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An Efficient Method for Unconstrained 
Optimization Problems of Nonlinear 
Large Mesh-Interconnected Systems 

Shin-Yeu Lin and Ch'i-Hsin Lin 

Abstmet-We present a new efficient method for solving unconstrained 
optimization problems for nonlinear large mesh-interconnected systems. 
This method combines an approximate scaled gradient method with a 
black GaussSeidel with line search method which is used to obtain 
an approximate solution of the unconstrained quadratic programming 
subproblem. We prove that our method is globally convergent and demon- 
strate by several numerical examples its superior efficiency compared to 
a sparse matrix technique based method. In an example of a system of 
more than 200 variables, we observe that our method is 3.45 times faster 
than the sparse matrix technique based Newton-like method and about 
50 times faster than the Newton-like method without the sparse matrix 
technique. 

I. INTRODUCTION 
In this paper we consider the following unconstrained optimization 

problem for a nonlinear large mesh-interconnected system 

min J ( x )  
zEPn 

where the objective function J: R" --+ R is continuously differen- 
tiable, bounded from below and satisfies the Lipschitz condition that 
there exists a constant Ii > 0 such that I1VJ(sl) - VJ(x2)112 5 
Iillzl - x z ~ ~ z ,  Vs1, xz E SR". A general descent algorithm, which is 
called a scaled gradient method in [ l ] ,  for solving problem (1) uses 
the following iterations 

where k denotes the iteration index, T~ is a step-size, and sk is the 
solution of 

(3) 

in which C'(J?) is a positive definite matrix. 
For a large mesh-interconnected system, if C ( x k )  is selected so 

that (2) is a Newton or Newton-like method, C( x k )  may be a sparse 
matrix. The solution of (3), which is the solution of the linear system 

(4) 

can be obtained using the sparse matrix technique, which is a very 
powerful means for solving linear equations in a circuit system [2] or 
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an electric power system [3]. This technique effectively reduces the 
amount of computer memory needed and improves the computation 
time dramatically because it stores only nonzero elements and ignores 
operations involving zeros in the solution process [2]. Thus, a sparse 
matrix technique based Newton or Newton-like method is much more 
efficient than a method with quadratic convergence rate. 

In this paper, we will present a new method for solving (1) for a 
large mesh-interconnected system to compete with a sparse matrix 
technique based method. Our method combines an approximate 
scaled gradient method with a block Gauss-Seidel with line search 
(BGSLS) method. Although each of the above methods is well 
known, combining them into one method is a new approach. The basic 
idea behind this method is to preserve the advantages and discard the 
disadvantages of the block Gauss-Seidel method. We have observed in 
many numerical experiments [4] that the block Gauss-Seidel method 
approaches its convergence point very fast in the first few iterations 
and then slows down around that point. This fact indicates that the 
block Gauss-Seidel method is better suited for use as a descent 
direction generator rather than as an optimization algorithm by itself. 
To improve the quality of the descent direction further, we use an 
exact line search at the end of each cycle of the block Gauss-Seidel 
method and thus form a BGSLS method. Executing the BGSLS 
method for a finite number of iterations with appropriate stopping 
criteria will generate the descent direction needed for the approximate 
scaled gradient method. We will show in this paper that our method 
is a globally convergent descent algorithm. It is difficult to give an 
analytical convergence rate for our method because of the nature of 
the method. However, since the major computation required by our 
method lies in the execution of the BGSLS method, our method 
will be efficient if the BGSLS method can generate an effective 
descent direction in several iterations. Intuitively, our method should 
be efficient and effective, for two reasons: i) only small minimization 
problems are involved in each iteration of the BGSLS method and ii) 
the exact line search used at the end of each iteration of the BGSLS 
method greatly improves the quality of the descent direction. 

11. SOLUTION METHOD 

A. The Approximate Scaled Gradient Method 
The approximate scaled gradient method [ 11 is 

where ik  is an approximate solution of (3) and 5' is a step-size. To 
ensure global convergence, we use Armijo-type rule to determine the 
step-size by 

y k  = $ 7 1 1 k X  (6) 

where 0</3<1, X>O, and mk is the smallest nonnegative integer m 
that makes the following inequality hold for some positive constant 
I i z  

Remark 2.1: a) Condition (7) is to ensure a sufficient decrement of 
the objective function obtained in each iteration of (5); the satisfaction 
of this condition serves as a terminating criteria for our Armijo-type 
step-size rule (6). b) As will be shown in Theorem 2.1, the matrix 
$ C ( x k )  - 1 < 2 I  being nonnegative definite is a sufficient condition 
for (5) to converge. This sufficient condition provides a value for I<*. 
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Lemma 2.1: Suppose (3) is solved by a descent iterative algorithm 
starting from s = 0 for any arbitrary number of iterations, and let ik 
denote the final value of s. Then V J ( Z ' " ) ~ ~ ~  < 0. 

