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An aquifer with a wellbore surrounded by a finite-thickness skin, such as a gravel pack, can be
regarded as a radial two-zone system. In this study, a mathematical model is developed to
describe contaminant transport in a radial two-zone confined aquifer system. The solution of
the model equations can be used to delineate contaminant transport in such a two-zone
aquifer system and to investigate the skin effect on the temporal and spatial concentration
distribution. The present solution is shown to reduce to an existing solution for transport in a
homogeneous aquifer in the case when there is no wellbore skin. The results predicted from
the solution indicate that the skin effect has a significant impact on the concentration
distribution at early time. But an abrupt change in the spatial concentration distribution may
occur at the interface of the skin zone and aquifer formation zone. The results from a sensitivity
analysis reveal that dispersivity in the formation zone has a more significant effect on the
concentration distribution than do the effects of skin thickness and dispersivity in the skin
zone.

© 2012 Elsevier B.V. All rights reserved.
Keywords:
Radial dispersion
Contaminant transport
Skin effect
Laplace transform
Groundwater
1. Introduction

A skin zone that occurs around a well due to drilling
practices or well completion may have properties that are
different from the aquifer formation. This situation can be
considered as a radial two-zone aquifer system with a
finite-thickness skin adjacent to the aquifer region. Numer-
ous studies have considered the influence of a skin zone on
groundwater flow induced by various aquifer tests (e.g., Wen
et al., 2011; Yang and Yeh, 2005, 2006), as well as on the
estimation of hydrogeological properties (e.g., Chen and Yeh,
2009; Kabala, 2001; Yeh and Chen, 2007). It has been widely
acknowledged that the existence of a skin zone affects the
early-time head data near the well. However, little is known
about the influence of a skin zone on contaminant transport
in a radial two-zone aquifer system.

The radial contaminant transport problem represents the
injection of a dissolved contaminant (e.g., wastewater or treated
: +886 3 5725958.
h).

ll rights reserved.
water) into an aquifer, and several articles have examined this
radial dispersion problem. Ogata (1958) first presented an
analytical solution for the radial advection–dispersion equation
(RADE) based on the Laplace transform and complex integral
methods, though that study did not evaluate the integral
solution. Hoopes and Harleman (1967) used a finite difference
method to simulate solute transport in radial flow induced by a
line source injection. Subsequently, both Dagan (1971) and
Gelhar and Collins (1971) used perturbation methods to obtain
approximate solutions for radial dispersion due to injection in a
finite-radius well. For the radial dispersion problem, Tang and
Babu (1979) developed an analytical solution expressed in terms
of three integrals, including the combination of Bessel functions
and/or modified Bessel functions, and an approximate solution
in terms of the complementary error function. In addition, they
also presented small-time and large-time solutions for the radial
dispersion problem. Moench and Ogata (1981) solved the RADE
by the Laplace transform technique. Their Laplace-domain
solution was expressed in terms of Airy functions and in-
verted numerically to the time domain by the Stehfest (1970).
Hsieh (1986) presented an analytical solution in terms of Airy
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functions for the radial dispersion problem, which was simpler
than that of Tang and Babu (1979). These analytical solutions
and approximate solutions serve as useful and efficient tools to
predict solute concentration distributions in homogeneous
aquifer systems. Recently, Zhan et al. (2009a, 2009b) dealt
with solute transport in a layered systemwith two-dimensional
transport in the aquifer and one-dimensional transport in the
aquitard. The concentration distributions in the aquifer and
aquitard were solved based on the Laplace transform technique
along with the continuity requirements at the aquifer–aquitard
interface. The Stehfest numerical inversion algorithm (1970)
was used to obtain time-domain results. Though the presence of
a wellbore skin is expected to affect the concentration distribu-
tions in the aquifer system, the dispersion problem in a radial
two-zone aquifer, which accounts for the finite-thickness well-
bore skin, has rarely been considered in the field of groundwater
transport.

