
Theoretical Computer Science 412 (2011) 4536–4544

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Tight complexity analysis of the relocation problem with arbitrary
release dates
Sergey V. Sevastyanov a, Bertrand M.T. Lin b,∗, Hsiao-Lan Huang b

a Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia
b Institute of Information Management, Department of Information and Finance Management, National Chiao Tung University, Hsinchu, Taiwan

a r t i c l e i n f o

Article history:
Received 2 May 2010
Received in revised form 20 February 2011
Accepted 21 April 2011
Communicated by G. Ausiello

Keywords:
Relocation problem
Resource constraints
Release dates
Makespan
NP-hardness
Multi-parametric dynamic programming

a b s t r a c t

The paper considers makespan minimization on a single machine subject to release dates
in the relocation problem, originated from a resource-constrained redevelopment project
in Boston. Any job consumes a certain amount of resource from a common pool at the start
of its processing and returns to the pool another amount of resource at its completion.
In this sense, the type of our resource constraints extends the well-known constraints on
resumable resources, where the above two amounts of resource are equal for each job.
In this paper, we undertake the first complexity analysis of this problem in the case of
arbitrary release dates. We develop an algorithm, based on a multi-parametric dynamic
programming technique (when the number of parameters that undergo enumeration of
their values in the DP-procedure can be arbitrarily large). It is shown that the algorithm
runs in pseudo-polynomial timewhen the numberm of distinct release dates is bounded by
a constant. This result is shown to be tight: (1) it cannot be extended to the case whenm is
part of the input, since in this case the problembecomes strongly NP-hard, and (2) it cannot
be strengthened up to designing a polynomial time algorithm for any constantm > 1, since
the problem remains NP-hard for m = 2. A polynomial-time algorithm is designed for the
special case where the overall contribution of each job to the resource pool is nonnegative.
As a counterpart of this result, the case where the contributions of all jobs are negative is
shown to be strongly NP-hard.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Scheduling and planning in an organization are decision-making processes that deploy mathematical analysis and
computing methods to allocate limited resources to optimize the objectives and goals of the organization [17]. Resource
constraints are one of the most commonly addressed critical issues in project scheduling (see for example [15,7,2]).
This paper studies a single-machine scheduling problem, called the relocation problem, in which resource constraints are
involved. The resource constraints in the relocation problem differ from the traditional (resumable) resource constraints for
scheduling problems [1,6] with regard to the amount of resource released by a completed activity. In the relocation problem,
the amount of resource returned at the completion of an activity is independent of the amount of resource that the activity
demands and consumes for starting its processing.

Formally, we consider a set of jobs N = {1, . . . , n} to be processed on a single machine. Initially, Q0 units of the resource
are provided in a common resource pool. Each job i ∈ N has a release date ri and a processing time pi, requires αi units of

∗ Corresponding author. Tel.: +886 35131472.
E-mail addresses: bmtlin@mail.nctu.edu.tw, bmtlin@iim.nctu.edu.tw (B.M.T. Lin).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.04.034

http://dx.doi.org/10.1016/j.tcs.2011.04.034
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:bmtlin@mail.nctu.edu.tw
mailto:bmtlin@iim.nctu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2011.04.034

S.V. Sevastyanov et al. / Theoretical Computer Science 412 (2011) 4536–4544 4537

the resource to commence its processing, and returns βi units of the resource back to the common resource pool when it is
completed.Without loss of generality, wemay assume that the values of all these parameters are nonnegative. The resource
that job i acquires is immediately consumed when its processing starts. The machine can process at most one job at a time,
and no preemption is allowed. Thus, job i can be processed only if (1) its release date is reached, (2) the resource level in
the pool is sufficient for the requirement αi, and (3) the machine is not occupied. All parameters cited in this paper are
nonnegative integers, except for the contributions of jobs that will be defined later andmay be of an arbitrary sign. Given an
initial level of the resource pool, a schedule is called feasible if it satisfies the release-date constraints and no job is blocked
due to insufficiency of the resource. The problem is to determine a feasible schedule with the minimummakespan (Cmax).

Adopting the three-field notation [5], we use ⟨1 | rp, ri | Cmax⟩ to denote the problem under study. The notation dictates
that we consider a single-machine scheduling problem with the minimum makespan objective. In the second field, rp
specifies the resource constraints of the relocation problem, and ri specifies the release-date constraints.

The relocation problemwas proposed and formulated by Kaplan and his colleagues [9,16,11] for a redevelopment project
in Boston. In the redevelopment area, there was a set of old buildings to demolish and new buildings to erect within
the same area. During the redevelopment session, tenants of the old buildings needed to be evacuated and temporarily
housed. The authority provided an initial budget for the temporary housing units. The project team wanted to determine a
redevelopment sequence of the buildings such that all tenants could be successfully housed during the project session. In its
basic setting, the relocation problem considered only Q0, {αi} and {βi}, and sought for a feasible redevelopment sequence
subject to an initial resource level. An optimization counterpart of the problem is to find theminimum initial resource level,
called resource requirement, that guarantees the existence of a feasible sequence.

The new problem setting studied in this paper is motivated by the following scenario. Each job in the relocation problem
corresponds to a sub-region undergoing an independent reconstruction. It contains a set of old buildings that have to be
demolished. As a second phase of the reconstruction job, another set of new buildings should be erected within the same
sub-region. It is assumed that both phases of this process have to be performed by the same team (associated in our model
with the single machine), and that the team can move to another sub-region and start another job only after the whole
reconstruction job within one sub-region is completed. The release date of a job is due to an expiration date before which
the corresponding sub-region has certain functions and cannot be demolished. The expiration dates might be distinct for
different sub-regions. We thereby come to a more general problem setting with distinct release dates, suggesting more
potential applications in practice.

