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a b s t r a c t

We consider the solution of large-scale algebraic Riccati equations with numerically low-
ranked solutions. For the discrete-time case, the structure-preserving doubling algorithm
has been adapted, with the iterates for A not explicitly computed but in the recursive
form Ak = A2

k−1 − D(1)
k S−1k [D

(2)
k ]
⊤, with D(1)

k and D(2)
k being low-ranked and S−1k being

small in dimension. For the continuous-time case, the algebraic Riccati equation will
be first treated with the Cayley transform before doubling is applied. With n being the
dimension of the algebraic equations, the resulting algorithms are of an efficient O(n)
computational complexity per iteration, without the need for any inner iterations, and
essentially converge quadratically. Some numerical results will be presented. For instance
in Section 5.2, Example 3, of dimension n = 20 209 with 204 million variables in the
solution X , was solved using MATLAB on a MacBook Pro within 45 s to a machine accuracy
of O(10−16).

© 2012 Elsevier B.V. All rights reserved.

1. Large-scale algebraic Riccati equations

Let the system matrix A be large and sparse, possibly with band structures. The discrete-time algebraic Riccati equation
(DARE):

D(X) ≡ −X + A⊤X(I + GX)−1A+ H = 0, (1a)

and the continuous-time algebraic Riccati equation (CARE):

C(X) ≡ A⊤X + XA− XGX + H = 0, (1b)

with the low-ranked

G = BR−1B⊤, H = CT−1C⊤, (1c)

where B ∈ Rn×m, C ∈ Rn×l and m, l≪ n, arise often in linear–quadratic optimal control problems [1,2].
The solution of CAREs and DAREs has been an extremely active area of research; see, e.g., [3,1,2]. The usual solution

methods such as the Schur vector method, symplectic SR methods, the matrix sign function, the matrix disk function or the
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doubling method have not made (full) use of the sparsity and structure in A,G and H . Requiring in general O(n3) flops and
workspace of size O(n2), these methods are obviously inappropriate for the large-scale problems we are interested in here.

For control problems for parabolic PDEs and the balancing based model order reduction of large linear systems, large-
scale CAREs and DAREs have to be solved [4–9]. As stated in [10,11], ‘‘the basic observation on which all methods for solving
such kinds ofmatrix equations are based, is that often the (numerical) rank of the solution is very small compared to its actual
dimension and therefore it allows for a good approximation via low rank solution factors’’. Importantly, without solving
the corresponding algebraic Riccati equations, alternative solutions to the optimal control problem require the deflating
subspace of the corresponding Hamiltonian matrices or (generalized) symplectic pencils which are prohibitively expensive
to compute.

Benner, Fassbender and Saak have done much on large-scale algebraic Riccati equations; see [10–13] and the references
therein. They built theirmethods on (inexact) Newton’smethodswith inner iterations for the associated Lyapunov and Stein
equations. We shall adapt the structure-preserving doubling algorithm (SDA) [14–16], making use of the sparsity in A and
the low-ranked structures in G and H . For other applications of the SDA, see [17].

2. Structure-preserving doubling algorithm for DAREs

We shall abbreviate the discussion for DAREs; please consult [18] for details.
The structure-preserving doubling algorithm (SDA) [15], assuming (I + GH)−1 exists, has the following form:G← G+ A(I + GH)−1GA⊤,

H ← H + A⊤H(I + GH)−1A,

A← A(I + GH)−1A.

(2)

We shall apply the Sherman–Morrison–Woodbury formula (SMWF) to (I + GH)−1 and make use of the low-ranked forms
of G and H in (1c).

2.1. Large-scale SDA

From the first glance, the iteration for A in the SDA in (2) appears doomed, with O(n3) operations for the products of full
matrices. However, with the low rank form in (1c), we shall organize the SDA into the form: (for k = 1, 2, . . .)

Ak = A2
k−1 − D(1)

k S−1k


D(2)
k

⊤
,

Gk = BkR−1k B⊤k ,

Hk = CkT−1k C⊤k .

(3)

The application of the SMWF on (In + GkHk)
−1 yields

Ak+1 = Ak(In + GkHk)
−1Ak

= Ak


In − GkCkT−1k


Ilk + C⊤k GkCkT−1k

−1
C⊤k


Ak

= Ak


In − Bk


Imk + R−1k B⊤k HkBk

−1
R−1k B⊤k Hk


Ak,

where Ck and Bk have respectively lk and mk columns. It will be obvious that it is more convenient to work with S−1k , R−1k
and T−1k , and we retain the inverse notation only for historical reasons, although there is no actual inversion involved.
Consequently, with Ck ∈ Rn×lk and Bk ∈ Rn×mk , we have

