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Change detection of objects, such as buildings, is essential for map updating.
Traditionally, detection is usually performed through spectral analysis of multi-temporal
images. This article proposes a method that employs multi-temporal interpolated lidar
data. The objective of this study is to perform change detection and change-type
determination via geometric analysis. A shape difference map is generated between
the digital surface models in two different time periods. The areas with small shape
differences are treated as non-changed areas and are excluded from the segmentation.
The object’s properties are then applied to determine the change types. Experimental
results demonstrate that the proposed scheme achieves accuracy as high as 80%. Most
of the errors from this study occurred in small or vegetation areas.

1. Introduction

Change detection is a vital task in geoinformatics. A type of change of particular interest to
those involved in sustainable urban development is that relating to buildings in urban areas.
Such changes may be due to human activities, such as construction, or caused by natural
disasters (Vu and Ban 2010), such as earthquakes. The results of building change detection
are useful in many areas including urban management, disaster management, and updat-
ing map and geographical information system (GIS) databases (Knudsen and Olsen 2003;
Vosselman, Gorte, and Sithole 2004). With ever-increasing amounts of data being made
available, improving the degree of automation and the quality of change detection is essen-
tial in a dynamic urban environment (Matikainen, Hyyppä, and Hyyppä 2004; Rottensteiner
2008; Caelen 2010).

Remote sensing is a useful technology to acquire timely land-cover information from a
large area. Multi-temporal image and surface data sets with different spatial scales are com-
monly used in change detection (Steinnocher and Kressler 2006; Champion et al. 2008),
with spectral information from the image data particularly useful in the identification of
regions of change (Stamm and Briggs 1999; Im, Jensen, and Tullis 2008; Li, Xu, and
Guo 2010). However, image quality is critical to the accuracy of identifying such regions,
especially when shadows and occlusions affect the results. Moreover, change detection
from spectral information usually provides only 2D information about changes. Three-
dimensional surface data can be obtained by matching stereo images or from airborne light
detection and ranging (lidar). Multi-temporal surface data can be analysed to determine
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shape differences for change detection (Vögtle and Steinle 2004). Such surface information
may shed light on changes in 3D volumes rather than mere 2D regions.

Change detection from images is pixel-based. In multi-temporal images, corresponding
pixels that exhibit large radiometric differences can be distinguished easily, for example,
changes between vegetation and non-vegetation. It is one thing to identify that change has
occurred, but another to identify the type of change. Pixel variation is not adequately infor-
mative to differentiate types of change in areas with similar spectral values, such as when
buildings and roads have similar grey values. One possible solution is to group pixels into
regions and study the region major axis, texture, and other additional information from the
grouped pixels (Walter 2004, 2005).

The strategies for change detection can be classified into two categories. In the first
category, changes are directly detected by comparing the attributes of data between two
periods (Murakami, Nakagawa, and Hasegawa 1999). The attributes could involve spectral
or height information. However, this method can lead to ambiguities because of the effect
of shadows and relief displacement in the image space. The second strategy is to perform
classification and then compare class similarities between the two periods (Bouziani, Goïta,
and He 2010). The advantage of this method is that prior knowledge about land cover can
be utilized when comparing corresponding regions from two periods.

Numerous studies have reported the use of surface data for change detection.
Murakami, Nakagawa, and Hasegawa (1999) employed multi-temporal airborne lidar data
to detect changes in buildings by direct surface comparison. They also used shrinking and
expansion filters to remove small areas caused by horizontal errors in the lidar data. Data
fusion may be used to combine information from different sensors. Imagery and its com-
plementary counterpart, elevation, can be integrated into the change detection process. Vu,
Matsuoka, and Yamazaki (2004) used airborne lidar and a natural colour aerial image to
detect and classify buildings based on elevation and intensity information. Intensity infor-
mation from lidar data is combined with red bands from aerial photographs to exclude areas
of vegetation. Jung (2004) proposed a two-state change detection method, comparing both
surface data and grey values. The surface data are generated by image matching and used to
eliminate those areas without change. The grey values from multiple images of candidate
regions are then compared to determine the changed areas.