The study of the relocation problem started in the 1980s. However, it did not draw much research attention. Kaplan
and Amir [10] established the equivalence of the resource requirement minimization problem to the classical two-machine
flowshop scheduling problem of makespan minimization [8]. This equivalence gives rise to a new interpretation of two-
machine flowshop scheduling and of Johnson’s algorithm in terms of the relocation problem. Such an interpretation is more
intuitive than those which could be found in most textbooks. For potential applications of the problem equivalence, please
refer to [3]. In addition to the redevelopment project, the relocation problem exhibits applications in other areas such as
memory management [10] and financial planning [18]. In the interest of theoretical development, the relocation problem
also suggestsmanynewchallenging research problems. The relocation problemwithmultiple parallelmachines tominimize
makespan was addressed by Kaplan [9] and Kaplan and Amir [10], and its complexity remained open until Kononov and Lin
[12] showed that the problem is strongly NP-hard even when there are only two machines and αi ≤ βi, pi = 1 hold
for all jobs. Kononov and Lin [12] proposed approximation algorithms and analyzed their ratio performance in the worst
case. A single-machine problem to minimize total weighted completion time was studied by Kononov and Lin [13]. They
established NP-hardness of the problem and designed two approximation algorithms with ratio performance guarantees.
Lin and Liu [14] investigated the relocation problem with generalized due dates to maximize the total rewards, defined in
terms of installments. They proved the problem to be strongly NP-hard and gave lower bounds and dominance rules for the
development of branch-and-bound algorithms.

This paper starts the research on the relocation problemwith release-date constraints and proposes the following results.
First, we establish some basic properties of feasible and optimal sequences of jobs for a given instance of our problem. Based
on those properties, a combinatorial algorithm is designed for the general case. We next transform the algorithm into a
dynamic program with 3m independent dynamic parameters, where m is the number of distinct release dates. Thus, when
the number of distinct release dates m is bounded by a constant, the DP-algorithm runs in pseudo-polynomial time. As a
negative counterpart, it is proved that for variable m the problem becomes strongly NP-hard. Thus, no pseudo-polynomial
time algorithm may exist for the case of variable m, unless P = NP . Furthermore, it is shown that our result cannot be
improved up to a polynomial time algorithm for a constantm, because even form = 2 the problem remains NP-hard (which
is proved in Section 5). Next, the problem is investigated with respect to positive/negative contributions δi

.
= βi −αi of jobs

to the resource pool. We show that the case when all jobs have nonnegative contributions is polynomially solvable, and that
the opposite case when all jobs have negative contributions is strongly NP-hard.

The remainder of this paper is organized as follows. Section 2 introduces notation and several preliminary results thatwill
be used in the subsequent sections. In Section 3,we design an exact combinatorial algorithm for solving the general problem.
Section 4 is dedicated to the development of the dynamic programming approach. In Section 5, we discuss the complexity of
two special cases: when all jobs have nonnegative contributions and when all jobs have negative contributions. Concluding
remarks are presented in Section 6.

4538 S.V. Sevastyanov et al. / Theoretical Computer Science 412 (2011) 4536–4544

2. Notation and preliminary results

In this section, for the convenience of the reader, we introduce the notation used in our discussion and formulate several
preliminary properties of feasible and optimal solutions.

σ = (σ1, σ2, . . . , σ|N|) a permutation of jobs in set N ,
si(S), ci(S) the starting and completion times of job i in schedule S.

Let σ be a permutation of jobs in N ′
⊆ N . Kaplan and Amir [10] established that the resource requirement of sequence

σ is equal to R(σ)
.
= maxj=1,...,|N ′|

∑j
i=1 ασi −

∑j−1
i=1 βσi


. A sequence σ is called feasible, if R(σ) ≤ Q0.

We note that the feasibility of a sequence of jobs is defined exclusively with respect to the resource constraints, while
temporal parameters, such as job release dates and processing times, are not involved. On the contrary, the feasibility of a
schedule should take into account both the release-date constraints and the resource constraints.

Given a sequence σ of jobs in N , Sσ will denote the corresponding active schedule, i.e., the one in which each job is
processed at the earliest possible time among all feasible schedules specified by σ . Clearly, if σ is a feasible sequence, then
Sσ is a feasible schedule, and if σ is an optimal sequence (at which theminimummakespan is attained), then Sσ is an optimal
schedule. Thus, it suffices to consider only active schedules.

We next present some known results concerning the properties of solutions to the basic relocation problem with rj = 0
for all jobs j ∈ N .

Lemma 1 (Kaplan and Amir [10]). Given an instance I of problem ⟨1 | rp | Cmax⟩ and a permutation of jobs σ , the resource
requirement R(σ) is equal to the total idle time of the second machine in the active permutation schedule Sσ for the two-machine
flowshop problem, using αi and βi as the processing times of job i ∈ N on the first machine and the second machine, respectively.

Thus, Lemma 1 establishes a one-to-one correspondence between the amount of resource required by a job permutation
σ in problem ⟨1 | rp, ri | Cmax⟩, on the one hand, and the length of the active permutation schedule Sσ in the corresponding
⟨F2 || Cmax⟩ problem, on the other hand: the more is the length of schedule Sσ in the two-machine flowshop scheduling
problem ⟨F2 || Cmax⟩, the more resource is required by the permutation σ in the relocation problem.

As is well known, the ⟨F2 || Cmax⟩ problem of minimizing the schedule length was solved by Johnson [8] in polynomial
time. As follows from his result, the following sequence of jobs can be taken for the optimal one: the jobs with δi ≥ 0 are
processed first and sequenced in non-decreasing order of αi, while the jobs with δi < 0 are sequenced after them in non-
increasing order of βi. Such an order of jobs will be further referred to as Johnson’s order, or Johnson’s permutation of jobs.
This permutation can be found in O(n log n) time.

