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Robust Adaptive Beamformer for Speech
Enhancement Using the Second-Order
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Abstract—This paper presents a novel approach to implement
the robust minimum variance distortionless response (MVDR)
beamformer. The robust MVDR beamformer is based on the
optimization of worst-case performance and provides an excel-
lent robustness against an arbitrary but norm-bounded desired
signal steering vector mismatch. For real-time consideration,
the beamformer was formulated into state-space observer form
and the second-order extended (SOE) Kalman filter was derived.
However, the SOE Kalman filter assumes an accurate system
dynamic and statistics of the noise signals. These assumptions
limit the performance under uncertainties. This paper develops
the SOE H, filter for the implementation of the robust MVDR
beamformer. The estimation criterion in the SOE H ., filter design
is to minimize the worst possible effects of the disturbance signals
on the signal estimation errors without a prior knowledge of the
disturbance signals statistics. Experimental results demonstrate
the performance of the proposed algorithm in a noisy and rever-
berant environment and show its superiority of the robustness
against mismatches over the robust MVDR beamformer based on
the SOE Kalman filter.

Index Terms—Beamformer, beamforming, H .. filter, Kalman
filter, robust MVDR beamformer.

I. INTRODUCTION

PEECH enhancement algorithms have attracted a great

deal of interest in the past three decades since the de-
sired speech signal is usually contaminated by background
noise and influenced by reverberation (see [1] and references
therein). Among several existing speech enhancement algo-
rithms, microphone array beamformers are commonly used for
hands-free speech communication or recognition. To cope with
environmental changes, various adaptive beamformers were
proposed to improve the performance. One of the key issues
in adaptive beamformers is the sensitivity due to the mismatch
between the actual steering vector of the desired signal and
presumed one [2], [3]. The mismatch can be induced by signal
point errors [4], imperfect array calibration [5], or the channel
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effect (e.g., near-far problem [6], environment heterogeneity
[7] and source local scattering [8]). In the presence of these
effects, an adaptive beamformer can easily mix up the desired
signal and interference components; that is, it suppresses the
desired signal instead of maintaining the desired response with
minimal distortion. This phenomenon is commonly referred as
signal self-nulling [9]. As a result, several efforts have been
devoted to design robust adaptive beamformers [2].

Modifications to classic beamformer techniques were exten-
sively studied to enhance the robustness. The linear constrained
minimum variance (LCMV) beamformer was proposed in
[10] to minimize the array output power under a look-direc-
tion constraint. Another popular technique is the generalized
sidelobe canceler (GSC) algorithm which essentially trans-
forms the LCMV constrained minimization problem into an
unconstrained one [11]. In the last decade, several techniques
addressing the problem of the mismatch of the steering vector
in the LCMV or GSC structure were developed [12]-[15].
Further, some ad hoc approaches were discussed to overcome
the arbitrary desired signal mismatches, such as the diagonal
loading of the sample covariance matrix [16], [17] and the
eigenspace-based beamformer [18], [19]. An alternative re-
search direction to mitigate the problem of mismatch is to
abandon the delay-only propagation assumption and explicitly
model the acoustic signal propagation from the source to the
sensors by transfer functions (TF) [20], [21]. Affes ef al. replace
the steering vector of simple delay with unknown finite-im-
pulse response (FIR) filters, whose coefficients are determined
by an adaptive principal eigenvector tracking algorithm [22].
Instead of estimating the TF’s, Gannot et al. considered the
TF ratio between each sensor pair, and several adaptive beam-
former algorithms using the GSC structure have been proposed
[23]-[25]. The major concern for both TF’s and TF ratios is
the need of a pre-training procedure. This might limit their
applications, especially under a dynamic environment.

Most of the early methods of robust adaptive beamformers
are rather ad hoc in that the choice of parameters or the structural
modifications is not directly related to the uncertainty of the
steering vector [2]. Recently, more rigorous approaches were
proposed to cope with unknown mismatches via worst-case
optimization [3], [26]. Unlike the earlier methods, they make
explicit use of the uncertainty set of the steering vector. The
work in [3] minimizes the output interference-plus-noise power
while maintaining a distortionless response for the worst-case
steering vector mismatch. The robust minimum variance dis-
tortionless response (MVDR) problem was formulated as a
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second-order cone program and solved in polynomial time via
the interior point method. A number of extensions of the robust
MVDR beamformer of [3] have been considered [27]-[30].
However, the main shortcoming of these extensions is that they
do not have a computationally efficient online implementation.
It was shown in [49] that the MVDR problem can be formulated
into a state-space form where both the performance index and
constraint are considered as the outputs. Standard Kalman
filtering technique was applied to obtain a recursive algorithm
[49]. Following the similar idea, El-Keyi et al. [31] developed
the state-space model of the robust MVDR beamformer and
derived the second-order extended (SOE) Kalman filter for
recursive implementation.