Several studies have adopted existing maps and remotely sensed data. Knudsen and
Olsen (2003) integrated vector maps and spectral data in unsupervised spectral classifica-
tion. The classified pixels were subsequently defined as ‘no change’, ‘potential change’, and
‘evident change’ using predefined rules. Matikainen, Hyyppä, and Hyyppä (2004) detected
changes in buildings using a method combining lidar and image data. They compared
the detected buildings with building locations from existing maps and applied the change
information to update the maps. Bouziani, Goïta, and He (2010) performed change detec-
tion in an urban area from extremely high-resolution satellite images and existing maps.
Map-guided change detection and prior knowledge from maps were utilized to enhance the
capability of image interpretation. The detection rate reached 90%.

Although several researchers have used image and surface data for change detection
in urban areas, relatively few studies have considered identifying the type of change. The
purpose of this study is to address this issue. This study applies multi-temporal interpolated
lidar data to object-based change detection. The objects involved regions with large height
differences. The change-type determination is based on some predefined rules of object
properties. Increasing the knowledge of change behaviour in urban areas is, therefore,
possible.
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970 T.-A. Teo and T.-Y. Shih

2. Methodology

The proposed method comprises four major parts. In the first part, preprocessing (interpo-
lation and spatial coregistration of multi-temporal lidar data) is conducted. The second part
involves mapping the segmentation of change based on height differences. In the third part,
buildings and vegetation objects are classified according to surface roughness. The final
step involves determining the type of change for each object. Figure 1 shows the work flow
of the proposed method. Details of each step are provided below.

2.1. Data preprocessing

The first step of change detection is data coregistration. Data coregistration may pro-
vide uniform geometry between different data sets. Problems with non-uniform geometry
between different data sets may cause faulty change detection. Therefore, aligning the two
lidar data sets into a unified system is critical. The procedures of data coregistration include
the selection of registration entities and the calculation of transformation parameters. The
registration entities such as conjugate surface (Gruen and Akca 2005), conjugate line (Jaw
and Chuang 2008), and conjugate point can be selected automatically or manually. As the
changed areas may affect the automatic process, numerous registration points were manu-
ally selected using lidar intensity data. An area with height discontinuities is not suitable for
selecting a registration point; hence, we mainly measure the registration points that are on
the road surface (e.g. pedestrian crossing). In the calculation of transformation parameters,
3D similarity transformation consisting of three translations, three rotations, and one scale
factor is usually selected to compensate the error between multiple lidar strips. The situa-
tion of this study is different from lidar strip adjustment, because the test data in this study
are the product that have been converted to world coordinates using ground control points.
In order to correct the bias between the two rigid bodies and to avoid over-parameterization,
only three translations are calculated from registration points using least squares adjust-
ment. Finally, the three translations are used to adjust the 3D points acquired at different
times.

Lidar point clouds include 3D coordinates for ground points and surface points. These
two sets of data may be used to generate digital terrain models (DTMs) and digital sur-
face models (DSMs) in a grid format (Behan 2000; Briese, Pfeifer, and Dorninger 2002).
The ground points were processed with automated filtering (Axelsson 2000) followed
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Figure 1. Workflow of the proposed method.
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(a) (b) (c) 

(g)

(d) (e) (f)

Figure 2. Illustration of data preprocessing: (a) DSM at time 1; (b) DTM at time 1; (c) nDSM at
time 1; (d) DSM at time 2; (e) DTM at time 2; (f ) nDSM at time 2; (g) dDSM between time 1 and
time 2.

by a manual editing procedure (TerraSolid 2004). A more detailed discussion of ground
point selection can be found in Sithole and Vosselman (2004). The DTM was subtracted
from the DSM to obtain the normalized DSM (nDSM). The nDSM was calculated using
Equation (1). Two nDSMs with different periods were generated to describe the above-
ground height information. An elevation threshold was established to separate the object
above the ground from the nDSM. The above-ground surfaces include buildings and veg-
etation that are higher than the elevation threshold. Figures 2(a)–(c) show examples of
a DSM, DTM, and nDSM from the earlier period. Figures 2(d)–(f ) show examples of a
DSM, DTM, and nDSM from a later period.

