Theoretical Computer Science 412 (2011) 4513-4530

o

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

One-to-one disjoint path covers on k-ary n-cubes”

Yuan-Kang Shih?, Shin-Shin Kao >*

2 Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
b Department of Applied Mathematics, Chung-Yuan Christian University, Chungli, 32023, Taiwan, ROC

ARTICLE INFO ABSTRACT

Article history: The k-ary n-cube, QF, is one of the most popular interconnection networks. Let n > 2 and
Recewed 14 De'cember 2010 k > 3.1t is known that Q,f is a nonbipartite (resp. bipartite) graph when k is odd (resp.
Received in revised form 6 April 2011 even). In this paper, we prove that there exist r vertex disjoint paths {P; | 0 < i <r — 1}

Accepted 21 April 2011

. . between any two distinct vertices u and v of Q" when k is odd, and there exist r vertex
Communicated by G. Ausiello 1

disjoint paths {R; | 0 < i < r — 1} between any pair of vertices w and b from different
partite sets of QX when k is even, such that | J/_, P; or | Ji_; R; covers all vertices of Q\
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k-ary n-cube for any r with 1 < r < 2n. The result is optimal since any vertex in Qé‘ has exactly 2n
Hamiltonian neighbors.
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1. Introduction

In today’s telecommunication networks, the construction of node-disjoint paths between a pair of distinct nodes in any
network has been an important subject [9,21]. The node-disjoint paths are used to speed up the transfer of a large amount
of data by splitting the data over several node-disjoint communication paths [6]. Additional benefits of adopting such a
node-disjoint routing scheme are the enhanced robustness to node failures and congestion, and the enhanced capability of
load balancing [21]. Recently, studies of disjoint paths in a variety of networks can be found in the literature [8,32]. In this
article, we further request that the set of these node-disjoint paths between any given pair of distinct nodes is a cover of
the network. Namely, the union of the node-disjoint paths must cover all nodes of the network, which we term as a “one-
to-one disjoint path cover”. One of the well-known applications of multiple disjoint path covers is software testing [23].
For example, if the graph G represents all possible execution sequences of a computer program, then a path cover is a set
of test runs that covers each program statement at least once. In pipeline computation, an embedding of multiple disjoint
path covers in a network implies that every node can participate. Studies about disjoint path covers of some networks or
graphs can be found in the literature [5,13,19,20,25]. Among them, one-to-one disjoint path covers are also named spanning
containers.

The k-ary n-cube, denoted by Q,f, has been proposed as an alternative to the hypercube Q,,, which is one of the most well-
known interconnection networks in parallel computers due to its many attractive properties such as vertex/edge symmetry,
recursive structure, easy routing, high degree of fault tolerance, and so on. See [7,10,18,28-30], for example. It is known that
the hypercube network has been used as the interconnection topology of many distributed memory multiprocessors such
as the Cosmic Cube, the Ametek S/14, the iPSC, the Ncube, and the CM-200. Besides, the properties of hypercubes relevant
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to parallel computing have been well studied. Readers can refer to [27] and its references. The k-ary n-cube, Q,f shares
many nice properties of Q, such as regular degrees, vertex symmetry, edge symmetry, recursive structure etc. A number of
distributed memory multiprocessors have been built with a k-ary n-cube forming the underlying topology, such as the Cray
T3E, the iWARP, the Cray T3D and so on. Please see [1,3,17,22]. Many researchers have been working on k-ary n-cubes [4,6,
11,12,14,26,27,31,33].

In this paper, we construct one-to-one node-disjoint path covers of k-ary n-cubes for any integer k > 3 andn > 2.
More precisely, we show that given any two distinct vertices u, v of a k-ary n-cube Qf there exist(s) m vertex/node-disjoint
path(s) between u and v whose union covers all vertices of Q,.’,‘ for 1 < m < 2nwhen k is odd, and given any pair of vertices
w and b from the different partite sets of a k-ary n-cube Q,f there exist(s) m internally disjoint path(s) between w, b whose
union covers all vertices of Q,ﬁ‘ for 1 < m < 2n when k is even. The result is optimal since any vertex of Q,f has exactly 2n
neighbors. Note that a network is conveniently represented by a graph, in which vertices represent the nodes (processors)
of the network and edges represent the communication links of the network. Therefore, throughout this paper, we use
networks and graph, node and vertex and, link and edge interchangeably.

2. Preliminaries

In what follows, we follow [2] for the graph definitions and notations. The sets of vertices and edges of a graph G are
denoted by V(G) and E(G), respectively. If u, v are vertices of a graph G such that there is an edge e = (u, v) € E(G) between
u and v, then we say that the vertices u and v are adjacent in G. The degree of any vertex x is the number of distinct vertices
adjacent to x. We use N(x) to denote the set of vertices which are adjacent to x. A path P between two vertices vg and vy

is represented by P = (vg, v1, ..., v¢), where each pair of consecutive vertices are connected by an edge. We use P~ to
denote the path (vi, vk—1, Vk—2, . .., Vo). We also write the path P = (vo, v1, ..., v) as {vo, v1, ..., Vi, Q, Vj, Vjit1, . .., Vk)s
where Q denotes the path (v;, viyq, ..., vj). The length of a path P is the number of edges in P. We use dg(u, v) to denote

the length of the shortest path between the two vertices u and v in G. A hamiltonian path between u and v, where u and v
are two distinct vertices of G, is a path joining u to v that visits every vertex of G exactly once. A cycle is a path of at least
three vertices such that the first vertex is the same as the last vertex. A hamiltonian cycle of G is a cycle that traverses every
vertex of G exactly once. A hamiltonian graph is a graph with a hamiltonian cycle. A graph G is connected if there is a path
between any two distinct vertices in G and is hamiltonian connected if there is a hamiltonian path between any two distinct
vertices in G [24]. A graph H = (W U B, E) is bipartite if V(H) = W U B and E(H) is a subset of {(w,b) | w € W, b € B}.
We will call any vertex w € W a “white” vertex, and any vertex b € B a “black” vertex, respectively. A bipartite graph H
is balanced if |W| = |B|. It is easy to see that any bipartite graph with at least three vertices is not hamiltonian connected.
For example, let H = (W U B, E) be a bipartite graph with |W| > |B|. Obviously, there exists no hamiltonian path in H that
joins two black vertices. On the other hand, a balanced bipartite graph is hamiltonian laceable if there exists a hamiltonian
path between any two vertices w, b with w € W and b € B.

Suppose that u and v are two vertices of a graph G. We say a set of m paths between u and v, denoted by C(u, v), is an
m-disjoint path cover in G if the m paths do not contain the same vertex besides u and v and their union covers all vertices
of G. An m-disjoint path cover is abbreviated as an m-DPC for simplicity. A nonbipartite graph G is one-to-one m-disjoint
path coverable (m-DPC-able for short) if there is an m-DPC between any two vertices of G. Moreover, let H be a bipartite
graph with V(H) = W U B. A bipartite graph H is one-to-one bi-m-disjoint path coverable (bi-m-DPC-able for short) if there
is an m-DPC between any pair of vertices {u,v | u € Band v € W}. Obviously, a nonbipartite (resp. bipartite) graph G
is hamiltonian connected (resp. hamiltonian laceable) if and only if G is 1-DPC-able (resp. bi-1-DPC-able). Furthermore, a
nonbipartite (resp. bipartite) graph is hamiltonian if and only if the graph is 2-DPC-able (resp. bi-2-DPC-able). It is worth
mentioning that “G is r-DPC-able” and “G is (r + 1)-DPC-able” do not imply each other. For example, C, (the cycle with n
vertices) is 2-DPC-able (resp. bi-2-DPC-able) but not 1-DPC-able (resp. bi-1-DPC-able) for n > 5 being an odd integer (resp.
an even integer). Besides, in [15] (resp. [16]), examples of 2-DPC-able nonbipartite graphs (resp. bi-2-DPC-able bipartite
graphs) that are not 3-DPC-able (resp. bi-3-DPC-able) are given.

The k-ary n-cube, Q,{‘ is defined for all integers k > 2 and n > 1. The subclass an is the well-studied hypercube family.
The subclass Ql" with k > 3 is defined as the cycle of length k. The k-ary n-cube, Q,f for k > 3and n > 2 is defined as follows.
Letu € V(Q,f) be represented by (u(0), u(1), ..., u(n — 1)), where 0 < u(i) < k — 1. Two vertices u and v are adjacent if
and only if |u(i) — v(i)] = 1ork — 1 for some i and u(j) = v(j) forany 0 < j < n — 1 withj 5 i. It is shown that Q,f is
bipartite if k is even [ 14]. See Fig. 1 for an illustration. Here we mention some properties of Qr’f that will be used in this paper.