This lemma can easily be verified by the fact that $(?k)TC(zk) ik  
+ V J ( X ' ) ~ ? '  < 0. Thus, our approximate scaled gradient method (5) 
will be an efficient descent algorithm for solving (1) if the descent 
algorithm we employ to obtain ik is efficient. 

B. Block Gauss-Seidel with Line Search (BGSLS) Method 

I )  One Block Gauss-Seidel Cycle: Let us partition s into p sub- 
vectors such that s = [sls:! . . . sp lT.  Then one block Gauss-Seidel 
cycle is to perform 

min 8 %  $ s T ~ ( r k ) s  + VJ(Z')'s (8) 

from i = 1 to p. In (8), the subvector sz  is taken as the vector of 
minimizing variables while the variables in the subvectors SI, . . , 
s , - I ,  sZ+l, . . . , sp  are held fixed at their current values. Note that 
compared to (3), (8) is a small unconstrained minimization problem 
for every i .  

Remark2.2: On the partition of the s-vector, there are two ex- 
tremes corresponding to p = 1 and p = n. The case of p = 1 is not 
the interest of this paper. For the case of p = n, the descent direction 
generated by (8) has very poor quality. Thus, a good partition should 
take the following two factors into account: a) computational burden 
of solving (8) and b) the quality of descent direction generated. 
In fact, the above two factors have conflicting interests; at this 
stage, we have not yet achieved an optimal way to partition the s- 
vector. Nonetheless, for a network-structure like system, it would be 
beneficial if each partitioned subnetwork is mesh-interconnected, and 
the sizes of all subnetworks do not differ much. 

2 )  Optimal Step-Size: Let s(') denote the value of s after solving 
(8) for s,. Then s(O) represents the initial value and the final 
value of s for one block Gauss-Seidel cycle. Suppose s(O) is not the 
optimal solution of (3). Then the following inequality holds 

; ( s (o ) )TC(xk )S (O)  + VJ(z:")Ts(O) 

> +(S(P))TC("k)S(P) + V J ( z k ) T s ( P ) .  (9) 

Furthermore, because C ( x k )  is positive definite, i s T C ( z k )  s + 
V J ( z k ) * s  is a convex function in s. Based on this fact, we may 
verify that 

; ( , ( P I  ) C( 2) s(p) + VJ( 2) s(p) 
2 $ ( s ( 0 ) ) T C ( z k ) S ( o )  + VJ(z"Ts(0) 

+ [ C ( S k ) S ( 0 )  + VJ(zk)lT(s(P) - S(O))}. (10) 

Then, combining (9) and (lo), we obtain the following lemma. 
Lemma 2.2: Let : do) and dP) denote the initial and final values 

of s-variables, respectively, for one block Gauss-Seidel cycle of the 
BGSLS method. Suppose do) is not an optimal solution of (3). Then 

(1 1) 

- do) is a descent direction 

Therefore, we can determine the exact optimal step-size & to update 

[ C ( X k ) S ( O )  + V J ( z y ( s ( P )  - do)) <o.  
The above inequality implies that 
of ; s T ~ ( x k ) s  + ~ ~ ( 2 ) ~ s  at s = s(O). 

the variable s by 

+ ( i . ( J P )  - p)) (12) su = s(o) 

where su denotes the updated s, and the optimal step-size 

ci. = - [C(.Z?)s(O) + VJ(.rk)]T(s(") - d o ) )  
[g(P) - "(O)]TC(""[S(P) - S(O)] (13) 

is obtained by solving the following one-dimensional minimization 
problem 

min ,220 {$[s(O) + a(s(p) - s ( O ) ) ~ ~ ~ ( . r ~ ) [ s ( ~ )  + a ( s ( p )  - s(O) )I 
+ V J ( z k ) T [ s ( O )  + a p  - P))]}, (14) 

3 )  One Iteration of the BGSLS Method: The following three op- 
erations form one iteration of the BGSLS method: i) execute one 
block Gauss-Seidel cycle; ii) determine &; and iii) update su . s' will 
be the initial value s(O) for the next iteration of the BGSLS method. 