After registration, the DSM of the later period was subtracted from that of the former
period to obtain delta DSM (dDSM). The dDSM was obtained using Equation (2). The ben-
efit of generating this height difference map is to locate the potential change area. Hence,
the proposed method does not include the unchanged areas in change-type determination
in order to avoid misclassification and improve the computation performance. This height
difference map indicates areas with differences in 3D surfaces. Unfortunately, all types of
changes are mixed in a single difference map. Hence, additional processing was required in
this study to separate the change types. Figure 2(g) shows an example of a dDSM between
two surface models. The bright areas indicate differences in height. The noisy boundaries
are the result of the edge effect caused by interpolation errors.

nDSM(t) = DSM(t) − DTM(t), (1)

dDSM = DSM(t2) − DSM(t1), (2)

where DSM(t) is the DSM at time t, DTM(t) is the DTM at time t, nDSM(t) is the nDSM
at time t, dDSM is the dDSM between two periods, and t is time.
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972 T.-A. Teo and T.-Y. Shih

2.2. Segmentation

The objective of segmentation is to determine changed regions between two periods. The
idea of segmentation is to extract the above-ground object from the nDSM and the height
difference object from the dDSM. This study assumed that changed regions are mainly
caused by changes in the above-ground objects. The terrain change was relatively small
and could be ignored.

The height variation between two periods was included in the dDSM. However, this data
set often contains commission errors, which arise due to interpolation errors in the regions
near the step edge. To overcome this problem, a height threshold was applied to remove
those areas with only a small height variation. A morphological filter, which includes ero-
sion and dilation, was then applied to minimize these effects. This morphological filter
could eliminate small regions and connect objects with small gaps. After this, a region
growing technique was applied to the data. The criterion of region growing is the connec-
tivity of pixels. All the connected pixels were grouped into regions. The area of each region
could be determined after the region growing process was completed. Regions that cover
small areas tend to be classified as commission errors and eliminated by an area threshold.
The procedure for region generation used for the dDSM was also applied in this study to
the nDSMs from the two different periods. Figures 3(a)–(f ) show a comparison of the data
with and without filtering.

The regions in the nDSM represent the above-ground objects without change informa-
tion. To reduce computation time, the regions in the nDSMs were not compared directly.
Only above-ground objects with shape differences were selected to exclude the unchanged
regions. Candidate changed regions were extracted from the nDSM and dDSM. In other
words, the detected above-ground objects in the nDSM were projected onto the dDSM to
extract change regions between two periods. These changed regions were the above-ground
objects with large shape differences. The intersection of nDSM and dDSM was used to
detect and locate the candidate changed regions. The changed regions were extracted using
Equation (3). Figures 3(g)–(h) illustrate the results of segmentation. Figure 3(g) is gen-
erated from Figures 3(b) and (d). If the above-ground objects in Figure 3(b) have large
height differences in Figure 3(d), then the above-ground objects are considered as changed
regions, as shown in Figure 3(g). Figure 3(h) is generated from Figures 3(d) and (f ) in the
same scheme.

R(t) = nDSM(t) ∩ dDSM, (3)

where nDSM(t) is the nDSM at time t, dDSM is the dDSM between two periods, R(t) is the
changed region at time t, and t is time.

2.3. Classification

Each separated region after segmentation is a candidate object for classification. The
geometric attributes, such as area, perimeter, and major axis, can be directly calculated
from the regions. However, the regions do not have semantic attributes (such as build-
ing or vegetation), which are essential for change-type determination. Because the surface
data provide only shape information, without spectral information, this study classified
the surface data using surface roughness rather than a spectral index. In most cases,
the surfaces of building rooftops are smoother than the surface of vegetation. Surface
roughness is thus a suitable criterion for distinguishing between vegetation and building
regions.
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(a) (b)

(g)

(c) (d)

(h)

(e) (f )

Figure 3. Illustration of data filtering and segmentation: (a) nDSM(t1) before filtering; (b) nDSM(t1)
after filtering; (c) height difference before filtering; (d) dDSM between two periods; (e) nDSM(t2)
before filtering; (f ) nDSM(t2) after filtering; (g) segmentation results in t1; (h) segmentation
results in t2.