Qf is vertex-symmetric (and edge-symmetric) [ 14]. It means that given any two distinct vertices v and v’ of Qﬁ there is an
automorphism of Q,.’,‘ mapping v to v'. Note that each vertex of Q,i‘ is represented by a n-bit tuple. We will call the dth-bit

the dth dimension. We can partition Q,f over dimension d by fixing the dth element of any vertex tuple at some value a for

everya € {0, 1, ..., k— 1}. This results in k copies of Q,ﬂ‘_l, denoted by Q,’f‘_ol, Qr’f’_]l, R Qr’f’_k;], with corresponding vertices

in Q,f‘_O], Q,f’_]l, e Q,f_kf] joined in a cycle of length k (in dimension d) [27].

In this article, we always partition Q,{‘ over the 0-th dimension by letting V(Q:’_il) ={(@, v(1),v?2),...,v(n—=1)) |0 <
v(j) <k—1,V1 <j <n—1}for0 <i < k—1.SeeFig. 1(c) for anillustration. Given avertexx = (x(0), x(1), ..., x(n—1)) €
V(Q,f), the symbol ¥ = ((j), x(1), x(2), ...,x(n — 1)), where 0 < j < k — 1, is defined to be the vertex corresponding to x
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Fig. 1. Three graphs, Q;, ;' and Q3.

in Q,fjl for simplicity. If P = (xo, X1, . .., Xs—1), P/ is represented by (x{,, x"], ,x{H). Throughout this paper, let n > 2 be
an integer and k > 3 an integer.

Theorem 1 ([31]). For any odd integer k > 3, Q,f is hamiltonian connected for n > 2. In other words, Q,{‘ is 1-DPC-able.
Theorem 2 ([14]). For any even integer k > 4, Q,f is hamiltonian laceable for n > 2. In other words, Q,f is bi-1-DPC-able.

Theorem 3 ([4]). The graph Q,f is hamiltonian. In other words, Q,f is 2-DPC-able when k is odd and bi-2-DPC-able when k is
even.

3. Main results

In this section, we will derive our main theorem, Theorems 4 and 5, using mathematical induction on n. For this purpose,
two lemmas are presented in Section 3.1 for the following construction schemes. In Section 3.2, the disjoint path covers of
2" are specifically constructed for k € {3, 4, 5, 6}, and then a step-by-step algorithm is given to obtain the disjoint path

covers of sz for any integer k with k > 5. In Section 3.3, with the induction base derived in Section 3.2, we prove the main
theorems by mathematical induction on n.

3.1. Two lemmas

Lemma 1. Given Q,f and its k subcubes, Q,f_l1 where 0 < i < k — 1. Let j and j' be two integers satisfying0 <j <j <k — 1.
When kis odd, let u € V(Q:;jl) andv € V(Q:;jll) be arbitrary. Then there exists a path between u and v that visits each vertex in

Q¥ ., QYT .., and QY7 exactly once. On the other hand, when k is even, let w € V(QX’,) be an arbitrary white vertex, and
be V(Q,i‘fl) an arbitrary black vertex. Then there exists a path between w and b that visits each vertex in Q:_Jl k’_jTl, ..., and
QX7 exactly once.

Proof. We have the following two cases.

Case 1. When k is odd, we construct the required path in the following three cases.

Case 1.1.j = j.W.LO.G,, letj = j/ = 0. By Theorem 1, Q,f;ol is hamiltonian connected. Thus there is a hamiltonian path
between u and v that visits every vertex of Q,:"_01 exactly once.
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Fig. 2. An illustration for Case 1.3 of Lemma 1.

Case 1.2.j —j = 1.W.LO.G,, letj = 0 andj/ = 1. We can find a vertex x € V(Qf;ol) such that x = x° £ uand x' # v.
By Theorem 1, there exists a hamiltonian path Py of Q,f;O] between u and x°, and a hamiltonian path P; of Q,ff1 between x!

and v. Let P = (u, Py, x°, x!, P, v). Hence P is the path between u and v that visits every vertex of Q,i‘;‘)] and Qrf;ll exactly
once.

Case 1.3. Forj —j > 2, there are j — j + 1 k-ary (n — 1)-cubes, Q/,, Q" .., k’_j/l_l and Qr’f_]] There are j — j
pairs of adjacent vertices x(r) € Q,i"_ﬂ, and y(r + 1) € Q,i”‘” forj < r < j — 1suchthat x(j) # uand y(§') # v.
By Theorem 1, there is a hamiltonian path R, of Qr’f’_rl joining y(r) to x(r), where j + 1 < r < j — 1. Again, with
Theorem 1, there exists a hamiltonian path T of Q:_J] joining u to x(j), and a hamiltonian path U of Q:"_jll joining y(j') to
vLetP = (T X0, Y+ DRt G+ DY +2), R, G+ 2), . ¥(' = . Ry-1, %G = 1).5(), U, v). Therefore, P
is a path covering all the vertices of Q:'_Jl, ’”H Qn between u and v. Please see Fig. 2 for an illustration.

By Case 1.1, Case 1.2 and Case 1.3, this lemma is proved when k is odd.

Case 2. When k is even, the proof is similar to Case 1 and is omitted. O

Lemma 2. Given Q,f and its k subcubes Qn for0 <i <k — 1. Letjbeaninteger with0 < i <j < k — 1. When k is odd, let

u and v be any pair of vertices in Qn . There exists a path between u and v that covers all the vertices of Qr’f '], k, 'J{l, ..., and
Qn—1- On the other hand, when k is even, let w be a white vertex and b a black vertex in Qn_1. There exists a path between w and
b that covers all the vertices of Q' , Q*'T", .., and

Proof. We consider the following two cases.
Case 1. When k is odd.

k,i

Case 1.1.1f j = i, there is only one k-ary (n — 1)-cube Q,”,. By Theorem 1, the lemma holds in this case.

Case 1.2.1fj # i, there are j — i+ 1 k-ary (n — 1)-cubes. According to Theorem 1, there is a hamiltonian path P; that covers all
the vertices of Q*'. between u and v of the form (u, S;, x', y', T;, v), where {x', y'} is an edge of Q.*', with {x', y'} N {u, v} =
h icesof QX' , b d v of the form (u, S;, X', y', Ty, v), where {x!, y'} dge of Q' with {x', y} N {u, v} = @
Notice that by Theorem 1, Q,ff 1 is hamiltonian connected and hence there exists a hamiltonian path P, between x" and y" of
the form: (X", S, z", w", T;, y") fori + 1 < r < j. Let the required path between u and v be R.
Case 1.2.1.1fj—i+1iseven,thenR = (u, S;, x', x*1, S;q, 211, 2112, (Si0) 71, &2 %13, 51,5, 2173 2714 (Sipg) 1, x4, L X,
S, 2w, Ty, Ly (Tm) ™Y wit w2, 7}'—27}’]72»}’] 3, (Ti-3)™ 1 w3, ...,y Y T;, v). Please see Fig. 3(a) for an illus-
tration.
Case 1.2.2.1fj—i+1isodd, thenR = (u, S;, ¥, X, Siq, 21, 272 (Siy) ™, X2 X113, S g, 23, 2704 (S ™1 x4, L, 2,
)L, Y, ()T w w T T,y YT (Tiy) ™ w2 w3 Tios, 3, Ly Y Ty, v). Please see Fig. 3(b) for an
illustration.

By Case 1.1 and Case 1.2, the lemma holds when k is odd.

Case 2. When k is even, the required path can be derived by the same approach as in Case 1, so we skipit. O

3.2. The disjoint path covers Oszk

Lemma 3. The graph Q23 is 3-DPC-able and 4-DPC-able.

Proof. To prove that Q23 is m-DPC-able, where m € {3, 4}, we need to construct an m-DPC between u and v for any pair
of vertices {u, v} € V(Q23). Since Q23 is vertex-symmetric, W.L.0.G., let u = (0, 0). Then we must consider the cases when
v e {(0,1), (1, D}
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Fig. 3. An illustration for Case 1.2 of Lemma 2.

Case 1. The 3-DPC {P1, P,, P3} (resp. {R1, R», R3}) from (0, 0) to (0, 1) (resp. (1, 1)) whose union covers V(QS) are constructed
in the following table.

0,0), (0, 1))
0,0), (1,0), (1, 1), (0, 1))
0,0),(2,0), (2,1), (2,2), (1, 2), (0, 2), (0, 1))

((
v=(0,1) Pz ((
((
((0,0), (0, 1), (1, 1))
(«
(«

v=1(1,1) 0,0), (1,0), (1, 1))

0,0), (2,0), (2, 1), (2,2), (0, 2),(1,2), (1, 1))

Case 2. The 4-DPC {Pq, P,, P3, P4} (resp. {R1, Rz, R3, R4}) from (0, 0) to (0, 1) (resp. (1, 1)) whose union covers V(Q23) are
constructed in the following table.

.
v=0.1D | bl (0.0).(1,0), (1.2). (1, 1), (0, 1)
P, = {(0.0). (2.0). (2. 2). (2. 1). (0. 1))
R, = {(0.0), (0. 1), (1. 1))
o | R =1(0.0),(1,0). (1, 1)
D1 Ry = ((0,0). (0, 2). (1.2). (1, 1))
R4 = ((0 O)a (27 0)7 (Za 2)7 (27 1)9 (17 1)) O

Lemma 4. The graph Qz4 is bi-3-DPC-able and bi-4-DPC-able.