4 )  Convergence of the BGSLS Method: This iterative BGSLS 
method will converge to the solution of (3), as described in the 
following lemma. The proof of the lemma is given in the Appendix. 

Lemma 2.3: Assuming that there exists a constant IC2 > 0 such 
that $C(zk )  - K:!I is nonnegative definite for all I', then a) the 
BGSLS method is a descent method, and b) any limit point of the 
sequence generated by the BGSLS method is a solution of (3). 

5)  Stopping Criteria of the BGSLS Method: As pointed out in 
Section I, the BGSLS method approaches a solution point of (3) 
very quickly in the first few iterations; however, it then slows down 
around that point. In fact, it was this characteristic of the BGSLS 
method that gave us the idea of combining it with the qpproximate 
scaled gradient method. Therefore, to obtain the ik  needed in (5), we 
do not need to execute the BGSLS method until it converges. In fact, 
we can stop the BGSLS method after a finite number of iterations. 
Consequently, one of the stopping criteria of this method is if the 
improvement of the objective function satisfies 

Q(t )  - Q(t  + x 100% < E% (15) 
Q(t)  

where Q(t)  = $ s ( t ) T C ( z k ) s ( t )  + o J ( ~ ~ ) ~ s ( t ) ,  t denotes the 
iteration index of the BGSLS method, and E% is a preselected 
percentage. To ensure that (5) converges, another stopping criteria 

I l s ( t  + 1)112 < A-1llVJ(zk)llz (16) 

for some h-1 > 0, for all t > t', where t' is a finite positive integer, 
should also be satisfied. Then, the s ( t  + 1) which satisfies stopping 
criteria (15) and (16) will be set as ik .  An explanation of the need 
for (16) Till be given in the proof of Theorem 2.1. The existence of 
IC1 and t is ensured by the following corollary, the proof of which 
is also given in the Appendix. 

Corollary2.1: Let { s ( t ) }  denote a sequence generated by the 
BGSLS method. Under the assumption of Lemma 2.3, there exists 
a t sue! that Ils(t)llz > KIIIVJ(zk)l12 for some l i l  > 0 and for 
all t > f . 

C .  The Algorithm for the Solution Method and its Convergence 
Combining Lemma 2.1 and Lemma 2.3 then proves that our method 

is a descent method. 
Lemma 2.4: The combination of the approximate scaled gradient 

method (5) and the BGSLS method, supplemented by the stopping 
criteria (15) and (16), is a descent method for solving (1). 

1 )  The Algorithm: We are now ready to state our algorithm as 
follows: Given data: i) s = [SI, s2, .. . , splT, ii) the values of X(>O) 
and 8(0 < P < 1) in Armijo-type rule, iii) the value of E%( 2 0%) 
in (15), and iv) a positive constant l i ~  which meets the assumption 
in Lemma 2.3. 
Step 0: Set the values do)  and set k = 0. 
Step I :  Set t = 1 and set s ( t )  = 0. 
Step 2:  Set i = 1 and s(O) ( f )  = s ( t ) .  
Step 3: Solve (8) to obtain s('). If i = p ,  go to Step 5; otherwise, 
set i = i + 1 and repeat this step. 

-- I ' -  
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Step 4: Compute 
Step 5:  Update s ( t  + 1) = s ( ' ) ( t )  + &(t)[&"(t) - s ( O ) ( t ) ] .  

Step 6: If (15) and (16) are satisfied, set Rk = s ( t  + 1) and go to Step 
7; otherwise, set t = f + 1 and retum to Step 2. 
Step 7: Set ni = 0. 
Step 8: If J ( s k  + /3"Agk)  - J ( . r k )  5 -(1i2/2)DmAllRk[l~, set 
yk = $"'Ax; otherwise, set m = m + 1, and repeat this step. 
Step 9: Update xk+' = x k + y k i k ,  set k = k + 1, and retum to Step 1. 

2 )  Convergence of the Algorithm: The following theorem ensures 
the convergence of our algorithm. A proof of the theorem is given 
in the Appendix. 

Theorem2.1: Let {sk} denote the sequence generated by our 
algorithm. Under the assumption of Lemma 2.3, limk-- V J ( e k )  
= 0. 

