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a b s t r a c t

In this article we investigate the shallow water magnetohydrodynamic equations in space
dimension one with Dirichlet boundary conditions only for the velocity. This model has
been proposed to study the phenomena in the solar tachocline. In this article, the local
well-posedness in time of the model is proven by constructing the approximate solutions
and showing the strong convergence of the approximate solutions.
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1. Introduction

In geophysical fluid dynamics, when the thickness of the shallow layer of fluid considered is much smaller than the
horizontal scale, the Shallow Water (SW) equations are often commonly used to describe the evolution of such a system
(see [1]). In general, SW equations are considered as a simplified version of the primitive equations and are mainly applied
to model the large-scale dynamics of thinly stratified atmospheric or oceanic flows under the influence of Coriolis force
and thermal forcing. From the mathematical point of view, SW equations have been extensively studied in the literature,
in particular, on the questions such as the existence and uniqueness of solutions and related issues. We refer the interested
reader to e.g. [2–9] and references therein.

In the context of astrophysical dynamics, the shallow water magnetohydrodynamic (SWMHD) equations for studying
the phenomena in the solar tachocline were (to the best of our knowledge) first introduced by Gilman [10] and the word
tachocline was introduced for the first time in [11]. In the literature, there are some theoretical and numerical works
available for studying the shallowwatermagnetohydrodynamic equations (for theoreticalworks, see [12–14]; for numerical
works, see [15–20]). However, as far as we know, there has been very few work on the subject of the well-posedness of the
shallowwater magnetohydrodynamic equations addressed in the literature. In the article, we are interested in studying the
existence and uniqueness of solutions to the shallow water magnetohydrodynamic equations.

In this article, the one-dimensional shallow water magnetohydrodynamic equations are considered. For the Cauchy
problem of the equations, the well-posed result follows from the general theory of quasilinear hyperbolic systems (see
e.g. [21]). As for the periodic boundary condition or Dirichlet boundary condition, to the best of our knowledge, these
problems have not been solved yet. More specifically, no general theory of quasilinear hyperbolic systems can be applied
directly. In this work, we deal with the case of the Dirichlet boundary condition. The case of the periodic boundary condition
will be addressed elsewhere.

In the presented work, we consider the one-dimensional shallowwater magnetohydrodynamic equations with Dirichlet
boundary conditions only imposed on the velocity. Under the assumption that the height remains strictly positive, as the
ideas used in [9], we are able to show the existence and uniqueness of the strong solutions to the system on a certain time
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interval depending on the initial data. Indeed, we consider a new systemderived from expressing themagnetic field in terms
of the height due to the one-dimensional structure. Then, we construct approximate solutions by iteratively solving some
linearized equations and show that these sequences are Cauchy in suitable Hilbert spaces. The difficulty of the estimates
comes from the nonlinearity of the magnetic field, which can be solved under the suitable assumption on the height. At
the end, we show that the sequences strongly converge to the limits which are the solutions of our problem. As for other
higher dimensions, various boundary conditions or relatedmathematical issues to the shallowwatermagnetohydrodynamic
equations, these problems will be studied elsewhere.

The rest of the article is organized as follows. In Section 2, we recall the equations and state ourmain results. In Section 3,
we construct the approximate linear system,make various a priori estimates, derive the uniform boundedness in t and show
the positivity of the approximate height. Finally, we conclude the proof of the existence and uniqueness of strong solutions
in Section 4.

2. The shallow water magnetohydrodynamic equations: main results

In this section, we consider the one-dimensional shallow water magnetohydrodynamic equations on the interval
I = [0, 1] as [10,12]:

∂u
∂t

+ u
∂u
∂x

− B
∂B
∂x

+ g
∂h
∂x

= 0,

∂B
∂t

+ u
∂B
∂x

− B
∂u
∂x

= 0,

∂h
∂t

+
∂

∂x
(uh) = 0,

∂

∂x
(hB) = 0.

(1)

Here the unknown functions u, B and h represent the fluid velocity, themagnetic field and the height of the conducting fluid,
respectively. The constant g is the magnitude of the gravitational acceleration. Equations

u(x, 0) = u0(x), B(x, 0) = B0(x), h(x, 0) = h0(x), (2)

and with the following boundary conditions

u(0, t) = u(1, t) = 0. (3)

We assume that the initial conditions satisfy the compatibility conditions. Namely, the functions u0(x), B0(x), and h0(x)
satisfy

u0(x = 0) = u0(x = 1) = 0,
∂

∂x
(h0B0) = 0. (4)

We also assume that h0(x) ≥ 2H0 > 0 for x ∈ I and H0 is a positive constant. In this article, no boundary conditions are
imposed on the magnetic field and the height.

In what follows we show the following main result.

Theorem 1. Given (u0, B0, h0) in H2(0, 1) which satisfy (4) and h0 ≥ 2H0 > 0. Then there exist a constant T ∗ > 0 depending
on the initial data |u0|H2(0,1), |B0|H2(0,1) and |h0|H2(0,1) and a unique solution (u, B, h) of the problem (1) on the time interval
(0, T ∗) with the initial conditions (2) and boundary conditions (3) such that

(u, B, h) ∈ L∞(0, T ∗
;H2(0, 1)3). (5)

Moreover, h(x, t) ≥ H0 for t ∈ [0, T ∗
].

From (1), we obtain

∂(hB)
∂t

=
∂h
∂t

B +
∂B
∂t

h

= −B

u
∂h
∂x

+ h
∂u
∂x


+ h


B
∂u
∂x

− u
∂B
∂x


= −u

∂(Bh)
∂x

= 0.

Combined with (1)3, we can infer that

hB ≡ C = h0B0

where C is assumed to be a nonzero constant due to the presence of the magnetic field.
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Thus, we observe that Eq. (1) is equivalent to
∂u
∂t

+ u
∂u
∂x

+ g
∂h
∂x

+
C2

h3

∂h
∂x

= 0,

∂h
∂t

+ u
∂h
∂x

+ h
∂u
∂x

= 0,

hB = C .

(6)

Therefore, to prove Theorem 1, we only need to show the following theorem.