Ak+1 = A2
k − D(1)

k+1S
−1
k+1


D(2)
k+1

⊤
, (4)

with the update of ‘‘size’’ lk defined by

D(1)
k+1 = AkGkCk, D(2)

k+1 = A⊤k Ck, S−1k+1 = T−1k


Ilk + C⊤k GkCkT−1k

−1
∈ Rlk×lk , (5a)

or the update of ‘‘size’’mk defined by

D(1)
k+1 = AkBk, D(2)

k+1 = A⊤k HkBk, S−1k+1 =

Imk + R−1k B⊤k HkBk

−1
R−1k ∈ Rmk×mk , (5b)

all involving O(n3) operations for a dense A. The operation counts will be reduced to O(n) with the assumption that the
maximum number of nonzero components in any row or column of A is much less than n (see Table 2 in Section 4.2). The
trick is not to form Ak explicitly. Note that we have to store all the Bi, Ci, R−1i and T−1i for i = 0, 1, . . . , k− 1 to facilitate the
multiplication of low-ranked matrices by Ak or A⊤k .
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Wemay choose between (5a) and (5b) based on the sizes lk andmk. Ignoring the small saving in the inversion of smaller
matrices, the compression and truncation in the next section produces the leaner Bk and Ck, which makes the choice here
irrelevant. However, this choice may be important when G or H are not low-ranked.

The induction proof of the general form of Ak in (4)–(5b) can be completed by considering the initial k = 1 case, which
is trivial.

For Bk, Ck and Rk, applying the SMWF to (I + GkHk)
−1 in the SDA, we have

Gk+1 = Gk + AkGkA⊤k − AkGkCkT−1k


Ilk + C⊤k GkCkT−1k

−1
C⊤k GkA⊤k

= Gk + AkGkA⊤k − AkBk

Imk + R−1k B⊤k HkBk

−1
R−1k B⊤k HkGkA⊤k , (6)

and

Hk+1 = Hk + A⊤k HkAk − A⊤k HkGkCkT−1k


Ilk + C⊤k GkCkT−1k

−1
C⊤k Ak

= Hk + A⊤k HkAk − A⊤k HkBk(Imk + R−1k B⊤k HkBk)
−1R−1k B⊤k HkAk. (7)

These imply that

Bk+1 = [Bk, AkBk], Ck+1 = [Ck, A⊤k Ck], (8)

R−1k+1 = R−1k ⊕


R−1k − R−1k B⊤k CkT−1k


Ilk + C⊤k GkCkT−1k

−1
C⊤k BkR−1k


(9a)

= R−1k ⊕


R−1k −


Imk + R−1k B⊤k HkBk

−1
R−1k B⊤k HkBkR−1k


, (9b)

T−1k+1 = T−1k ⊕


T−1k − T−1k C⊤k GkCkT−1k


Ilk + C⊤k GkCkT−1k

−1
(10a)

= T−1k ⊕


T−1k − T−1k C⊤k Bk


Imk + R−1k B⊤k HkBk

−1
R−1k B⊤k CkT−1k


(10b)

with the initial values

A0 = A, B0 = B, C0 = C, R0 = R, T0 = T . (11)

We have shown that the SDA can be organized into the form (3). The existence of R−1k , T−1k and (In + GkHk)
−1 guarantees

the same for other inverses in (9a)–(10b). Note that R−1k , S−1k and T−1k are symmetric for all k. Again, the choice in (9a)–(10b)
may be relevant when G or H are not low-ranked.

For well-behaved DAREs [14,15], we have Hk = CkT−1k C⊤k → X and Gk = BkR−1k B⊤k → Y (solution of the dual DARE) as
k→∞.

Note that the ranks of X and Y have been observed to be numerically low-ranked. Under suitable assumptions [14,15],
the convergence of the SDA implies the convergence of Ak = O(|λ|2

k
)→ 0, for some |λ| < 1. Together with (8)–(10b), we

see that Bk+1 and Ck+1 equal, respectively, the sums of Bk and Ck and the diminishing components AkBk and A⊤k Ck. Thus the
observation about the low numerical ranks of X and Y has been shown to be true.

2.2. Compression and truncation of Bk and Ck

Nowwe shall consider an important aspect of the SDA for large-scale DAREs (SDA_ls)—the growth of Bk and Ck. Obviously,
as the SDA converges, increasingly smaller components are added to Bk and Ck. As is apparent from (8), the growth in the sizes
and ranks of these iterates is potentially exponential. Let the computational complexity of the SDA_ls be O(n) = αn+O(1).
If the convergence is slow relative to the growth in Bk and Ck, the algorithm will fail, with α growing exponentially (see
Table 2 in Section 4.2). In such cases, X is obviously no longer numerically low-ranked, with respect to some given truncation
tolerance (see τ1, τ2 in (10) and (11)). It will then be extremely challenging to approximate X in O(n) computational
complexity to high accuracy, by any method. One possibility will be to accept approximations to X to lower accuracies
with a higher truncation tolerance, thus lowering the corresponding numerical rank of X .