Remark2.3: The values of A, /3, and do not affect the 
convergence but will influence the efficiency of our method. Thus, 
these values can be determined empirically for individual systems. 

3 )  Stopping Criteria of the Algorithm: From Theorem 2.1, we see 
that as k + 00, ik ---t 0; however, for practical considerations, our 
algorithm will stop when l R k l -  < F for a reasonable accuracy. 

( t )  - s(O) ( t )  and determine &( t) by (13). 

111. EXAMPLES 
Most electric power systems are nonlinear large mesh- 

interconnected systems. The weighted least squares problem in 
power system state estimation is a typical unconstrained optimization 
problem and thereby is an adequate example for demonstrating the 
computational efficiency of our method. 

A.  The Weighted Least Squares Problem in 
Power System State Estimation 

The power system state estimation problem [6] can be briefly 
described as follows: For an 1-bus' power system, the voltage 
magnitudes and phase angles of all buses constitute the states of the 
system. Because the bus phase angle cannot be measured, the states 
of the system have to be estimated based on available measurements, 
which are functions of the states, such as power transmission line 
flow, bus voltage magnitude, bus power injection, and transformer 
tap. All such measurements can be expressed in a general form 
as z = h ( x )  + q .  where x is a 21-dimensional vector of state 
variables, z is an m -dimensional vector of measurements, k denotes 
m nonlinear measurement functions which are twice continuously 
differentiable, and q represents an m-dimensional Gaussian random 
vector of measurement errors with an m x m diagonal covariance 
matrix R. A common formulation [5] of this state estimation problem 
is to solve the following weighted least squares problem' 

m i n J ( s ) ( =  3. $ [ z  - k ( ~ ) ] ~ R - ' [ z  - h ( x ) ] ) .  

Since h(s) is twice continuously differentiable, J ( z )  in (17) 
is twice continuously differentiable and thereby satisfies Lipschitz 
condition. Taking n = 21, the J ( x )  meets the assumptions given in 
Section I. 

Note: For an authentic power system state estimation [ 6 ] ,  bad dati 
processing has to be associated with the solution of (17); if bad 
measurements are present, they should be eliminated, and the states 
re-estimated. However, for the purposes of this paper, we will focus 
on solving (17) only. 

' The buses of the power systems considered here are similar to nodes in 
an electrical network. 

The phase angle of the slack bus is considered to be a known value. 

B. Conventional Approach 
In general, the Newton method may fail to solve (17) because the 

Hessian matrix of (17) may not be positive definite. Thus, the conven- 
tional approach in the power system literature [6] uses a Newton-like 
method, which is (2 )  with C(.rk)  = ~ H ( T ' ) ~ R - ' H ( ~ ~ )  in (3), 
where H ( r k )  = V k ( r k ) .  However, H ( J ? ) ~ R - ' H ( X ~ )  may be 
singular or ill-conditioned, since it is only positive semidefinite. To 
cope with this difficulty, we can modify the above C ( s k )  to ensure 
the positive definiteness by setting C ( x k )  = 2 H ( s k ) T R - ' H ( x k )  + 
61, where 6 is a small positive real constant and I is the identity 
matrix. We see that under this modification, the only assumption 
needed in Theorem 2.1, $ C ( x k )  - IC21 is nonnegative definite, is 
satisfied by taking Iiz = (6/2). Furthermore, the numerical stability 
of our algorithm is guaranteed if 5 is not too small. Consequently, 
(4) becomes 

The matrix ~ H ( T ~ ) ~ R - ' H ( T ~ )  + S I  and the matrix 
H ( . z ~ ) ~ R - ' H ( . ~ ~ )  are sparse, and (18) can be solved using 
the sparse matrix technique. 

Remark3.1: a) Because H ( T ' " ) ~ R - ~ H ( X : ' ; )  may be ill condi- 
tioned, methods that use an orthogonal transformation technique to 
solve ~ H ( X ~ ) ~ R - ' H ( L ~ ) S  = -VJ( .ck)  has been developed [7]. 
However, these methods are computationally very inefficient. b) In 
[6], the step-size 7k is set to be 1 for all k. In fact, with a constant 
step-size such as this there is no guarantee that (2 )  will converge. 
c) There are other methods in the power system literature that can 
obtain an approximate solution for state estimation using a decoupling 
approach [8]. However, these methods are beyond the scope of this 
paper, since we are concerned only with methods that solve (1) 
exactly. 