The SOE Kalman filter assumes that the dynamics of the
signal generating processes are known, so are the statistical
properties of noise signals (i.e., uncorrelated and zero-mean
Gaussian with known covariance) [32]. However, these as-
sumptions limit the performance since the complex acoustic
dynamics is difficult to model and the uncorrelated zero-mean
Gaussian noise assumption is quite stringent considering the
variety of environmental interferences. To relax these assump-
tions, this paper proposes the SOE H filter for the MVDR
beamformer of [3] that requires no prior knowledge of the
noise statistics but bounded energy. Several studies on the
linear and nonlinear H., filter or mixed Kalman/ H., filter
have been presented [33]-[42]. Despite these efforts to expand
the use of H, filter to different domains for robustness, there
are still very few works using H ., filter to cope with the model
uncertainty in adaptive beamformer [44].

In this paper, the SOE H,, filter is used to implement the
robust MVDR beamformer [3] in the frequency domain. The
estimation criterion in the SOE H filter design is to minimize
the worst possible effects of the unknown disturbance signals
(initial condition error, process noise and measurement noise)
on the signal estimation errors. This estimation criterion makes
the SOE H . filter more suitable for speech enhancement in the
cases of unknown noise statistics, steering vector uncertainty
and microphone mismatch. To derive the SOE H,, filter, the
second-order Taylor series expansion is used to approximate the
nonlinear function involved in the beamformer. However, the
quadratic terms appear in the series expansion are too complex
to make the solution tractable. In this work, they are approxi-
mated by the estimation error sample covariance matrix which
effectively simplifies the problem. The proposed robust MVDR
beamformer based on the SOE H . filter is implemented in fre-
quency domain and applied to the acoustic environment. The
experiments are performed in a noisy and reverberant environ-
ment and the experimental results reveal the proposed beam-
former’s superiority of the robustness against mismatches for
speech enhancement over the robust MVDR beamformer based
on the SOE Kalman filter.

The paper is organized as follows. The speech enhancement
problem and background information on adaptive beam-
former and robust MVDR beamformer of [3] are presented in
Section II. In Section III, the SOE Kalman filter for the imple-
mentation of the robust MVDR beamformer of [3] is briefly
reviewed and followed by the introduction of the proposed
SOE H, filter. In Section IV, the selection of the weighting

matrices and performance bounds are studied. In Section V, the
performance of the SOE Kalman filter and the SOE H . filter
for speech enhancement is evaluated. Finally, conclusions are
drawn in Section VI.

II. PROBLEM FORMULATION

Consider P speech sources and M microphones in the rever-
berant and noisy environment (A > P). The received signal of
the rn-th microphone can be written as:

Lm (t) = Z Ump (t) ® 'Sp(t) + ”m(t) (1)

p=1

where ¢ is the discrete-time index and each symbol in (1)
represents:

& convolution operation;
Uy (1)

S1 (t)

sa(t) ~ sp(t)

the transfer function from the p-th sound
source to the m-th microphone;
the desired speech signal;

the nonstationary interfering speech signals
(competing speech signals);

the (directional or omni-directional)
stationary noise of the 7:-th microphone.

o, (1)

Typically, the impulse response function a,,,(t) is assumed
to be time-invariant over the observation period. In this paper,
the competing speech signals, sx(t) ~ sp(t), are regarded as
interference signals. Applying the short time Fourier transform
(STFT) operation to (1) yields:

p
X (kyw) =Y Aup(W)Sp(k,w) + N (k,w)  (2)

p=1

where k is the frame number and w is the frequency index.
Xk, w), 5,(k,w) and N,,,(k, w) are the STFT of the respec-
tive signals, which are complex-valued. A,,,{w) is the approx-
imation of the STFT of the impulse response a,,,(¢) since the
length of the impulse response is generally infinite. The beam-
former output is given by

Yarv (k,w) = wipy (w) X (k,w) )

where H denotes conjugation transpose; X(k,w) =
[X1(k,w),..., Xy (k,w)]T and wyv(w) is the beamformer
weights. The well-known MVDR beamformer minimizes the
output power of interference-signals-plus-stationary-noise
while maintaining a distortionless response to the desired
signal. The frequency domain MVDR problem is given by

min whiy ()R (Wwny (w) subject to wiiy (w)A(w)=1
unv
4)
where

R, (w) = E{X(k,w)X"(kw)}. (5)
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R (w) is the M x M correlation matrix and A(w) € CM*!
is the presumed steering vector. The solution of the MVDR
problem is given by [43],

wyv (w) = ~HR;’£(i)3A(w~) ' ©
A (w)Rax (w)A(w)