The purpose of this study is to develop a new mathematical
solution for solute transport in a radial two-zone confined aquifer
system. The case considered is of an injection well of finite radius
that fully penetrates the aquifer. The Laplace-domain solution of
the model is developed by the Laplace transform technique. Due
to its complicated form, the time-domain solution is obtained by
applying a numerical inversion. This solution is then used to
investigate the effect of wellbore skin properties on the temporal
and spatial concentration distribution in the aquifer system. In
addition, the influence of dispersivities in the skin and formation
zones as well as the skin thickness on predicted concentration
values is assessed through a sensitivity analysis.

2. Methodology

2.1. Mathematical model and Laplace-domain solution

Fig. 1 shows the configuration considered; a well in a radial
two-zone aquifer system. The injection well is located at the
origin of the cylindrical coordinate system, which has a finite
radius, rw, and a screen that fully penetrates the aquifer. The
contaminant is considered to be nonreactive and continuously
released from the injection well with a constant concentration
C0. The confined aquifer has a finite thickness b and consists of
two zones in the radial direction. The first zone, known as the
wellbore-skin zone, is located around the injection well and
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Fig. 1. Schematic diagram of an injection well in a radial two-zone aquifer
system.
has a thickness of r1–rw. The longitudinal dispersivity in the
first zone is denoted by α1. As indicated in Fig. 1, r1 is the radial
distance from the central line of the well to the outer radius of
the wellbore skin. The second zone is known as the aquifer
formation zone, which is homogeneous, isotropic, and of
infinite lateral extent with a longitudinal dispersivity denoted
by α2. The contaminant concentrations in the first and second
zones are denoted as C1 and C2, respectively.

For convenience, the mathematical model is expressed in
dimensionless form. The contaminant transport is dominated
by radial advection and longitudinal dispersion in the two-zone
system. The molecular diffusion coefficient is assumed to be
negligible. The dimensionless concentration distribution in the
skin zone is written as

κ
∂2G1

∂ρ2 −∂G1

∂ρ ¼ ρ
∂G1

∂τ ; ρw bρ≤ρ1; τ > 0 ð1Þ

and in the aquifer formation zone as

∂2G2

∂ρ2 −∂G2

∂ρ ¼ ρ
∂G2

∂τ ; ρ1 < ρ < ∞; τ > 0 ð2Þ

where G1=C1/C0 and G2=C2/C0 are the dimensionless con-
centrations in the skin and aquifer formation zones, respectively;
κ=α1/α2 represents the ratio of longitudinal dispersivities in
the skin and formation zones; ρ=r/α2 represents the dimen-
sionless radial distance from the well; ρw=rw/α2 and ρ1=r1/α2

are the dimensionless well radius and outer radius of the skin
zone, respectively; τ=Qt/(2πbnα2

2) is the dimensionless time
since injection of contaminant, and Q is the constant well
injection rate, and n is the aquifer porosity. Both the skin and
aquifer formation zones are initially free from contamination,
expressed as

G1 ρ;0ð Þ ¼ G2 ρ;0ð Þ ¼ 0; ρ≥ρw: ð3Þ

The boundary condition at the injection well is a constant
concentration denoted as

G1 ρw; τð Þ ¼ 1; τ > 0: ð4Þ

The aquifer formation is assumed to be free from
contamination far from the well, where the concentration is
written as

G2 ∞; τð Þ ¼ 0; τ > 0 ð5Þ

The concentration and the flux at the interface between the
skin and aquifer formation zones are continuous, expressed as

G1 ρ1; τð Þ ¼ G2 ρ1; τð Þ; τ > 0 ð6Þ
and

κ
∂G1 ρ1; τð Þ

∂ρ ¼ ∂G2 ρ1; τð Þ
∂ρ ; τ > 0: ð7Þ

Taking the Laplace transform with respect to the dimen-
sionless time τ of Eqs. (1) to (7) gives

κ
d2 �G1

dρ2 −d�G1

dρ
−ρs�G1 ¼ 0; ρw < ρ ≤ ρ1 ð8Þ
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d2 �G2

dρ2 −d�G2

dρ
−ρs�G2 ¼ 0; ρ1 < ρ < ∞ ð9Þ

�G1 ρw; sð Þ ¼ 1
s

ð10Þ

�G2 ∞; sð Þ ¼ 0 ð11Þ

�G1 ρ1; sð Þ ¼ �G2 ρ1; sð Þ ð12Þ

and

κ
d�G1 ρ1; sð Þ

dρ
¼ d�G2 ρ1; sð Þ

dρ
ð13Þ

where �G1 and �G2 are the dimensionless Laplace-domain
concentrations in the skin and formation zones, respectively,
and s is the Laplace variable. The development of Eqs. (8) to
(13) is given in Appendix A. The results for �G1 and �G2 are,
respectively, given by