Proof. To prove that Qz4 is bi-m-DPC-able, where m € {3, 4}, we need to construct an m-DPC between any pair of vertices

w and b from different partite sets in V(QZ“). Since Q24 is vertex-symmetric, W.L.0.G., let w = (0, 0). Then we must consider
the cases when b € {(1, 0), (2, 1)}.

Case 1. The 3-DPC {P1, P,, P3} (resp. {R1, R», R3}) from (0, 0) to (1, 0) (resp. (2, 1)) whose union covers V(Q ) are constructed
in the following table.

Py ={(0,0), (1, 0))
b=(1,0) Pz =((0,0), (0, 1), (1, 1), (1,0))
=((0,0),(3,0), (3. 1), (3,2),(3,3). (2, 3). (1, 3), (0, 3), (0, 2), (1, 2), (2, 2), (2, 1), (2, 0), (1, 0))
R =((0,0),(1,0),(2,0), (2, 1))
b=(2,1) | R =((0,0),(0,1),(1,1),(2, 1))
R ={(0,0),(3,0). (3.1, 3.2), (3, 3),(2,3).(1,3). (0, 3), 0, 2), (1,2), 2, 2), (2, D))
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Case 2. The 4-DPC {Pyq, P,, P53, P4} (resp. {R1, Ry, R3, R4}) from (0, 0) to (1, 0) (resp. (2, 1)) whose union covers V(Qz“) are
constructed in the following table.

=((0,0),(1,0))
b— (Lo | 2= (0.0.0.1.1.1.(1,0)
’ P3= ((0,0), (0,3),(0,2),(1,2),(1,3), (1,0)
P4 =((0,0),(3,0),(3,1,3,2),3,3),(2,3),(2,2),(2,1),(2,0),(1,0)
Rl = <(0 0)5 (37 0)7 (3a 1)5 (2’ 1))
’ R3 = ((0 0)5 (O’ ])7 (15 1)3 (27 1))
=((0,0),(0,3),(0,2),(1,2),(1,3),(2,3),(3,3),3.2),(2,2), 2, 1)) |

Lemma 5. The graph QZ5 is 3-DPC-able and 4-DPC-able.

Proof. To prove that Q25 is m-DPC-able, where m € {3, 4}, we need to construct an m-DPC between u and v for any pair
of vertices {u, v} € V(Q25). Since Q25 is vertex-symmetric, W.L.O.G., let u = (0, 0). We must consider the cases when
v e {(0,1),(1,1),(0,2),(1,2), (2,2)}

Case 1. The 3-DPC {Pq, P,, P53} (resp. {R1, Ry, R3}, {S1, S2, S3}, {T1, T2, T3}, {U1, Us, Us}) whose union covers V(QZS) between
(0,0) and (0, 1) (resp. (1, 1), (0, 2), (1, 2), (2, 2)) are listed below.

(0,0), (0, 1))
0,0),(1,0),(2,0), (3,0, (3, 1), (2,1, (1,1), (0, 1))
0,0),(4,0),(4,1),(4,2),3,2),(2,2),(1,2),(1,3),(2,3),(3,3),(4.3). (44, 3,4, 2,4, (1,4, (0,4,

3), (0,2), (0, D)
(0,0),(1,0), (1, 1))
(0,0),(0,1),(0,2),(0,3),(0,4), (1,4, (1,3), (1,2), (1, 1))
0,0),(4,0),(3,0),(2,0),(2,4),(3,4,44),43.3,3).2,3,2,2.3.2),42,41.,G3, 1,21, 1,1)

v=1(0,1)

v=(1,1)

&G

] ||AII L L IIAII II H

0,0), (0, 1), (0, 2))
0,0), (0, 4), (1,4), (2,4), (3,4), (4,4), (4, 3), 3, 3), (2,3), (1, 3), (0, 3), (0, 2))

(
v=1(0,2) (
0,0),(4,0),3,0,(2,0,(1,0,1, 1D, 21D, 31D, 41),42),3,2),2,2),1,2),02)
(
(
(

0,0), (0, 1, (0,2), (1,2))

0,0), (1,0), (1, 1), (1,2))

0,0), (4,0), (4, 1), (4,2),(4,3),(4,4), (3,4, (3,3),(3,2), (3, 1),(3,0), (2,0), 2, 1), (2,2), (2, 3), (2, 4),
4),(0,4),(0,3),(,3),,2)

((0,0),(1,0), 2,0, (2, 1), (2,2))

((0,0),(0,4), (1,4), (2,4), (2,3), (1,3), (0, 3),(0,2), 0, 1), (1, 1), (1, 2), (2, 2))

((0,0),(4,0,3,0,3, 1, 4,1),(4,2),43), (44,34, 3,3),3,2),2,2))

SERYY v

(
(
{
0,
(
(
(
(
(
(
(
v=(1,2) E
1,

v=(2,2)

sss

Case 2. The 4-DPC {Py, P,, P3, P4} (resp. {Ry, Ry, R3, R4}, {S1, S2, S3, S4}, {T1, T, T3, T4}, {Uq, Us, Us, Us}) whose union covers
V(Q25) between (0, 0) and (0, 1) (resp. (1, 1), (0, 2), (1, 2), (2, 2)) are listed below.

P =1(0,0), 0, 1)
o—.1) | P2 =((0.0.(1,0. (1.1, 0. 1)
P =1(0,0),(4,0),(3,0), 2,00, 2, 1, 3, 1), (4, 1), (0, 1))
Py = ((0,0). (0,4), (0.3), (1.3). (1,4), 2.4), 2.3). 3,3). B, 4), (4.4). (4,3). (4.2), (3.2). 2,2). (1,2), (0,2). (0, 1))
Ry =((0,0), 0, D, (1, 1))
oo | R=(0.0.0,0.(1.1)
] R = (0,0, (0,4), (1.4), (1,3). (0,3), (0.2), (1.2). (1, 1))
Re = ((0,0), (4,0), (4,4), (4,3), (4,2), (4,1, 3, 1), (3,2). 3,3), 3.9, (3,0), 2,0, 2.4, 2.3, 2,2), @, 1), (1, 1)
51=1(0,0), (0., (0,2)
b= 0.2) | 2=1(0.0.(40.(4.1).42.0.2)
O s = (0,0, (1,0). (1,1, 2,1, 2,00, 3,0, 3, 1), (3.2), 2,2), (1,2), 0.2))
S4=((0,0). (0.4). (1.4), 2.4). G, 4), (4.4), (4,3). G,3), 2.3). (1.3). (0.3). (0. 2))
7= (0,0, (0,1, 0,2, (1,2))
oo (2 | 2= (0.0,(1,0).(1.1).(1.2)
T 520,040, (4, 1), (4.2). 3,2, 6, 1. (3,0), 2,0), 2. 1), (2.2), (1,2))
T = ((0,0), (0.4), (0.3), (4,3), (4.49), (3,4), 3,3), 2.3), 2,4), (1,4), (1,3), (1,2))
U= ((0.0). (1,0), (1. 1, 2. 1), 2.2)}
vo @2 | U2=1(0.0.0.1.0.2.0.3).(1.3).(1.2).2.2)
T 6200.0.0.0.9.6.4.00.6.0.0,1.6.2.2.2)
= ((0.0), (4,0, (4. 1), (4,2), (4,3). (4,4, 3. 4). 3.3). 2,3). 2.2)) o

Lemma 6. The graph Q is bi-3-DPC-able and bi-4-DPC-able.

Proof. To prove that Qz6 is bi-m-DPC-able, where m € {3, 4}, we need to construct an m-DPC between any pair of vertices

w and b from different partite sets in V(QZG). Since Q2G is vertex-symmetric, W.L.0.G., let w = (0, 0). Then we must consider
the cases when b € {(1, 0), (2, 1), (3,0), (3,2)}.
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Case 1.The 3-DPC {Py, P,, P3} (resp. {R1, Rz, R3},{S1, S2, S3}, {T1, T2, T3}) whose union covers V(Q26) between (0, 0) and (1, 0)
(resp. (2, 1), (3, 0), (3, 2)) are constructed below.