In practice, the correlation matrix is unavailable and is usually
approximated by

1
R,.(w)= I ZX(I{:,w)XH(k.,w) @)
k=1

where N is the number of frames available. The sample corre-
lation matrix of (7) is used in (6) to replace the true correlation
matrix and the resulting solution is commonly referred to the
sample matrix inversion (SMI) algorithm [42]. If the desired
signal is present in the training procedure, the SMI algorithm
degrades dramatically [3]. The other disadvantage of the SMI
algorithm is that it does not provide the sufficient robustness
against a mismatch between the presumed steering vector and
the actual one. The norm of the mismatch can be bounded by
some known constant ¢ > 0 and the actual steering vector be-
longs to the set

Aw) = { 0)| Olw) = Aw) +e(w), e <} . ®)

Based on this uncertainty description, Vorobyov et al. [3] for-
mulated the robust MVDR beamforming problem as

min wigy (w):[:{m (w)ungv (w)
wN v
for all C{w)eA(w)
subject to |w¥W(w)C(w)| >1. ®

The semi-infinite non-convex constraint in (9) was reformulated
as a single constraint considering the worst-case. This leads to
the following.

min why (W) Ree (@)wny (@)
NIV

subject to min

(w)EA(w

)|wﬁv(w>0<w)| >1. (10)

It can be proven that the inequality constraint in (10) can be
replaced by an equality one as [3],

min wigy (w)flm (w)wmv(w)
wr v

= 2wl (W)wnv (w).

(11)

subject to |wiry (w)A(w) — 1

The problem in (11) has been solved in [3] using second-order
cone (SOC) programming. Moreover, several extensions of the
robust MVDR beamformer have been considered. For example,
a Newton-type iterative method was proposed for this problem
and its modification [27], [28]. Re-formulating (11) into a
state-space observer form facilitates the application of the SOE
Kalman filter [31]. In the following, we briefly review the SOE

Kalman filter solution and present a new approach based on the
SOE H . filter.

III. ROBUST MVDR BEAMFORMER BASED ON THE SOE
KALMAN AND THE SOE H. FILTER

For the convenience of analysis, the mean square error (MSE)
between the zero signal and the filtered output is introduced as,

E [yo ~ XUk, wyway (£, w)ﬂ = !l ()R (w)wry ()
(12)

where E(-) denotes the expectation operation. The constraint in
(11) can be rewritten as

g(wuv(k,w)) =1 (13)

where
g2 (unv (k,w)) = e*wipy (k, w)unev (k, w)
— wh (b, ) Aw) A" (@)wnry (k,w)
+ wh (b, 0) Aw) + A" (@) (k,w).
(14)

Therefore, the robust MVDR beamformer problem can be for-
mulated as

min F [|0 — XB(k whwny (K, w)‘q

WMV

subject to go(unrv(k,w)) = 1. (15)

The state-space model of the constraint minimization problem
in (15) is:
State equation

wyvv (b + 1,w) = wvv(k,w) + vs(k,w). (16)
Measurement equation
— XH(k w)'va(k w)
= ’ . + v kv
polwyrv(kw)) | )
:g(wl\l\"(kaw)) +'U'm(kvw) (17)

where v;(k, w) and v, (k,w) are the process and measurement

. . _ T .
noise respectively, and the measurement vectoryg = [0 1] is
chosen for the MVDR problem.

A. Second-Order Extended Kalman Filter Algorithm

To apply the SOE Kalman filter, the noise processes v, (&, w)
and vy, (k, w) are assumed to be white, zero-mean, uncorrelated,
and have known covariance matrices Q and R respectively.

E [v,(k,w)vl (k,w)] = Q
E [ (k,w)ll (k,w)] =R
E [vs(k,w)vy (k,w)] =0.

m

(18)

The SOE Kalman filter expands the nonlinear function around
the last estimate of the state vector wnv (k,w) by using the
second-order Taylor series and finds the unbiased estimate
Wy (k,w) to minimize the variance of estimation error de-
fined below

MSE = E [|wMV(/<, W) — v (k, w)|2] . (19
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To present the SOE Kalman filter solution, we start by evalu-
ating the first derivative of g(wnv (K, w)) which is denoted as
G (k,w) and the second derivative of g(wyry (k. w)) which is
denoted as G,(,,l&.(w) and G,(E,Z,(w):

Guw(k,w)
= [V’vagT(wMV(kaw))]T
XH(k,w)
= ~ ~ H ~
2wl (k,w) — (A(w)AH(w)va(k, w)) + AH(w)

(20)

Glu(w)

=V, Vigyy 1 X (b, w)wyy (k,w)} =0 (1)

Giw(w)

