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Abstract

Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of
non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query
proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design
therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate
interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted
with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a
novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent
interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom
types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing
the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein
structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate
binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were
benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The
predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation
coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49
respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in
the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49.
Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted
with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site
predictions to date.
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Introduction

Many biological processes are driven by protein-carbohydrate

interactions. Carbohydrates are the most prominent molecules

displayed on mammalian cell surfaces. It has been estimated that

more than 70% of human proteins are glycosylated [1] and in

certain cell types, more than 80% of glycoconjugates are

glycolipids [2] – it can be envisaged that all human cells are

covered with high density of carbohydrates that are covalently

linked to membrane glycoproteins, glycolipids, and other glyco-

conjugates on cell surfaces. In consistent with the abundance of the

carbohydrates on cells, the cell-surface carbohydrates mediate

molecular targeting in cell adhesion, signaling and migration of

tumor cells, interactions between immune cells and microorgan-

isms and recognition between pathogens and hosts [2]. All these

processes are enabled mostly by non-covalent protein-carbohy-

drate interactions.

The determinants of non-covalent protein-carbohydrate inter-

actions are hydrogen bonding and nonpolar interactions [3–7].

The axial and equatorial hydroxyl (OH) groups on the sugar

ligands are both hydrogen bond donors and acceptors, and the

sugar ring oxygen is a hydrogen bond acceptor. Moreover, the

acetamido and carboxylate groups on the sugar moieties

frequently participate extensive hydrogen bonding networks

responsible for the specificity of the protein-carbohydrate interac-
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tions. These groups form direct hydrogen bonding networks with

protein carboxyl groups as hydrogen bond acceptors and with

protein main chain and side chain amide groups as hydrogen bond

donors. Divalent cation- and water-bridged hydrogen bonds also

involve as integral determinants of the protein-carbohydrate

interactions. In addition to the highly hydrophilic groups, the

sugar rings, formed by the aliphatic carbons and the protons

covalently linked to them, frequently interact with protein

aromatic side chains in the binding sites, and to a lesser extent,

with alkyl side chains of hydrophobic residues in proteins. The

concerted three-dimensional arrangement of the amino acid side

chains and main chains dictates the specificity and affinity of the

protein-carbohydrate interactions.

Although the polar and non-polar interactions as the main

driving forces are shared by all non-covalent protein-carbohydrate

recognitions, the three-dimensional arrangements of amino acids

in carbohydrate binding sites are diverse. The main reason for the

complexity is that the geometrical shape of a carbohydrate binding

site determines the 3-D arrangement of the polar and nonpolar

groups for carbohydrate-recognition: In shallow sugar binding

sites on some lectins or carbohydrate binding modules, the

bottoms of the binding sites are frequently lined with aromatic or

aliphatic groups for the sugar ring lying flat on the binding

surfaces; in deep sugar binding crevices on some carbohydrate

processing enzymes or carbohydrate transporting proteins, the

bottoms of the crevices are frequently lined with polar groups to

form hydrogen bonding networks with the OH groups or other

polar groups on the sugar rings while the aromatic side chains

interacting with the sugar rings are frequently distributed on the

side walls of the crevices. The complex geometry of the

carbohydrate-recognition surfaces makes computational predic-

tion of the non-covalent carbohydrate binding sites on protein

surfaces a difficult challenge.

Computational prediction methods for carbohydrate binding

site on proteins have been described: Taroni et al. [8] analyzed

characteristic propensities of amino acids in sugar binding sites of

proteins with known structure. These propensities were optimized

to calculate the probability for a protein surface patch to be a

carbohydrate binding site. Shionyu-Mitsuyama et al [9] construct-

ed empirical rules for carbohydrate-protein interactions by

building three-dimensional probability density maps of protein

atoms around monosaccharide moieties. Tentative carbohydrate

binding sites on a protein of known structure were then marked

with high score based on the match of the protein surface atom

distribution with the probability density maps. Malik and Ahmad

[10] used neural network trained with evolutionary sequence

information to predict carbohydrate binding site on proteins.

Kulharia et al [11] established a two step-method to identify

tentative sugar binding site on proteins and then to evaluate the

sites with amino acid propensity scores. Nassif et al [12] predicted

protein-glucose binding sites by representing a tentative glucose

binding site as a vector of geometric and chemical features and the

key features were selected for support vector machines predictions.

These methods are successful to various extents in predicting

carbohydrate binding sites on proteins, and yet prediction

accuracy remains to be improved.

The goal of this work is two-fold: to develop an accurate

predictor to recognize non-covalent carbohydrate binding sites on

protein surfaces and to identify the key residues in the tentative

binding sites. The binding site locations and the key residues

involving in the carbohydrate binding are essential information for

further experimental investigations, which might include site-

directed mutagenesis experiments, therapeutics design targeting

against proteins interacting with carbohydrate ligands, and

engineering protein-carbohydrate interactions. The predictions

were carried out with machine learning algorithms, designed to

recognize interacting atom distribution patterns associated with

carbohydrate binding atoms on protein surfaces. In order to carry

out the machine learning procedure, protein surface atoms were

first categorized into 30 atom types; one machine learning model

was trained for each of the atom types. Each of the input

attributes for the machine learning models was the normalized

distance-weighted sum of the three-dimensional probability

density of one of the 36 interacting atom types on the protein

surface – 5 atom types are from carbohydrate ligands, 30 from

proteins, and 1 from water. The probability density maps around

a protein atom were constructed based on the three-dimensional

distribution of the non-covalent interacting atoms around the

same protein atom type in the protein structure database. The

machine learning models learned the patterns of the attributes to

distinguish binding site atoms from non-binding site atoms, and

the likelihood of a protein surface atom to involve in a putative

carbohydrate binding site was normalized into a prediction

confidence level between 0 and 1. Protein surface atoms with

high confidence level from the predictors were clustered to yield

tentative carbohydrate-binding patches. The prediction capabil-

ities of the predictors were first benchmarked by 10-fold cross

validations on 497 non-redundant proteins with known carbo-

hydrate-binding structures. The predictors were then tested on an

independent test set with 108 proteins that had not been included

in the training-validation set of 497 proteins. Moreover, 111

unbound carbohydrate-binding proteins were tested with the

trained predictors to benchmark the prediction capabilities for

proteins structures of unknown carbohydrate binding sites. The

computational methodology was further tested to predict the

carbohydrate binding surfaces and the key residues in the binding

sites in 15 non-redundant anti-carbohydrate antibodies; none of

these antibody-carbohydrate complexes were used for training/

validating the predictors. The prediction results showed that the

predictors developed in this work were not only able to identify

putative carbohydrate binding sites on proteins with relatively

superior accuracy, they could also provide information on the

residues key to the carbohydrate recognitions.

Results

Protein surface attributes characterizing carbohydrate
interaction sites on proteins

The protein surface attributes characterizing protein-carbohy-

drate interaction sites are highlighted in Figure 1. The y-axis in

Figure 1 is the atom type index i = 1,30 (atom types 1,30 in

Table 1), and the x-axis is the index j = 1,36 for the 36

interacting atom types (atom types 1,36 in Table 1) and the 37th

feature reflecting the local geometry of the protein surface (see

Methods). The matrix elements in Figure 1 are the Mann-

Whitney U-test p-value results (see Methods). Here, the values

used in each of the U-tests for feature j of atom type i are Ai,j as

shown in Equation (2) for i = 1,30 and j = 1,36 or ai,37 for

i = 1,30 as shown in Equation (3). One of the two groups of

values for each of the U-tests consisted of Ai,j (or ai,37) calculated

for the protein surface atoms of type i in carbohydrate-binding

sites in the S497 dataset and the other group consisted of Ai,j (or

ai,37) calculated for non-carbohydrate binding atoms of type i in

the same dataset. The p-value of the U-test is color-coded as

shown in the Figure; the plus(+) sign in the matrix element

indicates that the averaged feature value for the carbohydrate-

binding site atoms is larger than the averaged feature value for

Predicting Carbohydrate Binding Sites on Proteins
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the non-carbohydrate-binding site atoms and the negative(2) sign

indicates the opposite.

