and four decimation matrices are
illustrated. These four 2-D filters decompose the input signal to
four directional subbands. Each subband has a specific directional
pass band. These 2-D filters, A1(z)�A4(z), are fan filters and their
corresponding output frequency partitions are drawn in Fig. 2(b).
The decimation matrices rotate and down-sample the signals along
specific directions. The first stage of CT uses LP to produce the sub-
band signals, LL and H. It further uses the DFB in Fig. 2(a) to decom-
pose the subband signal H into four directional subband signals;
Fig. 2(c) shows the frequency partition of a typical CT. Because
LP increases the data size, it is less preferred in the compression
scenario. Therefore, another structure, WBCT, was proposed. It uses
2-D DWT to first generate four subbands, LL, HL, LH and HH. It fur-
ther decomposes each of the three higher subband signals, HL, LH,
and HH, by the DFB in Fig. 2(a). Fig. 2(d) shows the frequency par-
tition produced by WBCT, wherein the twelve directional subbands
are labeled from 1 to 12. WBCT has the critical-sampling property
and it maintains the same data size. Thus, it is more desirable for
compression purpose. Therefore, in this study we focus on the
WBCT structure.

2.2. Literature review: arithmetic coding

After transform and quantization, we use arithmetic coding to
compress the produced coefficients. Arithmetic coding algorithms
[9,10,18,19,26–28] provide rather good compression efficiency by
considering three types of correlations among the coefficients.
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Fig. 2. (a) A four directional DFB structure. (b) Frequency partitions produced by the DFB in (a). (c) Frequency partition produced by CT. (d) Frequency partition produced by
WBCT.
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First, the inter-subband coding methods, such as the set partition-
ing in hierarchical tree (SPIHT) method [18] and the embedded zero-
trees of wavelet transform (EZW) method [19], mitigate the inter-
band correlations in a tree structure. Second, the intra-subband
coding methods partition the coefficients in one subband to several
non-overlapped coding blocks and handle only the correlations
among the neighbors in one coding block (the intra-subband corre-
lations). Examples in this category are the embedded block coding
with optimized truncation (EBCOT) method [9], the 3-D embedded
subband coding with optimized truncation (ESCOT) method [26],
and the tarp-filter-based system that classifies coefficients to achieve
embedding (TCE) method [10]. Third, the mixed inter-subband and
intra-subband coding methods cover both the inter-subband and
intra-subband correlations. Examples are the embedded conditional
entropy coding of wavelet coefficients (ECECOW) method [27] and
the embedded coding using zeroblocks of wavelet coefficients and con-
text modeling (EZBC) method [28]. To save computing power, for
single image compression, we use the intra-subband coding meth-
ods in this study.

Among the intra-subband coding methods, EBCOT is popular for
image coding and is adopted by JPEG2000; ESCOT is popular for vi-
deo coding and was adopted by the wavelet video coding reference
software in the MPEG scalable coding standard development. EB-
COT’s context model includes eight neighbors (3 � 3 square) of a
to-be-processed coefficient. ESCOT extends this context model by
considering all spatial-temporal neighbors in a 3 � 3 � 3 cube.
We adopt ESCOT to ease our future development in video coding.

2.3. Problem statement

We explore three issues of the current WBCT image coding
scheme in this study: filter replacement, subband skipping, and
context modification. The first target is to reduce the computation
of filtering. In a typical WBCT scheme, the input image is first pro-
cessed by a 2-D DWT and four subbands are generated: LL1, HL1,
LH1, and HH1. Then, we filter the LL1 subband signal again by 2-D
DWT to obtain LL2, HL2, LH2, and HH2. Likewise, we recursively ap-
ply 2-D DWT to the LLi subband, and produce LLi+1, HLi+1, LHi+1, and
HHi+1, wherein ‘i’ represents the 2-D DWT iterations. Also, we can
use DFB in Fig. 2(a) to decompose HLi, LHi, and HHi at the chosen
levels.

LL1 and its split subband signals (LLi, HLi, LHi, and HHi, where
i > 1) contain the low and mid frequency components in the sensi-
tive range of human visual system. When we apply the DFB in
Fig. 2(a) on these subbands and quantize their transform coeffi-
cients, the ringing effects may appear on the smooth image re-
gions. Thus, we tend to represent these coarse subband signals
by 2-D DWT bases [16]. On the other hand, we apply the direc-
tional transform to HL1, LH1, and HH1 to match their directional
textures. But some of these subbands may be inappropriate for
directional transform.

In Fig. 2(a), fan filters are constructed by using the hourglass fil-
ters. Typical hourglass 2-D filters are in the form of 23 � 23 and
45 � 45 matrices [23]. When we convolute them to generate
A1(z)�A4(z) in Fig. 2(a), the sizes of the fan filters are 45 � 45,
67 � 67, or 89 � 89. Because the fan filter sizes are large, the filter-
ing process costs a huge amount of computation and may produce
many small coefficients. Therefore, it is desirable to use shorter
filters.

2-D DWT and ESCOT match quite well. The transformed/quan-
tized coefficients typically have stronger energy along the horizon-
tal and the vertical directions because these are the major
directions of filers. This horizontal and the vertical direction prop-
erties are considered in the ESCOT design and thus the 2-D
DWT+ESCOT scheme provides good compression performance.
However, the major direction of transform coefficients produced
by WBCT is decided by the directional filter of that subband. Apply-
ing the original ESCOT context tables to code these coefficients is
inappropriate. Therefore, we need to construct new ESCOT context
tables for WBCT subbands.

3. Short-length 2-D filters

To reduce computational load of the current WBCT, we design
new short-length 2-D filters (SLF). The design procedure is as fol-
lows. We first choose an appropriate 1-D filter, up-sample it, and
map it to a 2-D filter.

We begin our design from a 1-D type-II linear phase finite im-
pulse response filter [23,25]. Eq. (1) is a 1-D prototype filter b(z),
wherein the coefficients {vk} satisfy (2) so that b(ej0) = 1. When
N1 = 1 (short filter), b(z) has a wide transition band. To keep a good
balance between the transition band width and the filter length,
we select N1 = 2, and thus, v1 = 0.5916 and v2 = �0.0982. Fig. 3 (a)
and (b) show the magnitude and the phase responses of b(z).