It follows from Johnson’s result and Lemma 1 that the job permutation that requires the minimum amount of resource
in problem ⟨1 | rp, ri | Cmax⟩ can also be found in polynomial time — it suffices to sequence the jobs in Johnson’s order.
In other words, if for a given instance of problem ⟨1 | rp, ri | Cmax⟩ there exist feasible permutations of jobs, then one of
such permutations can be found by applying Johnson’s rule. And since in the case of identical release dates rj all feasible
permutations of jobs define active schedules of the same length, this implies that any feasible permutation can be taken
for an optimal one. In particular, Johnson’s permutation is optimal for problem ⟨1 | rp | Cmax⟩, unless there are no feasible
permutations at all (which was also observed by Kaplan and Amir [10]).

In the general case, Johnson’s rule does not provide an optimal solution for problem ⟨1 | rp, ri | Cmax⟩. However, for the
convenience of our further argumentation, we will assume that the jobs are indexed in Johnson’s order, unless otherwise
stated. We will say that two jobs σi, σj (i < j) are arranged in a given sequence σ in anti-Johnson’s order, if σi > σj.

As an auxiliary result, Johnson observed [8] that if in some permutation of jobs σ two consecutive jobs i = σk, j = σk+1
are arranged in anti-Johnson’s order with respect to each other, then their transposition does not increase the length of
schedule Sσ in problem ⟨F2 || Cmax⟩. In terms of the relocation problem, this yields the following

Remark 2. Let σ be a feasible sequence of jobs in problem ⟨1 | rp, ri | Cmax⟩ such that two consecutive jobs i = σk, j = σk+1
stand in anti-Johnson’s order, while rj ≤ si(Sσ). Then the transposition of jobs i and j yields also a feasible sequence of jobs
σ ′, and the length of the active schedule Sσ ′ is not greater than that of schedule Sσ .

In the studied problem we assume that there are m distinct release dates: r(1) < r(2) < · · · < r(m). Due to Remark 2, we
can always re-arrange a given schedule so that the jobs startingwithin the interval [r(i), r(i+1)) (for each i = 1, . . . ,m, where
r(m+1) = ∞) are ordered by Johnson’s rule. Thus, we may restrict ourselves by considering only such job permutations σ
that can be represented as a concatenation ofm sub-intervals, each being ordered by Johnson’s rule:

σ = σ(1) ⊕ · · · ⊕ σ(m). (1)

Such sub-intervals will be referred to as J-blocks. This idea provides a basis for a combinatorial algorithm that will be
described in the next section.

In the remainder of this section we prove a heredity property of feasible sequences of jobs in problem ⟨1 | rp, ri | Cmax⟩.
Given a sequence σ of jobs indexed by Johnson’s rule, we will use σ k to denote the subsequence of σ obtained by deleting
the jobs k + 1, . . . , n from σ .

Lemma 3. Let σ be a feasible sequence of jobs {1, . . . , K} for K ≤ n. Then, every subsequence σ k (k ≤ K) is also feasible.

S.V. Sevastyanov et al. / Theoretical Computer Science 412 (2011) 4536–4544 4539

Proof. The proof is based upon induction on decreasing k. Suppose that a subsequence σ k, 2 ≤ k ≤ K of sequence σ is
feasible. Let us show that so is subsequence σ k−1. Suppose that job k is not the last job in sequence σ k. By Remark 2, the
transpositions of job k toward the last position of σ k provide a feasible sequence σ̂ k

= σ k−1
⊕ (k) of jobs {1, . . . , k}. Since,

next, every prefix of a feasible sequence is feasible, σ k−1 is feasible. �

3. Exact algorithm A1

This section presents an exact algorithm for the studied problem. Algorithm A1 generates a pool Σn of candidate
sequences of jobs {1, . . . , n} that should contain at least one optimal sequence, if it exists. The pool is constructed iteratively
by increasing k = 1, . . . , n, where at step k we create the pool Σk of some feasible sequences of jobs {1, . . . , k} by
augmenting the existing sequences from pool Σk−1 with the newly inserted job k. In addition, it is assumed that each
sequence σ ∈ Σk is represented as a concatenation of its J-blocks in the form of (1). The algorithm consists of n + 2 steps.

Step 0. Define pool Σ0 that consists of the single null permutation σ 0
= σnull, which has only null J-blocks σ 0

(i).

Steps k = 1, . . . , n. PoolΣk being formed at step k consists of all feasible sequences of jobs generated fromany sequence
σ ′

∈ Σk−1 by adding job k to the end of any J-block σ ′

(i′) with number i′ ≥ i(k), where the function i(k) is defined by the
equality r(i(k)) = rk. In addition, job k is added to a J-block σ ′

(i′) with number i′ > i(k), only if it is non-empty.

Step n + 1. If Σn = ∅ then {Output ‘‘No feasible schedules’’; STOP} else select from pool Σn the sequence σopt with the
minimum value of the objective function. �

The next lemma directly follows from the description of the algorithm.

Lemma 4. At each step, k = 0, . . . , n any sequence σ ∈ Σk meets the following properties (further referred to as ‘‘properties
(∗)’’):
(a∗) σ is feasible;
(b∗) σ can be represented as a concatenation σ = σ(1) ⊕ · · · ⊕ σ(m) of m J-blocks (i.e., increasing sequences of job indices) some
of which may be empty;
(c∗) each non-empty J-block σ(i) of σ consists of jobs {j} with rj ≤ r(i) and starts with job j such that rj = r(i). �

To justify the optimality of the algorithm, we need to prove two more lemmas.

Lemma 5. If for a given instance of problem ⟨1 | rp, ri | Cmax⟩ there are feasible sequences of jobs, then there exists an optimal
sequence that meets properties (∗).