The results of the U-tests shown in Figure 1 indicate that the

surface attributes (Ai,j and ai,j in Equation (2) and Equation (3)

respectively) are encoded with substantial information in distin-

guishing the carbohydrate-binding site atoms from non-carbohy-

drate-binding surface atoms. With the conventional threshold of p-

value = 0.025, the matrix elements colored in red (p-value,0.025)

correspond to the atom types (y-axis) and the PDM/geometric

features (x-axis) that characterize carbohydrate binding sites on

protein surfaces. As expected, the U-test results for the geometric

features ai,37 in Figure 1 (column 37) reflect the fact that

carbohydrate binding sites are concaved cavities on protein

surfaces. The five Ai,j, j = 32,36, are consistently enriched around

carbohydrate-binding site atoms (columns 32,36 in Figure 1).

The enrichment is due to the additive effect of the corresponding

PDMs associated with the clustered carbohydrate-binding atoms.

In addition, as highlighted by the matrix elements colored in red in

Figure 1, these carbohydrate-binding atoms include several

protein atom types i, especially for i = 1,4 (backbone atoms),

6,9 (non-polar carbon atoms), 10,11 (polar oxygen atoms),

15,16 (polar nitrogen atoms), and 18, 24, 30 (tryptophan atoms),

and to a lesser extent i = 19,23 (tyrosine atoms). These results of

the U-test p-values in Figure 1 are in good agreement with

previous statistically surveys, where protein-carbohydrate interac-

tions are governed by direct or water/cation-mediated hydrogen

Figure 1. The p-values of Mann-Whitney U-tests on the 37 attributes for each of the 30 atom types in proteins. The p-values were
calculated with the Mann-Whitney U-test implemented as the function ranksum in MATLAB. Two sets of data were input to the function and the
output p-value is the probability for the two distributions of data to be statistically indistinguishable. More details on the U-tests shown in this figure
are described in the associated text.
doi:10.1371/journal.pone.0040846.g001
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bonding involving main chain and side chain polar oxygen and

nitrogen atoms and by non-polar interactions with aromatic and

aliphatic side chains, in particular tryptophan and tyrosine [3–

6,8]. The U-test results in Figure 1 shows that the PDM/geometric

features as described in Equations (2),(3) are effective attributes in

distinguishing the carbohydrate-binding site atoms on protein

surfaces.

Atom-based protein surface carbohydrate binding site
predictions with machine learning models

The Mann-Whitney U-tests shown in Figure 1 suggest that the

attributes (ai,j,,i = 1,30, j = 1,37) as described in Equation (3) for

each of the 30 protein atom types are statistically significant in

distinguishing carbohydrate binding atoms on protein surface

from non-carbohydrate-binding surfaces. Based on the premise,

machine learning models were trained and cross-validated (10

folds on S497 set, see Methods) for each of the 30 protein atom

types; each of the machine learning models used the 37 attributes

as inputs. The contributions of the attributes to the prediction

accuracies were tested and the results are shown in Figure 2.

Figure 2A shows the cross-validated prediction accuracies

(MCC) of the SVM predictors for each of the 30 protein atom

types. The subset of attributes ai,j,, j = 32,36 were derived from

the corresponding PDMs of the interacting atoms from carbohy-

drate ligands and were expected to contribute to a large extent to

the prediction capability. With this set of attributes as inputs, the

SVM predictors were able to reach the overall average accuracy of

MCC = 0.25. With more attributes added as inputs, the accuracy

of the SVM predictors increased. The maximal overall average

accuracy of MCC = 0.38 was reached when all the 37 attributes

were used as inputs for predictor training.

Figure 2A also shows that the predictors for some of the atom

types were more accurate in distinguishing carbohydrate-binding

site atoms from non-binding atoms. The trends are in good

agreement with the p-values of the U-tests: For atom types 14, 28,

and 29 for which the U-test p-values were relatively large across

the 37 attributes (Figure 1), the prediction accuracies were

expectedly inferior. In contrast, predictors for the atom types with

the most significant U-test p-values were among the most accurate

predictors. Nevertheless, the predictors for the main chain atoms

(atom types 1,4,) were among the worst in prediction accuracy

(Figure 2), although the p-values shown in Figure 1 were relative

small for these atom types. These results suggest that small U-test

p-value is necessary but not sufficient condition for accurate

predictors.

The ANN and ANN_BAGGING predictors showed the same

general trend in prediction accuracy as the SVM predictors.

Figure 2B shows the results from the ANN predictors. The results

are highly comparable with the results shown in Figure 2A,

indicating that the machine learning predictors from both

methodologies converged to similar optimized prediction capabil-

ities. Figure 2C shows that the ANN_BAGGING models further

improved the prediction accuracy for all the 30 atom types and the

average overall accuracy were MCC = 0.45. The improvements

were particularly significant for atom types 14, 28, and 29. These

improvements in ANN_BAGGING predictors are attributed to

the superior methodology in handling imbalanced distribution of

the positive and negative cases in the training dataset [13].

The blue histogram in Figure 2D shows the Pearson’s

correlation coefficients between the prediction confidence level

and the attributes of various types (j = 1,37, see Table 1)

calculated in Equation (3) for protein surface atoms. As shown

in the histogram, increasing prediction confidence level is

correlated with increasing value of the attributes derived from

carbohydrate ligands (O.LX, C.RX, O.RX, C.LX, see Table 1).

This indicates that, as expected from Figure 1 and Figures 2A,2C,

these attributes contribute substantially to the prediction capabil-

ity. In addition, the geometry attribute also provides informative

characteristics in supporting prediction confidence. The attributes

derived from PDMs of protein hydrophilic atoms (NH3, NH1,

NC2, OH1, NH1S, OC, NH2, OS, see Table 1) are less

correlated with prediction confidence level (Figure 2D), suggesting

Table 1. Protein and carbohydrate atom types.

ID # Atom Type Radius(Å) Description

1 NH1 1.65 Backbone NH

2 C 1.76 Backbone C

3 CH1E 1.87 Backbone CA (exc. Gly)

4 O 1.40 Backbone O

5 CH0 1.76 Arg CZ, Asn CG, Asp CG, Gln CD, Glu CD

6 CH1S 1.87 Sidechain CH1: Ile CB, Leu CG, Thr CB,
Val CB

7 CH2E 1.87 Tetrahedral CH2 (except CH2P,CH2G) All
CB

8 CH3E 1.87 Tetrahedral CH3

9 CR1E 1.76 Aromatic CH (except CR1W, CRHH,
CR1H)

10 OH1 1.40 Alcohol OH (Ser OG, Thr OG1, Tyr OH)

11 OC 1.40 Carboxyl O (Asp OD1, OD2, Glu OE1,
OE2)

12 OS 1.40 Sidechain O: Asn OD1, Gln OE1

13 CH2G 1.87 Gly CA

14 CH2P 1.87 Pro CB, CG, CD

15 NH1S 1.65 Sidechain NH: Arg NE, His ND1, NE1, Trp
NE1

16 NC2 1.65 Arg NH1, NH2

17 NH2 1.65 Asn ND2, Gln NE2

18 CR1W 1.76 Trp CZ2, CH2

19 CY2 1.76 Tyr CZ

20 SC 1.85 Cys S

21 CF 1.76 Phe CG

22 SM 1.85 Met S

23 CY 1.76 Tyr CG

24 CW 1.76 Trp CD2, CE2

25 CRHH 1.76 His CE1

26 NH3 1.50 Lys NZ

27 CR1H 1.76 His CD2

28 C5 1.76 His CG

29 N 1.65 Pro N

30 C5W 1.76 Trp CG

31 HOH 1.40 Water

32 O.RX 1.40 Ring oxygen

33 O.LX 1.40 Oxygen of hydroxyl group

34 C.RX 1.87 Ring carbon

35 C.LX 1.87 Non-sugar carbon

36 N.LX 1.65 Nitrogen of N-acetyl group

The protein atom types 1,31 have been previously defined by Laskowski et al
[23] with minor modifications. The atom types from 32 to 36 were defined in
this work for carbohydrate molecules.
doi:10.1371/journal.pone.0040846.t001
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Figure 2. Prediction accuracy on carbohydrate binding for each of the 30 atom types on proteins. Panels A, B, and C show prediction
results from the 10-fold cross validation on the S497 set with SVM, ANN, and ANN_BAGGING machine learning algorithm respectively. The numbers
below the x-axis are the indexes of the protein atom types shown in Table 1. The accuracy averaged over the 30 atom types is shown towards the
end of the x-axis. The y-axis shows the 10-fold cross validation MCC (Equation (9)) of the machine learning results. For each of the predictions, 7
different combinations of the 37 attributes (Equation (3)) were used as input sets for the machine learning algorithm: C – attributes 32,36; P –
attributes 1,30; PW – attributes 1,31; CW – attributes 31,36; CP – attributes 1,30 and 32,36; CWP – attributes 1,36; CWPV – attributes 1,37. In
panel D, the blue histogram shows the correlations between prediction confidence level derived from the predictions shown in panel C and
attributes derived from concentrations of PDMs. The prediction confidence level for each surface atom to be in a carbohydrate binding site is
correlated to various extents with the 37 attributes (ai,j (j = 1,37) as shown in Equation (3)), which were used as inputs for the machine learning