C .  Application of the Proposed Method 

Let us partition the power system network into p (  > 1) subnetworks 
such that each subnetwork is a connected graph in the topological 
sense. Let B, denote the set of buses of the ith subnetwork; then 
S B ,  denotes the subvector of s corresponding to states of the ith 
subnetwork. Replacing s,, C(sk) ) ,  and V J ( r k )  in the proposed 
algorithm by S B , ,  ~ H ( x ~ ) ~ R - ' H ( ~ : " )  + 6 1 ,  and H ( s k ) R - ' ( z  - 
h( T ~ ) ) ,  respectively, we can apply the proposed algorithm directly 
to (17). Analogous to (S), we see that S B ~ ,  . . ., S B , - ~ ,  S B , + ~ ,  . . . , 
S B ~  are held fixed in the ith minimization problem 

whose solution can be obtained by solving a small set of linear 
equations involving only the ith subnetwork and the boundary buses 
outside the ith subnetwork [ 9 ] .  

D .  Test Results 
We applied our method, the sparse matrix technique based Newton- 

like method, and the Newton-like method without sparse matrix 
technique to the weighted least squares problem in state estimation 
of the IEEE 30-bus power system and the IEEE 118-bus power 
system. For the cases under consideration, the IEEE 30-bus system 
was partitioned into three subnetworks, as shown in Fig. 1, in which 
each subnetwork is indicated by closed dashed contours. The IEEE 
118-bus system is partitioned into eight subnetworks. Because of the 
limitation on the length of this paper, we can not include here the 
figure of the IEEE 118-bus system, however, this figure can be found 
in [lo]. Nonetheless, we list the bus number of the buses of each 
subnetwork in the following. Subnetwork 1 contains buses 1 to 14, 

1 I 
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TABLE I 
COMPARISON OF OUR METHOD WITH NEWTON-LIKE METHOD WITH AND WITHOUT SPARSE MAT~IX TECHNIQUE 

Final objective value Average CPU time (seconds) Speedup ratio 
I I I  

I J I  
- NLWTS(*) NLWS(O) Our method NLWTS(*) N L W S ( ~ )  Our method I - 

I I I  
- System 

method method method (I) method (11) @I) I I  

EEE-30 bus 15.88 15.88 15.88 0.99 0.46 0.27 2.15 3.67 1.70 
IEEE-I 18 bus 43.05 43.05 43.05 16.53 5.49 1.59 13.94 48.13 3.45 

' - - - A I  - - - - - - - - - - - - -  3 I 

Fig. 1 .  The IEEE 30-bus system and three partitioned subnetworks. 

and bus 117. Subnetwork 2 contains buses 15 to 19, buses 27 to 
32, and buses 113 and 114. Subnetwork 3 contains buses 20 to 26, 
buses 70 to 76, and bus 118. Subnetwork 4 contains buses 33 to 
47. Subnetwork 5 contains buses 50 to 61, and buses 63 and 64. 
Subnetwork 6 contains buses 48, 49, and 62, buses 65 to 69, buses 
77 to 81, and buses 97, 98, and 116. Subnetwork 7 contains buses 
82 to 96. Subnetwork 8 contains buses 99 to 112. Note that each 
subnetwork contains about 10 to 20 buses in mesh-interconnected 
structure though the bus numbers are not consecutive. 

In both cases, we took the real-power flow and the reactive- 
power flow of all transmission lines of each individual system as 
the measurement data and assumed that some of these are bad data. 
We set the parameters in our algorithm as follows: S = 0.01, P = 
0.9 for both systems, <% = 50% for the IEEE 30-bus system, and 
E% = 10% for the IEEE 118-bus system, X = 1.05, 1.10, 1.15 for the 
IEEE 30-bus system, and X = 1.25, 1.30, 1.35 for the IEEE 118-bus 
system. Note that each value of X corresponds to one computer run. 
We used various values of X to test Armijo-type rule and average the 
CPU time. The accuracy E in the stopping criterion of our algorithm, 
which is described in Subsection 11-C-3), was set to be lo-* for 
both cases. We used a Sun 4/60 workstation to test our algorithm. 
The simulation results for the case of the IEEE 30-bus system and 
the case of the IEEE 118-bus system are shown in Table I. The 
average CPU time of our algorithm is the average CPU time of the 
computer runs with various values of X reported on the Sun 4/60 
workstation. We also solved the same cases for both systems using 
(2), the sparse-matrix technique based Newton-like method, with the 
same setup of Armijo-type rule and same initial guess as our method 
on the same Sun 4/60 workstation. We used Iskloo < 5 = lo-' as 
the stopping criteria for the sparse matrix technique based Newton- 