We up-sample b(z) by 2 and get b(z2). Fig. 3 (c) and (d) show the
magnitude and the phase responses of b(z2). In Fig. 3 (d), b(z2) con-
tains a phase discontinuity of p at frequency 0.5p. Because of this
phase discontinuity, the left-side and the right-side amplitudes in
Fig. 3 (c) have different signs.

bðzÞ ¼
XN1

k¼1

vk � ðz�N1þk þ z�N1�kþ1Þ ð1Þ

XN1

k¼1

vk ¼ 0:5 ð2Þ
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We then map b(z2) to a 2-D filter [24]. From b(z2), we derive the
quadrant filters and rotate them by 45 degrees to construct the
hourglass filters [12]. In Fig. 4, the symbol zh denotes the horizontal
frequency, and zv denotes the vertical one. In Fig. 4 (a), we shift
b(z2) by 0.5p along the negative frequency axis and the shifted
b(z2) in horizontal direction is denoted by a(zh

2). Similarly, the
shifted b(z2) in vertical direction is denoted by a(zv

2) in Fig. 4 (b).
In Fig. 4 (c), we multiply a(zh

2) and a(zv
2) together to obtain a

quadrant filter a(zh, zv). Accordingly, the four acquired quadrant fil-
ters are defined by (3)–(6) [12]. We rotate these quadrant filters by
(7) to obtain the hourglass filters. In (7), an hourglass filter A’(x) is
obtained from a quadrant filter A(x) [3], wherein Q0 and Q1 are the
quincunx sampling matrices specified by (8).

H0ðzh; zvÞ ¼ ð1þ aðzh; zvÞÞ=
ffiffiffi
2
p

ð3Þ

H1ðzh; zvÞ ¼ z0ð
ffiffiffi
2
p
� ð

ffiffiffi
2
p

H0ðzh; zvÞ � 1ÞH0ðzh; zvÞÞ ð4Þ

F0ðzh; zvÞ ¼ �z�1
h H1ð�zh; zvÞ ð5Þ

F1ðzh; zvÞ ¼ z�1
h H0ð�zh; zvÞ ð6Þ
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A0ðxÞ ¼ AðQ�T
0 xÞ ¼ Að1

2
QT

1xÞ ¼ Að1
2

Q 0xÞ ð7Þ
Q 0 ¼
1 �1
1 1

� �
;Q 1 ¼

1 1
�1 1

� �
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Fig. 5 shows a cascaded DFB structure [3]. The left half, H’0(zh, zv)
and H’1(zh, zv), are the analysis filters, and the right half, F’o(zh, zv)
and F’1(zh, zv), are the corresponding synthesis filters. The signals
DS1�DS4 are identical to those in Fig. 2(a) and their frequency par-
titions are in Fig. 2(b). This two-level analysis DFB structure con-
sists of hourglass filters and quincunx sampling matrices. We
rotate the quadrant filter H0(zh, zv) in (3) to obtain the hourglass fil-
ter H’0(zh, zv). H’1(zh, zv), F’o(zh, zv) and F’1(zh, zv) are designed
similarly.

The sizes of our proposed 2-D hourglass short-length filters
(SLF) are 7 � 7 and 13 � 13. They are much smaller than the sizes
(23 � 23 and 45 � 45) of their corresponding long-length filters
(LLF) [23]. Fig. 6 shows the magnitude responses of SLF and LLF.
Although the transition band of SLF seems wider than that of the
LLF, SLF matches the image local variation well due to its small
size.

Table 1 shows the impacts of SLF and LLF on the DFB computa-
tional complexities. We compare two DFB implementations, direct
structure and ladder structure, on the non-zero SLF/LLF coeffi-
cients. S is the size of input image. The numbers of multiplications
and additions are proportional to S. The runtime is measured by
running Matlab r2008b on a PC with Intel Core 2 Quad Q9400
CPU. The numbers of multiplications and additions include both
convolution and down-sampling operations. When the sizes of
the hourglass filters are 23 � 23, 45 � 45, 7 � 7 and 13 � 13, the
numbers of nonzero coefficients are 145, 649, 17 and 65, respec-
tively. For both the direct and the ladder structures, the SLF-based
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Fig. 6. (a) LLF, whose size = 23 � 23 [29]. (b) SLF, whose size = 7 � 7.

Table 1
The computational complexity and run time measured on the non-zero filter coefficients.

LLF SLF

Direct structure Ladder structure Direct structure Ladder structure

Number of Multiplications 4S(145 + 649 + 2) = 3124S 4S(144 + 2) = 584S 4S(17 + 65 + 2) = 336S 4S(16 + 2) = 68S
Number of Additions 4S(145 + 649 + 2) = 3124S 4S(144 + 2) = 584S 4S(17 + 65 + 2) = 336S 4S(16 + 2) = 68S
S = 512 � 512 43.656 s 14.938 s 9.078 s 3.953 s
S = 256 � 256 10.906 s 3.813 s 1.797 s 0.854 s
S = 128 � 128 2.859 s 0.953 s 0.438 s 0.219 s
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DFB takes approximately only 10% multiplications and additions of
those of the LLF-based DFB. In the runtime profile, the SLF-based
DFB saves roughly 80% computation time in both structures. The
performance gap between our theoretical estimates (multiplica-
tions and additions) and experimental measurements (runtime)
are largely due to data transfer (disk access).
4. Mean-shift-based decision on subband selection

In the WBCT image coding scheme, we apply the directional
transform to the LH1, HL1, and HH1 subbands. Yet, only the sub-
band signal with significant energy in that direction would benefit
from the directional transform. We thus try to locate the subbands
with this property. Essentially, we identify the energy peaks and
find their locations.