={(0,0), (1,0))
P, =((0,0), (0, 1), (1, 1), (1,0))
v=(1,0) | P3={(0,0),(5,0),(5,1),(5,2),(5,3),5,4),5,5), 45), (3,5, (2,5),(1,5),(0,5),(0,4), (1,4), (2,4, 3, 4),
(4.4),(4,3),(4,2),(4,1),(4,0),(3,0),(3,1),(3,2),3,3),(2,3),(1,3), (0, 3),0,2), (1,2), (2, 2), (2, 1),
2.0). (1,0))
Ry =((0,0), (1,0), (2,0, (2, 1))
Ry ={(0,0), (0. 1), (1, D, (2, 1))
=((0,0),(5,0), 5, 1, (5,2), (5,3), (5,4, (5,5), (4,5), (3,5), (2,5), (1,5),(0,5), (0, 4), (1,4), (2,4), 3, 4),
(4,4),(4,3),4,2),41,(4,0,3.0.3.1,(3,2),(3,3),(2,3).(1,3),(0,3),(0,2), (1, 2), 2, 2), (2, 1))
((0,0),(1,0),(2,0), (3,0)
((0,0),(5,0), (4,0, (3,0)
((0,0),(0,5), (1,5),(2,5), (3,5), (4,5). (5,5), (5, 4), (4, 4), (3, 4. (2,4), (1,4, (0, 4), (0, 3), (1, 3), (2, 3),
(3,3),4,3).6,3.6,2,.6,D,41,42),3,2),(2,2,(1,2),(0,2),0,1),1, 1D, 21D, 31D, (3,0)
(
{
(

v=(2,1)

S =
v=3,0 | 22

=((0,0), (1,0), (2,0),(3,0), (3, 1), (3,2))
T, =((0,0),(0,1),(0,2),(1,2), (1, 1), (2, 1), (2, 2), (3, 2))
=((0,0),(5,0),(4,0), (4, 1), (5, 1), (5,2), (5, 3), (5,4, (5,5), (4,5), 3,5), (2,5, (1,5), (0,5), (0, 4), (0, 3),
(1,3),(1,4), (2,4, (2,3).(3,3),3,4. 4.4, 4 3),. 4.2), 3, 2))

v=(3,2)

Case 2. The 4-DPC {Pq, P,, P3, P4} (resp. {R1, Rz, R3, R4}, {S1, S2, S3, S4}, {T1, T2, T3, T4}) whose union covers V(QZG) between
(0,0) and (1, 0) (resp. (2, 1), (3, 0), (3, 2)) are constructed below.

Py =1((0,0), (1,0))
P, =((0,0),(0,1),(1,1),(1,0))
v=(1,0) | P3={(0,0),(0,5),(0,4),(0,3),(0,2),(1,2), (1, 3), (1,4, (1,5), (1, 0))
P4 =1((0,0),(5,0),(5,1),(5,2),(5,3),(5,4), 5,5, (4,5), (4,4), (4, 3),(4.2), (4. 1),(4,0),(3,0), (3, 1), (3, 2),
(3,3),3,4,3.,5).,2,5),2,4,2,3), 2,2, 2,1, (2,0),(1,0)
=((0,0),(1,0). (2,0), 2, 1))
Rz =((0,0),(0, 1), (1,1, 2, D)
v=(2,1) R3= ((0,0),(5,0),(5,1),(5,2),(5,3), 5.4, (5,5), (4, 5), (4. 4), (4, 3), (4, 2), (4, 1), (4,0), (3,0, (3, 1), (2, 1))
=((0,0),(0,5),(1,5),(2,5), (3,5), (3,4, (2,4), (1,4), (0,4), (0, 3), (0, 2), (1,2), (1, 3), (2, 3), (3, 3), (3, 2),
2,2), 2, 1)
51=1((0.0),(1,0).(2,0), (3,0))
52 =1(0,0),(0,1),(1,1),(2,1),3, 1, (3,0)
v=3,0) | $3=¢(0,0),(5,0),(5,1),(5,2),(5,3), 5,4, (5,5, (4,5, (4,4, (4,3),(4,2),(41),(4,0),3,0)
S4 =((0,0), (0,5), (0,4), (0,3), (0,2), (1, 2), (1, 3), (1,4), (1,5), (2,5), (2,4), (2, 3),(2,2), (3,2), (3,3), (3, 4),
(3,5), (3,0))
T1 =((0,0),(1,0), (2,0), (3,0), (3, 1), (3,2))
T, ={(0,0), (0, 1), (0,2), (1,2),(1,1),(2, 1), (2,2), (3,2))
v=(,2) | 3=(0,0),(5,0),(4,0),(41),(5,1),5,2), (4 2),(3,2)
Ty ={(0,0), (0,5), (1,5), (2,5), (3,5), (4, 5), (5,5), (5.4, (5.3), (4, 3), (4.4, (3,4, (2,4, (1,4), (0,4), (0, 3),
(1,3),(2,3),(3,3),3,2) o

Lemma 7. For any odd integer k > 5, Q2 is 3-DPC-able and 4-DPC-able.

Proof. With Lemma 5, we have shown that sz’ is 3-DPC-able and 4-DPC-able. Now we will present a recursive algorithm
that uses a 3-DPC (resp. 4-DPC) of Qz" to construct a 3-DPC (resp. 4-DPC) of sz+2- Let R be a subset of V(QZ") UE (sz)- We
define a function, f, which maps R from sz into Q"Jr2 in the following way:

(1)If(,j) eRN V(Qz"),where 0<1i,j <k—1,then

(M) if0<i,j<k-—2;
o d¥a ifimk—1,0<j<k—2:
FED =936+ 2) ifj=k—1,0<i<k—2:

(i+2,j+2) ifi=k—1=]j.
(2)If (G, ), (. ) € RNE(Q)), wherei <,j < j,then

(@0, d,J") ifo<ij<k—31<i,j<k—2;

(G+2,), { +2,)) ifi=i =k—1,0<j<k—-3,1<j <k-2;

((G,j+2),d,j+2) ifj=f/ =k—1,0<i<k—3,1<i <k—2;
FUGH, @) = G0, (5 +2)) f0<i=i<k—-2,j=0,j=k—1;

(.5, @ +2,j)) ifo<j=j<k-2,i=0,i'=k—1;

((4,j+2),(+2,j+2) ifi=0,i=k—-1,j=j=k—1;
(+2,j),d+2,j4+2) ifj=0,j=k—1,i=i"=k—1.
Please see Fig. 4 for an illustration.

Let u, v be a pair of distinct vertices of Qz". We say that a 3-DPC (resp. 4-DPC) C(u, v) of Qz" is regular if C(u, v) contains
some edges in {((«¢, k — 2), (0, k—1)) |0 <o < k—1}and {((k—2,8),(k—1,8)) | 0 < B < k — 1}. For example,
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Fig. 4. Using function f to map a subset of edges and vertices of Q; into Q;.

all 3-DPC and 4-DPC of Q25 constructed in Lemma 5 are regular. Assume that k is an odd integer and k > 5. Let C(u, v) be a
regular 3-DPC (resp. 4-DPC) of Qz" with the endvertex set P = {u = (0, 0), v = (x, y)}. We construct a regular 3-DPC (resp.
4-DPC) of Q2"+2 with the endvertex set f (P) using the following algorithm.

Step 1.In Qz", let{vg, v1, ..., ve_1}and {ho, hy, ..., hs_1} be finite sequences of indices satisfying the following requirements:
Mo<sy<vi<--'<v_1<k—1landk—1>hy>hy>--->hs_1>0;

(2)for0 <i<k—1,((vi,k—2), (vi, k—1))isanedge of C(u, v),and for0 < j < k—1, ((k — 2, hj), (k— 1, h;)) is an edge
of C(u, v).

Step 2. Let C(u, v) be the image in 2"” of C(u,v) — ({((vi, k—=2), (vi, k—=1)) |0 <i <k—1}U{((k—2, h)), (k—1, h)) |
0 <j < k — 1}) under the function f.

Step 3. For any two positive integers r and d, we use [r]y to denote r(mod d). In Q2"+2, define the following path patterns,
where r4, 1, are integers:

I (1, 12) = ((r1, @), ([r1 + U2, @), ([11 + 2is2, @), -+, (12, @));
17N (ra, 1) = ((r2, @), ([r2 — g, @), ([12 = 202, @), - - -, (11, @)
Hg(r1,m2) = ((B, 1), (B, [r1 + 1ks2)s (B, [11 + 2]kg2), ..., (B, 12));
Hﬂ_l(r27 r) = ((B,1r2), (B, [r2 — ks2), (B, [r2 — 2]k12), - .-, (B, 7).