Theorem 2. Given (u0, h0) in H2(0, 1) which satisfy (3) and h0 ≥ 2H0 > 0. Then there exist a constant T ∗ > 0 depending
on the initial data |u0|H2(0,1) and |h0|H2(0,1) and a unique solution (u, h) of the problem (6) on the time interval (0, T ∗) with the
initial conditions (2) and boundary conditions (3) such that

(u, h) ∈ L∞(0, T ∗
;H2(0, 1)2). (7)

Moreover, h(x, t) ≥ H0 for t ∈ [0, T ∗
].

Throughout this article, we denote c and ci by various constants depending on the initial data and the size of the domain
only and c can be different at different occurrences.

3. Approximate linear systems

In this section we prove the local existence of strong solutions of (6). The proofs are based on works related to shallow
water equations in [9],which do not take themagnetic field into account. Similarly,we construct approximate linear systems
of the problem (6), obtain various a priori estimates for them and then prove the uniform boundedness in t and the positivity
of the approximate height.

Now, we define u0(x, t) = u0(x), h0(x, t) = h0(x) and then iteratively construct uk+1, hk+1 as the solutions of the
following linear problem:uk+1

t + ukuk+1
x +


g +

C2

(hk)3


hk+1
x = 0,

hk+1
t + hkuk+1

x + ukhk+1
x = 0,

(8)

with the initial conditions

uk+1(x, 0) = u0(x), hk+1(x, 0) = h0(x). (9)

and with the boundary conditions

uk+1(0, t) = uk+1(1, t) = 0. (10)

Now we assume that uk, hk
∈ L∞(0, T ;H2(0, 1)), uk

t , hk
t ∈ L∞(0, T ;H1(0, 1)) and hk(x, t) ≥ H0. We need to show that

uk+1, hk+1 enjoy the same properties.

3.1. Estimates uk+1, hk+1 in L∞(0, T ; L2(0, 1))

Wemultiply (8)1 by hkuk+1 and (8)2 by (g + C2/(hk)3)hk+1, add the resulting equations, integrate over the domain I and
find that 1

0
hkuk+1uk+1

t dx +

 1

0
hkukuk+1uk+1

x dx +

 1

0


g +

C2

(hk)3


hk(uk+1hk+1)x dx

+

 1

0


g +

C2

(hk)3


hk+1hk+1

t dx +

 1

0


g +

C2

(hk)3


ukhk+1hk+1

x dx = 0. (11)

The first term in (11) can be written as 1

0
hkuk+1uk+1

t dx =
1
2

d
dt

 1

0
hk(uk+1)2 dx −

1
2

 1

0
hk
t (u

k+1)2 dx. (12)

To bound the last term in (12), due to the fact that hk
≥ H0 and the Sobolev embedding theorem H1(0, 1) ⊂ L∞(0, 1), we

have  1

0
hk
t (u

k+1)2 dx
 ≤ c|hk

t |H1(0,1)

 1

0
hk(uk+1)2 dx. (13)



218 M.-C. Shiue / Nonlinear Analysis 76 (2013) 215–228

To bound the second term in (11), we have 1

0
hkukuk+1uk+1

x dx
 =

−1
2

 1

0
(hkuk)x(uk+1)2 dx


≤ c(|uk

|L∞(0,1)|hk
x|L∞(0,1) + |uk

x|L∞(0,1))

 1

0
hk(uk+1)2 dx

≤ c(|uk
|H1(0,1)|h

k
|H2(0,1) + |uk

|H2(0,1))

 1

0
hk(uk+1)2 dx. (14)

To bound the third term in (11), we have 1

0


g +

C2

(hk)3


hk(hk+1uk+1)x dx


≤ c

 1

0

hk
x

(hk)4
hk+1uk+1 dx

+ c
 1

0


g +

C2

(hk)3


hk
xh

k+1uk+1 dx


≤ c|hk
|H2(0,1)

 1

0


g +

C2

(hk)3


(hk+1)2 dx

1/2  1

0
hk(uk+1)2 dx

1/2

. (15)

To estimate the fourth term in (11), we obtain 1

0


g +

C2

(hk)3


hk+1hk+1

t dx =
1
2

d
dt

 1

0


g +

C2

(hk)3


(hk+1)2dx −

3
2

 1

0

C2

(hk)4
hk
t (h

k+1)2 dx. (16)

Similarly, the last term in (16) can be bounded by 1

0

C2

(hk)4
hk
t (h

k+1)2 dx
 ≤ c|hk

t |H1(0,1)

 1

0


g +

C2

(hk)3


(hk+1)2 dx. (17)

Combining all the previous estimates, we find that

d
dt

Ik+1
0 (t) ≤ c0ξ k

0 (t)I
k+1
0 (t), (18)

where the function Ik+1(t) is defined as

Ik+1
0 (t) =

 1

0
hk(uk+1)2 dx +

 1

0


g +

C2

(hk)3


(hk+1)2 dx, (19)

and

ξ k
0 (t) = |uk

|H2(0,1) + |uk
|H1(0,1)|h

k
|H2(0,1) + |hk

|H2(0,1) + |hk
t |H1(0,1). (20)

Then applying the Gronwall inequalities for (18), we obtain

Ik+1
0 (t) ≤ Ik+1

0 (0)ec0
 t
0 ξk0 (s) ds. (21)

3.2. Estimates uk+1, hk+1 in L∞(0, T ;H1(0, 1))

To make a priori estimates for uk+1, hk+1 in L∞(0, T ;H1(0, 1)), we differentiate the approximate equations (8) with
respect to the variable x and find thatuk+1

tx + uk
xu

k+1
x + ukuk+1

xx +


g +

C2

(hk)3


hk+1
xx −

3C2

(hk)4
hk
xh

k+1
x = 0,

hk+1
tx + hk

xu
k+1
x + hkuk+1

xx + uk
xh

k+1
x + ukhk+1

xx = 0.
(22)