To reduce the dimensions of Bk, Ck,D
(1)
k and D(2)

k , we shall compress their columns by orthogonaization. Consider the QR
decompositions with column pivoting:

Bk = Q1kM1k +Q1kM1k,

Ck = Q2kM2k +Q2kM2k

with

∥M1k∥ ≤ τ1, ∥M2k∥ ≤ τ2
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where τi (i = 1, 2) are some small tolerances controlling the compression and truncation process, lk andmk are respectively
the numbers of columns in Bk and Ck bounded from above by some correspondingmmax and lmax,

r1k = rankBk ≤ lk ≤ mmax ≪ n,
r2k = rankCk ≤ mk ≤ lmax ≪ n,

and for i = 1, 2,Qik ∈ Rn×rik are unitary andMik ∈ Rrik×nik are full-ranked and upper triangular. We then have

BkR−1k B⊤k = Q1k

M1kR−1k M⊤1k


Q⊤1k + O(τ1), (12)

CkT−1k C⊤k = Q2k

M2kT−1k M⊤2k


Q⊤2k + O(τ2), (13)

and we should replace Bk and R−1k (or, Ck and T−1k ) respectively by the leaner Q1k and M1kR−1k M⊤1k (or, Q2k and M2kT−1k M⊤2k).
We may ignore compressing and truncating D(1)

k and D(2)
k after compressing and truncating Bk and Ck. As a result, we ignore

the O(τi) terms and control the growth of rik while sacrificing a hopefully negligible bit of accuracy.
Interestingly, we need only R, T and I+GkHk to be invertible (which imply the invertibility of Rk and Tk for all k), opening

up the possibility of dealing with DAREs with indefinite Rs and Ts [19].
Eqs. (4) (used recursively but not explicitly), (5a) (or (5b)), (8), (9a) (or (9b)), (10a) (or (10b)), (12) and (13), together with

the corresponding initial values in (11), constitute the SDA_ls.

2.3. SDA and Krylov subspaces

There is an interesting relationship between the SDA_ls and Krylov subspaces. Define the Krylov subspaces

Kk(A, B) ≡

span{B} (k = 0),
span{B, AB, A2B, . . . , A2k−1B} (k > 0).

From (4) and (8), we can see that

B0 = B ∈ K0(A, B), B1 = [B, AB] ∈ K1(A, B)

and, for some low-ranked F ,

B2 =

B1, A1B1] = [B, AB, (A2

− ABF⊤)(B, AB)

∈ K2(A, B).

(We have abused notations, with V ∈ Kk(A, B) meaning span{V } ⊆ Kk(A, B).) Similarly, it is easy to show that

Bk ∈ Kk(A, B), Ck ∈ Kk(A⊤, C).

In other words, the general SDA is closely related to approximating the solutions X and Y using Krylov subspaces, with
additional components vanishing quadratically. However, for problems of small size n, Bk and Ck become full-ranked after
a few iterations.

The Krylov subspaces Kk(A, B) play a vital part in the fast convergence of the SDA, which comes from two sources. Apart
from the diminishing Ak contributing in (2) in the updating of G and H , the power of approximation of the corresponding
Krylov subspaces also contributes, creating cancellations in Gk+1 and Hk+1 in (6) and (7). This phenomenon has been
confirmed in some extreme examples, with some eigenvalue λ of the symplectic matrix pencil associated with the DARE
nearly on the unit circle [16]. Instead of the number of iterations predicted purely from λ for convergence, the SDA requires
significantly less.

2.4. Errors of SDA_ls

The SDA_ls can be interpreted as a Galerkin method, or directly from (2). With

δk ≡ max{∥δGk∥, ∥δHk∥, ∥δAk∥},

where δGk, δHk and δAk are respectively the truncation/round-off errors in Gk,Hk and Ak, we can show

δk+1 ≤ (1+ ck)δk + O(δ2
k ), (14)

with ck → 0 as k → ∞. A more detailed discussion can be found in [18, Section 2.5]. Essentially, we limit the rank of
the approximation to X , trading off the accuracy in X with the efficiency of the SDA_ls. Assume that the compression and
truncation in (12) and (13) create errors of O(τi) (i = 1, 2) in Gk and Hk, respectively. It is easy to see from (14) that errors
of the samemagnitude will propagate through to Ak+1,Gk+1 and Hk+1. The fact that Ak → 0 implies ck → 0 and contributes
towards diminishing these errors. From our numerical experience, the trade-off between the ranks of Gk and Hk and the
accuracy of the approximate solutions to X and Y is the key to the success of our computation. If these ranks grow out of
control, unnecessary and insignificant small additions to the iterates overwhelm the computation in terms of flop counts
and memory requirement. Limiting the ranks will obviously reduce the accuracy of the approximate solution. We found
we do not have to experiment much with the tolerances for the compression/truncation and convergence while trying to
achieve a balance between accuracy and the feasibility/efficiency of the SDA.
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Table 1
Krylov subspaces for solution X and adjoint solution Y .

Equation X Y

DARE, Stein equation Kk(A⊤, C) Kk(A, B)
CARE, Lyapunov equation Kk(A−⊤γ , A−⊤γ C) Kk(A−1γ , A−1γ B)

3. CAREs

One possible approach for large-scale CAREs is to transform them to DAREs using Cayley transforms.