Mean shift technique is adopted to locate the energy peaks in
the frequency spectrum. Mean shift is an iterative, nonparametric
estimator of the peak location [32][33]; it finds a path to local max-
imum [34]. Let {xi}i=1. . .n be an arbitrary n-point data set in the d-
dimensional Euclidean space Rd. First, we calculate the mean shift
vector m(x) by (9), wherein x is the center of current window, h is
the window radius, and K(x) is the flat kernel defined by (10). Then,
we update the center by setting m(x) + x as the center of the next
window. We repeat this process until m(x) converges to 0.

mðxÞ ¼
Pn

i¼1xiKðx�xi
h ÞPn

i¼1Kðx�xi
h Þ
� x ð9Þ
KðxÞ
1; if kxk 6 1
0; if kxk > 1

�
ð10Þ

Fig. 7 shows our proposed mean-shift-based decision process
for selecting the subbands. To illustrate the decision flow, we use
a 512 � 512 pixel, 256 gray-level image as the input.
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4.1. Energy spectrum smoothing

We calculate the input image frequency spectrum by the 2-D
discrete Fourier transform (2-D DFT). The frequency spectrum com-
prises 512 � 512 discrete frequency components (DFC). The DFC is
generally a complex number with the form in (11) and their energy
levels are in form of (12). Herein, (x,y) represents the coordinate
pair of a DFC, 1 6 x 6 512, and 1 6 y 6 512.

mðx; yÞ ¼ aðx; yÞ þ bðx; yÞi ð11Þ

cðx; yÞ ¼ ðaðx; yÞÞ2 þ ðbðx; yÞÞ2 ð12Þ

In Fig. 8, we copy the left-most column to the right-most col-
umn border and copy the up-most row to the bottom-most row
border in order to get a symmetric energy spectrum. The zero fre-
quency DFC is at (257,257).

Fig. 9 (a) shows the energy spectrum c(x,y) of the input image
Pepper, wherein the energy levels are in log10 scale, i.e., log10(c(-
x,y)). It contains many small peaks. These small peaks may cause
misjudgment on cluster identification. Therefore, we use a smooth-
ing operator (defined in Fig. 9 (c)) to reduce small peaks [31]. Fig. 9
(b) shows the smoothed energy spectrum. The large energy peaks
typically stand out after smoothing.

4.2. Choosing the representative energy level based on the low
frequency components

Fig. 9(b) shows natural images contain strong low frequency
components. We choose it as the basis for calculating the thresh-
old value for identifying energy peaks. Fig. 10(a) shows the
subband signals generated by WBCT and Fig. 10(b) shows the
DFC coordinates in the upper half subband LH 4-0. The gray area
is called the low frequency zone, and the white area is the high
frequency zone. Because the upper half subband is symmetric to
its lower half, we only look at the DFC in the upper half of LH1.
The upper half of LH1 is the region bounded by 129 6 x 6 385
and 1 6 y 6 129. Along each column x of LH1, we calculate the
mean l(x) and the variance r(x) of the DFC by (13) and (14).
We find that the DFC magnitudes in the center three columns
(256 6 x 6 258) usually have large means and small variances.
Similar property holds for HL1. Therefore, we set the width of
low frequency zone in LH1 and HL1 to 3 when the input image
size is 512 � 512.

lðxÞ ¼
X129

y¼1

log10cðx; yÞ
129

;129 6 x 6 385 ð13Þ

rðxÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX129

y¼1

ðlog10cðx;yÞÞ2

129
�

X129

y¼1

log10cðx;yÞ
129

 !2
vuut ; 1296x6385 ð14Þ

To detect the peaks, we calculate the representative energy lev-
els of the low frequency components. Eq. (15) computes the DFC
mean of the LH1 low frequency zone, and (16) computes that of
the HL1 low frequency zone. With these DFC means, we define
the representative energy level LH_L for LH1 by (17), and HL_L
for HL1 by (18). Essentially, we like to select a threshold that iden-
tifies the peaks with ‘‘significant’’ energy. In (17), when the average
energy level of low frequency components in HL subband is at least
four times larger than that in the LH subband, we use the former as
the threshold; otherwise, the latter. The parameter ‘‘log10(4)’’ de-
notes the case that the large energy is at least 4 times of small ones.
Correspondingly, the absolute magnitude of the large energy is at
least twice of that of the small energy because the energy is the
square of the absolute value. In this case, the difference in bit plan
coding is significant.

LH l ¼
P129

y¼1

P258
x¼256log10cðx; yÞ
3� 129

ð15Þ

HL l ¼
P258

y¼256

P129
x¼1log10ð4Þcðx; yÞ
3� 129

ð16Þ

ifððHL l� LH lÞ < log10ð4ÞÞLH L ¼ LH l; else LH L ¼ HL l ð17Þ

ifððLH l� HL lÞ < log10ð4ÞÞHL L ¼ HL l; else HL L ¼ LH l ð18Þ
4.3. Deciding thresholds for directional subbands

A directional subband sometimes contains stronger energy level
than the low frequency components. We consider this situation
and adjust threshold in this step. We try to determine a peak detec-
tion threshold for every WBCT subband. Take the subband LH 4-0
as an example. We only look at the upper half of LH 4-0 because
the DFCs in the upper half of LH 4-0 are symmetric to those in
the lower half of LH 4-0. In the upper half of LH 4-0, we first con-
sider only the DFC outside the low frequency zone. We calculate
the mean LH_4-0_l and the variance LH_4-0_r outside the low
frequency zone in LH 4-0, i.e., the c(x,y) of white area in Fig. 10
(b), and construct a Gaussian distribution using the calculated
mean and variance. In Fig. 11, each Gaussian distribution approxi-
mates its corresponding energy histogram well. Thus, the peak
detection threshold for LH 4-0 is set by (19). The parameter b in



Fig. 9. (a) Energy spectrum of image Pepper. (b) Smoothed energy spectrum of image Pepper. (c) Smoothing operator.
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(19) is chosen to be 0.7 because we like to eliminate the 75% DFC
candidates. Together with the representative energy level LH_L de-
fined earlier, 25% or fewer DFC candidates may be identified as en-
ergy peaks. We repeat similar procedures on LH 4-1�LH 4-3, and
HL 4-0�HL 4-3.

Generally, the transmission priority of HH1 is lower than the
other subbands due to its lower information contents. Because of
its low energy, we use the thresholds of its neighboring subbands
to identify the energy peaks in HH1. For example, we set the
threshold HH_4-0_T of HH 4-0 by (20) using the parameters of
HL 4-1.