Proof. Suppose that for a given instance of problem ⟨1 | rp, ri | Cmax⟩ there are feasible sequences of jobs, and therefore, there
are optimal ones. Let σ = (σ1, . . . , σn) be the optimal sequence with theminimum number of pairs of jobs standing in anti-
Johnson’s order. Permutation σ meets property (a∗) by our choice. Let us show how σ can be represented in the form (1) so
as to meet the remaining properties (∗). In the following procedure, we split permutation σ into pieces σ(i), i = 1, . . . ,m,,
and next prove that those pieces are J-blocks.

We consecutively look through jobs σ1, . . . , σn as they follow in sequence σ . To begin with, job σ1 is placed at the
beginning of piece σ(i(σ1)), while all pieces σ(i′) for i′ < i(σ1) will remain empty till the end of this representation.

Suppose that all jobs σj′ for j′ < j have been examined, that the formation of pieces σ(i′) for i′ < i has been completed,
and a non-empty piece σ(i) is under formation. The next in turn job σj either extends piece σ(i) (if rσj ≤ r(i)), or initiates a
new non-empty piece σ(i′′) (with i′′ = i(σj)) in case rσj > r(i). In the latter case, we assume that the formation of all pieces
σ(i′) for i′ < i′′ is completed, although some of them may be empty.

Clearly, the algorithm described above provides a representation of permutation σ as a concatenation of m pieces. It is
also clear, by construction, that each piece σ(i) meets property (c∗). To complete the proof of Lemma 5, it remains to show
that each piece is a J-block.

Suppose that for some j > 1 the inequality σj−1 > σj holds, and σj−1 belongs to piece σ(i). We will show that job σj
must belong to a different piece σ(i′), i′ > i. Indeed, once the pair of jobs σj−1, σj stands in anti-Johnson’s order, then the
inequality rσj > sσj−1(Sσ) must hold. Otherwise the transposition of these two jobs could yield a permutation σ ′ which, by
Remark 2, is also optimal. Besides, it has a less, by one, number of anti-Johnson’s pairs of jobs, which contradicts the choice
of permutation σ . Thus, we obtain the relations

r(i) ≤ sσk(Sσ) ≤ sσj−1(Sσ) < rσj
(where σk is the first job of piece σ(i)), and so, by description of the algorithm, job σj should fall into a different piece
σ(i′), i′ > i. �

Lemma 6. At each step k = 0, . . . , n algorithm A1 generates all permutations of jobs {1, . . . , k} that meet properties (∗).

4540 S.V. Sevastyanov et al. / Theoretical Computer Science 412 (2011) 4536–4544

Proof. The statement is definitely valid for k = 0, 1. Suppose, it is true for step k − 1, k ≥ 2. Let us prove that pool
Σk contains all permutations of jobs {1, . . . , k} that meet properties (∗). Let σ be such a permutation. We will prove that
σ ∈ Σk.

It is clear that job k in representation (1) of permutation σ is the ending job of a J-block σ(i). Hence, removing job k from
σ yields a permutation σ ′

= σ ′

(1) ⊕· · ·⊕σ ′

(m), where σ(i) = σ ′

(i) ⊕ (k) and σ(i′) = σ ′

(i′) for all i
′
≠ i. Let us show that σ ′ meets

properties (∗).
Indeed, by Lemma 3, permutation σ ′ is feasible, while properties (b∗) and (c∗) are inherited from permutation σ . Thus,

σ ′ meets properties (∗), and by the induction hypothesis, it is contained in Σk−1.
Once σ meets (∗), we have rk ≤ r(i). Therefore, at the kth step of algorithm A1 in one of the variants of augmenting the

permutation σ ′ by job k, the latter is placed exactly to the end of J-block σ ′

(i). And since the resulting permutation (coinciding
with σ) is feasible, it must be added to pool Σk. �

Now suppose that for a given instance I of problem ⟨1 | rp, ri | Cmax⟩ there exist feasible permutations of jobs. By Lemma 6,
the optimal permutation σopt (whose existence is proved in Lemma 5) must be generated at the nth step of algorithm A1.
And since pool Σn contains no infeasible permutations (by Lemma 4), no permutation σ ∈ Σn may provide a less value
of the objective function that σopt does. It follows that at the (n + 1)th step algorithm A1 will choose one of the optimal
permutations of jobs. Thus, we have proved the following.

Theorem 7. Given an instance of problem ⟨1 | rp, ri | Cmax⟩, algorithm A1 either finds an optimal sequence of jobs, or determines
that no feasible sequences exist. �

Therefore, all sequences of jobs constructed at all steps of algorithm A1 meet properties (∗). These properties enable us
to create a more efficient procedure of checking the feasibility of any sequence σ ∈ Σk and for computing the length of its
active schedule Sσ (applicable for permutations σ ∈ Σn).

As follows from property (c∗), for any sequence σ = σ(1) ⊕ · · · ⊕ σ(m) ∈ Σk in representation (1), all jobs in the
J-block σ(i) are processed in the active schedule Sσ as an ‘‘active block’’, i.e., without an inner idle time. In addition, the
J-block σ(i) starts processing in schedule Sσ either in its proper release date r(i), or later, immediately after the completion
of the previous J-block. Thus, for computing the length of the active schedule Sσ , it suffices to know just the length P(i)(σ)
of each J-block σ(i) (i.e., the total length of all its jobs). Consequently, the active schedules for any two permutations of jobs
σ ′, σ ′′ having identical vectors (P(1)(σ

′), . . . , P(m)(σ
′)) = (P(1)(σ

′′), . . . , P(m)(σ
′′)) have the same length.