Letvi=v;+2ifvi=k—1andv; = v; if 0 < v; 5k—2,andﬁj=hj+2ifhj=k— laﬂdE]=hjlf0§hjfk—2
Case 1.vg = k — 1.
LetPp = (k+1,k—2),(k+1,k—1),(0,k — 1), ,_1(0,k — 2), (k — 2,k — 1), (k — 2, k), Ik_l(k —2,0),(0,k), (k+
1, k), (k+ 1, k+ 1)).
Case1.1.s =1. _ B o _ _ _ _ _
LetPo = ((k:2, ho), (k— LEO), H ', (ho, Tho+1lk12), (k—1, [ho+11ks2), (k, [ho+11ks2), Hi(ho + 1lks2, ho), (k, ho), (k+
1, ho)). Then C(u, v) U Py U Py is the 3-DPC (or 4-DPC) of QZ"“.
Case1.2.s > 2. _ o _ _ _ _ _ _
LetP; = ((k — 2, hy), (k — 1, h), H ', (i, hipq + 1), (k— 1, higq + 1), (k, higq + 1), He(hipr + 1, by, (k By, (k+ 1, hy)) for
0<i =s-2, ﬁrlii Py = ((k—}, hs_1), (kiL he_1), H (Es—]- [ho+1]ky2), (k—1, [ho+ 1]42), (k, [ho+ 1]ky2), Hi([ho +
Tkr2s Bs—1), (k, hs_1), (k + 1, hs_y)). Then C(u, v) UPy U {P; | 0 < i < s — 1} is the 3-DPC (or 4-DPC) of Q; 2. Please see
Fig. 5 for an illustration.
Case2.v;_1 <k—2and ((k—2,k—1),(k—1,k— 1)) € E(C(u, v)) in sz.
Case2.1.t = 1.
Let Py = {((vg, k — 2), (v, k — 1), I,_1(vo, k —2), (k—2,k— 1), (k—2,k), Ik_l(k — 2,7g), (o, k), (Vg, k+ 1)).
Case2.1.1.s =1. _ B B
Let PO = ((k - 25 ho)v (k - ]7 ho)a H]:l(h07 O)a (k - 13 0)7 (k» O)a Hk(os k — 1)7 (ks k — 1)3 (k + 17 k — ])» ka'l(k + 17 [60 -
1kt2), (Vo= ks2, k—=1), ([Wo— k42, k), Iy ' (Vo= ks2, k+1), (k+1, k), (k, k), (k, ho), (k+1, ho)). Then C(u, v)UPyUP,
is the 3-DPC (or 4-DPC) of QX*2.
Case2.1.2.s = 2. B o B B _
Let PO = <(k - 27 h0)7 (k - ]7 hO)a Hk_j](hO’ h] + 1)7 (k - 17 h] + 1)5 (ka h] + ])7 Hk(h] + 17 k - 1)7 (ka k - 1)3 (k + 17 k -
1), =1 (k+1, [Vo— 1ks2), ([Vo — k42, k= 1), ([Vo— 142, k), 1{1([50;1]k+2L1<+1), (k+1,k), (k, k), (k, ho), (k+1, ho)),
and Py = ((k—2, hy), (k— 1, hy), H ' (h1, 0), (k= 1,0), (k, 0), Hc(0, hy), (k, hy), (k+ 1, hy)). Then C(u, v) UPy UPo U P,
is the 3-DPC (or 4-DPC) of QX*2.
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Fig. 5. An illustration for Case 1.2 of Lemma 7. Use the 3-DPC of Q27 to construct the 3-DPC of ng, wheres =3,t = 1,hg =6,hy = 1,h, = 0,v9 = 6.
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Fig. 6. An illustration for Case 2.2.3 of Lemma 7. Use the 3-DPC of Q27 to construct the 3-DPC of Q29, wheres = 6,t =2,hg =6,h; =5,h, =4,h; = 3,
hy=2,hs =1,v9=0,v; = 1.

Case2.1.3.s > 3. B o B _ _

Let Po = ((k — 2, ho), (k — 1, ho), H (ho, hy + 1), (k — 1, hy + 1), (k, by + 1), He(hy + 1,k = 1), (k. k= 1), (k+ 1,k —
1), e (k41,0 — i), (Do — i, k=1, ([Bo = Tles2, K, I (o — Vi, k41, (k+1,0), (k, k), (k, ho), (k+1, ),
Pi = ((k =2, R, (k = 1, R, By (i, By + 1), (k= 1 By + 1), G Bigr + 1), Hihigr + 1,19, Gk ), (k + 1, 7y) for
1 = i =s— 2, and PS—1 = ((k_ 25 hs—1), (k_ 17 hs—l)7 H]:l] (h5—17 0)7 (k_ 1, O)a (k7 0), Hk(oa hS—])a (ka hs—l)a (k+ ]7 hS—]))-
Then C(u, v) UPy U {P; | 0 < i < s — 1} is the 3-DPC (or 4-DPC) of Q2.

Case2.2.t > 2.

Let Py = (0, k — 2), (i, k — 1), e (03, Vi1 — 1), @i — Lk — 1), @1 — 1, k), I @1 — 1,00, (U1, k), (01, k+ 1))
for0 <i <t—-—2and P,y = ((Ve_1,k —2), W1,k — 1), _1(Ve_1, k — 2), (k — 2,k — 1), (k — 2, k),Ik_l(k —
2,0¢-1), (Ve—1, k), (Ve—1, k + 1)).

Case22.1.s = 1. _ _

Using the same Py as in Case 2.1.1, then C(u, v) U {P; | 0 <i <t — 1} U Py is the 3-DPC (or 4-DPC) of 2"”.

Case2.2.2.s = 2. _ _ _

Using the same Py and Pq as in Case 2.1.2., then C(u, v) U{P; | 0 <i <t — 1} U Py U P is the 3-DPC (or 4-DPC) of Qzl‘“.
Case2.2.3.5s > 3. _ _

Using the same {P; | 0 <i <s— 1}asinCase 2.1.3,,then C(u,v) U{P; |0 <i<t—1}U{P; | 0 <i <s— 1}is the 3-DPC
(or 4-DPC) of QZHZ. Please see Fig. 6 for an illustration.

Case3.v—1 <k—2and (k—2,k—1), (k—1,k— 1)) ¢ E(C(u, v)) in sz-

Case3.1.t = 1. B _ _ _
Let Py = ((Vo, k —2), (o, k — 1), =1 (Wo, k — 1), (k = 1,k — 1), H '} (k — 1, ho + 1), (k — 1, hg + 1), (k, ho + 1), Hy(ho +
Lk=1),(kk=1,(+1k=1),0,k—1),[10,0 — 1), W — 1,k—1), W — 1,k), I, (%o — 1,0), (0, k), (k +
1,k), (k, k), (k,k+ 1), (k= 1,k+ 1), (k= 1,k), I '(k = 1,D0), (Do, k), (Vo, k + 1)).
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Fig. 7. An illustration for Case 3.2.1 of Lemma 7. Use the 3-DPC of Q27 to construct the 3-DPC of Q29. wheres = 1,t = 2,hy = 5,v9 = 4,v; =5.

Case3.1.1.s = 1.
Let Po = ((k — 2, ho), (k — 1, ho), H; ', (ho, 0), (k — 1,0), (k, 0), Hy(0, ho), (k, ho), (k + 1, ho)). Then C(u, v) U Py U Py is
the 3-DPC (or 4-DPC) of Q2.

Case 3.1.2.5 > 2.

Let P; = ((k— 2, hy), (k — 1, hy), H 'y (i, higq + 1), (k= 1, hipq + 1), (k, higr + 1), He(higr + 1, h), (k, By, (k+ 1, hy)) for
0<i<s—2andPs ;= ((k—2,hs_y), (k—1,hs_1), H ', (hs_1, 0), (k—1,0), (k, 0), H(0, hs_1), (k, hs_1), (k+1, hs_y)).
Then C(u, v) UPy U {P; | 0 < i <s— 1} is the 3-DPC (or 4-DPC) of Q; 2.

Case3.2.t > 2.

Let Py = (03, k—2), @3, k— 1), o1 (03, it — 1), @i — 1, k= 1), @i — 1, k), I @i — 1, 01), (Ui, k), (vi, k+ 1)) for
O0<i<t—2andP_; = (W_1.k—2), @1, k— 1), oW1, k— 1), (k= 1,k — 1), H (k= 1, hg + 1), (k — 1, o +
1), (k, ho + 1), He(ho + 1,k — 1), (k, k— 1), (k+ 1,k — 1), (0, k— 1), [_1(0, D — 1), (0o — 1, k— 1), (0o — 1, k), I; " (Vo —
1,0), (0, k), (k+ 1,k), (k, k), (k,k+ 1), (k—1,k+ 1), (k—1, k), I,;l(k —1,v¢-1), (Ve—1, k), (Ue—1, k+ 1)).

Case3.2.1.s = 1.

Using the same P as in Case 3.1.1, then C(u, v) U {P; | 0 < i < t — 1} U Py is the 3-DPC (or 4-DPC) of QX*2. Please see Fig. 7
for an illustration.

Case3.2.2.s > 2. _ _
Using the same {P; | 0 <i <s— 1}asinCase 3.1.2,,then C(u, v) U{P; |0 <i <t —1}U{P; | 0 <i <s— 1} is the 3-DPC
(or 4-DPC) of QS 2,

Case4.v;_1 =k — 1forsomet > 2 and vy = 0.

Case4.1.t = 2.
Let PO = <(EO7 k — 2)7 (505 k — 1)71’(—1(605 k — 2)7 (k - 27 k — 1)’ (k - 27 k)a Ik_l(k - 2760)7 (UOs k)’ (607 k + 1)>v and
Py=((k+ 1.k —2), (k+ 1.k — 1), (k+ 1. k). (k+ 1 k+ 1)).

Case4.1.1.s = 1. _ _
Using the same Py as in Case 1.1., then C(u, v) U Py U P; U Py is the 3-DPC (or 4-DPC) of 2"+2.

Case4.1.2.s > 2. B _
Using the same {P; | 0 <i < s — 1} asin Case 1.2, then C(u, v) UPy UP; U {P; | 0 <i < s — 1} is the 3-DPC (or 4-DPC) of
Q)2 Please see Fig. 8 for an illustration.