= Ve VI {g2(wnyv (ko)) = 21— A(w)A" (w) (22)

where I is the identity matrix. For the state space model (16)
and (17), the SOE Kalman filter solution is given by [32]

’l]]M\I(/ﬁ? + 1, w) :~ ﬁn\w(k,w)
—I—K(k‘,w) [g — g('ﬁ)MV(k,w))] + W(k,w) (23)
where
(b, w) = %K(k,w) - m i {GE@P (v} 4

is the correction term to make the state estimate unbiased. The
filter gain and the predicted weight error covariance matrices
are given by

Kk, w) =P (I, w)GE(k,w) |Gk, 0)P () GE ()

+ A(k. )+R] (25)

P (k, ) Pt (k—lw)+Q (26)

P*(k,w [ )Gw(k,w)] P (k,w) 27)
where

A(k,w):%[g ﬂtr{ew( (k) G, ()P (k) }

(28)

is the correction term introduced according to w(k, w); K(k, w)
is the Kalman gain; P~ (k,w) is the a priori error covariance
matrix and P+ (k,w) is the a posteriori error covariance ma-
trix. After some algebra operations [32], the Kalman gain and
covariance matrices P~ (k,w) and P (k,w) can be rewritten
as follows,

=
™

(k.
=P (k.w) [I + Gk, w) (A(k, w)+ R) _

w)

X Gk, w)P (K, w)} 71Gg(/<:, w) (A(k,, w) + f{) o
(29)

P (k+1w)
=P (h,w) [T+ GE(h.w) (Ah,w) + R)

X Gw(k,w)P-(k;w)} ia (30)

B. Second-Order Extended H ., Filter Algorithm

In contrast to minimizing the expected value of the estima-
tion error variance like the SOE Kalman filter, another strategy
is to minimize the worst possible effects of the disturbances
on the signal estimation errors. This corresponds to minimize
the infinity norm of the input-output relation. In this case, no
assumptions on the noise statistics are required (such as (18))
but the bounds of the noise energy. Considering the state space
model (16) and (17), and the estimation of a linear combination
of 'U]M\r(]ﬂ?, w), i.e.,

z2(k,w) =

where C is a user-defined matrix. It can be set as an identity ma-
trix (C = I) to estimate z( k., w) (as in the Kalman filter). The es-
timate of z(k, w) is denoted by 2(%, w) and the estimate of initial
state wyry (0, w) is denoted by oy (0, w). The design criterion
of the SOE H., filter is to find zZ(k, w) that minimizes its mean
square error under arbitrary but bounded v, (k, w), v, (k,w) and
wyv (0, w). The performance index J can be defined as:

C’va(k,, w) (31)

N-1

J=3" Jalk,w) - ak.w) 2,

k=0

X [WMV(UM) — v (0,0) 1 (g0

>

-1
(|’U& k’ W)‘Q Hk,w) + ‘vm(k w)|R km))‘| .
k=0

(32)

The notation |z(%, w)|S k. 1s defined as the square
of the We1ghted (by S(k w)) Lo norm of z(k,w),

| (%, cu)|S (ko) = H(k,w)S(k,w)z(k,w). The matrlces
P(0,w), Qlk,w), R(k,w) and S{k,w) are symmetric positive
definite matrices chosen by the user based on the specific
problem. To simplify the analysis, we assume the weighting
matrices Q(k,w), R(k,w) and S(k,w) are independent of
frame and frequency. Furthermore, we set the weighting matrix
S(k,w) = I for the sake of comparing with the estimation-error
variances minimization problem of the Kalman filter. Hence,
(32) can be reformulated as

J =
N-—1 . )
Z |Z(k,w)fz(k,w)|s

Wy (0.0) =Wy (0|71 + Z (10 (k) 2, 10 (k)12 )

7 (33)

To solve the problem, a performance bound ~ is selected and
2(k,w) is computed to satisfy

sup J <y (34)
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where sup represents supremum. The purpose of the SOE H,
filter is to minimize sup .J, that is, the infinity norm of the
criteria. Therefore, it can be interpreted as a minmax problem
where the estimator strategy 2(k,w) plays against the exoge-
nous inputs vs(k, w), v, (k, w) and the uncertainty of the initial
state wnv (0, w) [39]. Hence, the performance criterion in (34)
is equivalent to

2
min max
P—10,w)

2 vs.em wpy (0,w)

JZ*’)’|"”MV (0,w)—Whv (wa)|

N-—1
+ 3 [|2tke) 2R (Wak )+ O k) f )] (35)
k=0

Since v, (k, w) = y— glwmvy (b, w)), 2(k, w) = Cwyy(k, w),

and 2(k,w) = Cilngv(k,w), (35) can be rewritten as:

min max  J = —7|lwyv(0,w) — ﬁJMV(O,w)@,_l(U o)

Wy Ve Ve vy (0,w) ;
N-1

|’llle<k, w) — ﬁle(lﬂ, w) |2§

2
k=0

— (lonlk )l + 7 - g(wmk,w)n;l)] (36)

where S = CHSC.