LH 4� 0 T ¼MaxðLH L; LH 4� 0 lþ b� LH 4� 0 rÞ ð19Þ

HH 4� 0 T ¼MaxðHL L;HL 4� 1 lþ b�HL 4� 1 rÞ ð20Þ
4.4. Peak identification using a mean-shift-based procedure

We like to identify a directional subband that has significant en-
ergy by examining the discrete frequency components (DFC) of an
image. This typically is caused by periodic texture patterns. And its
corresponding DFC pattern is a cluster of DFCs with high energy.
Thus, an energy peak in this paper is defined as a cluster of coeffi-
cients (c(x,y) in a neighborhood) whose energy level is larger than
the threshold. It has two properties: the energy level is high and
these high-energy DFC coefficients are clustered in a small neigh-
borhood. We use an image cluster identification scheme, Mean-
Shift technique, to allocate them.
1) When a c(x,y) within a directional subband and outside the
low frequency zone is greater than the threshold of that subband,
its location (x,y) is set to be the center of a search window. We then
calculate its mass center coordinates (xmass,ymass) by (21). The win-
dow size is chosen to be 11 � 11, or, roughly, its radius r = 5, be-
cause a small radius often leads to too many small peaks and a
large radius sometimes misses peaks. In the search procedure,
we extend the coefficients outside the subband boundary by peri-
odic extension.
ðxmass;ymassÞ¼
Pxþ5

m¼x�5

Pyþ5
n¼y�5m �cðm;nÞPxþ5

m¼x�5

Pyþ5
n¼y�5cðm;nÞ

;

Pxþ5
m¼x�5

Pyþ5
n¼y�5n �cðm;nÞPxþ5

m¼x�5

Pyþ5
n¼y�5cðm;nÞ

 !

ð21Þ

We round xmass and ymass to the nearest integers and set the
rounded (xmass,ymass) as the center of next search window. Then,
we use (21) again to update the mass center. We repeat this proce-
dure until the rounded (xmass,ymass) converges. Thus, a peak candi-
date is identified.

2) The number of the peak candidates is recorded by a table
d(x,y). The initial values of all entries of d(x,y) are 0. When we
identify a DFC at (x,y) as an energy peak candidate, we increase
d(x,y) by 1. When the table value of a specific location (x,y) is
greater than 10 and it is also the largest d(x,y) within a 3 � 3 win-
dow, the DFC located at (x,y) is judged as an energy peak. When one
subband contains one or more energy peaks in the high frequency
zone, it is considered to be suitable for directional decomposition.



Fig. 11. The DFC energy histograms of some directional subbands. Each histogram is approximated by a Gaussian distribution. The directional subbands and the
corresponding images are (a) LH 4-0 of Boat, (b) HL 4-3 of Lena, (c) LH 4-3 of Pepper, and (d) HL 4-0 of Fingerprint.
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Table 2 shows some representative test images and their band-
decomposition decision results for each subband. All images are
images of 256 gray levels, and their sizes are 512 � 512 pixels.
For each subband, the ‘‘(x,y)’’ column denotes the max energy peak
location, and the ‘‘suitable for DT’’ column denotes the decision re-
sult. As Table 2 shows, the directional transform is inadequate for
all subbands of the test image Lena; some subbands of Barbara, Fin-
gerprint, Pepper, Boat, and Couple are suitable for directional trans-
form, and all subbands of Elaine benefit from the directional
transform. Fig. 12 shows the identified peaks by red dots. We fail
to identify some peaks for two reasons. First, some peaks contain
energy lower than the threshold. Second, when a peak is near the
low frequency zone, clusters identified by the mean mean-shift
scheme are occasionally in the low frequency zone. Fig. 19 shows
a portion of test images Barbara and Elaine. They contain periodic
signals. Identifying these signals in the spatial domain is hard.
These periodic signals are corresponding to energy peaks in the fre-
quency domain and thus we perform peak identification in fre-
quency domain.
Table 2
Some test images, their max energy peak location in each subband ((x,y)) and the decisio

Wavelet subband LH1 HL1

Test image (x,y) Suitable for DT (x,y)

Barbara (213,126) N (130,3
Fingerprint (257,129) N (128,2
Lena (154,121) N (122,2
Pepper N
Boat N (118,2
Couple (236,96) N (109,2
Elaine (177,123) Y (107,2
4.5. Computational Complexity

We now look at the computational complexity issue of our deci-
sion algorithm. We examine the amount of multiplications and
additions for the steps in Fig. 7. We assume that the input image
size is S = W � H. Herein, W is the width of the input image and
H is the height. We also assume that W and H are all power of 2
and we can implement the 2-D DFT in the radix-2 fast Fourier
transform (FFT) structure.

1) In Step A of Fig. 7, we apply 2-D DFT to the input image, ob-
tain its energy spectrum, and then apply a smoothing filter to the
spectrum. The 2-D DFT is implemented by the radix-2 FFT, and
thus the required numbers of real-value additions and multiplica-
tions are given by (22) and (23), in which ceil(x) means the small-
est integer greater than or equal to x. Next, Eq. (12) needs 1 real
addition and 2 real multiplications to calculate the energy of a
DFC. For the entire image, the required numbers of real additions
and real multiplications are in (24) and (25). The smoothing oper-
ator in Fig. 9(c) requires 8 real additions and 1 real multiplication
n result for each subband (suitable for DT).

HH1

Suitable for DT (x,y) Suitable for DT

66) Y (92,384) N
00) Y N
59) N (129,390) N

N (32,24) Y
59) Y N
59) Y N
12) Y (83,32) Y



Fig. 12. Energy spectrum of test images (a) Barbara, (b) Pepper, and (c) Elaine. Horizontal axis and vertical axis represent horizontal frequency and vertical frequency,
respectively. The energy spectrums are all in log10 scale. The red squares are the locations of the identified energy peaks.
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for each c(x,y). Thus, the total numbers of real additions and mul-
tiplications are given by (26) and (27). Finally, the overall numbers
of real additions and real multiplications in Step A are (28) and
(29).