3.1. SDA after Cayley transform

From [14], the matrices A,G and H in the CARE (1b) are first treated with the Cayley transform:

A0 = I + 2γ

Aγ + GA−⊤γ H

−1
, (15)

G0 = 2γ A−1γ G

A⊤γ + HA−1γ G

−1
, (16)

H0 = 2γ

A⊤γ + HA−1γ G

−1
HA−1γ , (17)

with Aγ ≡ A− γ I and a suitable γ > 0 chosen to optimize the condition of various matrix inversions. A simple application
of the SMWF implies

(Aγ + GA−⊤γ H)−1 = A−1γ − A−1γ GA−⊤γ C · T−1(Il + C⊤A−1γ GA−⊤γ CT−1)−1 · C⊤A−1γ (18a)

= A−1γ − A−1γ B ·

Im + R−1B⊤A−⊤γ HA−1γ B

−1
R−1 · B⊤A−⊤γ HA−1γ . (18b)

It is not hard to see, with the above initial A0,G0 and H0, that the SDA_ls still works, again with exactly the same forms and
updating formulae for Ak, Bk, Ck,D

(1)
k ,D(2)

k and the inverses of Rk, Sk and Tk. One relevant difference for CAREs is that A0 ≠ A
but satisfies, from (15), (18a) and (18b),

A0 =

In + 2γ A−1γ


− D(1)

0 S−10


D(2)
0

⊤
(19)

with

B0 = A−1γ B, C0 = A−⊤γ C . (20)

The corresponding size l and m perturbed updates have the forms, respectively,

D(2)
0 = C0, D(1)

0 = A−1γ GC0, S−10 = 2γ

Il + T−1C⊤0 GC0

−1
T−1; (21a)

D(1)
0 = B0, D(2)

0 = A−⊤γ HB0, S−10 = 2γ

Im + R−1B⊤0 HB0

−1
R−1. (21b)

Note that all computations can be realized in O(n) operations, assuming that the operations A−1γ B and A−⊤γ C are achievable
in O(n) flops; see [20, Section 9.1] for a banded A.

Similarly, we have

R−10 = 2γ

R−1 − R−1B⊤C0 ·


Il + T−1C⊤0 GC0

−1
T−1 · C⊤0 BR−1


(22a)

= 2γ

R−1 − R−1B⊤0 HB0


Im + R−1B⊤0 HB0

−1
R−1


, (22b)

and

T−10 = 2γ

T−1 − T−1


Il + C⊤0 GC0T−1

−1
C⊤0 GC0T−1


(23a)

= 2γ

T−1 − T−1C⊤B0 · R−1


Im + B⊤0 HB0R−1

−1
· B⊤0 CT

−1

. (23b)

For CAREs, we have

Bk ∈ Kk(A−1γ , A−1γ B), Ck ∈ Kk(A−⊤γ , A−⊤γ C). (24)

Note that the Krylov subspacesKk(A±1, B) andKk(A±⊤, C) have been used in the solution of CAREs and Lyapunov equations
in [21–26], quite different from the subspaces associated with the SDA here. This difference may explain the superiority of
our methods. From (24) and [18,27], we can see clearly the appropriate choices of Krylov subspaces for DAREs and CAREs,
as well as the corresponding Stein and Lyapunov equations. A summary is contained in Table 1.
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We summarize the algorithm below, with the particular choice of (4), (5a), (8), (9a), (10b), (12) and (13). We would like
to emphasize that care has to be exercised in Algorithm 1 below, with the multiplications by Ak+1 and A⊤k+1 carried out
recursively using (4) and (5a) or (5b). Otherwise, computations cannot be carried out in O(n) complexity. Similar care has to
be taken in the computation of residuals (used in Algorithm1 below) or differences of iterates (as an alternative convergence
control), as discussed in Section 4.2 later.

Algorithm 1 (SDA_ls)
Input: A ∈ Rn×n, B ∈ Rn×m, R−1 = R−⊤ ∈ Rm×m, C ∈ Rn×l, T−1 = T−⊤ ∈ Rl×l shift γ > 0,

positive tolerances τ1, τ2 and ϵ, andmmax, lmax;
Output: Bϵ ∈ Rn×mϵ , R−1ϵ = R−⊤ϵ ∈ Rmϵ×mϵ , Cϵ ∈ Rn×lϵ and T−1ϵ = T−⊤ϵ ∈ Rlϵ×lϵ , with CϵT−1ϵ C⊤ϵ and

BϵR−1ϵ B⊤ϵ approximating, respectively, the solutions X and Y to the large-scale CARE (1b)
and its adjoint;
Compute Aγ = A− γ I;
Set k = 0,r0 = 2ϵ; B0 = A−1γ B, C0 = A−⊤γ C;

R−10 = 2γ

R−1 − R−1B⊤C0 ·


Il + T−1C⊤0 GC0

−1 T−1 · C⊤0 BR−1

,

T−10 = 2γ

T−1 − T−1C⊤B0 · R−1


Im + B⊤0 HB0R−1

−1
· B⊤0 CT

−1

;

D(2)
0 = C0,D

(1)
0 = A−1γ GC0, S−10 = 2γ


Il + T−1C⊤0 GC0

−1 T−1,
A0 = In + 2γ A−1γ − D(1)

0 S−10


D(2)
0

⊤
;

Compute h = ∥H0∥ = ∥C0T−10 C⊤0 ∥;
Do until convergence:

If the relative residual r̃k = |dk/(hk + mk + h)| < ϵ,
Set Bϵ = Bk, R−1ϵ = R−1k , Cϵ = Ck and T−1ϵ = T−1k ;
Exit

End If
Compute Bk+1 = [Bk, AkBk], Ck+1 = [Ck, A⊤k Ck];