Predicting Carbohydrate Binding Sites on Proteins
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that the patterns of the PDMs for the hydrophilic atoms are less

distinguishable between the carbohydrate binding sites and the

protein surfaces. The attribute derived from the PDM of N.LX on

carbohydrate ligands is negatively correlated with prediction

confidence level, suggesting that protein surface patches with

denser PDM of N.LX are less likely to be carbohydrate binding

sites.

The red histogram in Figure 2 D shows the Pearson’s

correlation coefficients between the positive (1) or negative (0)

assignments for carbohydrate binding and the attribute values for

atoms on the protein surfaces. In theory, attributes (x-axis)

correlated to the positive or negative assignments with higher

correlation coefficients (y-axis) should contribute statistically more

weight in prediction accuracy. This expectation has been validated

by the almost identical trends in comparing the red histogram with

the blue histogram shown in Figure 2D, indicating that indeed the

contributions of the features to the prediction accuracy as

indicated in the previous paragraph are in good agreement with

the statistical expectations.

Residue-based protein surface carbohydrate binding site
predictions with machine learning models

The atom-based predictions as described in the previous section

were further processed into residue-based predictions by convert-

ing the outputs of the atom-based machine learning models into

confidence levels (see Methods section). The confidence level

measurement allows predictions for various protein atom types to

be integrated on a normalized ground so that tentative carbohy-

drate binding sites can form a surface patch composed of various

atom types with high confidence level in atom-based predictions.

This methodology, combining the atom-based predictions into

residue-based predictions of carbohydrate binding patch, in-

creased the prediction accuracy to MCC = 0.5, as shown in the

summary of Table 2.

The machine learning predictors were converged to optimized

prediction capabilities in the ten-fold cross validations for all the

machine learning algorithms tested. As shown in Table 2, the

overall benchmarks are essentially indistinguishable from the

averaged benchmarks (in parenthesis) derived from averaging the

ten-fold cross validation results. In addition, the standard

deviations of the ten-fold cross validation benchmarks are

consistently small for the three machine learning models

(Table 2). These results indicated that the machine learning

models were optimized with stably generalizable prediction

capabilities for new protein structures which had not been used

in training sets.

The three types of machine learning algorithm showed little

difference in the residue-based prediction accuracy (Table 2). The

distribution of the prediction accuracy for carbohydrate binding

sites on proteins is shown in Figure 3A. As shown in the Figure, the

prediction capabilities of the three types of machine learning

algorithm were about the same in prediction accuracy. Empiri-

cally, the carbohydrate binding site on a protein can be correctly

identified with MCC.0.2. By this criterion, 72.6% of the proteins

in the S497 set can be predicted with reasonable confidence for the

carbohydrate binding sites with the ANN_BAGGING prediction

method (Figure 3A). Figure 3B shows the distribution of the

prediction accuracy versus the 20 natural amino acid types. The

results indicate that predictions for the residue types of VAL,

GLY, GLU, PRO, TRP, LYS, CYS and GLN were relatively

accurate.

A few examples of protein-carbohydrate binding site predictions

in S497 with various MCC for the binding site prediction are

shown in Figure 4. Table S2 (for ANN predictions), Table S3 (for

SVM predictions), and Table S4 (for ANN_BAGGING predic-

tions) list the details of the prediction accuracy benchmarks for

each of the proteins in the S497 set. Interactive examination of the

prediction results for each of the proteins in the S497 dataset can

be accessed from the web server: http://ismblab.genomics.sinica.

edu.tw/. benchmark . protein-carbohydrate.

Benchmarks for the independent test of the ANN_BAGGING

predictions on the S108 test set are also shown and compared with

those of the 10-fold cross validation in Table 2. The independent

test MCC of 0.45 is slightly inferior to the MCC of 0.5 from the

10-fold cross validation, but nevertheless, the results indicate that

the prediction methods can be generalized with reasonable

accuracy to query protein structures not included in the training

and test sets. Detailed benchmarks for each of the proteins in the

S108 set are shown in Table S5. The maximum sequence identity

for each of the proteins in S108 to any proteins in S497 is also

predictors in making the predictions. The Pearson’s correlation coefficients, which are the measurements for the linear correlations between the
prediction confidence level and the attributes, are shown in the y-axis. The x-axis shown the feature types, each of which corresponds to one of the
ai,j (j = 1,37, see Table 1 and Equation (3)). In panel D, the red histogram shows the Pearson’s correlations between positive or negative assignment
in carbohydrate binding and the same attributes derived from concentrations of PDMs. The positive assignments were given a value of 1 and
negative assignments were given a value of 0.
doi:10.1371/journal.pone.0040846.g002

Table 2. Carbohydrate binding site prediction accuracy benchmarks for 10-fold cross validations and independent tests.

Dataset/method Acc Pre Sen Spe MCC Fsc

S497/ANN 0.95(0.95360.003) 0.50(0.50360.049) 0.52(0.52260.044) 0.97(0.97460.003) 0.49(0.48760.032) 0.51(0.51160.032)

S497/SVM 0.96(0.95560.003) 0.53(0.52560.045) 0.51(0.50460.046) 0.98(0.97760.002) 0.49(0.4960.037) 0.52(0.51360.036)

S497/ANN_BAGGING 0.95(0.95460.003) 0.51(0.51260.037) 0.54(0.5460.036) 0.97(0.97460.001) 0.50(0.50160.031) 0.53(0.52560.031)

S108/ANN_BAGGING 0.96 0.45 0.49 0.97 0.45 0.47

The carbohydrate binding site predictions were carried out with the ANN, SVM and ANN_BAGGING algorithm on the proteins from the S497 dataset and the prediction
accuracy of the ANN_BAGGING on the independent test set S108. Matthews correlation coefficient (MCC), F-score(Fsc), Accuracy(Acc), Precision(Pre), Sensitivity(Sen)
and Specificity(Spe) are shown in Equations (4),(9). The benchmarks for the ten-fold cross validation results (i.e., S497/ANN, S497/SVM, and S497/ANN_BAGGING) are
shown in two ways: The values enclosed in parenthesis are the averaged benchmark value and standard deviation calculated from the ten-fold results; the values above
the average6standard-deviation pairs are the overall benchmark values calculated with the combined TP, TN, FP, FN cases from the test sets of the ten-fold cross-
validation results.
doi:10.1371/journal.pone.0040846.t002
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shown in Table S5. Evidently, prediction accuracy is not

correlated with sequence similarity of the two datasets. Interactive

examination of the prediction results for each of the S108 proteins

can be accessed from the web server: http://ismblab.genomics.

sinica.edu.tw/. benchmark . protein-carbohydrate.

Only a few side chain atom types are the key determinants in

predicting a carbohydrate binding site on proteins. Figure 5 shows

the distributions of the atom type composition in predicted

carbohydrate-binding sites. The atom type distributions are mostly

dominated by side chain atoms from Trp (atom types 9, 18, 24, 30

in Figure 5), Tyr (atom types 9, 19, 23 in Figure 5), His (atom types

25, 27, 28 in Figure 5), Phe (atom types 9, 21 in Figure 5), and side

chain hydrogen bond donors from Arg, Asn, Gln (atom types

15,17 in Figure 5).