We multiply (22)1 by hkuk+1
x and (22)2 by (g + C2/(hk)3)hk+1

x , add the resulting equations, integrate over the domain I and
find that 1

0
hkuk+1

x uk+1
tx dx +

 1

0
hkuk

x(u
k+1
x )2 dx +

 1

0
ukhkuk+1

x uk+1
xx dx

+

 1

0


g +

C2

(hk)3


hk(uk+1

x hk+1
x )x dx − 3

 1

0

C2

(hk)3
hk
xu

k+1
x hk+1

x dx
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+

 1

0


g +

C2

(hk)3


hk+1
x hk+1

tx dx +

 1

0


g +

C2

(hk)3


hk+1
x hk

xu
k+1
x dx

+

 1

0


g +

C2

(hk)3


uk
x(h

k+1
x )2 dx +

 1

0


g +

C2

(hk)3


hk+1
x ukhk+1

xx dx = 0. (23)

The first term in (23) can be written as 1

0
hkuk+1

x uk+1
tx dx =

1
2

d
dt

 1

0
hk(uk+1

x )2 dx −
1
2

 1

0
hk
t (u

k+1
x )2 dx. (24)

The last term in (24) can be bounded by 1

0
hk
t (u

k+1
x )2 dx

 ≤ c|hk
t |H1(0,1)

 1

0
hk(uk+1

x )2 dx. (25)

To bound the second term in (23), we have 1

0
hkuk

x(u
k+1
x )2 dx

 ≤ c|uk
|H2(0,1)

 1

0
hk(uk+1

x )2 dx. (26)

To estimate the third term in (23), we obtain 1

0
ukhkuk+1

x uk+1
xx dx

 =
1
2

 1

0
(ukhk)x(uk+1

x )2 dx


≤ c(|uk
|H1(0,1)|h

k
|H2(0,1) + |uk

|H2(0,1))

 1

0
hk(uk+1

x )2 dx. (27)

To bound the fourth term in (23), due to integration by parts, we find that 1

0


g +

C2

(hk)3


hk(uk+1

x hk+1
x )x dx =


g +

C2

(hk)3


uk+1
x hk+1

x |
1
0 −

 1

0


g −

2C2

(hk)3


hk
xu

k+1
x hk+1

x dx. (28)

Thus, we need to calculate the boundary terms from (28). Indeed, we know that uk+1(0, t) = uk+1(1, t) = 0 and this implies
that

uk+1
t (0, t) = uk+1

t (1, t) = 0. (29)

Then, it can be inferred from (8), and (29) that

hk+1
x (0, t) = hk+1

x (1, t) = 0. (30)

Applying (30) in (28), we have 1

0
ukhkuk+1

x uk+1
xx dx

 ≤ c|hk
|H2(0,1)|h

k
|
3/2
H1(0,1)

 1

0


g +

C2

(hk)3


(hk+1

x )2 dx
1/2  1

0
hk(uk+1

x )2 dx
1/2

. (31)

Similarly, the fifth term in (23) can be bounded by 1

0

 C2

(hk)3
hk
xu

k+1
x hk+1

x dx
 ≤ c|hk

|H2(0,1)|h
k
|
3/2
H1(0,1)

 1

0


g +

C2

(hk)3


(hk+1)2 dx

1/2  1

0
hk(uk+1)2 dx

1/2

. (32)

The sixth term in (23) can be written as 1

0


g +

C2

(hk)3


hk+1
x hk+1

tx dx =
1
2

d
dt

 1

0


g +

C2

(hk)3


(hk+1

x )2 dx +
3
2

 1

0

C2

(hk)4
hk
t (h

k+1
x )2 dx. (33)

The last term in (33) can be bounded by 1

0

C2

(hk)4
hk
t (h

k+1
x )2 dx

 ≤ c|hk
t |H1(0,1)

 1

0


g +

C2

(hk)3


(hk+1

x )2 dx. (34)

Similarly, the seventh and eighth terms can be bounded by 1

0


g +

C2

(hk)3


hk+1
x hk

xu
k+1
x dx


≤ c|hk

|H2(0,1)|h
k
|
3/2
H1(0,1)

 1

0


g +

C2

(hk)3


(hk+1)2 dx

1/2  1

0
hk(uk+1)2 dx

1/2

, (35)
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and  1

0


g +

C2

(hk)3


uk
x(h

k+1
x )2 dx

 ≤ c|uk
|H2(0,1)

 1

0


g +

C2

(hk)3


(hk+1

x )2 dx. (36)

To estimate the ninth term in (23), we obtain 1

0


g +

C2

(hk)3


hk+1
x ukhk+1

xx dx
 =

12
 1

0


g +

C2

(hk)3


uk
x − 3

C2

(hk)4
ukhk

x


(hk+1

x )2 dx


≤ c(|uk
|H2(0,1) + |uk

|H1(0,1)|h
k
|H2(0,1)|h

k
|
3/2
H1(0,1)

)

 1

0


g +

C2

(hk)3


(hk+1

x )2 dx. (37)

Combining all the previous estimates, we find that

d
dt

Ik+1
1 (t) ≤ c1ξ k

1 (t)I
k+1
1 (t), (38)

where the function Ik+1
1 (t) is defined as

Ik+1
1 (t) =

 1

0
hk(uk+1

x )2 dx +

 1

0


g +

C2

(hk)3


(hk+1)2 dx, (39)

and

ξ k
1 (t) = ξ k

0 (t) + (1 + |uk
|H1(0,1))|h

k
|H2(0,1)|h

k
|
3/2
H1(0,1)

. (40)

Using the Gronwall inequalities to (38), we obtain

Ik+1
1 (t) ≤ Ik+1

1 (0)e

c1
 t
0 ξk(s) ds


. (41)

3.3. Estimates uk+1, hk+1 in L∞(0, T ;H2(0, 1))

Again, to make a priori estimates for uk+1, hk+1 in L∞(0, T ;H2(0, 1)), we differentiate (22) with respect to the variable x
and obtain

uk+1
txx + uk

xxu
k+1
x + 2uk

xu
k+1
xx + ukuk+1

xxx −
6C2

(hk)4
hk
xh

k+1
xx +


g +

C2

(hk)3


hk+1
xxx

+
12C2

(hk)5
(hk

x)
2hk+1

x −
3C2

(hk)4
hk
xxh

k+1
x = 0,

hk+1
txx + 2hk

xxu
k+1
x + hk

xu
k+1
xx + hkuk+1

xxx + uk
xxh

k+1
x + 2uk

xh
k+1
xx + ukhk+1

xxx = 0.