Considering a second-order approximation of the nonlin-
earity in (36), the solution of (36) leads to the SOE H ., filter.
The solution of the SOE H . filter for a class of discrete-time
nonlinear system has been derived [44] and hence the solution
of SOE H, filter for (16) and (17) is given as,

Wy (k+1,w) =dmv(k,w) + Kk, w) [§ — §,(k, w)]
K(k,w) =P(k,w) {I - %§P(k, w) + Gk, w)R™

4 -1

(37

X Go(k,w)P(k,w)| GE(k,w)R™! (38)

Plk+1,w) =Pk, w) [I — %§P(k,w) +GE(k,w)R™?

41

X Gk, 0)P(k,w)

+Q 39)

Ak +1,w) = {I - %gP(k, w)

+ GHE, )R Gy (k, )Pk, w) [ Ak, w)

— Gk, w)R™H ( — g, (k. w)) (40)
P(k+1,w) =qP(k,w)+ (1 -1n)
x P(k,w)A(k, )\ (k, w)PR(k,w)  (41)

where 0 < 77 < 1 (wesetny = 0.9); ¥ — g, (k,w) is the error
term and the predicted measurement is obtained by

R XH(k,w)ﬁJNw(k.,w)
In(h: @) = | o gy (B 0)) 0.5 - tr {Gﬁ,(m)?(h w)} '
(42)

In this paper, we let the weighting matrices Q and R have the
same structure as Q and R, for comparison,

g2 0 ¢

0%, 02, and ¢ are discussed in

Q(w)zafl,mw:[‘}f 02}:0%{1 0} 43)

2

8§

where the parameters o
Section IV.

IV. SIMULATION

In this section, the selection of the weighting matrices and the
performance bounds are studied. Here we use the same structure
for the weighting matrices in the SOE Kalman filter [31], the
first-order extended (FOE) H, filter [32], and the SOE H
filter, as defined in (43). Firstly, the selection of the parameters

o2 and ¢ are discussed. Then, the selection of the pair (p, z)

S
is analyzed under different number of sensors and mismatch
conditions. Subsequently, the effect of the performance bound
~ in the SOE H, filter is studied and compared with the SOE
Kalman filter.

The input data are rearranged into frames and frequencies by
short-time Fourier transform (STFT) processing. The size of fast
Fourier transform (FFT) is set as 256, the shift size is set as 128,
and the rectangular window is used for STFT processing. To
ensure the spatial characteristics, the simulations are discussed
under the frequency whose wavelength is chosen to be twice
as the microphones’ spacing (i.e., f = ¢/2d, where ¢ is the
sound velocity, ¢ = 346 m/s). Thereafter, the performance of
the wideband case for speech enhancement is measured in the
next section.

In our simulations, a uniform linear array (ULA) with M = 6
omnidirectional microphones placed ¢ = 5 cm apart is used.
The ULA is steered toward the direction # = 0° with steering
vector mismatch. Two interferences are produced to impinge to-
ward the array from the directions § = 45° and § = —45°,
both with 30 dB interference-to-noise ratio (INR). All the afore-
mentioned signals are generated from a Gaussian random gener-
ator. To highlight the robustness effect of different selections of
the weighting matrices and the performance bounds, the desired
signal is assumed to be always present in the training cell with
SNR = 0 dB (i.e., the same scale as the noise power which re-
sults in about —30 dB input SINR). The training size N = 100
is used for the simulations.

First, the selection of parameters ¢ and ¢ are discussed. In
weighting matrix Q, ¢2 controls the variance of the random
walk for the weighting update. Since the testing environment is
assumed to be stationary, af is set to zero. Next, we consider the
parameter €. Recall from (17), 02 and o2 represent the variance
of filtered output error and constraint error respectively. In [31],
the authors proposed that 2 should be chosen of the same order
as the optimal output power of the array. It can be approximated
as ||wary | (Mo? +02), where 02 and o2 are the desired signal
and sensor noise powers, respectively. Hence, we define

2

01
/):
(

—_ 44
Mao? 4 o2) (44)

And the characteristic of choosing the parameter o7 is discussed
by p in the subsequent examples. The latter parameter o3 should
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10 10 10
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Fig. 1. (a) Output SINR, (b) Squared norm of the weight vector, versus (p, ) with A{ = 6, A¢§ = 2°. (SOE Kalman filter).
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Fig. 2. (a) Output SINR, (b) Squared norm of the weight vector, versus p with ¢ = 2.35, M = 6, A8 = 2°. (SOE Kalman filter).