Furthermore, for checking the feasibility of any permutation σ ∈ Σk obtained from a feasible permutation σ ′
∈ Σk−1 by

adding job k to the end of a J-block σ ′

(i), it is sufficient to know:
• the amount of resource (denoted as Q̄(i′)(σ

′)) in the resource pool at the completion of each J-block σ(i′);
• the minimum level of resource (denoted as Q(i′)(σ

′)) attained in the pool while processing the jobs of the (i′)th J-block.
(For a feasible permutation of jobs, all these parameters should be nonnegative.) Thus, for checking the feasibility of

newly obtained sequences of jobs σ ∈ Σk in the course of algorithm A1 and for computing the lengths of their active
schedules, it is sufficient to keep only their schemes, i.e., (3m)-dimensional vectors of parameters

Y (σ) = ((Q(1)(σ), Q̄(1)(σ), P(1)(σ)), . . . , (Q(m)(σ), Q̄(m)(σ), P(m)(σ))).

This remark enables us to describe a more efficient DP-algorithm for determining an optimal permutation of jobs in the
⟨1 | rp, ri | Cmax⟩ problem. Given an instance of our problem, the algorithm accumulates step-by-step distinct schemes of
feasible job permutations, rather than the permutations themselves. But under this approach, we need to append to our
algorithm an additional restoration step aimed at restoring the optimal permutation of jobs from its scheme.

It is well known from the theory of Dynamic Programming that such a restoration of an optimal solution (at the reverse
trace of theDP-algorithm) canbeperformed in differentways, realizing a tradeoff between the running time and thememory
requirement of the DP-algorithm. In this paper, we chose the version of DPwith theminimummemory requirement (which
even in this case is huge enough), while losing somewhat concerning the running time.

So, instead of collecting job sequences (permutations of the first k jobs indexed in Johnson’s order) in pools Σk, we will
collect different schemes of those sequences in pools Yk at steps k = 0, 1, . . . , n. Furthermore, at each step k = 1, . . . , n
we will keep in memory only two pools: Yk−1 and Yk. At step n + 1 for each scheme Y ∈ Yn by means of its parameters
{P(1), . . . , P(m)} we calculate the length of the corresponding active schedule and choose the scheme with the minimum
makespan. And next, to obtain the optimal job permutation, we apply the restoration step consisting of n-times repeated
Forward Trace of our DP-algorithm.

In a more detailed description of the algorithm presented in the next section, it will be shown how to compute the
scheme of each job sequence σ ∈ Σk obtained at step k from a job sequence σ ′

∈ Σk−1, knowing only the scheme of the
latter sequence.

4. Multi-parametric dynamic program

As is known, in the classical scheme of a DP-algorithm, applied, for example, for solving the Knapsack problem, at each
step k = 1, 2, . . . of the algorithm we collect solutions with different values of a single dynamic parameter. (For the latter,

S.V. Sevastyanov et al. / Theoretical Computer Science 412 (2011) 4536–4544 4541

either the capacity of the knapsack, or the total cost of its contents is chosen.) As a result, the process of collecting solutions
at steps k = 1, 2, . . . can be described on a plane sheet of paper as a two-dimensional table.

For the dynamic programming algorithm described below, this approach is not viable, because the number of dynamic
parametersmay be arbitrarily large (for different instances of our problem). Besides, the running time of such aDP-algorithm
exponentially depends on the number of dynamic parameters. Such algorithmswill be further referred to asMulti-Parametric
Dynamic Programs. The preliminary analysis of properties of optimal solutions performed in the previous section enables us
to reduce the number of dynamic parameters to 3m, wherem is the number of distinct job release dates in a given problem
instance. Thus, the running time of the algorithm essentially depends on that, whether the parameter m is bounded by a
constant, or alternatively, it is part of the input andmay take arbitrarily large values in the framework of the problem under
consideration.

Algorithm ADP

The algorithm consists of two parts: Forward Trace and Reverse Trace.

Forward Trace
This phase is aimed at finding the scheme of an optimal schedule.

Step 0. Y0 := ((Q0,Q0, −1), . . . , (Q0,Q0, −1)); Y0 := {Y0};
(∗ P(i)(σ) = −1 provides the information that J-block σ(i) of permutation σ is empty,
while P(i)(σ) = 0 does not necessarily mean that, keeping in mind that there may be
zero-length jobs ∗)

δk := βk − αk, for every k = 1, . . . , n.

Steps k = 1, . . . , n. Enumerate all schemes Y ′
∈ Yk−1, and for each scheme Y ′

∈ Yk−1 (Y ′
= ((Q ′

(1), Q̄
′

(1),

P ′

(1)), . . . , (Q
′

(m), Q̄
′

(m), P
′

(m)))) generate a new scheme Y ∈ Yk by adding job k to the end of the i′th J-block of Y ′ (with i′

sequentially taking the values from i(k) to m), except for those J-blocks where i′ > i(k) and P ′

(i′) = −1:
Y := Y ′;
P(i′) := P ′

(i′) + pk; Q(i′) := min{Q ′

(i′), Q̄
′

(i′) − αk};
Q(i′′) := Q ′

(i′′) + δk, i′′ = i′ + 1, . . . ,m;
Q̄(i′′) := Q̄ ′

(i′′) + δk, i′′ = i′, . . . ,m.
If all components of vector Y are nonnegative and Y ∉ Yk, then add Y to pool Yk.

Step n + 1. If Yn = ∅ then {Output ‘‘No feasible schedules’’; STOP}

else select from pool Yn the scheme Yopt with the minimum length of its active schedule.
end (∗ of the Forward Trace ∗)

Reverse Trace
This phase is aimed at retrieving an optimal sequence σopt corresponding to the optimal scheme Yopt.Y := Yopt; σ(i) := σnull, i = 1, . . . ,m;

for K := n downto 1 do begin
Repeat Steps on k = 0, . . . ,K of the Forward Trace until at step k = K we find a scheme Y ∈ YK equal toY . Fix the

scheme Y ′
∈ YK−1 from which the schemeY was obtained by adding job K . Fix also the number i′ of the J-block to which

job K was appended, put σ(i′) := (K) ⊕ σ(i′); Y := Y ′.
end (∗ Steps on K ∗)
σopt := σ(1) ⊕ · · · ⊕ σ(m); Output (σopt).
end (∗ of the Reverse Trace K ∗) �

The optimality of algorithm ADP follows from the previous discussion. Now let us analyze the required memory space
and the running time of the algorithm.