(42)

We multiply (42)1 by hkuk+1
xx and (42)2 by (g + C2/(hk)3)hk+1

xx , add the resulting equations, integrate over the domain I , and
find that 1

0
hkuk+1

xx uk+1
txx dx +

 1

0
hkuk+1

xx uk
xxu

k+1
x dx + 2

 1

0
hkuk

x(u
k+1
xx )2 dx

+

 1

0
hkukuk+1

xx uk+1
xxx dx −

 1

0

6C2

(hk)3
hk
xu

k+1
xx hk+1

xx dx +

 1

0


g +

C2

(hk)3


hk(uk+1

xx hk+1
xx )x dx

+

 1

0

12C2

(hk)4
(hk

x)
2uk+1

xx hk+1
x dx −

 1

0

3C2

(hk)3
hk
xxh

k+1
x uk+1

xx dx +

 1

0


g +

C2

(hk)3


hk+1
xx hk+1

txx dx

+ 2
 1

0


g +

C2

(hk)3


hk
xxu

k+1
x hk+1

xx dx +

 1

0


g +

C2

(hk)3


hk
xh

k+1
xx uk+1

xx dx

+

 1

0


g +

C2

(hk)3


uk
xxh

k+1
x hk+1

xx dx + 2
 1

0


g +

C2

(hk)3


uk
x(h

k+1
xx )2 dx

+

 1

0


g +

C2

(hk)3


ukhk+1

xx hk+1
xxx dx = 0. (43)

The first term in (43) can be written as 1

0
hkuk+1

xx uk+1
txx dx =

1
2

d
dt

 1

0
hk(uk+1

xx )2 dx −
1
2

 1

0
hk
t (u

k+1
xx ) dx, (44)
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and the last term can be bounded by 1

0
hk
t (u

k+1
xx ) dx

 ≤ c|hk
t |H1(0,1)

 1

0
hk(uk+1

xx )2 dx. (45)

To bound the second, seventh, eighth, tenth and twelfth terms in (42), we obtain 1

0
hkuk+1

xx uk
xxu

k+1
x dx

 ≤ |hk
|L∞(0,1)|uk+1

x |L∞(0,1)|uk
xx|L2(0,1)|u

k+1
xx |L2(0,1)

≤ c|hk
|H1(0,1)|u

k
|H2(0,1)(|u

k+1
x |L2(0,1) + |uk+1

xx |L2(0,1))|u
k+1
xx |L2(0,1)

≤ c|hk
|H1(0,1)|u

k
|H2(0,1)

 1

0
hk(uk+1

x )2 dx +

 1

0
hk(uk+1

xx )2 dx


. (46)

 1

0

12C2

(hk)4
(hk

x)
2uk+1

xx hk+1
x dx

 ≤ c|hk
|
2
H2(0,1)|h

k
|
3/2
H1(0,1)

 1

0
hk(uk+1

xx )2 dx
1/2

×

 1

0


g +

C2

(hk)3


(hk+1

xx )2 dx
1/2

. (47)

 1

0

3C2

(hk)3
hk
xxu

k+1
xx hk+1

x dx
 ≤ c|hk

|H2(0,1)|h
k
|
3/2
H1(0,1)

 1

0
hk(uk+1

xx )

2

dx

+

 1

0


g +

C2

(hk)3


(hk+1

x )2 dx +

 1

0


g +

C2

(hk)3


(hk+1

xx )2 dx. (48)

 1

0


g +

C2

(hk)3


hk
xxu

k+1
x hk+1

xx dx
 ≤ c|hk

|H2(0,1)|h
k
|
3/2
H1(0,1)

 1

0
hk(uk+1

xx )2 dx

+

 1

0
hk(uk+1

x )2 dx +

 1

0


g +

C2

(hk)3


(hk+1

xx )2 dx


. (49)

and  1

0


g +

C2

(hk)3


uk
xxh

k+1
x hk+1

xx dx
 ≤ c|uk

|H2(0,1)|h
k
|
3/2
H1(0,1)

 1

0
hk(uk+1

xx )2 dx

+

 1

0


g +

C2

(hk)3


(hk+1

x )2 dx +

 1

0


g +

C2

(hk)3


(hk+1

xx )2 dx


. (50)

To estimate the third and thirteenth terms in (42), we have 1

0
hkuk

x(u
k+1
xx )2 dx

 ≤ c|uk
|H2(0,1)

 1

0
hk(uk+1

xx )2 dx, (51)

and  1

0


g +

C2

(hk)3


uk
x(h

k+1
xx )2 dx

 ≤ c|uk
|H2(0,1)

 1

0


g +

C2

(hk)3


(hk+1

xx )2 dx. (52)

To bound the fourth and fourteenth terms in (42), due to integration by parts, we find that 1

0
hkukuk+1

xx uk+1
xxx dx

 ≤ c(|uk
|H2(0,1) + |hk

|H2(0,1)|u
k
|H1(0,1))

 1

0
hk(uk+1

xx )2 dx, (53)

and  1

0


g +

C2

(hk)3


ukhk+1

xx hk+1
xxx dx

 ≤ c(|uk
|H2(0,1) + |hk

|H2(0,1)|u
k
|H1(0,1))

 1

0


g +

C2

(hk)3


(hk+1

xx )2 dx. (54)

To estimate the fifth and eleventh terms in (42), we obtain 1

0

C2

(hk)3
hk
xu

k+1
xx hk+1

xx dx
 ≤ c|hk

|H2(0,1)

 0

1
hk(uk+1

xx )2 dx
1/2  1

0


g +

C2

(hk)3


(hk+1

xx )2 dx
1/2

, (55)
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and  1

0


g +

C2

(hk)3


hk
xh

k+1
xx uk+1

xx dx
 ≤ c|hk

|H2(0,1)