R−1k+1 = R−1k ⊕


R−1k − R−1k B⊤k CkT−1k


Ilk + C⊤k GkCkT−1k

−1
C⊤k BkR−1k


,

T−1k+1 = T−1k ⊕


T−1k − T−1k C⊤k Bk


Imk + R−1k B⊤k HkBk

−1
R−1k B⊤k CkT−1k


;

with Ak+1 = A2
k − D(1)

k+1S
−1
k+1


D(2)
k+1

⊤
,

D(1)
k+1 = AkGkCk,D

(2)
k+1 = A⊤k Ck, S−1k+1 = T−1k


Il + C⊤k GkCkT−1k

−1
;

Compress Bk+1 and Ck+1, using the tolerances τ1 and τ2, and modify
R−1k+1 and T−1k+1, as in (12) and (13);

Compute k← k+ 1, dk = ∥D(Hk)∥, hk = ∥Hk∥ and mk = ∥Mk∥,
as in Section 4.2;

End Do

4. Computational issues

4.1. Residuals and convergence control

Consider the difference of successive iterates:

dGk ≡ BkR−1k B⊤k − Bk+1R−1k+1B
⊤

k+1 =
Bk+1R−1k+1

B⊤k+1,
we haveBk+1 ≡ [Bk, Bk+1] , R−1k+1 ≡ R−1k ⊕


−R−1k+1


.

Similarly, with dHk ≡ CkT−1k C⊤k − Ck+1T−1k+1C
⊤

k+1, we have

dHk =Ck+1T−1k+1
C⊤k+1

with Ck+1 ≡ [Ck, Ck+1] , T−1k+1 ≡ T−1k ⊕

−T−1k+1


.

Alternatively, (6) and (7) imply similar results.
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For the residual rk ≡ ∥D(Hk)∥ of the DARE, the corresponding relative residual equals

rk ≡ rk
∥Hk∥ + ∥Mk∥ + ∥H∥

, Mk ≡ A⊤HkA− A⊤HkB(R+ B⊤HkB)−1B⊤HkA,

and with the help of the SMWF, we have

D(Hk) = −Hk + A⊤HkA− A⊤HkB(R+ B⊤HkB)−1B⊤HkA+ H
= CkT−1k

C⊤k
with Ck ≡


Ck, A⊤Ck, C


,T−1k ≡


−T−1k


⊕ T̆−1k ⊕ T−1,

T̆−1k ≡ T−1k − T−1k C⊤k B(R+ B⊤HkB)−1B⊤CkT−1k .

For relative error estimates and residuals, we also need the norms of

Hk = CkT−1k C⊤k , H = CT−1C⊤, Mk = A⊤CkT̆−1k C⊤k A.

All the calculations in this subsection involve the norms of similar low-rank symmetric matrices. For Hk, as in (13), we can
orthogonalize Ck and transform T−1k accordingly, analogous to (12) and (13). With the orthogonalBk,Ck,Ck, Ck, C and A⊤Ck,
and the transformedR−1k ,T−1k ,T−1k , T−1k , T−1 and T̆−1k respectively, we have the efficient formulae

∥dGk∥ = ∥R−1k+1∥, ∥dHk∥ = ∥T−1k+1∥, rk = ∥T−1k ∥,

∥Hk∥ = ∥T−1k ∥, ∥H∥ = ∥T−1∥, ∥Mk∥ = ∥T̆−1k ∥ (25)

for the 2- and F-norms.
For CAREs, and persist with the same notations, we have

rk ≡ ∥C(Hk)∥, rk ≡ rk
∥A⊤Hk + HkA∥ + ∥HkGHk∥ + ∥H∥

.

Similarly, we have

C(Hk) = A⊤Hk + HkA− HkGHk + H
= CkT−1k

C⊤k
with Ck ≡


A⊤Ck, Ck, C


, T̆−1k ≡ T−1k C⊤k GCkT−1k ,

Ť−1k ≡


0 T−1k

T−1k 0


, T−1k ≡


0 T−1k

T−1k −T̆−1k


⊕ T−1.

After orthogonalizingCk, Ck, C andCk and transforming respectivelyT−1k , T−1k , T−1, T̆−1k and Ť−1k , we have similar results as
in (25):

rk = ∥T−1k ∥, ∥Hk∥ = ∥T−1k ∥, ∥H∥ = ∥T−1∥,

∥HkGHk∥ = ∥T̆−1k ∥, ∥A⊤Hk + HkA∥ = ∥Ť−1k ∥. (26)

If we replace the symmetry term ∥A⊤Hk + HkA∥with 2∥A⊤Hk∥ in the denominator of the relative residual, we then have

A⊤Hk = (A⊤Ck)T−1k C−1k .

We then need to orthogonalize A⊤Ck as well and transform T−1k from the left and the right, yielding ∥A⊤Hk∥ = ∥T−1k ∥.