�G1 ρ; sð Þ ¼ 1
s
exp

ρ−ρw

2κ

� �( Ai Z1;ρ

� �
Ai Z1;ρw

� � 1−Bi Z1;ρw

� �∇1

∇

� �

þBi Z1;ρ

� �∇1

∇

)
ð14Þ

and

�G2 ρ; sð Þ ¼ 1
s
exp

ρ1−ρw

2κ
þ ρ−ρ1

2

� � Ai Z2;ρ

� �
Ai Z2;ρ1

� �

×
Ai Z1;ρ1

� �
Ai Z1;ρw

� � 1−Bi Z1;ρw

� �∇1

∇

� �
þ Bi Z1;ρ1

� �∇1

∇

8<
:

9=
;
ð15Þ

where Ai(∙) and Bi(∙) are Airy functions. Other associated
functions and variables are defined in Appendix A. The
argument Z1,ρ is the abbreviation for the function Z1(ρ, s), as
defined in Eq. (A.5). In addition, Z1,ρ1

and Z1,ρw
are referred to

as the function Z1 by replacing ρwith their second indexes ρ1
and ρw, respectively. Similarly, Z2,ρ and Z2,ρ1

are the abbrevi-
ations for the functions Z2(ρ, s) and Z2(ρ1, s), respectively,
defined in Eq. (A.6).

2.2. Numerical evaluation

Numerical inversion and evaluation were carried out
using a FORTRAN code with double precision accuracy. The
Airy functions with argument x can be expressed in terms of
the modified Bessel functions as (Abramovitz and Stegun,
1972)

Ai xð Þ ¼ 1
π

ffiffiffi
x
3

r
K1=3 ξð Þ ð16Þ

and

Bi xð Þ ¼
ffiffiffi
x
3

r
I−1=3 ξð Þ þ I1=3 ξð Þ
h i

ð17Þ

where I(∙) and K(∙) are the modified Bessel functions of
the first and second kinds, respectively, with the argument
ξ=2/3⋅x3/2. The derivatives of the Airy functions, which
appear in Eqs. (A.13) and (A.14), are expressed by

Ai′ xð Þ ¼ − 1
π

xffiffiffi
3

p K2=3 ξð Þ ð18Þ
and

Bi′ xð Þ ¼ xffiffiffi
3

p I−2=3 ξð Þ þ I2=3 ξð Þ
h i

: ð19Þ

The functions I(∙) and K(∙) are calculated by the sub-
routines DCBIS and DCBKS of IMSL (2003a), respectively. The
numerical inversion of Eqs. (14) and (15) to the time domain
is achieved by the subroutine DINLAP of IMSL (2003b) which
was developed based on the Crump algorithm (Chen et al.,
1996).

2.3. Reduction to Moench and Ogata's solution

Moench and Ogata (1981) provided a Laplace-domain
solution for the problem of radial dispersion with the
contaminant injected into a well in an aquifer without the
presence of wellbore skin. Their Laplace-domain solution is
expressed as

�G ρ; sð Þ ¼ 1
s
exp

ρ−ρw

2

� �Ai Yρ

� �
Ai Ywð Þ ð20Þ

where

Yρ ¼ 4ρsþ 1
4s2=3

ð21Þ
and

Yw ¼ 4ρwsþ 1
4s2=3

: ð22Þ

Note that the present solution, i.e., Eqs. (14) and (15), can
be reduced to Eq. (20) by setting ρ1=ρw and κ=1, i.e., Z1=
Z2=Yρ, Z1,ρ1

=Z2,ρ1
=Z1,ρw

=Yw, and ∇1=0.