like method, the test results for which are also shown in Table I. 
We also applied the Newton-like method without using the sparse 
matrix technique to the same cases on the same workstation with the 
same setup of Armijo-type rule, same initial guess, and same stopping 
criteria as the sparse matrix technique based Newton-like method. 
The resulting average CPU times are also reported in Table I for the 
cases of both systems. We see that our algorithm achieved the same 
final objective value as the Newton-like methods. As expected, the 
sparse matrix technique based Newton-like method was much faster 
than the Newton-like method without the sparse matrix technique in 
both cases, especially in the case of the IEEE 118-bus system, which 
has more sparsity. Compared to the sparse matrix technique based 
Newton-like method, our method also performs better with the larger 
system. From the speedup ratio shown @Table I, we see that in 
the case of the IEEE 118-bus system, our method is 3.45 times faster 
than the sparse matrix technique based Newton-like method and 48.13 
times faster than the Newton-like method without the sparse matrix 
technique. This demonstrates the dramatic increase in efficiency 
provided by our method. In order to better appreciate the merits of 
our algorithm, in Fig. 2 we describe the details of the progression 
of our algorithm and the Newton-like method with the sparse matrix 
technique in solving the case of the IEEE 118-bus system when X = 
1.35. The result of our algorithm is shown by the curve marked with 
circles o and associated with the Arabic numeral iteration index. Each 
circle indicates the CPU time accumulated (horizontal axis) at that 
iteration versus the corresponding value of the objective function 
(vertical axis) in the progression. The curve marked with asterisks * 
and associated with the Roman numeral itqation index corresponds 
to the Newton-like method with the sparse matrix technique. Our 
algorithm takes 12 iterations to meet the stopping criteria likl, < 
lo-*, while the sparse matrix technique based Newton-like method 
takes only 11 iterations to meet the stopping criteria Isklm < lo-'. 
However, we see that the amount of CPU time taken up by each 
iteration of our algorithm is far less than that for each iteration of the 
Newton-like method with the sparse matrix technique. This shows the 
effectiveness and efficiency of using the BGSLS method to generate 
the descent direction. Furthermore, when our algorithm has nearly 
reached the optimal objective value, the Newton-like method with 
the sparse matrix technique has just finished its first iteration and the 
corresponding objective value is still quite far away from the optimal 
value. The efficiency of our algorithm is obvious. 

IV. CONCLUSION 

We have developed a globally convergent algorithm for un- 
constrained optimization problems of nonlinear large mesh- 
interconnected systems. Although, due to the nature of our method, 
an analytical convergence rate is not available, the dramatic increase 
in efficiency provided by our method can be observed both from 
the method itself and from the simulation results. It is worth noting 
that the BGSLS method can be processed by parallel processors if 
the order of the partitioned subnetworks is suitably arranged [ 111. 
Thus, the speed of our method may be further increased by using 
parallel processors. 
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'0 Ourmettrod 
' Sparse matrix technique 

based Newton-like method 

1 Olo Mi CPU time (seconds) 

Fig. 2. Details of the progression of our method and the sparse matrix 
technique based Newton-like method in solving the weighted least squares 
problem for the IEEE 1 1  8-bus system. 

APPENDIX 

Proof of Lemma 2.3: a) Let T = {s E R2"1C(zk)s + V J ( z k )  
= 0} denote the solution set of (3). Then if s @ T, the descent 
property of the BGSLS method follows directly from Lemma 2.2 and 
( 1 2 x 1 4 ) .  According to the Global Convergence Theorem [12, pp. 
187-1881, b) can be proven if we show that i) the BGSLS method is 
a descent method, ii) the sequence generated by the BGSLS method 
lies in a compact set, and iii) the mapping of any iteration of the 
BGSLS method is closed. Clearly, i), which is a), has been shown. 
In the following, we will prove ii) and iii). 