Nreal addition in DFT ¼ 2� Ncomplex multiplication in DFT þ 2
� Ncomplex addition in DFT ¼ 3�W � H � ðceilðlog2WÞ
þ ceilðlog2HÞÞ ð22Þ

Nreal multiplication in DFT ¼ 4� Ncomplex multiplication in DFT ¼ 2�W � H
� ðceilðlog2WÞ þ ceilðlog2HÞÞ ð23Þ
Nreal addition in calculating power ¼W � H ð24Þ
Nreal multiplication in calculating power ¼ 2�W � H ð25Þ

Nreal addition in smoothing spectrum ¼ 8�W � H ð26Þ

Nreal multiplication in smoothing spectrum ¼ 2�W � H ð27Þ

Nreal addition in stepA ¼ 3�W � H � ðceilðlog2WÞ þ ceilðlog2HÞÞ
þW � H þ 8�W � H ð28Þ

Nreal multiplication in stepA ¼ 2�W � Hðceilðlog2WÞ
þ ceilðlog2HÞÞ � 2�W � H þW � H ð29Þ

2) Step B chooses the representative energy levels based on the
low frequency zone. Eqs. (15) and (16) calculate the mean of the
DFC energy in the low frequency zone. The heights of the low fre-
quency zones in LH1 and HL1 are (ceil(H/4) + 1) and (ceil(W/4) + 1),
Table 3
Computational complexity and run time for the systems with and without decision when

LLF without decision LLF with decision (fastest)

Number of multiplications 114,819,072 10,699,826
Number of additions 114,819,072 17,461,460
Run time 11.613 s 1.385 s

Table 4
Computational complexity and run time for the systems with and without decision when

SLF without decision SLF with decision (fastest)

Number of multiplications 13,369,344 10,699,826
Number of additions 13,369,344 17,461,460
Run time 2.662 s 1.385 s
respectively. The width is Wlfz. Thus, the mean calculation (Step B)
needs 2 divisions and Nreal addition in stepB real additions as shown in
(30). We choose Wlfz = 3 when S = 512 � 512.

Nreal addition in stepB ¼Wlfz � ceil H=4ð Þ þ ceil W=4ð Þ þ 2ð Þ � 2 ð30Þ

3) Step C decides the thresholds for directional subbands. The
DFC number in each directional subband is W�H/16, thus the DFC
number in each half directional subband is W�H/32. In addition
to 2 real divisions, we need W � H/32 real multiplications and
(W � H/16-2) real additions to calculate the mean and the
variance of each half directional subband. LH1 and HL1 together
have 8 directional subbands in total. The numbers of real
additions and real multiplications in step C are, therefore, given
by (31) and (32).

Nreal addition in stepC ¼ 8� ðW � H=16� 2Þ ¼W � H=2� 16 ð31Þ

Nreal multiplication in stepC ¼ 8�W � H=32 ¼W � H=4 ð32Þ

4) Step D identifies the energy peaks. Eq. (21) needs 1 division,
242 multiplications and 480 additions. In total, the numbers of real
additions and real multiplications in step D are in (33) and (34),
wherein Nit is the iteration number. In our experiments, the mini-
mal Nit is 11 (test image Baboon), the maximal Nit is 12487 (test im-
age Barbara), and the average Nit is 1697.

Nreal addition in stepD ¼ Nit � 480 ð33Þ

Nreal multiplication in stepD ¼ Nit � 242 ð34Þ

All in all, (35) and (36) give the total number of multiplications
and additions in the decision procedure. When
S = W � H = 512 � 512, Wlfz = 3, Nin = 1697, the total number of real
additions and real multiplications are 17,461,460 and 10,699,826.
LLF is adopted.

LLF with decision (slowest) Ratio (fastes) (%) Ratio (slowest) (%)

125,518,898 9.32 109.32
132,280,521 15.21 115.21
13.012 s 11.93 112.05

SLF is adopted.

SLF with decision (slowest) Ratio (fastest) (%) Ratio (slowest)(%)

24,069,170 80.03 180.03
30,830,804 130.61 230.61
4.055 s 52.03 152.33
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Fig. 13. (a) The directional subbands produced by WBCT. (b) The spatial neighbor
directions for coefficient A.

Table 5
ZC context table for 2-D wavelet subbands.

Wavelet subband LL LH HL HH

Context H V D1+D2 V H D1+D2 H+V D1+D2

8 2 X X 2 X X X P3
7 1 P1 X 1 P1 X P1 2
6 1 0 P1 1 0 P1 0 2
5 1 0 0 1 0 0 P2 1
4 0 2 X 0 2 X 1 1
3 0 1 X 0 1 X 0 1
2 0 0 P2 0 0 P2 P2 0
1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0
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Ntotal real addition ¼W � H � ð3� ceilðlog2WÞ þ 3

� ceilðlog2HÞ þ 9þ 1=2Þ � 16þWlfz

� ðceilðH=4Þ þ ceilðW=4Þ þ 2Þ � 2þ Nit

� 480 ð35Þ

Ntotal real multiplication ¼W � H � ð2� ceilðlog2WÞ þ 2

� ceilðlog2HÞ þ 3þ 1=4Þ þ Nit � 242 ð36Þ

Table 3 and Table 4 show the computational complexity and the
run time of the entire system with and without decision, wherein
the directional filters are LLF and SLF, respectively. With decision,
the fastest case occurs when no directional transform is conducted
on LH1, HL1, and HH1. And the slowest case occurs when we apply
the directional transform to all subbands. In Table 3, the image
coding scheme with LLF and decision may save over 84% computa-
tional load or 88% run time in the fastest case. In the slowest case,
the decision process requires an additional 16% computational load
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Fig. 14. (a) Input signal in spatial domain. (b) Input signal in frequency domain. (c) Fi
frequency domain. (e) Output signal in spatial domain. (f) Output signal in frequency do
or 13% run time. In Table 4, the image coding scheme with SLF and
decision saves about 48% run time in the fastest case and consumes
52% extra run time in the slowest case. On the average, the image
coding schemes with decision require less run time.
5. New ZC context tables for ESCOT

Arithmetic coding methods encode the transformed/quantized
coefficients into a bit-stream. ESCOT is a bit-plane coding method
and it uses its neighbors for the context model. Let the sequence xN

= {xN, xN-1, . . ., x2, x1} represents one bit-plane of a coefficient block.
Because the bit-plane consists of binary symbols, i.e., xi e {0, 1}, the
minimum code length of a binary sequence estimated based on the
information theory is shown in (37), wherein P(xi|xi-1) is the condi-
tional probability of xi given xi�1 = {xi-1, xi-2, . . ., x2, x1}. Clearly, xi�1

is the subset of xN. Assuming xN is a Markov random sequence of
some finite order, we then can reduce the size of xi�1 down to
xi�1, which is a subsequence of xi�1. This xi�1 is the context model
support [26][27]. Typically, xi�1 includes the neighbors and the
(bit-plane) parents of xi. Ideally, the optimal context model gives
the maximum mutual information [29].
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Table 6
ZC context table for directional subbands.