Table 2 shows the optimized prediction results for carbohydrate

binding sites in proteins with carbohydrate ligands in the complex

Figure 3. Carbohydrate binding site prediction accuracy based on the 10-fold cross validation on the S497 dataset. (A) Proteins in
S497 set were sorted according to the prediction MCC for each of the proteins. Detailed prediction results for each of the cases in the S497 set are
shown in Tables S2, S3, and S4. For each of the MCC ranges shown in the x-axis, the histograms show the number (as shown by the y-axis on the left-
hand side of the panel) of the S497 proteins predicted with the MCC within the designated MCC range. The three sets of the predictions shown in the
panel were carried out with the ANN, SVM, or the ANN_BAGGING algorithm respectively, and all the 37 attributes were used as inputs for the machine
learning algorithms. The superimposed curves are the cumulative percentage of proteins in the S497 set that were predicted with MCC greater than
the threshold indicated in the x-axis. The percentage is shown by the y-axis on right-hand side. (B) Residue-based MCC (y-axis) for each of the 20
natural amino acids (x-axis) were calculated from the results of the 10-fold cross validation on the S497 set. Again, the three sets of the predictions
shown in the panel were carried out with the ANN, SVM, or the ANN_BAGGING algorithm respectively.
doi:10.1371/journal.pone.0040846.g003
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structures, and hence the prediction accuracy could only reflect a

post-facto observation. In order to demonstrate the prediction

capabilities on protein structures of unknown carbohydrate

binding sites, it is essential to benchmark the prediction accuracy

on a set of unbound protein structures, for which the structures

were determined in the absence of the carbohydrate ligands while

the carbohydrate bind sites are known from the complex structures

of the same protein co-crystallized with the carbohydrate ligand.

Subsets of unbound proteins from S497 and S108 were established

as S88 and S23 respectively and were used to benchmark the

Figure 4. Examples of carbohydrate binding site predictions on proteins in the S497 set. Each of the atoms in the protein models of the
atom-based predictions (left-hand column) is color-coded according to the prediction confidence level for the atom to involve in carbohydrate
binding. The color code for the confidence level is shown as a colored bar at the bottom of this column. Atoms colored in red of various level of
depth are the seeds for the carbohydrate binding site patch predictions. The protein models of the middle column show the residue-based
carbohydrate binding site predictions. The residues predicted to be in the carbohydrate binding sites are colored in red or orange. The red atoms
were predicted with confidence level greater than 0.5; atoms in the orange portion are the atoms belonging to the residues in the residue-based
carbohydrate binding site prediction but the prediction confidence levels are less than 0.5. The protein models of the right-hand side column are
color-coded for the residues in close contact with the carbohydrate ligands. The atoms colored in red are within 5 Å distance to any atom of the
corresponding carbohydrate ligand. The atoms colored in pink are the atoms in the contact residues but are not within 5 Å to the corresponding
carbohydrate ligand. The PDB code name and the MCC for each of the examples are also shown. The protein models showing the carbohydrate
binding site predictions for each of the proteins in the S497 dataset are available for interactive examination from the web webserver http://ismblab.
genomics.sinica.edu.tw/. benchmark . protein-carbohydrate.
doi:10.1371/journal.pone.0040846.g004

Predicting Carbohydrate Binding Sites on Proteins

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e40846



accuracies of the predictors. Detailed benchmarks for each of the

proteins in S88 and S23 are shown in Table S6 and Table S7

respectively. The prediction accuracies are compared for the

bound and the unbound structures in Table 3. In general, the

carbohydrate binding site predictions for the unbound structures

are comparable to the bound structure, although the predictions

for the unbound structures are slightly less accurate than the

predictions for the bound structures. Results in Table 4 demon-

strate that the proteins in S23 with very low sequence identities

(,30%) to the proteins in the training set (S497) were able to be

predicted with comparable accuracy to those of the cross-

validations shown in Table 2, indicating that the optimized

predictors shown in Table 2 are generalizable to unbound proteins

previously unseen. Interactive examination of the prediction

results for each of the S88 and S23 proteins can be accessed from

the web server: http://ismblab.genomics.sinica.edu.tw/. bench-

mark . protein-carbohydrate.

The comparable accuracies for the predictions of bound and

unbound protein structures as shown in Table 3 are resulted from

the fact that protein-carbohydrate interactions do not change (due

to, for example, induced fit) the unbound structures in most of the

cases. As shown in Figure 6, 77.5% of the RMSDs for the

unbound-bound structure pairs are less than 0.4 Å, although large

conformational change after the ligand binding also occurs in a

few cases (Table S8). But there is little correlation between the

RMSD and the MCC for carbohydrate binding site prediction

(correlation coefficient = 20.16).

Carbohydrate binding sites on anti-carbohydrate
antibodies

Carbohydrate binding sites on the antibody variable domain

structures from 15 non-redundant antibody-carbohydrate com-

plexes from PDB (protein data bank) were predicted with the SVM

predictors. These antibody-carbohydrate complexes had not been

Figure 5. Distributions of protein atom types in the predicted atom-based carbohydrate binding sites in proteins. The percentage Pi

(shown in the y-axis of the panel) for the atom type i is calculated by the equation below:

Pi~
pi

P30

j~1

pj

, where pi~
ni

Ni

Ni is the total number of atom type i in the dataset, while ni is the number of atom type i with prediction confidence level greater than 0.1 based on
the ANN, SVM, or ANN_BAGGING predictions on the S497 set. In completely random predictions, Pi,1/30 for i = 1,30. This baseline is shown as the
dashed line in the figure. When Pi.1/30, the atom type i is more frequent to appear in the predicted atom-based carbohydrate binding sites.
doi:10.1371/journal.pone.0040846.g005

Table 3. Prediction accuracies for the unbound and bound proteins.

Dataset/method UnboundPre UnboundSen Unbound MCC Bound Pre Bound Sen Bound MCC

S88/ANN 0.49 0.54 0.48 0.53 0.57 0.52

S88/SVM 0.51 0.51 0.48 0.57 0.55 0.53

S88/ANN_BAGGING 0.55 0.49 0.49 0.54 0.58 0.53

S23/ANN_BAGGING 0.50 0.53 0.49 0.53 0.65 0.56

The prediction accuracies are compared side-by-side for the unbound and bound proteins in S88 and in S23. The accuracy benchmarks and prediction algorithms are
described above.
doi:10.1371/journal.pone.0040846.t003
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used for the training of the predictors, and thus are additional

independent cases in testing the predictors. Figure 7 shows the

results of the predicted carbohydrate binding patches on the

antibodies. Table 5 summarizes the accuracy benchmarks for the

binding site predictions. The antigen binding sites for the

antibodies were predicted with reasonable accuracy with the

average MCC of 0.49, which is close to the average performance

for the predictions on proteins in the datasets of S497 and S108

(Table 2).

Discussion

The optimized predictors, trained and cross-validated with S497

set, were evaluated with four independent test sets to benchmark

the generalizability of the predictors. (1) Test on new proteins:

Results from the test set S108, which contains new protein-

carbohydrate complexes released after S497 set and shares at the

most 50% sequence identity with any of the proteins in S497, are

summarized in Table 2 and Table S5, demonstrating the

generalizability of the predictors to new proteins not used in

optimizing the predictors. (2) Test on truly unbound proteins:

Unlike S497 and S108 proteins, proteins in S88 are carbohydrate-

binding proteins without the co-crystalized ligands in the

structures. The test results shown in Table 3 and in Table S6

suggest that the optimized predictors are generalizable to unbound

structures. (3) Test on both new and truly unbound proteins:

Proteins in S23 are unbound carbohydrate-binding proteins and

share at the most 50% sequence identity to any of the S497

proteins. The benchmarks for S23 shown in Table 3 and Table S7

indicate that the predictors are generalizable to new and unbound

structures. (4) Test on a totally different class of carbohydrate-

binding proteins: Antibodies binding to carbohydrate antigens

were tested for carbohydrate binding site predictions (Table 5 and

Figure 7). Taken together, these test results, with MCC ranging

Table 4. Prediction results for proteins with sequence identity less than 30%.