be chosen very small to satisfy the robustness constraint with a
high accuracy. For the latter one, rather than setting the param-
eter o3, we extract the ratio & = 03 /c% as in (43) for the fol-
lowing numerical and mathematical reasons:

1) £ determines the condition number of the weighting matrix

R.
2) The constrained Kalman algorithm converges to optimum
MVDR filter if ¢ is small enough [49].
Hence, ¢ < 10~% is recommended to fulfill the requirements
above (note that £ should not be set too small in order to keep
the weighting matrix R well-conditioned). The above reasons
also give physical meanings to the selection of ¢ for the SOE
H.,, filter. But care must be exercised to select this parameter in
the SOE H filter. It should consider the effect of the correct
term A(k, w). The effect of the correct term on the parameter
& can be ignored only when the state is close to the stationary
point.

Second, the choices of the performance bound = and the pa-
rameter p (= 02/(Mao? + 02)) of the SOE Kalman filter are
studied. In the first example, the true source impinges toward
the array from the directions § = 2° (direction mismatch A§ =
29). The parameters of the SOE Kalman filter were selected as
02 = 0and £ = 107!°, Fig. 1 shows the output SINR and the
weight vector norm versus different choices of pair (p, £) with

M = 6. From Fig. 1(a) we can see that there are many choices
of pair (p, £) which can achieve high output SINR. However,
if we want to keep the output SINR high while maintaining the
output power level, then the selection of the performance bound
¢ becomes critical, as shown in Fig. 1(b). It can be also seen from
Fig. 1 that most choices of pair (p, ) with high output SINRs
correspond to small vector norms. In Fig. 2, with a proper se-
lection of, ¢ = 2.55, the output SINR remains close to the op-
timal SINR for a range about 20 to 1000 of the values p, and the
weight vector’s norm can be controlled between 1 and 6 (= M).

The number of sensors M changes the effect the pair (p, &)
on the output SINR and the weighting vector’s norm. Besides,
as the number of sensors M decreases, the choices of (p, ¢) to
achieve a high output SINR become limited. Moreover, the loss
of output SINR or output power is inevitable when the number
of sensors M becomes too small to handle the robustness con-
straint. Fig. 3 gives an example when the number of sensors M
reduces to 4.

Fig. 4 shows an example when the mismatch becomes se-
vere with M = 6 omnidirectional microphones. Comparing to
Fig. 1, it can be observed that the characteristics of the squared
norm is almost unchanged; however, the output SINR obviously
degraded due to a more severe mismatch. Note that there are still
some selections of the pairs (p, £) which can yield high output
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Fig. 3. (a) Output SINR, (b) Squared norm of the weight vector, versus

@

Fig. 4. (a) Output SINR, (b) Squared norm of the weight vector, versus {p, €)

Fig. 5. Output SINR versus (p, ),

SINRs, but these selections are not the same as the cases under
slight mismatch, as shown in Fig. 1(a).

In the third example, we compare the sensitivity to the direc-
tion mismatch conditions between the SOE Kalman filter, the
FOE H,, filter, and the SOE H,, filter. The previous exam-
ples show the selections of the pairs (p, ) of the SOE Kalman
filter that yield high output SINRs change with different number
of microphones and different mismatch conditions. In this ex-
ample, we show that with a proper selection of the performance
bound v, the SOE H, filter can be designed comparatively in-

) with M = 4, A@ = 2°. (SOE Kalman filter).

(b)

) with M = 6, A8 = 16°. (SOE Kalman filter).

ﬂ

(b)

(a) A = 2°,(b) A9 = 16°, with M = 6. (FOE H filter).

sensitive to the mismatch conditions; however, the FOE H,
filter is unable to achieve the performance under the same set-
tings. The selection of the performance bound - is critical; here
we suggest setting v = 1 for this example. Note that the setting
of initial conditions is another issue for the SOE H . filter. It
is important to fulfill the first- and second-order necessary con-
ditions to allow the existence of an optimal solution for the es-
timated state wyyv. Besides, the performance bound + can not
be set too small to make the matrix inversion in (38) and (39)
ill-conditioned. In Figs. 5 and 6, we analyze two direction mis-
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Fig. 6. Output SINR versus (p. ), (a) A8 = 2°, (b) A§ = 16°, with A/ = 6. (SOE H .. filter).
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Fig. 7. Comparison between the SOE Kalman filter, FOE H_, filter, and the
SOE H . filter. Output SINR versus A# with M = 6.