Directional subband LH 4-0 LH 4-1 HL 4-2 HL 4-3 LH 4-3 HL 4-1 LH 4-2 HL 4-0
HH 4-0 HH4-2 HH 4-1 HH 4-3

Context D2+H V D1 D1+H V D2 D2+V H D1 D1+V H D2 D1 H+V D2 D2 H+V D1

8 P2 X X P2 X X P2 X X P2 X X 2 X X 2 X X
7 1 P1 X 1 P1 X 1 P1 X 1 P1 X 1 P1 X 1 P1 X
6 1 0 P1 1 0 P1 1 0 P1 1 0 P1 1 0 P1 1 0 P1
5 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
4 0 2 X 0 2 X 0 2 X 0 2 X 0 P2 X 0 P2 X
3 0 1 X 0 1 X 0 1 X 0 1 X 0 1 X 0 1 X
2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 15. Frequency magnitude responses of (a) LH 4-0 (b) LH 4-2 (c) HH 4-0 (d) HH 4-2.

Table 7
Abbreviations for the adopted tools in the image coding scheme.

Directional
Transform

SLF Short length directional Filter.
LLF Long length directional Filter.
NDF No directional Filter.

Decision
NDS1 No decision, applying directional transform on all

subbands (LH1, HL1, and HH1).
NDS2 No decision, directional transform not applied.
WDS With decision, applying directional transform on the

chosen wavelet subbands.

Entropy coder
O ESCOT with the original ZC context tables.
P ESCOT with the proposed ZC context tables.
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L ¼ �log2

Yn

i¼1

Pðxijxi�1Þ: ð37Þ

The original ESCOT considers only the 2-D DWT coefficients in
the horizontal and the vertical directions. Yet, the coefficients in
a certain directional subband may cluster along one specific direc-
tion (different from the vertical or horizontal directions). The origi-
nal context table fails to handle this case well. Therefore, we
redesign the context models of ESCOT.

In Fig. 13(a), the 13 subbands produced by WBCT are labeled as
‘‘LL’’, ‘‘HH 4-0’’, ‘‘LH 4-0’’, ‘‘HL 4-0’’, and likewise. In Fig. 13(b), the
edges passing through A can be H-A-H (0O), V-A-V (90O), D1-A-D1
(45O), and D2-A-D2 (�45O). We denote the 0O, 90O, 45O, �45O

directions as ‘‘H’’, ‘‘V’’, ‘‘D1’’, and ‘‘D2’’, respectively.
In Fig. 14, we examine the effect of the directional filter LH 4-0

(DF_LH 4-0). A concentric-circle pattern, which has edges of all
directions, is used as the input pattern. Fig. 14 (a) and (b) show this
input signal and its frequency spectrum. Fig. 14 (c) shows the spa-
tial filter impulse response of DF_LH 4-0, which is roughly along
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the H direction (slightly tilted to the D2 direction). Fig. 14 (d)
shows the filter frequency magnitude response of DF_LH 4-0,
whose energy clusters mainly along the vertical axis. In Fig. 14
(e), the filtered output image contains mainly the spatial edges
aligned with the H direction (slightly tilted to the D2 direction).
Fig. 14 (f) shows the frequency spectrum of filtered signals. Evi-
dently, the dominated directions of the LH 4-0 outputs are H and
D2. Hence, ‘‘H and D2’’ are the filtered directions of LH 4-0.

Similarly, we identify the filtered directions of the other direc-
tional subbands. The filtered directions of LH 4-1 are ‘‘H and D1’’,
Fig. 16. PSNR of the image coding schemes with SL

Table 8
Run time of the image coding schemes with SLF and LLF.

Scheme SLF+WDS(HL1)+O (Barbara, Fingerprint, Boat, Couple, average)

Run time 4.547 s

Scheme LLF+WDS(HL1)+O (Barbara, Fingerprint, Boat, Couple, average)
Run time 23.031 s

Fig. 17. PSNR of the image coding schemes with and without de
those of HL 4-2 are ‘‘V and D2’’, and those of HL 4-3 are ‘‘V and
D1’’. The filtered directions of the four corner subbands (LH 4-2,
HH 4-3, HH 4-1, and HL 4-0) are D2. And those of the other four
corner subbands (LH 4-3, HH 4-2, HH 4-0, HL 4-1) are D1.

ESCOT uses three types of context models or context tables – the
zero coding tables (ZC), the sign coding tables (SC) and the magni-
tude refinement tables (MR). ESCOT codes bit-planes from the
most significant bit-plane to the least significant bit-plane. ESCOT
starts with ZC to code the beginning zeros until it hits the first non-
zero bit. ESCOT uses ZC to code the magnitude of first non-zero bit
F and LLF (‘‘SLF+WDS+O’’ and ‘‘LLF+WDS+O’’).

SLF+WDS(HH1)+O (Pepper) SLF+WDS(LH1, HL1, HH1)+O (Elaine)

4.550 s 8.023 s

LLF+WDS(HH1)+O (Pepper) LLF+WDS(LH1, HL1, HH1)+O (Elaine)
23.026 s 62.484 s

cision (‘‘SLF+WDS+O’’, ‘‘SLF+NDS1+O’’, and ‘‘NDF+NDS2+O’’).



Fig. 18. MSSIM of the image coding schemes with and without decision (‘‘SLF+WDS+O’’, ‘‘SLF+NDS1+O’’, and ‘‘NDF+NDS2+O’’).

Table 9
Average Run Time of the Image Coding Schemes with and without Decision.

Scheme SLF+WDS+O SLF+NDS1+O NDF+NDS2+O

Run time 4.804 s 8.206 s 2.688 s
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and SC to code its sign. For the remaining bits, ESCOT uses MR to
code their magnitudes. To match the characteristics of the WBCT
coefficients, we alter the ZC context table in ESCOT. For the coeffi-
cients in the ordinary 2-D wavelet subbands, we adopt the ZC con-
text table (Table 5) in EBCOT [9]. But for the coefficients in the
directional subbands, the proposed Table 6 is the ZC context table.