Since the total amount of job processing times can be divided into m integral parts (i.e., J-blocks) in O
∑n

j=1 pj
m

/m!


ways, and each of the parameters Q(i), Q̄(i) of a feasible scheme Y may take only integral values from the interval [0,Q0 +∑n
j=1 βj], the number of different schemes Y in each pool Yk can be bounded by

M .
=


n−

j=1

pj

m 
Q0 +

n−
j=1

βj

2m
m! (2)

Since at any step of the algorithm we keep in memory only two pools of schemes, and each scheme depends on 3m
parameters, the required memory does not exceed O(mM).

As for the running time of ADP , the dominant phase is the reverse trace, where we have to repeat the steps on k of the
Forward Trace n times. In turn, at each step on k = 1, . . . , nwehave to enumerate the schemes of the poolYk−1, and for each
scheme Y ∈ Yk−1 examine O(m) possible variants of insertion of job k. For each newly obtained scheme, we have to check

4542 S.V. Sevastyanov et al. / Theoretical Computer Science 412 (2011) 4536–4544

if it already exists in the pool Yk, and if not, we should add the new scheme to the pool. This can be done (by organizing the
pool as a binary search tree) in O(m logM) time. Summing up, we come up with the overall running time O(n2m2M logM),
and conclude the results in the following theorem.

Theorem 8. The ⟨1 | rp, ri | Cmax⟩ problem with n jobs and m distinct release dates can be solved by algorithm ADP in
O(n2m2M logM) time with O(mM) memory requirement, where M is defined in (2). When m is fixed, the algorithm is pseudo-
polynomial in the input size.

As will be shown below, the result conveyed by the multi-parametric dynamic program is tight at two points. First, it
cannot be extended to the case whenm is part of the input, because the problem becomes strongly NP-hard (as proved later
in Theorem 10). And second, it cannot be strengthened down to a polynomial-time algorithm, since, due to Theorem 11
proved below, the ⟨1 | rp, ri | Cmax⟩ problem remains NP-hard even if there are only two distinct release dates.

5. Complexity results for special cases

In this section we consider two cases where the contributions of all jobs have the same sign.

1. ⟨1 | rp (δi ≥ 0), ri | Cmax⟩ (all jobs have nonnegative contributions)
2. ⟨1 | rp (δi < 0), ri | Cmax⟩ (all jobs have negative contributions).

It will be shown that the first case can be solved in polynomial time, while the second one is NP-hard in the strong sense.
First, we describe a greedy procedure for problem ⟨1 | rp (δi ≥ 0), ri | Cmax⟩. In this procedure the jobs will be considered in
non-decreasing order of their release dates, so, there is no need for indexing them in Johnson’s order.

Greedy Procedure (GP)
Whenever the machine becomes vacant, process an arbitrary feasible job, i. e., a job that is released and there is sufficient

resource in the pool for its processing. If the set of such jobs is empty, but still there are jobs not yet released, wait for the
next job to be released. Once all jobs have been released and none of the unscheduled jobs can be processed, output the
obtained (maybe, partial) sequence σ̂ and STOP. �

Theorem 9. For any instance of the ⟨1 | rp (δi ≥ 0), ri | Cmax⟩ problem with n jobs, GP either finds an optimal sequence of jobs or
establishes that no feasible sequence exists. The algorithm can be implemented in O(n log n) time.

Proof. First, assume that there are no feasible sequences of all n jobs (and so, there are no optimal ones). Since GP can
only produce feasible sequences, in this situation it cannot produce a complete feasible sequence of n jobs, therefore, it will
output an incomplete sequence σ̂ , enabling us to conclude that there are no optimal sequences of n jobs.

Assume now that the set of optimal sequences of n jobs is non-empty, and let σ̃ be the optimal sequence having the
longest prefix (σ ′) in common with sequence σ̂ . Let k be the length of that prefix. If k = n, sequence σ̂ is optimal and we
are done.

Suppose now that k < n. We will show that this leads to a contradiction. Notice that prefix σ ′ (common for sequences σ̃
and σ̂) is identically scheduled in the corresponding active schedules (Sσ̃ and Sσ̂), and after time t when it is completed in
both schedules we have a job σ̃k+1 that can be feasibly commenced at some point in time t ′′ ≥ t (the time when it is started
in schedule Sσ̃). This implies that GP also cannot stop at this position, once after time t some new jobs appear that can be
feasibly commenced. Let so σ̂k+1 be the job chosen by GP for the (k + 1)th position. By the logic of the greedy algorithm
(that compels one to start every next job at the earliest possible time, when there are feasible jobs), we may conclude that
job σ̂k+1 starts in schedule Sσ̂ at time t ′ ∈ [t, t ′′].

By the definition of k, we know that job σ̂k+1 stands in sequence σ̃ in a later position k′ > k+1. Let us transform sequence
σ̃ to sequence σ̃ ′ bymoving job σ̂k+1 to the (k+1)th position. It can be easily shown that sequence σ̃ ′ is also optimal. Indeed,
the sequence is feasible, since, first, job σ̂k+1 is feasible at this position in sequence σ̂ , and second, the insertion of a job with
nonnegative contribution into a feasible sequence cannot violate the feasibility of the subsequent jobs. Furthermore, the
above transformation of sequence σ̃ cannot increase the length of the corresponding active schedule, since the fragment of
sequence σ̃ ′ from (k + 1)th to k′th position starts in the active schedule even earlier (at time t ′ instead of t ′′) than in the
optimal schedule Sσ̃ . Thus, σ̃ ′ is optimal.