Case4.2.t > 3.

LetP; = (03, k—2), (Ui, k—1), [c1 (U3, Vi1 — D, @i — 1, k= 1), @1 — 1, ), I @1 — 1, 9), (@03, k), (03, k+1)) for 0 <
i<t—3,P_5 = {((Ve_2, k—2), (Vt_3, k—1), [_1(V¢_2, k—2), (k—2,k—1), (k—2, k), Iljl(k—z, Vi_2), (Vi—2, k), (Vi_p, k+
1)),and P,y = ((k+1,k—2),(k+1,k—1), (k+ 1, k), (k+ 1,k + 1)).

Case4.2.1.s = 1. _ B
Using the same Py as in Case 1.1., then C(u, v) U{P; | 0 <i <t — 1} U Pq is the 3-DPC (or 4-DPC) of Qz"“.

Case4.2.2.s > 2. _ _
Using the same {P; | 0 <i <s— 1}asinCase 1.2, thenC(u,v) U{P; |0 <i<t—1}U{P; | 0 <i <s— 1} is the 3-DPC
(or 4-DPC) of QF 2,



Y.-K. Shih, S.-S. Kao / Theoretical Computer Science 412 (2011) 4513-4530 4523

u u (0,6)(0,7)
;—o—o—o—o—o—o(o,é) r—o—o—o—o—o—rf) e (0,8)
liv—o ¢(1,6) /fv—o (1,8)
[1 ® ¢ ¢ O ¢ (206 IT ® ¢ ¢ o o (2,8)
| l e ¢ ¢ ¢ ¢ 00306 | t ¢+ ¢ ¢ ¢ ¢ (3.8)
\l ® ¢ ¢ 6 ¢ ¢(40 |+ ® ¢ o o o (4,8)
\I ® ¢ ¢ ¢ ¢ €(50 (5,0)|+ ® ¢ ¢ ¢ o o!r)‘lo (5,8)
660 Vo o0 o o o o066y

(6,0)(6,1) \ P iP5 P P P P Py
0, O 000 (7.8)
\ o obsy

(8,0)(8,1) P

0 BOET

Fig. 8. An illustration for Case 4.1.2 of Lemma 7. Use the 3-DPC of Q27 to construct the 3-DPC of Q29, wheres = 7,t =2,hg = 6,hy =5,h; =4,h3 =3,
h4:2,h5 = 1,h5 :O,Ug :0,U1 =6.

Case5.v;_1 = k — 1forsomet > 2 and vy # 0.

Case5.1.t = 2.

Let Py = ((vo, k — 2), (Vo, k — 1), L_1(vo, k — 2), (k — 2,k — 1), (k — 2, k),Ik_l(k — 2, vp), (vo, k), (vg, k + 1)), and
Py = ((k+1,k=2), (k+1,k—=1), (k+1,k), (k+1,k+1)),and Py = ((k+1,k—2), (k+1,k—1), (0, k—1), [k-1(0, Vo —
D, @ —1,k=1), (W — 1,k), I, '@ — 1,0), (0, k), (k+ 1, k), (k+ 1,k + D).

Case5.1.1.s = 1. _ _

Using the same Py as in Case 1.1., then C(u, v) U Py U P; U Py is the 3-DPC (or 4-DPC) of 2"”.

Case5.1.2.s > 2. _ _

Using the same {P; | 0 < i < s — 1} asin Case 1.2,, then C(u, v) UPy UP; U{P; | 0 <i < s — 1} is the 3-DPC (or 4-DPC)
of Q.

Case5.2.t > 3.

LetP; = (03, k—2), (Ui, k—1), 1 (0, Vig1 — 1), @ip1— 1, k=1), @1 — 1, k), I @1 — 1, 0, (01, k), (03, k+1)) for 0 <
i <t-3, Ptfz = <(Ut727 k_z)v (6t725 k— 1)9 Ik71 (it72s k_z)v (k_zv k— 1)5 (k_zv k)5 17:1(k_27 6(72)7 (Efz, k)v (Ut727 k+
D),and Pr_y = ((k+1,k—2), (k+1,k—1), (0, k—1), (0, To— 1), (Wo— 1, k—1), (Wo— 1, k), I '(Wo— 1, 0), (0, k), (k+
1,k), (k+ 1,k + 1)).

Case52.1.s = 1. _ _

Using the same Py as in Case 1.1., then C(u, v) U{P; | 0 <i <t — 1} U Py is the 3-DPC (or 4-DPC) of 2"”.

Case5.2.2.5s > 2. _ B

Using the same {P; | 0 <i <s— 1}asinCase 1.2, thenC(u,v) U{P; |0 <i<t—1}U{P; | 0 <i < s — 1} is the 3-DPC
(or 4-DPC) of QX*2. O

The following lemma for Qz" for any even integer k > 6 can be derived similarly.
Lemma 8. For any even integer k > 6, Qz" is bi-3-DPC-able and bi-4-DPC-able.

3.3. The disjoint path covers on,f withn > 2

Theorem 4. Let n > 2 be an integer and k > 3 be an odd integer. Then Q,f is m-DPC-able, where 1 < m < 2n.

Proof. By Theorems 1 and 3, Q,f is 1-DPC-able and 2-DPC-able. Thus, it suffices to prove that Q,ﬂ‘ is m-DPC-able for3 <m <
2n. With Lemmas 3,5 and 7, sz is m-DPC-able for 3 < m < 4. Thus the theorem holds for n = 2. We shall prove the theorem

by mathematical induction on n. Using the induction hypothesis, we assume that Q,f’_il is m-DPC-able for 1 < m < 2n — 2,
where 0 < i < k — 1. Given two distinct vertices u, v € V(Q,’f), withu e Q,f_’l and v € Q,f_’; we want to show that we can
use the m-DPC in Q,f_'l to construct an (m + 2)-DPC between u and v in QX.

Case 1.j =j. W.LO.G, letj =j = 0.

Now, u = u® and v = v° are in Q,f’_ol. By the induction hypothesis, Q,f‘_ol is m-DPC-able, so there are m vertex disjoint paths
between u and v, denoted by {P;}!";', whose union covers all the vertices of Qj;ol forall1 < m < 2n — 2. According to
Theorem 1, there is a path R between u*~! and v*~! covering all the vertices of Q" ". Let P,, = (u, u*~", R, v*~1, v). By
Lemma 2, there is a path S between u! and v! covering all the vertices of "f] for1 <i<k—2.LetPyy = (u,u',S, v, v).

Hence, there exist m + 2 vertex disjoint paths {P;}["' between u and v, whose union covers all the vertices of QX. Please see

Fig. 9 for an illustration.
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Fig. 9. An illustration for Case 1 of Theorem 4.
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Fig. 10. An illustration for Case 2.1.2 of Theorem 4 when k = 5.

Case2.|j —j'| = 1.W.LO.G, letj=0andj = k — 1.
Letu = u® be in Q% and v = v*~"in Q% ". We have the following three subcases.

Case 2.].IfdQA<(u, v) = 1.
Case2.1.1.m = 1.

Welet Py = (u = ul, v¥! = ) Given any vertex x° in Q,f 01 {u®}. By Theorem 1, there is a path S between u° and
x? covering all the vertices of Qn il and a path T between x*~! and v*~! covering all the vertices of Q,f;"f !. Then, we set
Py = (u = u® S, x0xk 1, T, vk1 = p). According to Lemma 1, there is a path U between u' and v*~2 covering all the

vertices onnl for1 <i<k—2LetP, = (u=u’ u',U, v*¥ 2, v*=1 = v). Hence, there are three vertex disjoint paths
{Py, P1, P,} between u and v, whose union covers all the vertices of Qf

Case2.1.2.m > 2.

By the induction hypothesis, Q,1 1 is m-DPC-able, so there are m vertex disjoint paths between 1% and x°, denoted by {R; |1 0 ,
whose union covers all the vertices of Q,:‘ 9 . Besides, there are m vertex disjoint paths between x*~!
by {Si)™5!, whose union covers all the vertices of Q" ". Set R, = (u, T;, %, %), and 5; = (x*~1, y*1 U;, vk~ ]) We let
Py = (u=u Ry, x°, x*~ 1,50 v" T=9)andP; = (u = u° Tl,yl,yl LU, v ' =v)for1 <i<m—1.ByLemma 1, there
is a path W between u' and v*~2 covering all the vertices onn for1 <i<k—2.SetP, = (u=u’ u', W, vk=2, vk=1 = v).
Finally, let Py 1 = (u = u®, v¥~1 = v). Therefore, we construct m 4+ 2 vertex disjoint paths {Pi}f’:gl between u and v, whose
union covers all the vertices of Q¥. Please see Fig. 10 for an illustration.

Case 2.2. IfdQI;f (u,v) =2.

and v*~1, denoted

Case2.2.1.m = 1.