PDB-code Acc Pre Sen Spe MCC Fsc TP TN FP FN ID%

2UVE 0.94 0.34 0.93 0.94 0.55 0.5 14 452 27 1 16.3

2WSU 0.94 0.33 0.78 0.95 0.49 0.47 7 261 14 2 17.2

2XHH 0.94 0.50 0.29 0.98 0.35 0.36 2 100 2 5 17.9

1NOF 0.97 0.63 0.71 0.98 0.65 0.68 10 317 6 4 19.3

3ACF 0.94 0.40 0.44 0.96 0.39 0.42 4 161 6 5 22.7

3M9W 0.94 0.33 0.88 0.94 0.52 0.48 7 231 14 1 22.7

2X2S 0.93 0.40 0.86 0.93 0.56 0.55 6 122 9 1 22.9

1R13 0.96 0.63 0.71 0.98 0.65 0.68 5 126 3 2 23.7

3NSM 0.97 0.29 0.50 0.98 0.37 0.37 5 491 12 5 25.2

1M71 0.95 0.00 0.00 0.99 20.02 0.00 0 196 2 8 25.6

2XHN 0.96 0.83 0.38 1.00 0.54 0.51 9 439 2 15 25.8

3K01 0.96 0.93 0.50 1.00 0.67 0.65 13 327 1 13 26.9

1MSB 0.95 1.00 0.38 1.00 0.60 0.55 3 98 0 5 29.6

overall 0.95 0.46 0.56 0.97 0.49 0.51 85 3321 98 67

The prediction results for each of the proteins in S23 with maximum sequence identity less than 30% to any proteins in S497 are listed in this Table. The columns are
defined as in Table 5. The ID% column shows the maximum sequence identity to any proteins in S497.
doi:10.1371/journal.pone.0040846.t004

Figure 6. Distribution of the RMSDs of the bound-unbound protein pairs for proteins in S88 and S23. The details for the RMSDs are
shown in Table S8.
doi:10.1371/journal.pone.0040846.g006
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from 0.45 to 0.49, demonstrate reasonable generalizability for the

predictors to predict carbohydrate binding sites on new unbound

protein structures unseen previously.

The prediction accuracy of the predictors herein depends on

two main factors: the binding site geometry and the amino acid

composition. Protein-carbohydrate binding sites are geometrically

Figure 7. Carbohydrate binding site predictions for the anti-carbohydrate antibodies in PDB. Non-redundant anti-carbohydrate
antibodies from PDB before June of 2011 were predicted with the SVM predictors trained with the S497 dataset, where none of these antibodies
were included. The predicted atom-based carbohydrate binding patches and the actual binding sites with carbohydrate antigens (stick models) are
compared side-by-side in each of the independent test cases shown in the panels. The prediction confidence level is color-coded as described in
Figure 4; the actual binding sites are highlighted by the atoms colored in red to indicate that these atoms are within 5 Å to any atoms of the
carbohydrate antigen. Table 5 shows the prediction accuracy benchmarks. The antibody models showing the carbohydrate binding site predictions
are available for interactive examination from the web webserver http://ismblab.genomics.sinica.edu.tw/. benchmark . protein-carbohydrate.
doi:10.1371/journal.pone.0040846.g007
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diverse. Carbohydrate processing enzymes and carbohydrate

transporting proteins frequently bind to carbohydrates with deep

crevices, while on the other extreme some sugar binding proteins

interact with sugar moieties without substantial indentation on the

protein surface. The carbohydrate binding sites that were

predicted with high accuracy typically have deeply concave

binding surfaces with aromatic side chains packing against the

hydrophobic patches of the sugar rings and with hydrogen

bonding acceptors and donors surrounding the hydrophilic groups

on the ligand. These proteins are frequently enzymes related to

carbohydrate processing, mostly carbohydrate hydrolase and

transferase. Some lectins and other sugar binding proteins with

deeply concave binding sites were also frequently predicted with

high accuracy. Figure 4 shows a few typical examples with

decreasing prediction accuracy – as the binding site geometry

becomes less concave, the prediction accuracy decreases in

general. Figure 4 also shows a general trend of increasing difficulty

in predicting multiple carbohydrate binding patches on one

protein.

The contribution of the geometry attribute to the prediction

capability is also evident in Figure 2D, where the prediction

confidence levels are highly correlated with the geometry attribute

with Pearson’s correlation coefficient of 0.48. In addition, the

attributes derived from carbohydrate ligands are main contribu-

tors to the prediction capability, as demonstrated in

Figures 2A,2D. Figure 2 also shows that patterns of PDMs

derived from non-covalent interacting atoms from proteins also

provide useful information in distinguishing carbohydrate binding

surfaces from other protein surfaces. Among these protein atom

types, PDMs derived from hydrophobic and aromatic carbons are

more informative than those corresponding to hydrophilic atom

types. This is likely due to the fact that the hydrophilic nature of

the carbohydrate binding sites is similar to that of protein surfaces,

while the hydrophobic/aromatic residues in the carbohydrate

binding sites are distinguishable to an extent from protein surfaces

not involving in carbohydrate binding. Taken together, the

carbohydrate binding sites with concave geometry and with

amino acid composition able to interact with hydrophobic carbons

were able to be predicted with relatively high confidence.

The predictions failed in about 15% of the proteins in S497.

These carbohydrate binding sites were predicted with MCC less or

equal to 0 (Figure 3A and Tables S2, S3, S4). These failed

predictions can be categorized into four types: First, the

carbohydrate binding sites are deeply buried such that the bind

sites are no longer accessible as surface patches. These binding

sites were not predicted with the methodologies in this work.

Second, the carbohydrate binding sites are flat or even convex

surfaces, for which accurate prediction of a cluster of atoms

marking the binding site is intrinsically difficult for the method-

ologies. Third, rare combinations of amino acid types and side

chain conformations that had not been observed frequently in

known carbohydrate binding sites were frequently predicted as

false negatives. Fourth, it is difficult to distinguish between non-

covalent binding and covalent linking of the sugar moieties to a

few experimental structures where the key covalent linkage

information is missing in the structural data. These ‘binding sites’

were consistently failed to be predicted accurately.

The cluster of atoms with high confidence level in the predicted

carbohydrate binding sites are mostly composed of side chain

atoms from Trp (atom types 9, 18, 24, 30), Tyr (atom types 9, 19,

23), His (atom types 25, 27, 28), Phe (atom types 9, 21), side chain

hydrogen bond donors from Arg, Asn, and Gln (atom types

15,17), and to a lesser extent, from side chain hydrogen bond

acceptors (atom types 10,12) (Figure 5). These atom types are the

key determinants in successfully predicting a carbohydrate binding

site. These machine learning results are in good agreement with

the atom types frequently observed to interact with carbohydrates

in proteins [3–6]. The backbone hydrogen bond donors and

acceptors are also frequently involved in protein-carbohydrate

hydrogen bonding networks, but these atoms were less likely to be

predicted with high confidence level (atom types, 2 and 4)

(Figure 5). This is likely due to the fact that the large number of

Table 5. Prediction results for the carbohydrate binding sites on anti-carbohydrate antibodies in PDB.

PDB-code Acc Pre Sen Spe MCC Fsc TP TN FP FN

1CLY 0.98 1.00 0.33 1.00 0.57 0.50 5 386 0 10

1M7D 0.96 0.83 0.25 1.00 0.44 0.39 5 384 1 15

1MFA 0.97 0.61 1.00 0.97 0.77 0.76 11 191 7 0

1OP3 0.96 0.33 0.15 0.99 0.21 0.21 2 392 4 11

1Q9Q 0.98 0.64 0.69 0.99 0.66 0.67 9 383 5 4

1S3K 0.98 0.78 0.47 1.00 0.59 0.58 7 376 2 8

1UZ8 0.97 0.73 0.50 0.99 0.59 0.59 8 379 3 8

3BZ4 0.95 0.43 0.18 0.99 0.26 0.25 3 370 4 14

3DUR 0.93 0.43 0.23 0.98 0.28 0.30 3 193 4 10

3EYV 0.97 0.78 0.44 1.00 0.57 0.56 7 389 2 9

3HNS 0.97 0.67 0.59 0.99 0.61 0.63 10 382 5 7

3I02 0.97 0.63 0.36 0.99 0.46 0.46 5 384 3 9

3IF1 0.99 1.00 0.58 1.00 0.76 0.74 7 383 0 5

3IJH 0.97 0.50 0.43 0.98 0.45 0.46 6 381 6 8

3OAU 0.96 0.22 0.15 0.98 0.16 0.18 2 379 7 11

overall 0.97 0.63 0.41 0.99 0.49 0.50 90 5352 53 129

Matthews correlation coefficient (MCC), F-score(Fsc), Accuracy(Acc), Precision(Pre), Sensitivity(Sen) and Specificity(Spe) are shown in Equations (4),(9). TP, FP, TN, and
FN are true positive, false positive, true negative, and false negative respectively.
doi:10.1371/journal.pone.0040846.t005
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negative backbone atoms made the training data for the machine

learning models extremely biased to the negative predictions.