 0

1
hk(uk+1

xx )2 dx
1/2  1

0


g +

C2

(hk)3


(hk+1

xx )2 dx
1/2

. (56)

The sixth term in (42) can be written as 1

0


g +

C2

(hk)3


hk(uk+1

xx hk+1
xx )x dx =


g +

C2

(hk)3


hkuk+1

xx hk+1
xx |

1
0 −

 1

0


g −

2C2

(hk)3


hk
xu

k+1
xx hk+1

xx dx. (57)

Thus, we need to calculate the boundary terms from (57). Indeed, we can infer from (30) that

hk+1
xt (0, t) = hk+1

xt (1, t) = 0. (58)

Due to (22), (58) implies that

uk+1
xx (0, t) = uk+1

xx (1, t) = 0. (59)

We can now estimate (57) as 1

0


g +

C2

(hk)3


hk(uk+1

xx hk+1
xx )x dx

 ≤ c|hk
|H2(0,1)|h

k
|
3/2
H1(0,1)

 1

0


g +

C2

(hk)3


(hk+1)2 dx

1/2

×

 1

0
hk(uk+1)2 dx

1/2

. (60)

The ninth term in (42) can be written as 1

0


g +

C2

(hk)3


hk+1
xx hk+1

txx dx =
1
2

d
dt

 1

0


g +

C2

(hk)3


(hk+1

xx )2 dx +
1
2

 1

0

3C2

(hk)4
hk
t (h

k+1
xx )2 dx. (61)

The last term in (61) can be bounded by 1

0

3C2

(hk)4
hk
t (h

k+1
xx )2 dx

 ≤ c|hk
t |H1(0,1)

 1

0


g +

C2

(hk)3


(hk+1

xx )2 dx. (62)

Combining all the previous estimates, we find that

d
dt

Ik+1
2 (t) ≤ c2ξ k

2 (t)I
k+1
2 (t) + c2ξ k

2 (t)I
k+1
1 (t), (63)

where the function Ik+1
2 (t) is defined as

Ik+1
2 (t) =

 1

0
hk(uk+1

xx )2 dx +

 1

0


g +

C2

(hk)3


(hk+1

xx )2 dx, (64)

and

ξ k
2 (t) = ξ k

1 (t) + |hk
|
3/2
H1(0,1)

|uk
|H2(0,1). (65)

Applying the Gronwall lemma to (63), we have

Ik+1
2 (t) ≤ Ik+1

2 (0)e

c2
 t
0 ξk2 (s) ds


+

 t

0
c2ξ k

2 (s)I
k+1
1 (s)e−c2

 s
t ξk2 (z) dz ds.

Due to (41), the above inequality implies that

Ik+1
2 (t) ≤


Ik+1
2 (0) + c3Ik+1

1 (0)
 t

0
ξ k
2 (s) ds


e

c4
 t
0 ξk2 (s) ds


. (66)
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3.4. Estimates uk+1
t , hk+1

t in L∞(0, T ; L2(0, 1))

From (8), we obtain

|uk+1
t |L2(0,1) ≤ |uk

|L∞(0,1)|uk+1
x |L2(0,1) + c|hk+1

x |L2(0,1)

≤ c|uk
|H1(0,1)

 1

0
hk(uk+1

x )2 dx
1/2

+ c|hk
|
3/2
H1(0,1)

 1

0


g +

C2

(hk)3


(hk+1

x )2 dx
1/2

, (67)

and

|hk+1
t |L2(0,1) ≤ c|hk

|H1(0,1)

 1

0
hk(uk+1

x )2 dx
1/2

+ c|hk
|
3/2
H1(0,1)

|uk
|H1(0,1)

 1

0


g +

C2

(hk)3


(hk+1

x )2 dx
1/2

. (68)

The inequalities (67) and (68) imply that

|uk+1
t |

2
L2(0,1) ≤ c5(|uk

|
2
H1(0,1) + |hk

|
3
H1(0,1))I

k+1
1 (0)e


c1
 t
0 ξk1 (s) ds


, (69)

|hk+1
t |

2
L2(0,1) ≤ c5(|hk

|
2
H1(0,1) + |uk

|
2
H1(0,1)|h

k
|
3
H1(0,1))I

k+1
1 (0)e


c1
 t
0 ξk1 (s) ds


. (70)

3.5. Estimates uk+1
t , hk+1

t in L∞(0, T ;H1(0, 1))

To derive a priori estimates for uk+1
t and hk+1

t in L∞(0, T ;H1(0, 1)), we need to estimate uk+1
tx and hk+1

tx in L∞(0, T ;

L2(0, 1)). For that purpose, it can be inferred from (22) that

|uk+1
tx |L2(0,1) ≤ c(|uk

|H2(0,1) + |hk
|H2(0,1))(I

k+1
1 )1/2(t) + c(|uk

|H1(0,1) + 1)(Ik+1
2 )1/2(t), (71)

and

|hk+1
tx |L2(0,1) ≤ c(|hk

|H2(0,1) + |uk
|H2(0,1)|h

k
|
3/2
H1(0,1)

)(Ik+1
1 )1/2(t)

+ c(|hk
|H1(0,1) + |uk

|H1(0,1)|h
k
|
3/2
H1(0,1)

)(Ik+1
2 )1/2(t). (72)

Using (41) and (66), we have

|uk+1
tx |

2
L2(0,1) ≤ c6(|uk

|
2
H2(0,1) + |hk

|
2
H2(0,1))I

k+1
1 (0)ec1

 t
0 ξk1 (s) ds

+ c6(|uk
|
2
H1(0,1) + 1)(Ik+1

2 (0) + c3Ik+1
1 (0)

 t

0
ξ k
2 (s) ds)e


c4
 t
0 ξk2 (s) ds


, (73)

and

|hk+1
tx |

2
L2(0,1) ≤ c6(|hk

|
2
H2(0,1) + |uk

|
2
H2(0,1)|h

k
|
3
H1(0,1))I

k+1
1 (0)ec1

 t
0 ξk1 (s) ds

+ c6(|hk
|
2
H1(0,1) + |uk

|
2
H1(0,1)|h

k
|
3
H1(0,1))