But as can be seen, sequence σ̃ ′ has at least (k + 1)-length prefix in common with sequence σ̂ , which contradicts the
choice of the original optimal sequence σ̃ . The contradiction proves the optimality of sequence σ̂ .

Now we derive the bound on running time. Although GP is able to choose any feasible job at every step, to simplify the
choice of the feasible job from among the set of released jobs, we keep the information on this set as a heap prioritized by
Johnson’s rule. We can thereby maintain the set within O(n log n) running time, and this, clearly, can be taken for the upper
bound on the running time of the whole Greedy Procedure. �

After solving the case with positive contributions, we now move to the case in which δi < 0 for all jobs i. In the
corresponding two-machine flowshop scheduling problem ofmakespanminimization, wemay reverse the processing order
of the two operations of each job and consider the Gantt chart from right to left (thereby converting the jobs with negative
contributions to the ones with positive contributions). The schedule remains feasible within the same makespan. In other

S.V. Sevastyanov et al. / Theoretical Computer Science 412 (2011) 4536–4544 4543

words, the symmetry, or the mirror property, can be established. However, it is not the case in the relocation problem with
release dates. In the following, we will show the computational intractability of the case with negative contributions. The
proof is based upon a reduction from 3-Partition, which is known to be strongly NP-complete [4].

3-Partition:
Instance: A positive integer B and a set of items A = {1, 2, . . . , 3u} with positive integer weights xi, i ∈ A, such that
B/4 < xi < B/2, i ∈ A, and

∑3u
i=1 xi = uB.

Question: Is there a partition of set A into u subsets A1, . . . , Au such that
∑

i∈Aj
xi = B for each subset Aj?

Theorem 10. Problem ⟨1 | rp (δi < 0), ri | Cmax⟩ is strongly NP-hard.

Proof. Given an instance of 3-Partition, we construct a scheduling instance I of 4u jobs with the initial resource level
Q0 = uB + u − 1 as follows.

Ordinary jobs i = u + 1, . . . , 4u: pi = αi = xi−u, βi = ri = 0.
Enforcer jobs i = 1, . . . , u − 1: αi = (u − i)(B + 1), βi = αi − 1, pi = 0, ri = iB.
Enforcer job u (introduced for consistency): αu = βu = pu = 0, ru = uB.

Assume w.l.o.g. u ≥ 2. We claim that the desired partition exists for 3-Partition if and only if a feasible schedule S for
instance I exists and has a makespan Cmax(S) ≤ uB.

Suppose subsets A1, . . . , Au constitute a desired partition.Wewill show that for instance I there exists a feasible schedule
S of length uB. Let Jj denote the set of ordinary jobs defined by the elements from Aj, 1 ≤ j ≤ u, and let σ(Jj) stand for an
arbitrary sequence of jobs in Jj. It is not difficult to check that the sequence

σ ′
= σ(J1) ⊕ (1) ⊕ σ(J2) ⊕ (2) ⊕ · · · ⊕ (u − 1) ⊕ σ(Ju) ⊕ (u)

is feasible and the makespan of its active schedule Sσ ′ is equal to uB.
We proceed to the if part of the claim. Assume that there is a feasible sequence σ ′ for jobs in I with Cmax(Sσ ′) = uB. Since

the total processing time of jobs in I is equal to uB, no idle time is allowed in schedule Sσ ′ . From the values of βi and ri we
can conclude that the enforcer jobs are sequenced in schedule σ ′ in the order 1, . . . , u (which means, in the order as they
are released). Let J1 denote the subset of the ordinary jobs preceding enforcer job 1. If

∑
i∈J1

αi > B, then the resource level
before the processing of job 1 is

Q0 −

−
i∈J1

αi < (u − 1)(B + 1).

The resource requirement of job 1 is (u − 1)(B + 1). Infeasibility thus arises. On the other hand, if
∑

i∈J1
αi < B, the total

processing time of the ordinary jobs in J1 is smaller than B, implying idle time before r1 = B. Therefore,
∑

i∈J1
αi = Bmust

hold. The items corresponding to the ordinary jobs in J1 constitute a subset A1 with
∑

i∈A1
xi = B. Successively applying

this argument to enforcer jobs 2 to u, we come up with subsets of ordinary jobs J2, . . . , Ju, where Jj is the subset of the
ordinary jobs scheduled in σ ′ between enforcer job j−1 and job j, such that

∑
i∈Jj

αi = B. This provides the desired partition
A1, . . . , Au for 3-Partition and completes the proof of Theorem 10. �

As shown in the next theorem, further restriction of the problem ⟨1 | rp (δi < 0), ri | Cmax⟩ to the case with only two
distinct release dates still retains the problem NP-hard.

Theorem 11. Problem ⟨1 | rp (δi < 0), ri ∈ {0, r} | Cmax⟩ is ordinary NP-hard.

Proof. The proof can be given using a reduction from the Partition problem.

Partition:
Instance: A positive integer B and a set of items A = {1, 2, . . . , u} with positive integer weights xi, i ∈ A, such that∑u

i=1 xi = 2B.
Question: Is there a partition of set A into subsets A1 and A2 such that

∑
i∈A1

xi =
∑

i∈A2
xi = B?

Given an instance of the Partitionproblem, an instance of problem ⟨1 | rp (δi < 0), ri ∈ {0, r} | Cmax⟩ is defined as follows.

Initial resource level Q0 = 2B + 1.
Ordinary jobs i = 1, . . . , u : pi = αi = xi, βi = ri = 0.
Enforcer job i = 0: α0 = B + 1, β0 = B, p0 = 0, r0 = B.

Using the same argument as in Theorem 10, we can show that there is a desired partition in the Partition problem if and
only if there exists a feasible schedule of length 2B. �

Remark 12. Note that the result of Theorem 11 cannot be strengthened to a strong NP-hardness result, since the problem
with two distinct release dates can be solved in pseudo-polynomial time by the dynamic programming algorithm ADP .