Antibody-carbohydrate interactions are governed by the same

set of energetic contributions as in protein-carbohydrate interac-

tions. As demonstrated in the prediction results in Figure 7 and

Table 5, the predictors trained with the S497 protein-carbohy-

drate interaction dataset were equally accurate in predicting

carbohydrate binding sites on anti-carbohydrate antibodies.

Except for the 2G12 antibodies (1OP3 and 3OAU), all the

antigen binding sites on the antibodies in Table 5 are situated at

the cavity surrounded by both of the variable domains. The

geometrical shapes of the antigen binding sites lined with

carbohydrate-binding residues (see previous paragraph) were

clearly recognizable as carbohydrate-binding sites on the antibod-

ies. The inaccuracy for the carbohydrate binding site predictions

on 2G12 antibodies (MCC = 0.16 for 3OAU in Table 5) are

partially due to the unconventional binding geometry of the

carbohydrate binding sites and partially due to the lack of

aromatic residues lining the carbohydrate binding surfaces.

Nevertheless, the prediction results shown in Figure 7 and

Table 5 demonstrate that the predictors developed in this work

can be used to identify antibody structures targeting carbohydrate

antigens. The residues highlighted with high prediction confidence

level shown in Figure 7 are mostly aromatic residues (Trp, Tyr,

and Phe) and to a lesser extent residues with hydrogen bonding

donors and acceptors in the side chains. These residues were

predicted to be key residues involving in the antibody-carbohy-

drate recognitions.

Result shown in Figure 5 is largely in good agreement with the

U-test analysis shown in Figure 1. Except for the backbone atoms,

the atom types with small p-values (colored in red in Figure 1)

from the U-tests (i.e., distinguishable distribution patterns of the

attributes between the binding and non-binding surfaces) were

mostly predicted with higher accuracy in carbohydrate binding.

This indicates that the U-test analysis is a useful tool in predicting

the machine learning outcomes before the training of the machine

learning models. These results strongly support the usage of U-

tests as shown in Figure 1 in designing the attribute encoding for

the machine learning algorithms. Nevertheless, the predictors for

the main chain atoms (atom types 1,4, p-values shown in Figure 1

were relative small for these atom types) were among the worst in

prediction accuracy (Figure 2 and Figure 5), suggesting that small

U-test p-value is necessary but not sufficient condition for accurate

predictors. Other factors such as the side chain type and the

secondary structure type that have not been included as input

attributes could affect the prediction results for the main chain

atoms.

The overall MCC for the prediction models were 0.45 for the

proteins in the S108 test set (Table 2). The sensitivity and

specificity are 0.49 and 0.97 respectively with the ANN_BAG-

GING algorithm (Table 2). In comparison, the prediction

sensitivity and specificity from Malik and Ahmad [10] on 40

proteins with evolutionary information are 0.87 and 0.23

respectively, and the predictions with single sequences on the

same set of proteins yield 0.68 and 0.55 respectively for sensitivity

and specificity. Predictions of 29 glucose binding sites are more

successful [12], with sensitivity of 0.8966 and specificity of 0.9333.

But the prediction of monosaccharide binding sites on proteins is

difficult to be compared with the prediction of carbohydrate

binding sites involving multiple sugar moieties and diverse binding

site geometries. MCC has been regarded as the most balanced

benchmark for the two-class predictions as in this work, but none

of the previous methodologies had been evaluated by the MCC

benchmark. Hence it is difficult to compare the accuracies of the

current predictors with the previous ones. Nevertheless, the

accuracy of the current predictors has been vigorously validated

with the largest dataset so far, and the results suggest that these

predictors are among the best predictors for carbohydrate binding

sites on proteins to date.

Methods

Three-dimensional probability density maps (PDMs) of
non-covalent interacting atoms on protein surfaces

Construction probability density maps (PDMs) with protein

non-covalent interacting atom pair database for 31 types (Table 1,

atom types 1,31) of non-covalent interacting atoms from amino

acids and crystal water molecules of known protein structures has

been described previously [14]. Details of the computational

methodology are described in Text S1. The PDMs were

constructed with interacting atoms within 5 Å of the surface

atoms. Carbohydrate atoms were categorized into 5 atom types

(Table 1, atom types 32,36). The PDMs of the 5 types of

carbohydrate atoms on protein surface were constructed with

protein-carbohydrate interacting atom pair database derived from

3463 protein-carbohydrate complexes (from PDB version 2010,

Jan 15). In order to keep the PDMs high in information content

and low in noise from irrelevant interactions, non-interacting

atomic pairs were eliminated with a filter system based on the

work by McConkey et al. [15] (Table S1). An example of a set of

36 PDMs on a protein are shown in Figure S1. Interactive 3-D

graphic presentation of the PDMs can be viewed from the web-

server http://ismblab.genomics.sinica.edu.tw/ . gallery.

As shown in Table 1, there are a total of 30 ‘protein atom types’

(see Table 1 for protein atom types 1–30), derived from the 20

natural amino acids in proteins. For ‘non-covalent interacting

atom types’ or simply ‘interacting atom types’, these atom types

are interacting non-covalently with ‘protein atom types’. These

types can be either originated from proteins (types 1–30) or from

carbohydrate ligands (types 32–36) and water (type 31).

Data sets
The machine learning models were first trained and tested with

a selected set of protein-carbohydrate complexes. These complexes

were selected with the criterion that at least 25 protein atoms are

within 5 Å to the carbohydrate ligand. Base on the criterion, a

total of 497 non-redundant protein-carbohydrate complexes with

pair-wise sequence identity less than 90% were selected from 3463

protein-carbohydrate complexes (from PDB before Jan/2010).

The selected set of protein-carbohydrate complexes is referred as

the S497 set (Tables S2, S3, and S4). An independent test set was

selected from more recent PDB entries. 2261 carbohydrate

complex structures released between Jan/2010 and Jun/2011

were collected from PDB with the same criterion as above. 108

carbohydrate binding proteins with pairwise sequence identity less

than 50% to any of the proteins in the S497 set were selected to

form the S108 set (Table S5) for independent test of the optimized

predictors. Predictors trained and validated with the S497 and

S108 sets were further tested with unbounded proteins, for which

the structures were determined in the absence of the carbohydrate

ligands, so as to validate the prediction capabilities in realistic

situations where the protein-carbohydrate binding sites are

unknown. 88 unbound structures with 100% sequence identity

to one of the proteins in S497 were selected from PDB to form the

S88 set. These protein structures, unlike the corresponding protein

structures in the S497 set, were determined in the absence of the

carbohydrate ligands. Similarly, 23 unbound structures with 100%
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sequence identity to one of the proteins in the S108 set were

selected to form the S23 set.

PDM-based attributes as inputs for machine learning
algorithms

Protein atoms were categorized into 30 atom types, and

machine learning models were trained for each of the atom types.

The input attributes for the machine learning models were

calculated from the PDMs on the protein surface. In order to

prevent self-information used in the predictions, all the interacting

atom information involving the query protein were eliminated

from the corresponding PDMs, mimicking a blind test for the

protein structure that is not in the known protein database.

For each atom i on the surface of the query protein (solvent

accessible surface area of atom i.0), the PDM values associated

with the grids within 5 Å radius centered at the atom were

summed in Equation (1).

Si,j~
Xrikƒ5A

k
gk,j , ð1Þ

where Si,j is the PDM sum for interacting atom type j at atom i; rik

is the distance between atom i to a grid point k; gk,j is the PDM

value of interacting atom type j at grid point k.

Ai,j (j = 1,36) associated with each atom i was calculated with

Equation (2).