By Theorem 1, there is a path R between u° and v° covering all the vertices of Q% and a path S between u*~" and v*~"
covering all the vertices of Q" ". WLO.G, we let R = (u°, T,x°,v%) and S = (', y* ", U, v ). Let Py = (u =
u® uk1 vk = pyand P, = (u = u® v°, v¥"! = v). According to Lemma 1, there exists a path W between x! and
y*=2 covering all the vertices of Q' for 1 < i < k — 2.So,we set P, = (u = u®, T, x%, x', W, y*~2, k=1 U, k-1 = ),

Therefore, there exist three vertex disjoint paths {Py, P;, P,} between u and v, whose union covers all the vertices of Q,f

Case2.2.2.m > 2.

By the induction hypothesis, Qn | ism-DPC-able, so there are m vertex disjoint paths between u" and v, denoted by {R} } 0 ,
whose union covers all the vertices on,H where0 < r < k—1.W.LO.G.,,weletRj = (u", v") andR] = (u", ], S], y}, v") for
1<i<m-—1.LetPy= (u=u’ % vk ). WesetP; = (u=ux° 5%y yl, (sg)—l,x},...,x,.k*‘,s{‘ Ly vkt = )
for1 <i<m-1WeletP, = (u = uo,u1,v1,v2,u2,...,u" 2 vk=2 vk = w), and Ppyq = (u = u®, uf1, ok,



Y.-K. Shih, S.-S. Kao / Theoretical Computer Science 412 (2011) 4513-4530 4525

U — ol g ol ot ,
= — = Xm-1
s Sy [y | | S e
1 1ym-1 2y m-1 3y m-1 4 1
Ry (R} (R (R Ry
y|z—/\ yzz—/\ ysz—/\ y"’_M
0 i 72° NEad —%
et o (036 on st

Fig. 12. An illustration for Case 2.3.2 of Theorem 4 when k = 5.

Therefore, we construct m + 2 vertex disjoint paths {Pi}:';g] between u and v, whose union covers all the vertices of Q,f.

Please see Fig. 11 for an illustration.
Case 2.3. IfdQ# (u,v) > 3.

Case2.3.1.m = 1.

By Theorem 1, there exists a path R between u® and v° covering all the vertices of Qrg‘;ol, and a path S between /%!

and
v¥~1 covering all the vertices of Qr’f'_k; 1 According to Lemma 1, there is a path W between u! and v*~2 covering all the
vertices of Q,f’_l] for1 <i<k—2WeletPy = (u = u®,R 0, v = v), Py = (u = u® ut",S, v = v),and
P, = (u = u® u', W, v*=2, v*=1 = v). There are three vertex disjoint paths {Py, P;, P,} between u and v, whose union
covers all the vertices of QF.

Case2.3.2.m > 2.

By the induction hypothesis, fo 1 ism-DPC-able, so there are m vertex disjoint paths between u" and v", denoted by {R} ;’;51,
whose union covers all the vertices on,f;ﬂ where0 <r < k—1.W.LO.G,weletRl = (", x[,S],y[,v")for0 <i<m-—1

1
LetPy = (u = RO v, 0T = v),and P = (u = %%, 50,30,y (S Txle o XL STl kT =y
for1 < i < m — 1. Then, we set P,, = (u = u®,u',R},v',v?, (R~ u?, ..., uk"2 REZ vk-2 vk = ), and
Ppyr = (u = ul, u* ", R{;’H vk=1 = v). Hence, we construct m + 2 vertex disjoint paths {P,'}?g(;l between u and v, whose
union covers all the vertices of QX. Please see Fig. 12 for an illustration.
Case3.|j —j'| = 2.W.L.O.G,, let j = 0 and ' be even.
Now,u = u° € Q,f;ol andv = v/ ¢ Q,f’f]. Assume that 0 < h < j'. By the induction hypothesis, Qﬁl is m-DPC-able,

so there are m vertex disjoint paths between u" and v", denoted by {Rf‘};’;f, whose union covers all the vertices of Q,f;h].

We set R = (uf, xSt yt o). Let P = (u = u% X0, 82, )0, yl, (S})‘l,x},...,x{,S{/,yf/, v =) for0<i<m-—1.
By Lemma 2, there is a path T between W+ and o' ! covering all the vertices of Q,f,'l forjy +1 < i < k — 2.Set
Pn = (u=ulul,...., 00,y t", T, v/, v/ = v). Finally, according to Theorem 1, there is a path U between u*~! and
v*=1 covering all the vertices of k’_kl_l. We let Py = (u = u®, ub=", U, v% 1,00 v, ..., v/ =1, v/ = v). Therefore, we
construct the m 4+ 2 vertex disjoint paths {P,»};?;gl between u and v, whose union covers all the vertices of Qrf. Please see
Fig. 13 for anillustration. O

With Theorem 4, we have shown that Q,f is m-DPC-able for 1 < m < 2n, where k > 3 is an odd integer and n > 2 is
an integer. The result is optimal since each vertex of Q,f has exactly 2n neighbors. The construction scheme in Theorem 4
cannot be applied to Q,f for k > 4 being an even integer. In fact, it is much more difficult to prove that Q,f is bi-m-DPC-able
for 1 < m < 2nwhen k > 2 is even. Thus the detailed derivation is given below.

Theorem 5. Let n > 2 be an integer and k > 4 be an even integer. Then Q,{‘ is bi-m-DPC-able, where 1 < m < 2n.

Proof. According to Theorems 2, 3 and Lemmas 4, 6 and 8, the theorem holds for any even integer k > 4 whenn = 2.
We will give the proof of the theorem by mathematical induction on n. By the induction hypothesis, assume that Q,f’_’l is
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Fig. 14. The illustration for Case 2.1.2 of Theorem 5.

bi-m-DPC-able for1 < m < 2n—2,where0 < i < k— 1. Given a white vertex w € V(Q:’_jl) and a black vertex b € V(Q:’_j/l).
We will show that we can use the m-DPC of Q,f_’l to construct an (m + 2)-DPC of QX between w and b.

Case 1.Forj =j. W.LO.G.,weletj=j = 0.

In this case, we have {w, b} € Q,f’_ol. By the induction hypothesis, there are m vertex disjoint paths {P,'},T’IO1 whose union
covers all vertices of Q,',"_O1 between w and b for 1 < m < 2n — 2. By Lemma 2, the exists a path S covering all vertices of
Q,,ffl for1 <i <k — 2between w! and b'. We can let P,, = (w, w!, S, b', b). In ";"]_1, there exist a hamiltonian path R
joining from w*~! to b*~1 by Theorem 2. Also, we can let P11 = (w, w*~1, R, b*~1, b). Therefore, there are m + 2 vertex
disjoint paths {P,»};’:{)l whose union covers all vertices of Q,f between w and b.

Case 2.For |j —j'| = 1. W.L.O.G.,weletj =0andj = 1.

We have the following two cases.

Case 2.1. Suppose that dQ# (w, b) = 1.1t s easy to see that we can let P, 1 = (w, b).

Case2.1.1.1f m = 1.

Let z be any black vertex of Q,:‘;Ol. By Theorem 2, there exist a hamiltonian path S of Q:‘f)] from w to z, and a hamiltonian path
T on,f’_ll fromz'tob.SowesetPy = (w, S, z,z', T, b). According to Lemma 1, a hamiltonian path R between w*~! erf’_kfl
and b® € Q,f_zl covers all vertices of an’_i1 for2 < i < k — 1. We can write Py as (w, wk=1 R, b2, b). Hence, there are three
vertex disjoint paths {Py, P1, P,} whose union covers all vertices of Qf between w and b.

Case 2.1.2.1f m > 2.

According to the induction hypothesis, given any black vertexz € V(Q,f;o1 —N(w)), there exist m vertex disjoint paths {R,—};’;T)1
whose union covers all vertices on,i‘f)] betweenw andzfor2 <m < 2n—2.LetR;, = (w, S;, ¥, z) for0 <i < m—1.We set
Py = (w, So, Y0, 2,21, ¥4, (S)~1, by and P = (w, Si, yi, ¥, (S}) ™", b) for 1 < i < m— 1.By Lemma 1, there is a hamiltonian
path T between w*~! an’_kl_l and b? € erf_zl covering all vertices of Q:_ll for2 <i<k—1SetP, = (w, w", T, b% b).

Consequently, there are m + 2 vertex disjoint paths {Pi}{"jo1 whose union covers all vertices of Q,ﬂ‘ between w and b. Please

see Fig. 14 for an illustration.
Case 2.2. Suppose that dQ# (w, b) > 3.

Case2.2.1.1fm = 1.
Given any black vertex z in Qrz‘;olv by Theorem 2, there is a hamiltonian path R of Q,fﬂ joining from w to z. So there is also a

hamiltonian path S of Q:_]l between w'! toz!.We cansetS = (w', S}, b, S}, z'). By Lemma 1, there exists a hamiltonian path
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Fig. 15. The illustration for Case 2.2.2 of Theorem 5 when b° ¢ V(Sp).