2.4. Sensitivity analysis

Sensitivity analysis can be performed to examine the
effect of changing the input parameters for model output, i.e.,
the concentration. The normalized sensitivity coefficients of
Uα1

, Uα2
and Ur1 with respect to each of the parameters α1, α2

and r1 indicate the relative importance of model parameters,
which are expressed as (Liou and Yeh, 1997)

Uα1
¼ α1

∂C
∂α1

; Uα2
¼ α2

∂C
∂α2

; and Ur1
¼ r1

∂C
∂r1

: ð23Þ

Note that these three coefficients have the same di-
mensions as concentration. Three new sensitivity coefficients
are further introduced as

uα1
¼ κ

∂G
∂κ ¼ Uα1

=C0 ð24Þ

uα2
¼ 1

ρw
⋅ ∂G
∂ 1

ρw

� � ¼ Uα2
=C0 ð25Þ
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Fig. 2. Dimensionless concentration distributions for ρw=1, ρ1=2, and
κ=0.5, 1 and 2 when τ=0.5, 4.5 and 18.
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Fig. 4. Dimensionless concentration distributions for ρw=1, ρ1=4, and
κ=0.5, 1 and 2 when τ=0.5, 4.5 and 18.
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κ=0.5, 1 and 2 when τ=50, 450 and 1800.
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and

ur1
¼ ρ1

∂G
∂ρ1

¼ Ur1
=C0 ð26Þ

where uα1
, uα2

and ur1 represent the dimensionless normal-
ized sensitivity coefficients of the dimensionless concentra-
tion with respect to the dimensionless parameters κ, 1/ρw

and ρ1, respectively. They are approximated by the finite-
difference formulas as

uα1
≈κ

G κ þ Δκð Þ−G κð Þ
Δκ

ð27Þ

uα2
≈α2

G ρw α2 þΔα2ð Þ;ρ1 α2þΔα2ð Þ; κ α2þΔα2ð Þ; τ α2þΔα2ð Þ½ �−G ρw;ρ1; κ; τ½ �
Δα2

≈ 1
ρw

G ρw α2þΔα2ð Þ;ρ1 α2þΔα2ð Þ; κ α2þΔα2ð Þ; τ α2þΔα2ð Þ½ �−G ρw;ρ1; κ; τ½ �
Δ

1
ρw

� �

ð28Þ
and

ur1
≈ρ1

G ρ1 þ Δρ1ð Þ−G ρ1ð Þ
Δρ1

ð29Þ

where Δκ, Δα2 and Δρ1 denote small changes in the param-
eters, which are usually chosen as the parameter values
multiplied by a factor of 10−3. Thus, the following formulas
are applied to calculate Eq. (28); i.e., ρw(α2+Δα2)=ρw/1.001,
ρ1(α2+Δα2)=ρ1/1.001, κ(α2+Δα2)=κ/1.001, and τ(α2+
Δα2)=τ/1.001.

3. Results and discussion

3.1. Effect of dispersivities in the formation zone

Fig. 2 displays the curves of dimensionless concentration
versus dimensionless distance for ρw=1, ρ1=2, and κ=0.5, 1
and 2when τ=0.5, 4.5 and 18. The case of κ=1 represents the
absence of the skin zone. Furthermore, the cases of κ=0.5 and
2 represent the situations for α1bα2 and α1>α2, respectively.
At the same distance, the highest dimensionless concentration
is produced in the case of greatest κ at a specific time. Overall,
the differences in dimensionless concentrations for κ=0.5, 1
and 2 decrease with time. The slopes of the dimensionless
concentration curve are markedly different at the interface
between the skin zone and formation zone (ρ=2) in the cases
of κ=0.5 and 2 when τ=0.5 and 4.5. The variations in the
slope of the concentration curve may provide a diagnostic
indication for the presence of the skin zone in the aquifer
system, although it is recognized that such detailed data on
concentration versus distance may rarely be available in the
field.
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Fig. 3 shows the curves of dimensionless concentration
versus dimensionless distance for ρw=10, ρ1=20, and κ=0.5,
1 and 2 when τ=0.5, 450 and 1800, which is comparable with
the corresponding curves in Fig. 2 to represent the case of smaller
α2 under the same well radius condition. Additionally, the
dimensionless distance and time adopted in Fig. 3 are 10 and 100
times, respectively, those used in Fig. 2 for the same dimensional
values. In Fig. 3, the differences in dimensionless concentrations
for κ=0.5, 1 and 2 are less significant than those in Fig. 2. The
dimensionless concentration distributions for κ=0.5, 1 and 2
closely coincide when the time is large (τ=1800). In contrast to
Fig. 2, the highest dimensionless concentration does not always
occur in the case of greatest κ at a specific time. Fig. 3 shows that
these dimensionless concentration curves cross near ρ=14
when τ=50, near ρ=30 when τ=450, and near ρ=50 when
τ=1800. Fig. 3 also indicates that the plumes migrate shorter
distances at corresponding times than those in Fig. 2.
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3.2. Effect of skin thickness