4.2. Operation and memory counts

We shall assume that cγmn flops are required in the solution of Aγ Z = R or A⊤γ Z = R, with R ∈ Rn×m. A start up cost of
cγ (l+m)+ 4l2 + 1


n flops for the SDA_ls is made up of the following:

(1) setting up Aγ = A− γ In, requiring n flops;
(2) setting up B0 = A−1γ B and C0 = A−1γ C , requiring cγ (l+m)n flops; and
(3) the orthogonalization of C0 and the modification of T−10 , in the calculation of h = ∥H0∥ = ∥T−10 ∥, requiring 4l2n flops.
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Table 2
Operation and memory counts for the kth iteration in Algorithm 1 (SDA_ls).

Computation Flops Memory

Bk+1, Ck+1

2k+1cγ (lk +mk)+ (6lk + 1)Nk


n Nk+1n

R−1k+1, T
−1
k+1 4lkmkn O(l2k+m2

k)

D(1)
k+1,D

(2)
k+1 O(l3k +m3

k) –

S−1k+1 O(l3k) O(l2k)

Compress Bk+1, Ck+1 4(l2k +m2
k)n –

Modify R−1k+1, T
−1
k+1 O(l3k +m3

k) –

r̃k+1

4(2lk + l)2 + 8l2k + 2lkm


n –

Total

2k+1cγ (lk +mk)+ (6lk + 1)Nk + 4(l2k +m2

k + lkmk)+ 4(2lk + l)2 + 8l2k + 2lkm

n Nk+1n

The operation and memory counts of Algorithm 1 (SDA_ls) for the kth iteration are summarized in Table 2. In the third
column, the number of variables is recorded. Only the dominant O(n) operations or memory requirement are included.
Note that most of the work is done in the computation of Bk+1 and Ck+1, for which AkBk and A⊤k Ck have to be calculated
recursively, as Ak is not available explicitly. In Table 2, we shall use the notation Nk ≡

k
j=1(lj +mj). The operation count

for the QR decomposition of an n× r matrix is 4nr2 flops [28, p. 250].
With lk andmk controlled by the compression and truncation in Section 2.2, the operation countwill be dominated by the

calculation of Bk+1 and Ck+1. In our numerical examples in Section 5, the flop count near the end of Algorithm 1 dominates,
with the work involved in one iteration approximately doubled that of the previous one. This corresponds to the 2k+1 factor
in the total flop count. However, the last iteration is virtually free, as there is no need to prepare Bk+1 and Ck+1 for the next
iteration.

Note that the 2k+1 factor in the operation count is not as frightening as it looks. If it is not of O(1) relative to n, then the
SDA is converging very slowly, using up a lot of iterations. Then the solution X is not numerically low-ranked, according to
the truncation and convergence tolerances τ1, τ2 and ϵ, which have to be increased.We then have to accept a lower accuracy
in the approximate solution Hk with a lower and manageable rank.

5. Numerical examples

5.1. Test examples

We have tested the SDA_ls on selected numerical examples from [29]. The suite of challenging problems involves
continuous-time systems originated from the boundary control problem modelling the cooling of rail sections. The PDE
model was semi-discretized using 2D finite elements to a continuous-time linear systemwith n variables, where n = 1357,
5177, 20209, 79841. The accuracy of the approximate solutions for the CARE examples is good, with relative residuals of
O(10−16), as compared to the lesser accuracy achieved in [18,27] for DAREs and Stein/Lyapunov equations. Scaling the ARE or
varying the values of γ (the shift in the Cayley transform from CAREs to DAREs), τi (i = 1, 2), lmax ormmax may improve the
accuracy of the approximate solution or the speed of convergence. For example, a much worse relative residual of O(10−10)
was achieved for γ = 105.

We have not attempted to select an optimal γ for the Cayley transform of the CAREs, accepting gratefully the good results
from γ = 0.5. From our experience in [14] and from the numerical tests below,we found γ is easy and insensitive to choose.
Typically, the condition number of Aγ = A− γ I drops rapidly from infinity at γ = λ1(A) (the smallest positive eigenvalue
of A) and usually γ = λ1(A)+ ϵ, with a small ϵ > 0, is acceptable. For CAREs from PDE boundary control problems, an
inexpensive search for the smaller values of nwill lead to acceptable choices.

The cooling of steel profiles examples have components in A,G and H of magnitudes, respectively, of O(103),O(10−12)
and O(1). The resulting CAREs can be badly scaled, possibly leading to ill-condition. (Note from (1b) that a large error of
O(10−2) magnitude in X may produce an negligible O(10−16) contribution to the residual, because of the small elements in
G.) We attempted to confirm this by estimating the corresponding condition numbers, as in [30,31], although the various
norms of n2

×n2 matricesmake the task difficult. From [32,33], bounds for a condition number K can be estimated by solving
three large-scale Lyapunov equations

(A− GX)⊤Zi + Zi(A− GX) = −X i, (i = 0, 1, 2). (27)

With G and Hk (approximating X for a large enough k) being low-ranked, the techniques in [27] can be modified to solve
(27) (with Hk in place of X) in O(n) flops for i = 1, 2, yielding the lower boundKL for the corresponding condition number
κCARE. For the full-ranked Z0 (with the right-hand-side −I in (27)) and the sharper lower bound KL and upper bound KU of
κCARE, the solution of (27) by doubling is of O(n2) complexity and expensive. For Examples 1–4 in this section, we present
the bounds for κCARE in Table 3. Note that we do not need the upper bounds KU to confirm ill-condition. In addition, for
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Table 3
Bounds for condition numbers, cooling of steel profile examples.