Ik+1
2 (0) + c3Ik+1

1 (0)
 t

0
ξ k
2 (s) ds


e

c4
 t
0 ξk2 (s) ds


. (74)

3.6. Uniform estimates on uk+1 and hk+1

Now, we would like to obtain uniform estimates on uk+1 and hk+1 by induction. This also gives us the existence of the
solutions for the approximate linear system (8)–(10). For that purpose, let two constants α and β satisfy

H0|u0|
2
H2(0,1) =

α

12
,


g +

C2

H0


|h0|

2
H2(0,1) =

β

12
. (75)

We assume that

H0|uk
|
2
L∞(0,T ;H2(0,1)) + g|hk

|
2
L∞(0,T ;H2(0,1)) ≤ α + β, (76)

|uk
t |

2
L∞(0,T ;H1(0,1)) ≤ (c5 + c6)


1 +

α + β

H0


α + β

2
, (77)

|hk
t |

2
L∞(0,T ;H1(0,1)) ≤ (c5 + c6)


1
g

+
1
H0


(α + β)2

2
. (78)
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We will show that the inequalities (76)–(78) hold for all k on a small time T > 0 that does not depend on k by induction. It
is easy to see that inequalities (76)–(78) hold for k = 0. Now we suppose that the inequalities (76)–(78) are true for k = i.
Then, we can infer that there exists a constant γ independent of k such that

|ξ k
2 (t)|L∞(0,1) ≤ γ (α, β).

We will now show that for a small time T > 0 that depends only on α and β , we still have

H0|ui+1
|
2
L∞(0,T ;H2(0,1)) + g|hi+1

|
2
L∞(0,T ;H2(0,1)) ≤ α + β, (79)

|ui+1
t |

2
L∞(0,T ;H1(0,1)) ≤ (c5 + c6)


1 +

α + β

H0


α + β

2
, (80)

|hi+1
t |

2
L∞(0,T ;H1(0,1)) ≤ (c5 + c6)


1
g

+
1
H0


(α + β)2

2
. (81)

By using the inequalities for I i+1
0 , I i+1

1 and I i+1
2 , and the fact that hi

≥ H0, we obtain

H0|ui+1
|
2
L2(0,1) + g|hi+1

|
2
L2(0,1) ≤ I i+1

0 (t) ≤
α + β

12
e(c0γ T ), (82)

H0|ui+1
x |

2
L2(0,1) + g|hi+1

x |
2
L2(0,1) ≤ I i+1

1 (t) ≤
α + β

12
e(c1γ T ), (83)

H0|ui+1
xx |

2
L2(0,1) + g|hi+1

xx |
2
L2(0,1) ≤ I i+1

2 (t) ≤
α + β

12
e(c4γ T )(1 + c3γ T ). (84)

Adding all the inequalities (82)–(84) and choosing suitable T so that c3γ T < 1, we find that

H0|ui+1
|
2
H2(0,1) + g|hi+1

|
2
H2(0,1) ≤

α + β

2
e(max(c0,c1,c4)γ T ).

By choosing T1 small enough such that e(max(c0,c1,c4)γ T ) < 2, we obtain that

H0|ui+1
|
2
H2(0,1) + g|hi+1

|
2
H2(0,1) ≤ α + β, ∀t ≤ T1.

To find T2 small enough such that the inequalities (80) and (81) are true, we use the inequalities (69), (70), (73) and (74)
which yield

|ui+1
t |

2
H1(0,1) ≤ (c5 + c6)


α + β

H0
+ 1


α + β

12
e(max(c1,c2)γ T ),

and

|hi+1
t |

2
H1(0,1) ≤ (c5 + c6)


1
H0

+
1
g


(α + β)2

12
e(max(c1,c2)γ T ).

By taking T2 small enough such that e(max c1,c2)γ T2) ≤ 2, the inequalities (80) and (81) are true for t ≤ t2.
To complete the induction, we take T ∗

= min(T1, T2) and find that all the inequalities (82)–(84) are satisfied for t ≤ T ∗

where α, β, γ and T ∗ do not depend on k.
Now, we need to show that the relation that hk+1

≥ H0 is still true since we assume the same relation satisfied by hk.
This can be proven by showing that there exists a small time (independent of k and possibly smaller than T ∗) such that

|hk+1(x, t) − h0(x)| < H0,

which implies that hk+1
≥ H0. Note that we still denote this small time as T ∗. Similar proofs can be found in [9].

4. Existence and uniqueness of strong solutions

In this section, we will show the existence and uniqueness of the strong solutions for Eq. (6) for a small time T ∗.

4.1. Existence

To prove the existence of the solutions, the main key is to verify that the sequences {uk
}
∞

k=1 and {hk
}
∞

k=1 constructed by
solving the approximate linear systems (8)–(10) are Cauchy in C([0, T ∗

];H1(0, 1)). For that purpose, we write
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vk+1
= uk+1

− uk,

Φk+1
= hk+1

− hk,

and find that vk+1 and Φk+1 satisfyvk+1
t + ukvk+1

x + vkuk
x +


g +

C2

(hk)3


Φk+1

x + C2


1
(hk)3

−
1

(hk − Φk)3


hk
x = 0,

Φk+1
t + ukΦk+1

x + vkhk
x + hkvk+1

x + uk
xΦ

k
= 0,

(85)

with the initial conditions

vk+1(x, 0) = 0, Φk+1
= 0, (86)

and the boundary conditions

vk+1(0, t) = vk+1(1, t) = 0. (87)

A priori estimates for vk+1 and Φk+1 in L∞(0, T ∗
;H1(0, 1)). Multiplying (85)1 by hkvk+1, (85)2 by


g +

C2

(hk)3


Φk+1, adding

the resulting equations, integrating the equation over the domain I and applying the integration by parts and boundary
conditions, we find that