The usefulness of roughness information for vegetation and building classification
has been demonstrated in several studies (Mass 1999). Several methods determine the
roughness of lidar data, such as the deviation of plane fitting and the echo width of a full-
waveform laser pulase (Hollaus and Höfle 2010). The plane-fitting method calculates the
deviation of points to best fit plane distance. A higher deviation of point-to-plane distance
presents a higher roughness. This study uses raster data; therefore, the surface roughness
was calculated by image-processing algorithms for gradient magnitude of the range image.
This surface gradient contains the information about height discontinuities over a certain
distance. The gradient of each pixel was calculated from the connected pixels in eight direc-
tions. To compare the roughness from plane fitting and surface gradient, the point-to-plane
distance of plane fitting is perpendicular to the best-fit plane, while the surface gradient
measures the height discontinuities perpendicular to the datum. Although the plane-fitting
method is more flexible to handle large slope areas (e.g. vertical wall), it needs more compu-
tation time for the iterative process. In order to accelerate the proposed method, we simply
use the gradient magnitude to represent the surface roughness.

This study calculated the gradient magnitude within a region, serving as the roughness
criterion. Surface roughness is used to classify regions into vegetation and non-vegetation

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

8:
17

 2
7 

A
pr

il 
20

14
 



974 T.-A. Teo and T.-Y. Shih

(a) (b) (c)

Legend

Building regions

Vegetation regions

Unchanged regions

Legend

Building regions

Vegetation regions

Unchanged regions

(d) (e) (f)

Figure 4. Example of classification: (a) nDSM(t1) after segmentation; (b) roughness of nDSM(t1);
(c) classified results of nDSM(t1); (d) nDSM(t2) after segmentation; (e) roughness of nDSM(t2); (f )
classified results of nDSM(t2).

regions. Two criteria were used for classification. The first was a gradient threshold, which
was used to determine the point with the largest gradient variance. The second was an area
threshold, which was used to determine the percentage of large gradients in a region. If the
percentage of large gradients in a region was larger than the area threshold, the region was
classified as a region of vegetation. Figure 4 demonstrates the results of classification.

2.4. Change-type determination

The change detection in an urban area is usually classified as either ‘changed’ or
‘unchanged’. In other words, the classification is not adequately specific for some appli-
cations. Hence, this study defined several change types based on the attributes of the
regions. Table 1 shows the categories of change types: ‘changed building’, ‘newly built’,
and ‘demolished building’. The change type was determined by comparing the attributes
of the regions including land cover, height, and area. The ‘changed building’ is a building
that has a different roof shape in two periods. The ‘newly built’ includes ‘newly built from
existing building-to-building’ and ‘newly built from non-building-to-building’. The ‘newly

Table 1. Categories of change types.

Categories Former period Later period
Change

of height
Changed
of area

Changed building Building Building Yes No
Newly built from existing

building-to-building
Building Building Yes Yes

Newly built from
non-building-to-building

Vegetation/ground Building Yes Yes

Demolished building Building Vegetation/ground Yes Yes
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Legend

Changed building: building to building
Newly built: building to building

Demolished building: building to non-building
Newly built: non-building to building

(a)

(b)

Figure 5. Example of change-type determination: (a) change type between two periods; (b)
corresponding aerial images for the two periods.

built from existing building-to-building’ represents that an old building in former period
was destroyed and a new building appeared in latter period. The ‘newly built from non-
building-to-building’ means a new building that appears distinct from a non-building to
building. By contrast, the ‘demolished building’ is a building that changes from a building
to a non-building.

Two major tasks are involved in change-type determination. First, the proposed method
overlaps segmented regions from the two periods to build relationships between regions.
An adjacency matrix is generated to link regions located in the same area but in two dif-
ferent periods. In the second part, all categories of change are defined by comparing the
attributes of the regions. If the regions in the former time period do not have correspond-
ing regions in the latter time period, these are defined as demolished buildings. Conversely,
regions in the latter period that do not have corresponding regions in the former time period
are marked as newly built. If the attribute in the two time periods is identified as a building,
it could be either a changed building or a newly built one. Normally, the newly built build-
ing is shown by large changes of area. Thus, this study compared the area of the regions to
separate changed and newly built buildings. Figure 5(a) illustrates an example of change
type determination. The different colours indicate the different types of change. Figure 5(b)
shows the corresponding aerial images for verification.