Because C( zk) is positive definite, the unique minimum solution 
of (3) is 

s* = -C(zk)-lvJ(z". ('41) 

Let the set S = {s E R*"1 - $ V J ( z k ) T C ( r k ) ) - ' V J ( z k )  5 
!jsTC(.rk)s + V J ( Z ~ ) ~ S  5 0 ). Then S # 0, since 0 E S. We 
claim that S is compact. Clearly, S is closed. Thus, it is enough to 
show that S is bounded. Suppose not, 3s E S 3 

For this s and by the assumption that $C(.rk)  - KzI >0, we have 

From (A2) 

(Ii2llsl lz - l l ~ J ( . r k ~ l 1 2 ) l l ~ I 1 2  > Ilsll2 
> l $ C J ( r k  ) T ~ ( . r k  ) - l ~ ~ ( s ~  )I. ('44) 

Thus, from (A3) and (A4), we obtain that I$sTC( tk ) s  + 
V J ( . ~ ~ ) ~ ~ I  > !jIVJ(sk)TC(.rk)-lVJ(slc)l .  This inequality con- 
tradicts s € S. Hence S must be bounded. From (a), the BGSLS 
method is a descent method. Thus, every point in the sequence { s ( t ) }  
generated by the BGSLS method starting from s = 0 should satisfy 

; s ( t ) T ~ ( . r k ) s ( t )  + GJ( .r ' " )s ( t )  5 0, Vt  (A5) 

moreover, by the descent property 

i S * T C ( . r k ) S *  + V J ( e k ) T s *  
5 $s( t )TC(zk)s ( t )  + v J ( ~ ~ ) ~ s ( t ) ,  Vt. (A6) 

From (Al )  the left-hand side of (A6) equals -!j V J ( X : ' " ) ~  C(.rk)-l 
V J ( z k ) ,  thus from (A5) and (A6), the sequence { ~ ( t ) } ,  Vt ,  must 
lie inside the compact set S. This proves ii). Next, we will prove 
iii). Based on the fact that the composition of closed mappings is a 
closed mapping, and the exact line search method is also a closed 
mapping [12, p. 2101, it is enough to show iii) if we can show that 
the mapping of Step 3 of our algorithm is closed. This is true because 
(8) is a bounded, unconstrained quadratic minimization problem with 
positive definite C( z'). This completes the proof. 0 

Proof of Corollary 2.1: Since by Lemma 2.3, the sequence 
{ s ( t ) }  converges to a point s* satisfying c ( z k ) s *  + V J ( ~ )  = 0, 
then l lC (~k ) l l ~ l l s * l l ~  2 l l V J ( ~ k ) l l ~ .  Let KO = ( l /svk l lC(zk) l lz ) .  
We have llsf(12 2 KollVJ(zk))1J2. Let h-1 = ( I<0/2)>0 and let 
T = Kl 11VJ(zk)112. Then T > 0 since we only need to consider 
the case [ICJ(zk)llz  # 0. Because { s ( t ) }  conver,ges to S*, there 
exists a t such that \Is* - s( t ) l l z  < T for all t > t . Consequently, 
IIs(t)IIz > IIs*IIz - T 2 , IioIIVJ(zk)IIa - IilIIVJ(zk))lIz = 
Kll lVJ(zk) l lz  for all t > t  0 

Proof of Theorem 2.1: From Corollary 2.1, we see that V k ,  with 
V J ( z k )  # 0, there must exist a t such that the stopping criteria (16) 

~ l s ( t ) l l z  > ~ l ~ ~ v ~ ( . r k ) ~ ~ z ,  forsomeIi1 > o ,  tlt>t' 
(A71 

is satisfied. Furthermore, by assumption, we have ! j s ( t )TC(zk)s ( t )  
-s( t )TIizs( t )  2 0,Vt; and from (A5), we have - $ s ( t ) T C ( x k ) s ( t )  
-VJ( .rk)Ts( t )  2 0, Vt ;  these two inequalities lead to 

-IiZlls(t)ll: 2 V J ( . r k ) T s ( t ) ,  Vt .  (A8) 

Then, the following proof mostly follows the proof of the conver- 
gence theorem for descent algorithms given in [ l ,  pp. 203-2041. 
A Descent Lemma given in [ l ,  pp. 203-2041 states that if J ( . )  is 
continuously differentiable and there exists a positive constant Ii 
such that IIVJ(z) - VJ(y)II 5 I<llz - y11~. Vz,y E R", then 
J ( z  + y) 5 J ( z )  + VJ(zk)'y + (Ii/2)[lyllz, Vz, y E Rn. By the 
assumptions on J ( . )  given in Section I, we may use the Descent 
Lemma and (AS) to obtain 

If 0 < 7' < ( I i z / I i ) ,  we can derive that 

By (A9) and (AIO), we have 

(A1 1) 

If X 2 ( I i z / I i ) ,  O < / ? <  1 ,  since {/?'"A}, m = 0, 1 ,  ... is a 
monotonic decreasing sequence approaching 0, there must exist an 
m such that / Y X  < ( I i z / I i ) .  Let mk be the smallest nonnegative 
integer satisfying the above inequality, then the following holds 

I i 2  k J(rk + 7 k i k )  5 J ( 2 )  - 2y ~ ~ P ~ ~ ; .  