4544 S.V. Sevastyanov et al. / Theoretical Computer Science 412 (2011) 4536–4544

Table 1
Complexity of special cases of problem ⟨1 | rp, ri | Cmax⟩.

Conditions Complexity Source

δi ≥ 0 O(n log n) Theorem 9
δi < 0 Strongly NP-hard Theorem 10
ri ∈ {r(1), . . . , r(m)} for fixedm Pseudo-polynomial DP-algorithm Theorem 8
m = 2, δi < 0 Ordinary NP-hard Theorem 11

6. Conclusion

In this paper, we presented first results for the single-machine relocation problemwith release-date constraints. Through
a series of lemmas and statements, we established some general properties of feasible and optimal solutions of the problem.
On the basis of those properties, we designed several algorithms shown to be efficient in certain special cases. As a
counterpart to those positive results, some NP-hardness results were established. The results obtained are summarized
in Table 1.

As one can learn from the table, the polynomially solvable case with positive contributions (Theorem 9) and the
counterpart casewithnegative contributions (which is stronglyNP-hard, by Theorem10) donot pose the symmetry property
that might be expected for a flow shop problem with the minimum makespan objective (which is explainable due to the
presence of release dates). Theorem 10 establishes the strong NP-hardness of the case with a variable numberm of distinct
release dates. On the other hand, when m is fixed, the problems can be solved in pseudo-polynomial time (Theorem 8). As
shown by Theorem 11, the pseudo-polynomial time algorithm is the best of what one could do while solving this problem,
because it remains NP-hard even if there are only two distinct release dates.

The contributions of this paper are two folds. First, we have studied, with tight complexity analysis, a new scheduling
problem that extends the relocation problem to the case of arbitrary release dates. We thereby extended the horizon of
study of this important resource-constrained scheduling problem. Second, we have demonstrated a powerful technique for
determining tight boundaries between ordinary and strongly NP-hard cases of hard optimization problems by means of the
tool of the so-called multi-parametric dynamic programs.

Now we would like to discuss further possible development of these results. Interesting directions for further research
on the relocation problem with release dates include the cases with unit processing times or a limited number of different
processing times, as well as the case with a limited number of different contributions. Application of the multi-parametric
dynamic programming approach for determining boundaries between ordinary and strongly NP-hard cases of other hard
optimization problems could also be a worthy direction of further research.

Acknowledgements

The research is partially supported by the National Science Council of Taiwan (grant nos 98-2410-H-009-011 and 98-
2811-H-009-003), the Russian Foundation for Basic Research (grant nos 08-01-00370 and 08-06-92000-HHC) and the
Federal Target Grant ‘‘Scientific and educational personnel of innovation Russia’’ for 2009–2013 (government contract
No. 14.740.11.0362). The authors are grateful to the anonymous referees for their constructive comments.

References

[1] J. Blazewicz, J.K. Lenstra, A.H.G. Rinnooy Kan, Scheduling subject to resource constraints: classification and complexity, Discrete AppliedMathematics
5 (1983) 11–24.

[2] P. Brucker, A. Drexl, R. Möhring, K. Neumann, E. Pesch, Resource-constrained project scheduling: notation, classification, models, and methods,
European Journal of Operational Research 112 (1) (1999) 3–41.

[3] T.C.E. Cheng, B.M.T. Lin, Johnson’s rule, composite jobs and the relocation problem, European Journal of Operational Research 192 (3) (2009)
1008–1013.

[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freedman, San Francisco, CA, 1979.
[5] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan, Optimization and approximation in determenistic sequencing and scheduling: a survey,

Annals of Discrete Mathematics 5 (1979) 287–326.
[6] P.L. Hammer, Scheduling under resource constraints — deterministic models, Annals of Operations Research 7 (1986).
[7] W. Herroelen, B. De Reyck, E. Demeulemeester, Resource-constrained project scheduling: a survey of recent developments, Computers andOperations

Research 25 (4) (1998) 279–302.
[8] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval Research Logistics Quarterly 1 (1954) 61–67.
[9] E.H. Kaplan, Relocation models for public housing redevelopment programs, Planning and Design 13 (1) (1986) 5–19.

[10] E.H. Kaplan, A. Amir, A fast feasibility test for relocation problems, European Journal of Operational Research 35 (1988) 201–205.
[11] E.H. Kaplan, O. Berman, Orient Heights housing projects, Interfaces 18 (6) (1988) 14–22.
[12] A.V. Kononov, B.M.T. Lin, On the relocation problems with multiple identical working crews, Discrete Optimization 21 (4) (2006) 368–381.
[13] A.V. Kononov, B.M.T. Lin, Minimizing the total weighted completion time in the relocation problem, Journal of Scheduling 13 (2) (2010) 123–129.
[14] B.M.T. Lin, S.T. Liu, Maximizing the reward in the relocation problem with generalized due dates, International Journal of Production Economics 115

(1) (2008) 55–63.
[15] A. Mingozzi, V. Maniezzo, S. Ricciardelli, L. Bianco, An exact algorithm for the resource-constrained project scheduling problem based on a new

mathematical formulation, Management Science 44 (5) (1998) 714–729.
[16] PHRG. New lives for old buildings: Revitalizing public housing project, Technical Report, Public Housing Group, Department of Urban Studies and

Planning, MIT, Cambridge, MASS, 1986.
[17] M. Pinedo, Planning and Scheduling in Manufacturing and Services, Springer Verlag, New York, 2005.
[18] J.-X. Xie, Polynomial algorithms for single machine scheduling problems with financial constraints, Operations Research Letters 21 (1) (1997) 39–42.

	Tight complexity analysis of the relocation problem with arbitrary release dates
	Introduction
	Notation and preliminary results
	Exact algorithm A1
	Multi-parametric dynamic program
	Complexity results for special cases
	Conclusion
	Acknowledgements
	References