Fig. 4 illustrates the dimensionless spatial concentration
distributions for ρw=1, ρ1=4, and κ=0.5, 1 and 2 when
τ=0.5, 4.5 and 18 for the case of thicker skin. This figure
indicates that the differences in dimensionless concentration
for κ=0.5, 1 and 2 are much more significant at larger
distances from the well than those in Fig. 2. For the case of
κ=0.5, the dimensionless concentration does not change
significantly at the early time (τ=0.5) as the skin thickness
increases. In the case of κ=0.5, the dimensionless concen-
tration for ρ1=4 (Fig. 4) is, however, much higher at short
distances and lower at long distances for τ=4.5 and 18 than
1 2 3 4 5 6 7 8 9 10

Dimensionless distance, ρFig. 6. Dimensionless concentration distributions and dimensionless nor-
malized sensitivities (normalized sensitivities per C0) of dimensionless
concentration in response to the change in the parameters α1, α2 and r1 for
(a) κ=0.5, (b) κ=1, and (c) κ=2 as well as ρw=1 and ρ1=4 when τ=0.5,
4.5 and 18.
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the case of ρ1=2 (Fig. 2). In contrast, the dimensionless
concentration is lower at short distances but higher at long
distances in the case of κ=2 (thicker-skin) than those in
Fig. 2. Moreover, the spatial dimensionless concentration
distributions for the case of κ=2 have distinct changes of
slope at the interface between the skin and formation zones
(ρ=4) when τ=4.5 and 18.

Fig. 5 shows the dimensionless spatial concentration
distributions for the case that the skin thickness is twice that
in Fig. 3. The parameters used in Fig. 5 are ρw=10 and ρ1=40
for κ=0.5, 1 and 2 when τ=50, 450 and 1800. The increase in
skin thickness did not distinctly affect the dimensionless
concentration distribution at the early time (τ=50). The
differences in dimensionless concentration for κ=0.5, 1 and
2 are much more significant at τ=450 and 1800 than those in
Fig. 3. In comparison with Fig. 3, the same observation, as
discussed in Fig. 4, applies to the case of κ=0.5, where the
dimensionless concentration is much higher at short distances
and lower at long distances for τ=450 and 1800. In addition, a
lower dimensionless concentration is predicted at short
distances but a higher concentration is predicted at long
distances in the case of κ=2 as the skin thickness increases.
Figs. 4 and 5 show that the spatial concentration distributions
change more sharply in the case of κ=0.5.

3.3. Sensitivity analysis

Fig. 6 illustrates the spatial dimensionless concentration
distributions and the dimensionless normalized sensitivities
of dimensionless concentration with respect to each of the
parameters α1, α2 and r1 for κ=0.5, 1 and 2 when ρw=1 and
ρ1=4. Generally, the values of dimensionless normalized
sensitivity curves deviate from zero when the dimensionless
concentration is between zero and one. The dimensionless
concentration in response to the change in α2 is more
sensitive than those in α1 and r1. As shown in Fig. 6, positive
perturbations in α2 produce a negative concentration change.
Fig. 6b indicates that the dimensionless concentration is
insensitive to a change in r1 when the skin is absent (κ=1).
In other words, the change of skin thickness in such a case
(κ=1) does not affect the dimensionless concentration since
the dispersivities of the skin and formation zones are the
same. In addition, the dimensionless concentration seems
insensitive to the change in r1 when the plume has not
reached the formation zone, i.e., τ=0.5, for κ=0.5 and 2, as
displayed in Fig. 6a and c. These two figures also show that
significant decreases or increases of the sensitivity curves
occur at the interface of skin zone and formation zone, i.e.,
ρ1=4. Fig. 6a shows that a positive perturbation in r1
produces a positive concentration change within the skin
zone and a negative change beyond the skin zone when τ=
4.5 and 18 for κ=0.5. In contrast, for the case of κ=2 shown
in Fig. 6c, a positive perturbation in r1 produces a negative
change in the concentration within the skin zone and a
positive change beyond the skin zone when τ=4.5 and 18.