Ai,j~Si,jz
Xdkiƒ10A

k
Sk,j

d{2
kiPdmiƒ10A

m d{2
mi

, ð2Þ

where Si,j is defined in Equation (1); dki is the distance between

atom i and atom k.

The attribute set (ai,j (j = 1,36)) for the machine learning models

on atom i were derived from Ai,j (j = 1,36) with the following

scaling scheme:

if Ai,j.Mmax,j then ai,j = 1; otherwise

if Ai,j,Mmin,j then ai,j = 0; otherwise

ai,j~
Ai,j{Mmin,j

Mmax,j{Mmin,j

, ð3Þ

where Mmax,j is the median of the distribution of the maximal Ai,j

from each of the proteins in S497 and Mmin,j is the median of the

distribution of the minimal Ai,j of the proteins in S497. Figure S2

shows the distributions of the maximal and minimal Ai,j from the

proteins in S497. The values of Mmin,j and Mmax,j are also listed in

Figure S2. ai,j (j = 1,36) are the first 36 attributes for machine

learning; the 37th attribute for the atom i was the fraction of the

space not occupied by the van der Waals volume of the protein in

the 10 Å sphere centered at the atom i. This attribute was also

scaled between 0 and 1 with Equation (3) (see also Figure S2 for

the distribution of Mmax,37 and Mmin,37).

Prediction of carbohydrate binding sites with three types
of machine learning algorithm

Only the atoms on protein surfaces with SASA (solvent

accessible surface area) greater than zero were used as training

or testing cases. For each of the 30 atom types on proteins,

machine learning models were trained and validated with the

negative and positive cases found in the S497 and S108 sets. A

positive case was a protein atom within 5 Å to any atoms of the

carbohydrate ligand in the protein-carbohydrate complex. Protein

atoms contacting aglycone components, such as peptides and lipids

attaching to the sugar moieties, were not considered as positive

cases. For unbound proteins in S88 and in S23, the positive cases

were determined according the assignments in the corresponding

protein-carbohydrate complexes in the S497 and S108 sets.

For each of the 30 atom types, the following three machine

learning predictors were trained and cross-validated: Artificial

neural network (ANN) – The details of the standard feed-forward

back-propagation ANN [16] methodology has been described

previously [13]. The input layer consisted of 37 nodes, for which

the input attributes are described in Equations (1),(3). The hidden

layers had 76 nodes, twice the sum of the input and the output.

The output layer had a single node with the activity value between

0 and 1, matching the negative (0) and positive case (1)

respectively. The learning rate for both the hidden layer and the

output layer were 0.01; the momentum was 0.1. The training

iteration was stopped as the mean absolute error between the

ANN output values and the target values converged. The

parameter set and the architecture of ANN were determined

empirically for optimal performance.

Support vector machines (SVM) – The details of the standard

SVM methodology has been described previously [13]. In brief,

the SVM is a two-class classification approach with a maximized-

margin hyperplane, where margin is the distance from the

separating hyperplane to the closest data point [17] [18]. The

cost (c) and gamma (c) parameters of the SVM were optimized

with grid searching for the optimal Matthews correlation

coefficient (MCC) using only the training dataset.

For both the ANN and SVM training, all the positive cases and

twice as many randomly selected negative cases from the training

set were used. The selection of the ratio between the positive and

the negative cases was optimized empirically.

Artificial neural network with bootstrap aggregation (AN-

N_BAGGING) – Bootstrap aggregation in machine learning was

used to partially eliminate learning biases resulting from imbal-

anced training dataset, which is due to the fact that the negative

atoms for carbohydrate binding in the training set greatly

outnumber the positive atoms. The methodology [13] included

multiple predictors to produce an ensemble of prediction results

[19], and the final prediction was calculated by averaging with

equal weight the output values from the predictors [20]. Each

predictor of the ensemble was trained with a different sampling

(bag) of the training set. In each bag, all of the positive cases in

S497 were included, along with 1.5 times randomly sampled

negative cases. The bag number was set to twenty, which balanced

computational efficiency and prediction accuracy. Each of the

bags was used to train an artificial neural network model. Here, a

high speed resilient back-propagation (RPROP) training technique

was used [21,22]. Resilient propagation is capable of automatic

adjustment for learning rate and momentum, with the advantage

of faster convergence while requiring less manual determination of

network parameters. Each of the ANN models was trained for

1000 iterations. During the training, the model was tested on

validation set (see below) after every ten training iterations. The

number of training iteration which yielded the best MCC (see

below for MCC definition) on the validation set was used to

determine the parameters of the predictors.

10-fold cross validation
All the machine learning algorithms above were trained and

tested with 10-fold cross validations – 10 cross validations, each

with 80% of the data from the S497 set as the training set; 10% of

the data as the validation set; the remaining 10% of the data as the

testing set.
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For each of the predictors, a threshold for the output activity value

was determined with the validation set; positive predictions have the

output activity values greater than or equal to the threshold, while

the negative predictions have the output activity values smaller than

the threshold. All the thresholds were determined with the validation

set to optimize the MCC for the predictions.

Prediction accuracy benchmarks
The machining learning performance of the trained ANN,

SVM and ANN_BAGGING models were benchmarked by

accuracy (Acc), precision (Pre), sensitivity (Sen), specificity (Spe),

F-score (Fsc) and Matthews correlation coefficient (MCC).

Acc~
TPzTN

TPzTNzFPzFN
|100 ð4Þ

Pre~
TP

TPzFP
|100 ð5Þ

Sen~
TP

TPzFN
|100 ð6Þ

Spe~
TN

TNzFP
|100 ð7Þ

Fsc~
2|Pre|Sen

PrezSen
ð8Þ

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ð9Þ

where TP is the number of true positives; TN the number of true

negatives; FP the number of false positives; and FN the number of

false negatives. Sensitivity (also known as recall) can be viewed as a

measurement of completeness, whereas precision is a measurement

of exactness or fidelity. MCC, as a measurement of the quality of two

class classifications (positive and negative), is generally regarded as a

balanced measurement which can be used even if the classes are of

very different sizes as in the carbohydrate-protein interactions. Its

value ranges between 21 and 1; random correlation gives MCC of 0

while perfect correlation yields 1 in MCC.

Confidence level for predictions
Prediction activity (output from ANN and ANN_BAGGING)

or probability (output from SVM) with value ranging from 0 to 1

was normalized to prediction confidence level so that the

normalized prediction results based on confidence level from

various machine learning models for different protein atom types

can be compared and integrated on level ground to form tentative

carbohydrate binding patches, which invariably consist of various

types of protein atoms. For each of the 30 protein atom types, the

machine learning outputs from the validation sets were sorted into

bins of interval 0.1. The confidence level of each of the bins was

calculated as the fraction of true positive over the total number of

predictions in the bin. In the end, lookup-tables for the output-

confidence relationships were constructed; the machine learning

outputs can be converted to prediction confidence levels with these

lookup-tables. The look-up tables are charted in Figure S3.

Prediction of patches of atoms as carbohydrate binding
sites on proteins

Protein surface carbohydrate binding site is defined by a cluster of

surface atoms (SASA.0) with high positive prediction confidence

level. Protein surface atoms with confidence level for positive

prediction greater than 50% were used as cluster centers to include

neighboring surface atoms within radius of 5 Å. Within each of the

surface patches, all the surface atoms with the confidence level for

positive prediction greater than 10% were included in the tentative

patch of atoms as carbohydrate binding site. If the pairwise distances

of a subset of seeds were all within 10 Å, the subset patches were

merged as one patch. The parameters were optimized for residue-

based prediction accuracy on the validation set.

Residue-based predictions for the carbohydrate binding
sites

To facilitate comparison of this work with previous methods

predicting carbohydrate binding sites at the residue level, a

heuristic procedure was used to transform the atom-based binding

site predictions as described in the previous paragraph into

binding site predictions at the residue level: only the residues with

more than 30% of the surface atoms (SASA.0) included in the

atom-based binding patch were considered as positive residues of

the residue-based patch. Similarly, actual carbohydrate binding

sites at the residue level for proteins with known carbohydrate

ligands were defined by patches of positive residues, each of which

has more than 30% of the surface atoms (SASA.0 in the absence

of carbohydrate ligand) on the residue within 5 Å to any atom of

the carbohydrate ligand. This definition enabled the comparison

of prediction results with actual binding sites at the residue level.