match conditions in accordance with the SOE Kalman filter case
(i.e., A = 2° and Af = 16°). The parameters of the FOE
H_, filter and the SOE H_, filter were selected as (Tf = 0,
& = 107'° and ¥ = 1. For the FOE H,, filter , it can be
seen from Fig. 5 that even the shape of the output SINR does
not change with different mismatch conditions, but the value of
the output SINR still degrades with larger mismatch. However,
for the SOE H,, filter case (refer to Fig. 6), it can be observed
that the region around (200, 2) maintain good output SINR in
both mismatch conditions (which can also be compared with the
SOE Kalman filter case in Figs. 1(a) and 4(a)). Fig. 7 gives a
comparison between the SOE Kalman filter, the FOE H , filter,
and the SOE H,, filter. The parameters 02 = 0, & = 10710,
(p,e) = (200, 2) were set for all the tested algorithms. The per-
formance bound 7 of the FOE H . filter and the SOE H, filter
were set to 1. In Fig. 7, it can be seen that the output SINRs
of both the FOE H_, filter and the SOE Kalman filter decrease
when the mismatch condition gets worse, while the output SINR
of the SOE H, filter can be maintained in a relatively good
range. When the mismatch is small, the performance of both
the FOE H_. filter and the SOE Kalman filter is better than the
SOE H. filter. The virtue of the SOE H . filter is the robust-
ness against different mismatch conditions.

For the application in speech enhancement, since the mis-
match conditions differ from frequencies, the proposed SOE
H.,, filter can have a better performance in average.
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Fig. 8. Frequency weighted output SINR results.

80 | \ \ | \ X
| | : i ‘ —*— Mic#1
| | | I I SMI
75 =Ly S __L__1__ I _|—e—SOEKaman
| I I | I
LT .| —A— SOE H-infinity
| | } P ] FOE H-infinity
707777777777\7477777777\*’<‘:"\F7\:j;7777”
0 | | | | I | >
% oS g I | I I I T
I IS TEER Lo Jo el o M s o i o)
2657777777\777\777"’E\| I I | I
3 | | | I O | | |
7] I | I | I Tl | |
7 O o " ..~ S (RN IS ... O | WO
60 T ~—L A I I | I I |% Ty
I | T A~ | | I |
| | I o | I | |
Lol 0l _L__Jd__"Ti—=Al __"r&______]
55 | | I | I [ s [
| | I I I | [ N
| | I | I I | |
50 I | | ! I I | | I
-5 -4 -3 2 -1 0 1 2 3 4 5

input average SINR (dB)

Fig. 9. segNL results.

V. EXPERIMENTAL RESULTS

In this section, experiments in a real room are presented for
comparison. Mismatches can easily happen for speech enhance-
ment applications in real environment. For example, the rever-
beration is one of the common reasons that cause mismatches.
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Fig. 10. LSD results.

Second, the violation of the spatial Nyquist theorem at low fre-
quencies degrades the performance and limits the effective ob-
servations in a finite time. Moreover, the speech signals are
non-stationary and non-zero-mean, which makes the assump-
tion of the SOE Kalman filter invalid. The mismatch conditions
vary among frequencies (including p and ). That means a gen-
eral selection of pair (p, ) to keep high output SINR across all
frequency bands may not exist. According to the simulation re-
sults in the previous section, there is a selection of the perfor-
mance bound v that makes the SOE H_,, filter comparatively
robust to the variation of the mismatches than the SOE Kalman
filter. In this case, the performance bound « should be increased
to handle the mismatch conditions and to guarantee the matrix
inversion in (38) and (39) to be well-conditioned (here we set
7 = 100). In the following, we show the superiority of the SOE
H., filter for speech enhancement using several performance
criteria of speech enhancement.

The room dimension is 10 m X 6 m x 3.6 m and the rever-
beration time at 1000 Hz is 0.52 second. A uniform linear array
(ULA) with M = 4 omnidirectional microphones was placed
on a table at a distance of 2 m from the wall. The sampling rate,
STFT process are the same as the simulation. According to the
investigation of room acoustics [46], the number of eigen-fre-
quencies can be obtained by the following equation:

— fs

7= 5o(3)
where B represents the geometrical volume, f; denotes the sam-
pling frequency, and ¢ means the sound velocity. This equation
indicates that the number of poles is very large when the room
volume is high, and that the transient response occurs in almost
any processing duration. In this experimental environment, the
number of poles is about 1.398 x10® when the sampling fre-
quency is 8 kHz and the room volume is 216 m®. Accord-
ingly, the STFT window length (= 236) in this experiment is
shorter than the channel response duration and is likely to create
channel modeling error. The desired speech signal at 0° con-
sists of sentences from TCC-300 database [47] spoken by 150
males and 150 females. The interference signal is speech signal

(45)
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Fig. 11. PESQ results.

spoken by a male and the noise signal at 45° is the white noise.
The amplified microphone signals were digitized by 16-bit AD
converters.