4. Conclusions

A mathematical model has been developed to describe the
temporal and spatial dimensionless concentration distributions
due to the continuous injection of a solute in a radial two-zone
confined aquifer system. The Laplace-domain solution of the
model equations was obtained in terms of Airy functions. A
numerical Laplace inversion, calledDINLAP of IMSL (2003b), was
applied to evaluate the dimensionless concentration in the time
domain. The present Laplace-domain solution for contaminant
transport in a radial two-zone system can be reduced toMoench
and Ogata (1981) if the wellbore skin is absent.

The present solution was applied to investigate the skin
effect on the temporal and spatial concentration distributions.
The differences in concentrations between the skin-affected
cases and non-skin case become less significant at longer time
but aremuchmore notablewhen the dispersivity in the aquifer
formation zone is large. In addition, there may be a sudden
change in the slope of the concentration distribution at the
interface between the skin zone and formation zone. An aquifer
with a smaller dispersivity in the aquifer formation zone was
shown to produce a shorter travel distance of the plume. Results
from the sensitivity analysis indicated that the dimensionless
concentration was more sensitive to the change of dispersivity
in the formation zone than those of two other parameters, i.e.,
skin thickness and dispersivity in the skin zone.

Notation

The following symbols are used in this paper:

Ai(⋅) Airy function
b aquifer thickness
b1 coefficient in Eq. (A.7), which is defined in Eq. (A.9)
b2 coefficient in Eq. (A.7), which is defined in Eq. (A.10)
Bi(⋅) Airy function
C0 initial constant concentration injected into the well
C1 contaminant concentration in the skin zone
C2 contaminant concentration in the formation zone
d1 coefficient in Eq. (A.8), which is defined in Eq. (A.11)
d2 coefficient in Eq. (A.8), which is defined in Eq. (A.12)
G1 dimensionless concentration in the skin zone,

which is defined as G1=C1/C0
G2 dimensionless concentration in the formation zone,

which is defined as G2=C2/C0
�G1 dimensionless Laplace-domain concentration in

the skin zone
�G2 dimensionless Laplace-domain concentration in

the formation zone
I(⋅) modified Bessel function of the first kind
K(⋅) modified Bessel function of the second kind
n aquifer porosity
Q constant injection rate at the well
r1 outer radius of the skin zone
rw radius of injection well
s Laplace variable
uα1

normalized sensitivity coefficient of dimensionless
concentration to κ, which is defined in Eq. (24)

uα2
normalized sensitivity coefficient of dimensionless
concentration to 1/ρw, which is defined in Eq. (25)

ur1 normalized sensitivity coefficient of dimensionless
concentration to ρ1, which is defined in Eq. (26)

Uα1
normalized sensitivity coefficient of concentration
to α1, which is defined in Eq. (23)

Uα2
normalized sensitivity coefficient of concentration
to α2, which is defined in Eq. (23)
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Ur1 normalized sensitivity coefficient of concentration
to r1, which is defined in Eq. (23)

Ū1 function defined in Eq. (A.3)
Ū2 function defined in Eq. (A.4)
x argument
Yρ argument defined in Eq. (21)
Yw argument defined in Eq. (22)
Z1,ρ abbreviation of the function Z1(ρ, s) defined in

Eq. (A.5)
Z1,ρ1

abbreviation of the function Z1(ρ1, s), which can be
calculated from Eq. (A.5)

Z1,ρw
abbreviation of the function Z1(ρw, s), which can be
calculated from Eq. (A.5)

Z2,ρ abbreviation from the function Z2(ρ, s) defined in
Eq. (A.6).