Example n KL KL KU

1 1357 3.4677e+2 9.8222e+2 3.0356e+3
2 5177 1.5472e+2 4.1797e+2 1.3560e+3
3 20209 4.7620e+2 5.7338e+2 2.8438e+3
4 79841 5.8594e+1 1.0032e+2 4.1309e+2

Table 4
Example 1 (γ = 0.5, τ1 = 10−30, τ2 = 10−15,mk ≤ 150, lk ≤ 50).

k ∥dHk∥ ∥dHk∥/∥Hk∥ rk rk mk lk δtk tk

1 2.1136e−02 4.0953e−01 1.4687e−02 1.2456e−01 14 12 5.00e−02 6.00e−02
2 2.4908e−02 3.2566e−01 7.1286e−03 4.4522e−02 28 17 4.00e−02 1.00e−01
3 1.8013e−02 1.9080e−01 1.7043e−03 8.9433e−03 56 21 1.00e−01 2.00e−01
4 5.3687e−03 5.3854e−02 1.0030e−04 5.0258e−04 112 25 2.50e−01 4.50e−01
5 3.3637e−04 3.3632e−03 3.5878e−07 1.7928e−06 150 27 6.80e−01 1.13e+00
6 1.2102e−06 1.2101e−05 8.3177e−12 4.1562e−11 150 28 1.42e+00 2.55e+00
7 3.1334e−11 3.1329e−10 5.3625e−17 2.6796e−16 150 29

Table 5
Example 2 (γ = 0.5, τ1 = 10−30, τ2 = 10−15,mk ≤ 150, lk ≤ 50).

k ∥dHk∥ ∥dHk∥/∥Hk∥ rk rk mk lk δtk tk

1 9.0093e−03 1.8108e−01 2.0396e−03 2.0074e−02 14 12 5.00e−02 7.00e−02
2 2.5058e−03 4.7999e−02 1.0743e−04 1.0268e−03 28 18 1.00e−01 1.70e−01
3 1.3923e−04 2.6601e−03 3.0540e−07 2.9143e−06 56 19 3.30e−01 5.10e−01
4 3.9724e−07 7.5897e−06 7.2655e−12 6.9333e−11 112 21 1.14e+00 1.65e+00
5 1.0134e−11 1.9361e−10 4.9851e−17 4.7572e−16 150 23

large-scale problems, the upper boundKU involves the condition number κ(X) ≡ ∥X∥ · ∥X−1∥ which will be theoretically
large and practically impossible to estimate using the low-ranked approximation Hk. For details of the solution of (27) and
the estimation of κCARE, see [27]. Note that the estimation of condition shares the same level of difficulty and stability as the
solution of the original problem.

The efficient estimation or bounding of condition numbers for large-scale CAREs and DAREs remain an interesting open
problem.

For our examples, the condition numbers of O(101) to O(103) seem to suggest that the scaling problems of the CAREs
does not make the condition of their solution too bad. Recall that worse accuracies (≥O(10−9))were obtained for Lyapunov
equations from other Krylov subspace methods for similar examples in [34], [11, Figure 6.1, p. 12] and [12, Figure 8.7, p.
111]. The stability and perturbation analysis of large-scale CAREs and DAREs is still an open problem.

5.2. Numerical results

The numerical results in Examples 1–3 were computed using MATLAB [35] Version R2010a, on a MacBook Pro with a
2.66 GHz Intel Core 2 Duo processor and 4GB RAM,with amachine accuracy eps = 2.22×10−16. For Example 4, thememory
requirement exceeded the capacity of theMacBook Pro used for the other examples. A Dell PowerEdge R910 computer, with
4× 8-core Intel Xeon 2.26 GHz CPUs and 1024 GB RAM was used instead.

Example 1
The cooling of steel profile example is quoted from [29], with n = 1357,m = 7, l = 6.
From Table 4, the accuracy of O(10−16), better than those in [34,11], is achieved within seven iterations, in 2.55 s.
In our experiments in Examples 1–4, we relax mk to a maximum value of 150 and restricted lk by setting various τ2 or

bounds for lk. The reasoning behind the strategy is that Hk = CkT−1k C⊤k , which approximates the solution X of the CARE
after convergence. Letting Bk to achieve high accuracy and using τ2 to control the balance between the growth of Ck and the
accuracy ofHk yield acceptable results. On the other hand, other results suggest that the accuracy and growth of bothHk and
Gk should be controlled in an equal manner, in order to achieve some sort of optimal efficiency. However, this alternative
strategy requires a more extensive and expensive search.

The sub-total CPU time tk =
k

i=1 δti, with δti being the CPU time required for the ith iteration.