1
2

d
dt

 1

0


hk(vk+1)2 +


g +

C2

(hk)3


(Φk+1)2


dx −

1
2


0
hk
t (v

k+1)2 dx

−
1
2

 1

0
(ukhk)x(v

k+1)2 dx +

 1

0
hkvkuk

xv
k+1 dx

−

 1

0


g +

C2

(hk)3


hk


x
vk+1Φk+1 dx +

 1

0
C2hkvk+1hk

x


1

(hk)3
−

1
(hk − Φk)3


dx

+
3
2

 1

0

C2

(hk)4
hk
t (Φ

k+1)2 dx −
1
2

 1

0


g +

C2

(hk)3


uk


x
(Φk+1)2 dx

+

 1

0


g +

C2

(hk)3


vkhk

xΦ
k+1 dx +

 1

0


g +

C2

(hk)3


hkΦk+1vk+1

x dx

+

 1

0


g +

C2

(hk)3


uk
xΦ

kΦk+1 dx = 0. (88)

To estimate Eq. (88), we point out how to deal with the sixth term in (88) since other terms can be estimated as before. Due
to the condition that hk

− Φk
= hk−1 is bounded below, we obtain 1

0
C2hkvk+1hk

x


1

(hk)3
−

1
(hk − Φk)3


dx


≤ c|hk
|
1/2
H1(0,1)

|hk
|H2(0,1)|h

k−1
|
3/2
H1(0,1)

 1

0
hk(vk+1)2 dx

1/2  1

0


g +

C2

(hk−1)3


(Φk)2 dx

1/2

.

We have the following inequality:

d
dt

Jk+1
0 (t) ≤ c7ξ k

2 J
k+1
0 (t) + c8(ξ k

2 + |hk−1
|
3
H1(0,1))J

k
0(t), (89)

where the term Jk+1
0 is defined as

Jk+1
0 (t) =

 1

0
hk(vk+1)2 dx +

 1

0


g +

C2

(hk)3


(Φk+1)2 dx.

Since we have that the term |hk−1
|
7
H1(0,1)

is bounded and independent of all k, we set

|hk−1
|
3
H1(0,1) ≤ γ1 = γ1(α, β),

where γ1 is a constant that does not depend on k.
Then, using the Gronwall inequality and the fact that Jk+1

0 (0) = 0, we obtain

Jk+1
0 (t) ≤ c8

 t

0
(ξ k

2 (s) + γ1)Jk0(s) ds e
(c7

 t
0 ξk2 (s) dx)

≤ c8(γ ec7γ T∗

+ γ1)T ∗ sup
0≤s≤T∗

Jk0(s).
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By taking T ∗ small enough so that c8(γ + γ1)ec7γ T∗

T ∗
≤

1
2 , we find that

H0|v
k+1

|
2
L2(0,1) + g|Φk+1

|
2
L2(0,1) ≤ Jk+1

0 (t) ≤
c9

2k+1
, ∀0 ≤ t ≤ T ∗ and k. (90)

Thus, we show that the sequences {uk
} and {hk

} are Cauchy in C([0, T ∗
]; L2(0, 1)), which implies that the strong convergence

of uk and hk in C([0, T ∗
]; L2(0, 1)) is verified.

To estimate vk+1 and Φk+1 in C([0, T ∗
];H1(0, 1)), we differentiate (85) with respect to the variable x, multiply the first

equation by hkvk+1
x , the second equation by


g +

C2

(hk)3


Φk+1

x , add the resulting equation and integrating the equation over
the domain I , we find that, after using the integration by parts and boundary conditions,

1
2

 1

0
hk(vk+1

x )2 dx +

 1

0


g +

C2

(hk)3


(Φk+1

x )2 dx


−
1
2

 1

0
hk
t (v

k+1
x )2 dx

+

 1

0
hkuk

x(v
k+1
x )2 dx −

1
2

 1

0
(hkuk)x(v

k+1
x )2 dx +

 1

0
hkuk

xv
k
xv

k+1
x dx

+

 1

0
hkuk

xxv
k+1
x vk dx −

 1

0


g +

C2

(hk)3


hk


x
Φk+1

x vk+1
x dx − 3C2

 1

0
vk+1
x

hk
x

(hk)3
Φk+1

x dx

+ C2
 1

0
hkvk+1

x


−3hk

x

(hk)4
+

3(hk
x − Φk

x )

(hk − Φk)4


hk
x dx + C2

 1

0


1

(hk)3
−

1
(hk − Φk)3


hk
xxh

kvk+1
x dx

+
3C2

2

 1

0

hk
t

(hk)4
(Φxk + 1)2 dx +

 1

0


g +

C2

(hk)3


uk
x(Φ

k+1
x )2 dx

−
1
2

 1

0


g +

C2

(hk)3


uk


x
(Φk+1

x )2 dx +

 1

0


g +

C2

(hk)3


Φk+1

x vk
xh

k
x dx

+

 1

0


g +

C2

(hk)3


Φk+1

x vkhk
xx dx +

 1

0


g +

C2

(hk)3


Φk+1

x hk
xv

k+1
x dx

+

 1

0


g +

C2

(hk)3


Φk+1

x uk
xxΦ

k dx +

 1

0


g +

C2

(hk)3


Φk+1

x uk
xΦ

k
x dx = 0. (91)

To estimate the terms in (91), we only present how to estimate the ninth and tenth terms in (91) since other terms can be
estimated by applying previous techniques. To bound the ninth term in (91), we have3C2

 1

0
hkvk+1

x


−hk

x

(hk)4
+

(hk
x − Φk

x )

(hk − Φk)4


hk
x dx


≤

3C2
 1

0
hkvk+1

x


−1

(hk)4
+

1
(hk − Φk)4


(hk

x)
2 dx

+ 3C2
 1

0

hkvk+1
x hk

xΦ
k
x

(hk − Φk)4
dx


≤ c|hk
|
2
H2(0,1)|h

k−1
|
3/2
H1(0,1)

(Jk0)
1/2
 1

0
hk(vk+1

x )2 dx
1/2

+ c|hk
|H1(0,1)|h

k
|H2(0,1)|h

k−1
|
3/2
H1(0,1)

 1

0
hk(vk+1

x )2 dx
1/2  1

0


g +

C2

(hk−1)3


(Φk

x )
2 dx

1/2

. (92)