Four performance indices are used to measure the waveform
property directly. The first is the frequency weighted output
signal-to-interference-plus-noise ratio (SINR) defined as

S5 GVl (hw)

k w=wi

SINRgyy = 10 - logy, (46)

W

Y Y Gwy’

k w=w;i

(k, w)

where Y is the filtered output of the desired signal, and Y;, is
the filtered output of interferences plus noise. (wy,ws) is the
frequency bands to be evaluated. G(w) is a frequency weighing
function, which can be selected to emphasize on the ear’s critical
bands. Because the robust MVDR beamformer does not con-
sider the de-reverberation effect, the SINR is used to compare
the desired signal energy to the interference-plus-noise energy.
The second quality measure is segmental noise level (segNL)
defined as

K

I
Z (10-10;;10 (> #2(i + kI) ) (47)
i=1

k:

segNL(dB)

which is evaluated when the desired speech is inactive.
The third quality measure is log spectral distortion (LSD) de-
fined as

(20-10g, | A11 ()81 (kw)| —20-log [V (k)2 (48)

where Y (k, w) is the STFT of the filtered output. The LSD mea-
sures the distance between the desired speech recorded by the
first microphone and the algorithm output. Note that a lower
LSD level corresponds to a better performance. The last one is
the PESQ (Perceptual Evaluation of Speech Quality) [50]. It is
a widely accepted industry standard for objective voice quality
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Fig. 12. Waveforms and spectrograms: (a) the clean speech recorded by the first microphone; (b) the contaminated speech at the first microphone (Input SINR =
1.7 dB); (c) the enhanced speech obtained by the SOE Kalman filter; (d) the enhanced speech obtained by the SMI beamformer; (e) the enhanced speech obtained
by the FOE H ., filter; (f) the enhanced speech obtained by the SOE H ., filter.

testing and is used here to access the overall speech enhance- matrix inversion, SMI) [43], the SOE Kalman filter [31], and
ment performance. the first-order extended (FOE) H . filter [32] are implemented

Since the proposed SOE H ., filter is based the MVDR formu-  for comparison. The noise covariance matrix of the SMI beam-
lation, the classical MVDR beamformer (also known as sample  former is estimated during desired source absence and the SMI
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beamformer is implemented using (6) and (7). Note that the SMI
beamformer does not consider the steering error. The experi-
mental results are shown in Figs. 811 according to different
input average SINR, and Mic#1 represents the contaminated
speech recorded by the first microphone. As can be seen, the
proposed SOE H,, filter outperforms the SOE Kalman filter
and the SMI beamformer in SINR, SegNL and PESQ measures.
However, both SOE H. and Kalman filters result in a higher
distortion of the original speech waveform than the SMI beam-
former as both filters are more aggressive in reducing interfer-
ences. This can be observed from the waveforms and spectro-
grams in Fig. 12. Reducing the interferences, particularly in the
low frequency range, also destroys the desired speech signals
(Fig. 12(c) and (d)). It is due to high spatial coherence among
microphones for small microphone spacing. Note that the SMI
beamformer also has the similar effect (blurring of the speech
features in spectrogram at low frequency range in Fig. 12(e)).
Nonetheless, the proposed SOE H ., filter yields the best speech
enhancement performance in terms of PESQ. As a final note,
the SOE Kalman filter performs poorly in PESQ when the input
SINR is low (Fig. 11). This indicates that the algorithm is greatly
influenced by model uncertainties (room reverberation and mi-
crophone mismatch) under real environment. It shows that the
proposed SOE H,,, filter is more robust in these speech quality
measures. The FOE H, filter has similar performance in SINR
and PESQ as the SOE H filter. The main difference can be
seen from their LSD (Fig. 10). It shows that SOE H., filter
results in less distortion than FOE one under mismatch in real
practice.

VI. CONCLUSION

The SOE H . filter-based robust MVDR beamformer for the
acoustic environment has been proposed and the detail deriva-
tion of the SOE H,, filter has also been given in this paper. For
the derivation of the SOE H, filter, the second-order Taylor
series expansion is used to approximate the nonlinear function
and the second-order term is approximated by the estimation
error sample covariance matrix. The SOE H, filter provides
a rigorous method for dealing with systems that have model
uncertainty and this theoretical advantage has been confirmed
by the speech enhancement experiments. Experimental results
show that the proposed SOE H, filter-based robust MVDR
beamformer outperforms the SOE Kalman filter-based robust
MVDR beamformer. The algorithm developed in this work is
based on the sub-band decomposition using STFT. It would be
interesting to derive its counterpart in wide-band approach sim-
ilar to the treatment in [48]. This is left as a future research topic.
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