Example 2
The cooling of steel profile example is quoted from [29], with n = 5177,m = 7, l = 6. From Table 5, the accuracy of

O(10−16) is achieved within five iterations, in 1.65 s.
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Table 6
Example 3 (γ = 0.5, τ1 = 10−30, τ2 = 10−15,mk ≤ 150, lk ≤ 50).

k ∥dHk∥ ∥dHk∥/∥Hk∥ rk rk mk lk δtk tk

1 2.0970e−03 6.9503e−02 9.5344e−04 1.5267e−02 14 12 3.10e−01 3.40e−01
2 1.3979e−03 4.6276e−02 2.1852e−04 3.4613e−03 28 18 4.80e−01 8.20e−01
3 4.2151e−04 1.3954e−02 2.1310e−05 3.3655e−04 56 22 1.57e+00 2.39e+00
4 5.8714e−05 1.9437e−03 9.8193e−07 1.5503e−05 112 27 5.02e+00 7.41e+00
5 3.4402e−06 1.1389e−04 5.8239e−09 9.1950e−08 150 30 1.29e+01 2.03e+01
6 2.2067e−08 7.3052e−07 3.6993e−13 5.8405e−12 150 32 2.45e+01 4.48e+01
7 1.4286e−12 4.7294e−11 4.3294e−17 6.8354e−16 150 34

Table 7
Example 4 (γ = 0.5, τ1 = 10−30, τ2 = 10−15,mk ≤ 150, lk ≤ 50).

k ∥dHk∥ ∥dHk∥/∥Hk∥ rk rk mk lk δtk tk

1 4.9846e−03 3.3034e−01 2.4666e−03 7.5553e−02 14 12 2.14e+00 2.19e+00
2 3.6912e−03 1.9665e−01 6.1205e−04 1.6040e−02 28 18 7.55e+00 9.74e+00
3 1.3897e−03 6.9826e−02 2.0793e−04 5.2166e−03 56 22 1.90e+01 2.87e+01
4 9.3791e−04 4.6948e−02 4.7165e−05 1.1799e−03 112 26 5.37e+01 8.24e+01
5 2.8650e−04 1.4341e−02 4.2899e−06 1.0732e−04 150 30 1.34e+02 2.16e+02
6 3.9604e−05 1.9823e−03 1.8623e−07 4.6586e−06 150 34 2.71e+02 4.87e+02
7 2.3081e−06 1.1553e−04 1.0998e−09 2.7512e−08 150 38 5.02e+02 9.88e+02
8 1.4933e−08 7.4744e−07 7.1130e−14 1.7794e−12 150 42 9.79e+02 1.97e+03
9 9.8762e−13 4.9435e−11 1.3150e−17 3.2896e−16 150 45

Example 3
The cooling of steel profile example is quoted from [29], with n = 20 209,m = 7, l = 6. From Table 6, the accuracy of

O(10−16) is achieved within seven iterations, in 44.8 s.

Example 4
The cooling of steel profile example is quoted from [29], with n = 79 841,m = 7, l = 6. From Table 7, the accuracy of

O(10−16) is achieved within nine iterations and 1970 s (on the Dell PowerEdge R910). As in previous examples, the cost for
the final iteration is minimal, as no preparation is required for the next iteration.

6. Conclusions

We have proposed a structure-preserving doubling algorithm for the large-scale discrete-time algebraic Riccati equation
(1a), the SDA_ls, with A being large and sparse(-like), and B and C being low-ranked. Similar continuous-time algebraic
Riccati equations (1b) can be treated after an application of Cayley transform. The trick is to apply the Sherman–Morrison-
Woodbury formula when appropriate and not to form Ak (the iterate for A) explicitly. For well-behaved DAREs (or CAREs),
with eigenvalues of the corresponding symplectic pencil (or Hamiltonian matrix) not on or near the unit circle (or the
imaginary axis) and I + GkHk being invertible for all k, low-ranked approximations to the solutions X and Y can be obtained
efficiently. The convergence of the SDA_ls is quadratic, ignoring the compression and truncation of Bk and Ck, as shown
in [14–16]. The computational complexity and memory requirement are both O(n), provided that the growth of Bk and Ck is
controlled or the numerical rank of X is low.

Similar to the methods in [10,11], our technique can be applied when A is large and sparse, or is a product (an inverse)
of such matrices (a matrix). The feasibility of the SDA_ls depends on whether Av and A⊤v for DAREs (or A−1v and A−⊤v for
CAREs) can be formed efficiently, for an arbitrary vector v.

In comparison to the techniques proposed previously, e.g. in [10,11], there is no need for any inner iteration using ADI or
Smith iteration, for the Lyapunov or Stein equations arisen from the inexact Newton’s iteration. The associated estimation
of parameters or initial starting values can also be avoided. Consequently, when successful, the SDA_ls solves large-scale
DAREs and CAREs efficiently. For instance in Section 5.2, Example 3, of dimension n = 20 209 with 204 million variables in
the solution X , was solved using MATLAB on a MacBook Pro within 45 s to a machine accuracy of O(10−16).

For related research projects, strategies for the optimal setting of parameters and optimization of the computation and
data structures in the SDA_ls, pre-processing of AREs to optimize their balance or condition, extension of the SDA_ls to Stein
and Lyapunov equations as well as periodic systems, implementation on GPUs and other parallel computing platforms,
associated computation of controllability and observability Gramians and balanced truncation methods for model order
reduction and applications to Riccati differential equations (for optimal control problems with finite time horizon), and
real-life problems such as boundary control of PDE models, are being investigated.
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