If 0 < X < ( I i Z / I < ) ,  0 < 13 < 1, then 

-r I I 1 __ 
I '11 

__ 
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In this case, we can view m k  = 0 which is the smallest nonnegative 
integer for pmkX < (1<~/1<). Now, for any X > 0 , O  < p < 1, and let 
mk be either the m k  determiped by (A12) :r mk = 0 by (A13); from 
(A1 l), there must exist an m 5 mk (or m = 0 if mk = 0) such that 

On the Possible Divergence of the Projection Algorithm 

Erjen Lefeber and Jan Willem Poldennan 

Abshurct-It is shown by means of an example that the projection 

(A14) 
algorithm does not always converge. 

Note th? 0 < -yk < ( I i Z / l i )  is sufficient for ( A l l )  to hold explains 
why m 5 mk. This shows that S,tep 8 of our algorithm will 
terminate for certain m‘.  Since p” 2 p m k ,  from (A12) and 
(A13), p” X 2 min{PX, b’(Ii-*/I<)}. Let 7 E $Ii-z *min{pX, 
/3(1<~/1<)}, then T is finite and positive, and 

Then, each iteration of our algorithm ensures a decrement of the 
objective function by at least the amount rllikll;. Since J ( z )  is 
bounded from below, we assume c E IR is a lower bound of J ( r ) ,  
then from (A15), we have 

Then, by (A16), l l i k l l g  5 ( J ( x o ) - c / ~ )  < CO, and (A7) shows 
0 that limk-, OJ( e k )  = 0. 
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I. INTRODUCTION 

It is well known that parameter identification of linear systems 
depends very much on the excitation of the signals. Generally speak- 
ing, all identification algorithms require the signals to be sufficiently 
exciting. In applications such as adaptive control, however, excitation 
is often not possible. The question then arises how useful the standard 
identification schemes are. In this note we consider the case where the 
data can be modeled exactly by a linear time invariant discrete-time 
model. It is a fact, that for such systems recursive least squares always 
produce a convergent sequence of parameter estimates, although it is 
of course not guaranteed that the limit will be the true parameter [ l ] .  

For the projection algorithm a similar result or its negation is to the 
best of our knowledge not available in the literature. Properties that 
can be derived without any assumptions on the signals can be found 
in [ l ] .  Nothing is said about convergence there (see also [2, Problem 
12.141). In [3], the algorithm is used for adaptive pole assignment. 
Since the adaptive algorithm could be analyzed without proving 
convergence of the parameter estimates, the possible convergence 
is not studied there either. 

In this note we show by means of an example that the projection 
algorithm does not necessarily converge. This is in contrast with 
recursive least squares. 

The construction of the counter example is as follows. Firstly we 
construct a sequence of real vectors that satisfies at least some of the 
properties of the projection algorithm and which does not converge. 
Secondly we show that the sequence could as well have been obtained 
by applying the projection algorithm to an appropriate input/output 
system. Hence, rather than fitting the estimates to the data, we fit the 
data to the estimates. 

11. THE PROJECTION ALGORITHM 
For the sake of completeness, we briefly describe the projection 

algorithm. Let the system be described by 

y(k + 1) = e T d ( k )  e € R”. (1) 

The projection algorithm is defined as follows: Suppose that the 
estimate of 8 at time k is 8k, define Gk+l := ( 8  E R” I y( k -I- 1)  = 
O T d ( k ) } .  Define 8k+1 as the orthogonal projection of 8 k  on G k + l .  

The recursion is given by 

Notice that Gk+l contains the true parameter e. Regardless of the 
input sequence, the following two properties hold. 

2) limk--(Ok+l - 8,) = 0. 
Property 2.1: 1) For all k :  116 - @ k + l l l  5 118 - O k l l .  
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It is obvious that from Property 2.1 we cannot conclude that 0, is 
a fundamental sequence, and in fact we will see that it need not be. 
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