Z2,ρ1
abbreviation of the function Z2(ρ1, s), which can be
calculated from Eq. (A.6)

α1 longitudinal dispersivity in the skin zone
α2 longitudinal dispersivity in the formation zone
∇ equation defined in Eq. (A.14)
∇1 equation defined in Eq. (A.13)
κ ratio of longitudinal dispersivities in the skin and

formation zones, which is defined as κ=α1/α2

ρ dimensionless radial distance from the well, which
is defined as ρ=r/α2

ρw dimensionless well radius, which is defined as
ρw=rw/α2

ρ1 dimensionless outer radius of the skin zone, which
is defined as ρ1=r1/α2

τ dimensionless time since contaminant injection,
which is defined as τ=Qt/(2πbnα2

2)
ξ argument defined as ξ=2/3⋅x3/2
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Appendix A. Development of Eqs. (14) and (15)

Eqs. (8) and (9) can be rearranged as the Airy differential
equations:

d2 �U1

dZ1
2 −Z1

�U1 ¼ 0; ρw < ρ≤ ρ1 ðA:1Þ

and

d2 �U2

dZ2
2 −Z2

�U2 ¼ 0; ρ1 < ρ < ∞ ðA:2Þ

where the new functions Ū1 and Ū2 are respectively related to
�G1 and �G2 by

�U1 ρ; sð Þ ¼ exp − ρ
2κ

� �
�G1 ρ; sð Þ ðA:3Þ
and

�U2 ρ; sð Þ ¼ exp −ρ
2

� �
�G2 ρ; sð Þ: ðA:4Þ

In addition, Z1 and Z2 are defined as

Z1 ρ; sð Þ ¼ s
κ

� �1=3
ρþ 1

4κs

� �
ðA:5Þ

and

Z2 ρ; sð Þ ¼ 4ρsþ 1
4s2=3

: ðA:6Þ

The general solutions to Eqs. (A.1) and (A.2) can be
respectively expressed as

�U1 ρ; sð Þ ¼ b1Ai Z1ð Þ þ b2Bi Z1ð Þ ðA:7Þ

and

�U2 ρ; sð Þ ¼ d1Ai Z2ð Þ þ d2Bi Z2ð Þ ðA:8Þ

where the coefficients b1, b2, d1 and d2 are the constants
determined by the associated boundary conditions (10) to
(13). The coefficients are then obtained as

b1 ¼ 1
s
exp −ρw

2κ

� � 1

Ai Z1;ρw

� �−∇1

∇
Bi Z1;ρw

� �
Ai Z1;ρw

� �
2
4

3
5 ðA:9Þ

b2 ¼ 1
s
exp −ρw

2κ

� �∇1

∇ ðA:10Þ

d1 ¼ 1
s
exp

ρ1−ρw

2κ
−ρ1

2

� � 1

Ai Z1;ρw

� �
Ai Z2;ρ1

� �	
Ai Z1;ρ1

� �

þ Ai Z1;ρw

� �
Bi Z1;ρ1

� �
−Ai Z1;ρ1

� �
Bi Z1;ρw

� �h i∇1

∇



ðA:11Þ

and

d2 ¼ 0 ðA:12Þ

where

∇1 ¼ κ2=3Ai′ Z1;ρ1

� �
Ai Z2;ρ1

� �
−Ai Z1;ρ1

� �
Ai′ Z2;ρ1

� �
ðA:13Þ

and

∇ ¼ κ2=3Ai Z2;ρ1

� �
Ai′ Z1;ρ1

� �
Bi Z1;ρw

� �
−Ai Z1;ρw

� �
Bi′ Z1;ρ1

� �h i
−Ai′ Z2;ρ1

� �
Ai Z1;ρ1

� �
Bi Z1;ρw

� �
−Ai Z1;ρw

� �
Bi Z1;ρ1

� �h i
:

ðA:14Þ

The notations Z1,ρw
, Z1,ρ1

and Z2,ρ1
are the abbreviations for

the functions Z1(ρw, s), Z1(ρ1, s) and Z2(ρ1, s), respectively,
which can be calculated from Eqs. (A.5) and (A.6). The
Laplace-domain solutions of dimensionless concentrations in
skin and formation zones, Eqs. (14) and (15), are then
obtained by substituting Eqs. (A.7) and (A.8) into Eqs. (A.3)
and (A.4), respectively.
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