In Table 5 and Table 6, each ‘‘context’’ denotes a model, and the
numbers of non-zero coefficients are listed under the directions, H,
V, and D1+D2, and X denotes ‘‘Do not care’’. Fig. 13(b) shows the
neighbors and their notations we use in the entropy coding. The
neighbors include vertical neighbors (V), horizontal neighbors
Fig. 19. (a) Portions of the original and the reconstructed images of Barbara at 0.125b
(H), left-lower and right-upper neighbors (D1), and left-upper
and right-lower neighbors (D2). To code coefficient A in a wavelet
subband of a bit-plane, we first calculate the number of non-zero
coefficients in all directions. For 2-D wavelets, based on the sub-
band location and the non-zero coefficient patterns, we decide
which context in Table 5 is to be used to code this bit of coefficient
A. Similarly, we code the coefficients in the other directional sub-
bands using Table 6.

Fig. 15 shows the frequency responses of the WBCT directional
filters. We notice the aliasing phenomenon in WBCT. Because the
directional filters are not ideal filters, their outputs contain aliasing
components. Thus, the outputs of a certain filter populate not only
along one direction but also along another direction (with less en-
ergy). Consequently, the context model in arithmetic coding be-
comes less accurate or its coding efficiency is reduced. We may
reduce aliasing by adopting a sharper (and thus longer) filter but
the computation time would then increase.
pp. (b) Portions of the original and the reconstructed images of Elaine at 0.5bpp.



Table 11
PSNR of the image coding schemes with the original and the new ZC context tables (directional filters = LLF).

Test image Coding Shceme 0.125 bpp 0.25 bpp 0.5 bpp 0.75 bpp 1.0 bpp

Barbara LLF+WDS+O 25.72 28.51 32.22 34.89 37.01
LLF+WDS+P 25.86 28.71 32.41 34.96 37.11

Fingerprint LLF+WDS+O 22.64 25.36 29.09 31.33 33.25
LLF+WDS+P 22.64 25.52 29.09 31.41 33.26

Pepper LLF+WDS+O 30.49 33.33 35.56 36.81 37.93
LLF+WDS+P 30.6 33.37 35.62 36.9 38.07

Elaine LLF+WDS+O 30.99 32.29 33.94 35.34 36.5
LLF+WDS+P 31.09 32.33 34 35.38 36.53

Boat LLF+WDS+O 28.81 32.28 36.13 38.6 40.46
LLF+WDS+P 28.8 32.39 36.22 38.67 40.58

Couple LLF+WDS+O 26.87 29.31 32.55 34.73 36.47
LLF+WDS+P 26.93 29.37 32.56 34.79 36.53

Table 12
Run time of the image coding schemes with different ZC context tables.

Scheme SLF+WDS(HL1)+O (Barbara, Fingerprint, Boat, Couple, average) SLF+WDS(HH1)+O (Pepper) SLF+WDS(LH1, HL1, HH1)+O (Elaine)

Run time 4.547 s 4.550 s 8.023 s

Scheme SLF+WDS(HL1)+P (Barbara, Fingerprint, Boat, Couple, average) SLF+WDS(HH1)+P (Pepper) SLF+WDS(LH1, HL1, HH1)+P (Elaine)
Run time 4.203 s 4.177 s 7.813 s

Scheme LLF+WDS(HL1)+O (Barbara, Fingerprint, Boat, Couple, average) LLF+WDS(HH1)+O (Pepper) LLF+WDS(LH1, HL1, HH1)+O (Elaine)
Run time 23.031 s 23.026 s 62.484 s

Scheme LLF+WDS(HL1)+P (Barbara, Fingerprint, Boat, Couple, average) LLF+WDS(HH1)+P (Pepper) LLF+WDS(LH1, HL1, HH1)+P (Elaine)
Run time 22.391 s 22.386 s 62.256 s

Table 10
PSNR of the image coding schemes with the original and the new ZC context tables (directional filters = SLF).

Test image Coding Shceme 0.125 bpp 0.25 bpp 0.5 bpp 0.75 bpp 1.0 bpp

Barbara SLF+WDS(HL1)+O 25.62 28.41 32.22 34.89 36.99
SLF+WDS(HL1)+P 25.79 28.53 32.33 34.96 37.11

Fingerprint SLF+WDS(HL1)+O 22.64 25.36 29.09 31.33 33.25
SLF+WDS(HL1)+P 22.64 25.52 29.09 31.33 33.25

Pepper SLF+WDS(HH1)+O 30.49 33.34 35.54 36.85 37.96
SLF+WDS(HH1)+P 30.6 33.37 35.61 36.82 37.95

Elaine SLF+WDS(LH1, HL1, HH1)+O 30.99 32.3 33.8 35.11 36.29
SLF+WDS(LH1, HL1, HH1)+P 31.09 32.31 33.84 35.12 36.37

Boat SLF+WDS(HL1)+O 28.88 32.32 36.17 38.68 40.52
SLF+WDS(HL1)+P 28.9 32.42 36.26 38.78 40.58

Couple SLF+WDS(HL1)+O 26.92 29.33 32.58 34.81 36.48
SLF+WDS(HL1)+P 26.92 29.39 32.6 34.85 36.63
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6. Experimental results

We have discussed the three proposed tools that enhance a
WBCT image coding scheme in computation and/or complexity
reduction. They are short length 2-D filters, a mean-shift-based
decision, and new ZC context tables for ESCOT. In this section,
we examine the impact of each tool towards the system perfor-
mance. And, putting them together, we compare the overall perfor-
mance between the 2-D DWT image coding scheme, the original
WBCT image coding scheme, and the proposed WBCT image coding
scheme with three new tools.

A few abbreviations are explained below. The original WBCT
image coding scheme can apply directional filtering to either all
subbands (NDS1) or no subband (NDS2). With our decision mech-
anism (WDS), we adaptively choose the subbands for directional
filtering. Moreover, the original WBCT scheme uses long length
directional filters (LLF), and our proposed image coding scheme
uses short length directional filters (SLF) instead. The no direc-
tional filtering (NDF) situation appears when either the WDS de-
clares that no subband needs directional filtering or the NDS2
strategy is adopted. There are two options for ESCOT: the original
context tables (O) designed for 2-D DWT coefficients or the pro-
posed context tables (P) fine-tuned for the WBCT coefficients. Ta-
ble 7 summarizes all the aforementioned abbreviations.