The percentage parameter was optimized for residue-based

prediction accuracy with the validation set.

Mann-Whitney U-test
Mann-Whitney U-test is a non-parametric statistical method to

test whether two groups of numerical values come from identical

continuous distributions of equal medians – increasing p-value

indicates decreasing difference of the two distributions and p-value

of 1 indicates that the two distributions are statistically indistin-

guishable. The Mann-Whitney U-tests were carried out with the

statistic tool ranksum in MATLAB (http://www.mathworks.com/

help/toolbox/stats/ranksum.html).

Web Site
Predictions can be submitted to the webserver http://ismblab.

genomics.sinica.edu.tw/. All the benchmark results can also be

accessed in interactive graphic presentations from the same web

address above.

Supporting Information

Figure S1 Examples of PDMs around urtica dioica
agglutinin (PDB code: 1EN2). The contours are colored in

blue, black, yellow and red to represent the probability density

distributions of non-covalent interacting nitrogen, carbon, sulfur,

and oxygen respectively. The protein molecule is shown as the

solvent asscessible surface model; surface protein atoms are

colored in red, blue, yellow, and white for oxygen, nitrogen,

sulfur, and carbon respectively. The carbohydrate ligand is shown

in stick model. Interactive 3-D graphic presentation of the PDMs

can be viewed from the web server http://ismblab.genomics.

sinica.edu.tw/ . gallery.

(DOC)
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Figure S2 Distributions of maximal and minial Ai,j

(Equation (2) in the main text) calculated from the
proteins in S497. Mmax,j shown in each of the panels is the

median of the distribution of the maximal Ai,j (distributions colored

in blue) and Mmin,j is the median of the distribution of the minimal

Ai,j (distributions colored in red).

(DOC)

Figure S3 Lookup charts converting output activity
(probability) from the corresponding machine learning
predictor to prediction confidence level. For each of the 30

protein atom types, the machine learning outputs from the

validation sets were sorted into bins of interval 0.1. The confidence

level of each of the bins was calculated as the fraction of true

positive over the total number of predictions in the bin. The panels

(a), (b), and (c) are derived from ANN, SVM, and ANN_BAG-

GING predictions respectively. In each of the panel, two sets of

curves are shown; one set for the prediction confidence level

described as above (i.e., the positive prediction confidence); the

other set for the negative prediction confidence. The sum of the

positive prediction confidence level and the negative prediction

confidence level equals to one.

(DOC)

Table S1 A filter system used to eliminate non-inter-
acting atomic pairs based on the work by McConkey et
al with modifications. The carbohydrate-protein interactions

were added to the Table by following the principle that aliphatic

carbons do not interact with polar oxygen and nitrogen atoms.

During the construction of the PDMs, only the atom pairs with the

matrix value less than 20.1 were included in the probability

density maps. The detail descriptions of the protein/carbohydrate

atom types are shown in Table 1 in the main text.

(DOC)

Table S2 Ten-fold cross validation ANN prediction
accuracy benchmarks on the S497 dataset. The dataset,

the ten-fold cross validation, and the benchmark measurements

have been described in the main text. Matthews correlation

coefficient (MCC), F-score(Fsc), Accuracy(Acc), Precision(Pre),

Sensitivity(Sen) and Specificity(Spe) are shown in Equations

(4),(9). TP, FP, TN, and FN are true positive, false positive, true

negative, and false negative respectively. C1,C7 represent

carbohydrate binding sites in each of the test proteins; different

protein has different number of binding sites. In these columns, the

number of the predicted true positive atoms is shown over the

actual number of atoms involving in the binding site. Interactive

examination of the prediction results for each of the proteins in the

S497 dataset can be accessed from the web server: http://ismblab.

genomics.sinica.edu.tw/. benchmark . protein-carbohydrate.

(DOC)

Table S3 Ten-fold cross validation SVM prediction
accuracy benchmarks on the S497 dataset. The dataset,

the ten-fold cross validation, and the benchmark measurements

have been described in the main text. Matthews correlation

coefficient (MCC), F-score(Fsc), Accuracy(Acc), Precision(Pre),

Sensitivity(Sen) and Specificity(Spe) are shown in Equations

(4),(9). TP, FP, TN, and FN are true positive, false positive, true

negative, and false negative respectively. C1,C7 represent

carbohydrate binding sites in each of the test proteins; different

protein has different number of binding sites. In these columns, the

number of the predicted true positive atoms is shown over the

actual number of atoms involving in the binding site. Interactive

examination of the prediction results for each of the proteins in the

S497 dataset can be accessed from the web server: http://ismblab.

genomics.sinica.edu.tw/. benchmark . protein-carbohydrate.

(DOC)

Table S4 Ten-fold cross validation ANN_BAGGING
prediction accuracy benchmarks on the S497 dataset.
The dataset, the ten-fold cross validation, and the benchmark

measurements have been described in the main text. Matthews

correlation coefficient (MCC), F-score(Fsc), Accuracy(Acc), Preci-

sion(Pre), Sensitivity(Sen) and Specificity(Spe) are shown in Equations

(4),(9). TP, FP, TN, and FN are true positive, false positive, true

negative, and false negative respectively. C1,C7 represent carbo-

hydrate binding sites in each of the test proteins; different protein has

different number of binding sites. In these columns, the number of the

predicted true positive atoms is shown over the actual number of

atoms involving in the binding site. Interactive examination of the

prediction results for each of the proteins in the S497 dataset can be

accessed from the web server: http://ismblab.genomics.sinica.edu.

tw/. benchmark . protein-carbohydrate.

(DOC)

Table S5 ANN_BAGGING prediction accuracy bench-
marks on the independent test set S108. The dataset and

the benchmark measurements have been described in the main

text. Matthews correlation coefficient (MCC), F-score(Fsc),

Accuracy(Acc), Precision(Pre), Sensitivity(Sen) and Specificity(Spe)

are shown in Equations (4),(9). TP, FP, TN, and FN are true

positive, false positive, true negative, and false negative respec-

tively. C1,C6 represent carbohydrate binding sites in each of the

test proteins; different protein has different number of binding

sites. In these columns, the number of the predicted true positive

atoms is shown over the actual number of atoms involving in the

binding site. The upper-limit of the pairwise sequence identity for

each of the proteins in S108 to the homologues in S497 is shown in

ID% column. Interactive examination of the prediction results for

each of the proteins in the 108 independent test set can be accessed

from the web server: http://ismblab.genomics.sinica.edu.tw/.

benchmark . protein-carbohydrate.

(DOC)

Table S6 ANN_BAGGING prediction accuracy bench-
marks on the unbound set S88. The dataset and the

benchmark measurements have been described in the main text.

Matthews correlation coefficient (MCC), F-score(Fsc), Accura-

cy(Acc), Precision(Pre), Sensitivity(Sen) and Specificity(Spe) are

shown in Equations (4),(9). TP, FP, TN, and FN are true positive,

false positive, true negative, and false negative respectively.

Interactive examination of the prediction results for each of the

proteins in the 88 unbound test set can be accessed from the web

server: http://ismblab.genomics.sinica.edu.tw/. benchmark .

protein-carbohydrate.

(DOC)

Table S7 ANN_BAGGING prediction accuracy bench-
marks on the unbound set S23. The dataset and the

benchmark measurements have been described in the main text.

Matthews correlation coefficient (MCC), F-score(Fsc), Accura-

cy(Acc), Precision(Pre), Sensitivity(Sen) and Specificity(Spe) are

shown in Equations (4),(9). TP, FP, TN, and FN are true positive,

false positive, true negative, and false negative respectively.

Interactive examination of the prediction results for each of the

proteins in the 23 unbound test set can be accessed from the web

server: http://ismblab.genomics.sinica.edu.tw/. benchmark .

protein-carbohydrate.

(DOC)
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Table S8 Root mean square deviation (RMSD) between
carbohydrate-bound and unbound structure. The struc-

tural alignments were performed by PyMOL package. Interactive

examination of the superimposed results for each pair of bound

and unbound proteins can be accessed from the web server:

http://ismblab.genomics.sinica.edu.tw/. benchmark . protein-

carbohydrate.

(DOC)

Text S1 Supplemental methods.
(DOC)
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