T between w*~! e "’_"1_1 and b* Q,f’_z1 covering all vertices of Q,f’_i1 for2 <i<k—1.WeletPy = (w,R,z,z', (S)) ', b),

Py = (w,w', S}, b),and P, = (w, w*~!, T, b, b). Therefore, there are three vertex disjoint paths {Po, P1, P} whose union
covers all vertices of QX between w and b.

Case2.2.2.1fm > 2.

Let z be a black vertex of V(Q:’_Ol — N(w)). In Q,f’_ol, according to the induction hypothesis, there exist m vertex disjoint
paths {S;}",' whose union covers all vertices of Q’f’_ol between w and z for2 < m < 2n — 2.So as in Qf’_ﬂ, there exist

m vertex disjoint paths {T;}!";' whose union covers all vertices of in‘fl between z' and b for2 < m < 2n — 2. Let
To = (z', Y0, T), X0, w', T{, by and Ty = (z',y;, T/, b) for 1 <i <m — 1in QY.

Ifb° ¢ V(So), W.L.O.G., letb° € V(Sm_l).InQ,f’_O],wealso letSo = (w, 3, e,5),¥9,2),Si = (w, S, ), z)for1 <i <m-2,
and Sp—1 = (w,S, ;b f, S/ ,,¥° ,,z). A hamiltonian path R is embedded in "’_k]_l between w*~! and f¥~! by

Theorem 2. Write R as (w*~', R, e~1, g, R”, f*~1). Notice that g¢=2 is a black vertex and b? is a white vertex. According
to Lemma 1, there is a hamiltonian path U between gk~2 and b? covering all vertices of Q,fjl for 2 < i <
k — 2. We can set Py = (w, x5, xo, (T)) "', Yo, 2", Ym—1, Tm—1, b), P1 = (w, w!, T{, b), P, = (w, w1, R, ek"1 e, 5], 39, z,
Vo LS DT (R, g, g5 2, U, b2, b)Y, Py = (w, S, b0, b),and Py = (w, S 3, 5, ¥io3, T/ 5, b) ford < i <

m + 1. So, there are m + 2 vertex disjoint paths {P,'}}:gl whose union covers all vertices on,f between w and b. Please see

Fig. 15 for an illustration.

IfB° € V(So), let So = (w,x3,e,8,,b% f,Sy,¥5,2),and S; = (w,S/,y%,z) for 1 < i < m — 1. A hamiltonian
path R is embedded in Q" between w*~' and f*~! by Theorem 2. R is written as (w*~', R, e*~!, g, R, f*~!). Notice
that g=2 is a black vertex and b? is a white vertex. According to Lemma 1, there is a hamiltonian path U between gk—2

and b? covering all vertices of Qr’f’_il for2 < i < k—2WeletPy = (w,x3, %0, (T)) "\, Yo, 2", Ym-1,T)_;, b), P1 =
(w’ wl’ T/,7 b)' P2 = (w7 wki]’ R” eki]’ e7 S” bo’ b)’ P3 = (w7 S, —_ 7y0— 9 Z’ yo’ (S”)717f5fk7‘17 (R//)i‘l’g7 gk727 U? bz’ b)'
0 0 m—1"Ym—1 0r Sg

and P, = (w, S/_3, y?_3,y,~_3, T/ 4, b) for4 <i < m+ 1. Hence, there are m + 2 vertex disjoint paths {Pi},f’:gl whose union

covers all vertices of Q¥ between w and b. Please see Fig. 16 for an illustration.

Case 3.For |j —j'| > 2.W.LO.G,weletj=0and2 <j < § be even.

Because b € Q,f;j/1 where j' is even, b' is a white (resp. black) vertex in Q,fj1 for0 <i < k — 1wheniisodd (resp. even). It
is easy to see that w' is a black (resp. white) vertex in Q,fj ;for0 <i <k — 1wheniisodd (resp. even). By the induction
hypothesis, there exist m vertex disjoint paths {R;)}g:()l of Q"' between w' and b for 0 <i <. Let Ry = (w',x}, UL, yi, b')

for0 < p <m-—1and0 < i < j.According to Lemma 2, a hamiltonian path S covers all vertices of Q,f_ll for

j+1< i< k—2joining from u/ " to b/ *1. There is a hamiltonian path T of Q" from w*~" to b*~! by Theorem 2. Hence,
. - 1. 1 i 7 -

we can write P, = (w = wo,xg,A/Ug,A/yg,y;, (A/Upl) 1‘/, x;,xf,, Ug, s (U 1 X, %,, Uy, yp, b = b) for 0 5/ p Sl/m -1,

Pp=(w=uwlwlw?. .. ,w,wt, s, P P =b)and P = (w = w, wk 1, T,b1, b0 b1, ..., B/~ b =b).

Therefore, there are m + 2 vertex disjoint paths {P;}""}! whose union covers all vertices of Q¥ between w and b. Please see

Fig. 17 for an illustration.
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Fig. 16. The illustration for Case 2.2.2 of Theorem 5 when b° € V(Sp).
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Fig. 17. The illustration for Case 3 of Theorem 5.

Case 4.For [j — j'| > 2. W.L.O.G., weletj=0and 3 <j < £ + 1be odd.

Case4.1.1fm = 1.
Choosing a black vertex z of Q°°,, by Theorem 2, there is a hamiltonian path R of Q°, joining from w to z. In Q"

there exists a hamiltonian path S of Q¥*" between w* ! and z¢!. We can let S = (w* ', e, b*1 5" z& 1),
where b*~1 is a black vertex of Q:‘_"f !, so e is a white vertex of Q,f_kf !. By Theorem 2, there is a hamiltonian path

T of k’_kf2 joining from e*2 to b*2. Let T = (e*2, W, f* 2, b*2). In Q,f_ll we also have a hamiltonian path T
between €' and b' forj < i < k — 3,sowelet T' = (¢', W', f', b'). According to Lemma 1, there is a hamiltonian
path U between a black vertex w! € ijl and a white vertex b~ ¢ k’_j/1_1 covering all vertices of Q,:"_il for
2 <i < j—1WesetP, = (w,w UDB b, P = (wRzz" ()L, b2 .. Bt 0 = b),

and P, = (w w15 e k2. W fk—z fk73 (Wk—3)—1 ek=3 ok—4 k-4 fk—4 L Wi fj’+l fj’ wi by = b).
Hence, there are three vertex disjoint paths {Py, P1, P,} whose union covers all vertices of Q,f between w and b. Please see
Fig. 18 for an illustration.

Case 4.2.1fm > 2.

Given a white vertex z in Q:’_jll such that z is adjacent to b. So z' is a black (resp. white) vertex and w' is a white (reps.
black) vertex of Q,f_l1 if0 <i <j — 1wheniis even (resp. odd). By the induction hypothesis, there exist m vertex disjoint
paths {Rj}™5' of Q% between w and z°. We write Ry = (w, Xo(1), Xo(2), . . ., Xo(@), 2°), and R, = (w, X,, S, ¥, 2°) for
1 < p < m — 1. Again, by the induction hypothesis, there exist m vertex disjoint paths {T;}I’,";ol of ijl between w' and
Zifor2 <i<j—1WeletT) = (w'x,U.t;.z")for0 <p <m-—1land2 < i < j — 1. Notice that b1 is adjacent
to 2=, W.LO.G., we let £ -} = b'~1. In Q*,, there are m vertex disjoint paths {W;}™;' from b to z by the induction
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Fig. 18. The illustration for Case 4.1 of Theorem 5.
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Fig. 19. The illustration for Case 4.2 of Theorem 5.

hypothesis. We can write W, = (z, t"/ Yp,b) for0 < p < m—2and Wy,_1 = (z, b). According to Lemma 1, there is
a hamiltonian path V between w*~! € QX" and V'*! € k’“ covering all vertices of Q' forj/ + 1 < i < k — 1.
Set Py = (w, wk 1, V, B+ b), P} = (w, w' ,wz,XéUé,té,tS,(US) L3 wdhwt L w LT T E T ] Y, ),

Py = {w, xo(1), X(l)(l)ax(l)(z) X0(2), ... Xo(a - 1) xp( — 1), Xé(a)jXO(“) 2°,2', ..., 7 b), Py = (W, Xm_1, Sm—1, Ym—1
y,]n 17(5 1) m ],szn 17 U,i 17t,31 11 m 1»( 1) 1 m 190+ le_11’ fn_]]s rlm_1 - b171 b) and P1 - (w Xi— 3,51 3
yl 3».V, 3 (511 3) ! 3 , 35U2 37t2 3»t, 35( 3)_1 1 37"'5x171 UJ 3 ’ 1;15 '737Yi73ab> f01‘4§l§m—|—‘l.50,thel‘e

are m + 2 vertex dlS]Oll’lt paths {P,-}{”:0 whose union covers all vertices of Qn between w and b. Please see Fig. 19 for an
illustration. O

With Theorem 5, we have shown that Q,i‘ is bi-m-DPC-able for 1 < m < 2n, where k > 4 is an even integer and n > 2 is
an integer. The result is optimal since each vertex of Q,{‘ has exactly 2n neighbors.
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