The notation of an image coding scheme consists of three parts:
the directional transform type, the decision, and the coder tables.
For example, the 2-D DWT image coding scheme is
‘‘NDF+NDS2+O’’, the original WBCT image coding scheme is
‘‘LLF+NDS1+O’’, and our proposed coding scheme with three tools
is ‘‘SLF+WDS(HL1, HH1)+P’’. Note that the subbands selected by
WDS are listed in the parenthesis after WDS, and thus ‘‘WDS(LH1,
HL1, and HH1)’’ is the same as ‘‘NDS1’’.

Our test images are listed in Table 2. The experimental platform
is Matlab r2008b on a PC with Intel Core 2 Quad Q9400 CPU. First,



Table 13
Average run time of the 2-D DWT scheme (NDF+NDS2+O), the original WBCT scheme
(LLF+NDS1+O), and the proposed scheme with three new tools (SLF+WDS+P).

Scheme SLF+WDS+P LLF+NDS1+O NDF+NDS2+O

Run time 4.499 s 62.469 s 2.688 s

Fig. 20. PSNR of the 2-D DWT scheme (NDF+NDS2+O), the original WBCT scheme (LLF+NDS1+O), and the proposed scheme with three new tools (SLF+WDS+P).
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we show the impacts of filter length in terms of PSNR and run time
by comparing ‘‘SLF+WDS+O’’ and ‘‘LLF+WDS+O’’. Fig. 16 shows
their PSNR at various bitrates (bit per pixel, bpp). Obviously, the
image coding scheme with SLF has similar PSNR performances as
that with LLF. Table 8 shows the run time of these two schemes
and the image coding scheme with SLF consumes only 10–20%
computational time of that with LLF.

Next, we present the impacts of decision algorithm in terms of
PSNR, MSSIM [35] and run time among ‘‘SLF+WDS+O’’,
‘‘SLF+NDS1+O’’, and ‘‘NDF+NDS2+O’’ (the 2-D DWT coding
scheme). MSSIM represents mean of structural similarity. A higher
MSSIM implies a better image subjective quality. Fig. 17 shows
the PSNR of the image coding schemes with and without decision.
The image coding scheme with decision (‘‘SLF+WDS+O’’) has simi-
lar PSNR performance as those without decisions (‘‘SLF+NDS1+O’’
and ‘‘NDF+NDS2+O’’). Fig. 18 shows the MSSIM of the image coding
schemes with and without decision. Our proposed image coding
scheme with decision (‘‘SLF+WDS+O’’) has similar MSSIM perfor-
mance as ‘‘SLF+NDS1+O’’ and has better MSSIM than
‘‘NDF+NDS2+O’’. The visual quality improvement is most obvious
on some pictures such as Elaine. Fig. 19 shows portions of the ori-
ginal and the reconstructed images of Barbara and Elaine generated
by these three schemes. Noticeably, ‘‘SLF+WDS+O’’ and
‘‘SLF+NDS1+O’’ show more texture details than ‘‘NDF+NDS2+O’’.
Table 9 shows the run time of these schemes. ‘‘SLF+WDS+O’’ saves
about 50% computational time comparing to ‘‘SLF+NDS1+O’’ but it
needs roughly 70% extra computational time comparing to
‘‘NDF+NDS2+O’’. In brief, the image coding scheme with decision,
‘‘SLF+WDS+O,’’ achieves a good balance between quality and speed.

Next, we examine the effect of the new ESCOT context tables in
terms of PSNR and run time. Table 10 shows the PSNR of the image
coding schemes with the original and the new ZC context tables
when the directional filters are SLF. And Table 11 shows the PSNR
when the directional filters are LLF. The image coding schemes
with the new ZC context tables (‘‘SLF/LLF+WDS+P’’) have a slightly
better PSNR performance than those with the original ZC context
table (‘‘SLF/LLF+WDS+O’’) in all cases. Moreover, Table 12 indicates
that ‘‘SLF/LLF+WDS+P’’ consumes less computation time than its
‘‘SLF/LLF+WDS+O’’ counterpart in all cases. The context table of
‘‘O’’ considers 26 neighbors in a 3 � 3 � 3 cubic but that of ‘‘P’’ con-
siders only 8 neighbors in a 3 � 3 square. Clearly, ‘‘P’’ uses fewer
neighbors and consumes less computation. Thus, our proposed
context tables can also speed up slightly the coding process.
At last, we compare the performance of the entire image coding
scheme for three candidates: ‘‘LLF+NDS1+O’’ (the original WBCT
image coding scheme), ‘‘NDF+NDS2+O’’ (the 2-D DWT image cod-
ing scheme) and ‘‘SLF+WDS+P’’ (our proposed WBCT image coding
scheme). Fig. 20 shows the PSNR of these three coding schemes.
Generally, our proposed ‘‘SLF+WDS+P’’ has better average PSNR
than the ‘‘NDF+NDS2+O’’ and its average PSNR is comparable with
that of ‘‘LLF+NDS1+O’’. Table 13 shows their run time. Our pro-
posed scheme ‘‘SLF+WDS+P’’ saves more than 92% computing time
than ‘‘LLF+NDS1+O’’ (the original WBCT image coding scheme). On
the other hand, it costs 67% extra computing time than
‘‘NDF+NDS2+O’’ (the 2-D DWT image coding scheme). Clearly,
our proposed scheme offers a good balance between computa-
tional complexity and image visual quality.
7. Conclusions

The WBCT-based image coding approach is explored in this pa-
per. We propose three components to enhance its performance.
First, we design a short-length filter set (SLF) to speed up the filter-
ing process. It provides similar coding performance but requires
only 10% of computational complexity of the original long-length
filters (LLF). Second, we construct a mean-shift-based decision pro-
cess to decide if a higher subband (HH1, HL1, or LH1) is appropriate
for directional decomposition. Threshold values are carefully se-
lected to identify the energy peaks in each candidate subband. Fi-
nally, we design new zero-coding (ZC) context tables for ESCOT
because the coefficients produced by directional decomposition
have different statistical characteristics among near-by coeffi-
cients. Compared with the conventional 2-D DWT coding scheme,
our scheme provides better visual quality with a moderate addi-
tional computational cost. Compared with the original WBCT cod-
ing scheme, the proposed coding scheme provides comparable
image quality (PSNR and MSSIM) but with significantly less com-
puting time.
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