As for the tenth term in (91), we find thatC2
 1

0


1

(hk)3
−

1
(hk − Φk)3


hk
xxh

kvk+1
x dx


≤ c

 1

0
|Φk

||hk
xx||v

k+1
x | dx

≤ c(|Φk
|L2(0,1) + |Φk

x |L2(0,1))|h
k
|H2(0,1)

 1

0
hk(vk+1

x )2 dx
1/2

≤ c|hk
|H2(0,1)|h

k−1
|
3/2
H2(0,1)

 1

0


g +

C2

(hk−1)3


(Φk

x )
2 dx

1/2

+ (Jk0)
1/2

 1

0
hk(vk+1

x )2 dx
1/2

. (93)

Therefore, combining (92) and (93), we obtain that

d
dt

Jk+1
1 (t) ≤ cξ3(t)(Jk+1

1 (t) + Jk1(t) + Jk0(t)), (94)
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where the function Jk+1
1 (t) is defined as

Jk+1
1 (t) =

 1

0
hk(vk+1

x )2 dx +

 1

0


g +

C2

(hk)3


(Φk+1

x )2 dx,

and
ξ3(t) = ξ k

2 (t) + (1 + |hk
|H1(0,1))|h

k
|H2(0,1)|h

k−1
|
3/2
H2(0,1)

.

Adding (89) and (94), we find that
d
dt

(Jk+1
0 (t) + Jk+1

0 (t)) ≤ c10ξ3(t)(Jk+1
0 (t) + Jk+1

1 (t)) + c11(ξ3(t) + |hk−1
|
7
H1(0,1))(J

k
0(t) + Jk1(t)). (95)

Since ξ3 + |hk−1
|
7
H1(0,1)

is uniformly bounded in [0, T ∗
], after using the Gronwall inequality for (95) and the fact that

Jk+1
0 (0) = Jk+1

1 (0) = 0, we obtain that

Jk+1
0 (t) + Jk+1

1 (t) ≤ c11

 t

0
(ξ3(s) + |hk−1(s)|7H1(0,1))(J

k
0(s) + Jk1(s)) ds e

 t
0 c10ξ3(s) s

≤ c11(γ2 + γ1)ec10γ2T
∗

T ∗ sup
0<s<T∗

(Jk0(s) + Jk1(s)), (96)

where γ2 is a constant independent of k and satisfying
ξ3(t) ≤ γ2.

By taking T ∗ small enough such that c11T ∗(γ1 + γ2)ec10γ2T
∗

< 1/2, we find that for all k

H0|v
k+1

|
2
H1(0,1) + g|Φk+1

|
2
H1(0,1) ≤ Jk+1

0 (t) + Jk+1
1 (t) ≤

c
2k+1

, for t ∈ [0, T ∗
]. (97)

Thanks to (97), we can deduce that the sequences {uk
} and {hk

} are Cauchy in C([0, T ∗
];H1(0, 1)). Thus, there exist functions

(u, h) ∈ C([0, T ∗
];H1(0, 1)) such that uk and hk strongly converge to u and h in C([0, T ∗

];H1(0, 1)), respectively. To show
that u and h are the solutions to the system (6), we can indeed pass to the limit in the approximate linear system (8) and
find that u and h satisfy the system (6). Furthermore, since {uk

} and {hk
} are bounded in L∞(0, T ∗

;H2(0, 1)), we can deduce
that the solutions u and h also belong to L∞(0, T ∗

;H2(0, 1)). Then, the existence of the solution is established.

4.2. Uniqueness

To show the uniqueness of the solution to (6), we assume that two solutions (u1, h1) and (u2, h2) ∈ L∞(0, T ∗
;H2(0, 1))

satisfy (6). Then we write
v = u1 − u2,
Φ = h1 − h2,

and find that v and Φ satisfyvt + u1,xv + u2vx +


g +

C2

(h1)3


Φx + C2


1

(h1)3
−

1
(h1 − Φ)3


h2,x = 0,

Φt + h1,xv + u2Φx + h1vx + u2,xΦ = 0,
(98)

with the initial conditions
v(x, 0) = 0, Φ(x, 0) = 0, (99)

and with the boundary conditions

v(0, t) = v(1, t) = 0, ∀t ∈ [0, T ∗
]. (100)

Multiplying (98)1 by h1v, (98)2 by

g +

C2

(h1)3


Φ , integrating over the domain I , adding the resulting equations and using

the integration by parts and the boundary conditions, we obtain
1
2

 1

0


h1v

2
+


g +

C2

(h1)3


Φ2


dx −
1
2

 1

0
h1,tv

2 dx +

 1

0
h1u1,xv

2 dx

−
1
2

 1

0
(h1u2)xv

2 dx +

 1

0


g +

C2

(h1)3


h1(vΦ)x dx +

 1

0
C2


1
(h1)3

−
1

(h1 − Φ)3


h1,xv dx

+
3
2

 1

0

C2

(h1)4
h1,tΦ

2 dx +

 1

0


g +

C2

(h1)3


h1,xvΦ dx −

1
2

 1

0


g +

C2

(h1)3


u2


x
Φ2 dx

+

 1

0


g +

C2

(h1)3


u2,xΦ

2 dx = 0. (101)
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As before, using similar techniques, we derive the following inequality:

d
dt

 1

0


h1v

2
+


g +

C2

(h1)3


Φ2


dx


≤ c(|h1,t |H1(0,1) + |u1|H2(0,1) + |h1|H2(0,1)|u2|H1(0,1)

+ |u2|H2(0,1) + |h1|H2(0,1)|h1|
3/2
H1(0,1)

)

 1

0


h1v

2
+


g +

C2

(h1)3


Φ2


dx


. (102)

Applying the Gronwall inequality for (102) and using the initial conditions, we obtain that 1

0
(H0v

2
+ gΦ2) dx ≤

 1

0


h1v

2
+


g +

C2

(h1)3


Φ2


dx = 0, ∀ t ∈ [0, T ∗
],

which implies that the solution is unique.
Finally, the proof of Theorem 2 is complete.
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