3. Results and discussion

3.1. Test data

The test site, located in Hsinchu City in northern Taiwan, has an area of 1083 m ×
1963 m. The lidar point clouds were acquired using a Leica ALS40 and an ALS50 (Leica
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(a) (b)

(c) (d)

Figure 6. Test data: (a) lidar data for the year 2002; (b) lidar data for the year 2005; (c) reference
orthoimage for the year 2002; (d) reference orthoimage for the year 2005.

Geosystems, Heerbrugg, Switzerland) in April 2002 and June 2005, respectively. The lidar
data are shown in Figure 6. The average point densities are 1.85 and 1.93 points/m2,
respectively. As the point density in the overlapped area is higher than the average point
density, and the across-track point spacing is better than 0.5 m, we consider oversampling
the irregular points into a 0.5 m pixel. The surface points and ground points from the lidar
data were rasterized to form the DSM and DTM (both with a pixel size of 0.5 m). The refer-
ence aerial images were acquired using a Leica RMK-TOP (Leica Geosystems, Heerbrugg,
Switzerland) and Vexcel UltraCam-D camera (Microsoft Vexcel, Graz, Austria) in March
2002 and June 2005, respectively. The aerial images were rectified into orthoimages using
the DSM with 0.25 m resolution. The orthoimages are shown in Figures 6(c)–(d). Notice
that the orthoimages are for verification only. This study manually selected 10 registration
points and 20 check points between lidars in different periods. The distribution of regis-
tration points covered the entire area. A simple translate function was applied to determine
the transformation parameters. The mean and standard errors of check points were 0.05 and
0.08 m, respectively. After the alignment, the registration error became small and could be
ignored.

3.2. Results

Several parameters must be considered in the proposed method. The numbers of the thresh-
olds are provided based on prior knowledge obtained from existing data and training data.
The parameters include the height of the above-ground objects, the window size of the mor-
phological filter, the area for small objects, the flatness of objects with a small gradient, the
roughness of the separation of vegetation and buildings, and the area difference between
new and old buildings. All thresholds are summarized in Table 2.
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Table 2. Change detection thresholds.

No Items Thresholds Description

1 Height 3 m To detect the above-ground objects in nDSM
2 Window size 2.5 m × 2.5 m Window size for the erosion and dilation kernels
3 Small area 50 m2 To remove small regions in the nDSM
4 Flatness 15◦ To extract those pixels with small gradients from the region
5 Roughness 40% If the percentage of large gradient pixels in a region is

smaller than the threshold, then that region is treated as
vegetation

6 Area difference 50 m2 If, after calculating the difference between two periods, the
area is larger than this threshold, then the region in the
later period is treated as a new building

After the data preprocessing, segmentation was performed to group the pixels into
regions. The segmentation results are shown in Figures 7(a) and (b). The regions with
differences in shape were classified for further processing. Figures 7(c) and (d) show the
results. All regions were classified as either buildings or vegetation. Finally, the type of
change was obtained by examining the significant properties of these regions. The detected
changed areas, together with the change types, are shown in Figures 7(e) and (f ). Four
examples are shown in Figure 8 to demonstrate various change types.

For accuracy assessment, the aerial images of the two periods were used as a refer-
ence. This verification provided quantitative results of the accuracy of the classification
and change-type determination. The verification was performed by overlapping the regions
and aerial orthoimages of the same area. The result was then manually verified. Finally, the
accuracy of each change type was obtained.

Table 3 shows the correctness of classification. Each classified region is manually
marked as correct or incorrect. In the data for the year 2002, the total number of classi-
fied buildings was 29. All regions were confirmed as true positive regions. Another class
was vegetation, with 303 regions. The correctness for regions of vegetation was 92%. The
commission regions were buildings with large roughness. In the data for the year 2005, the
number of classified buildings had increased to 65 because of urbanization. The correctness
of building and vegetation classification was 80% and 90%, respectively. The commis-
sion error for buildings was mostly caused by vegetation with low roughness. Overall, the
correctness of classification was higher than 80% in our study case.

Four types of change were examined in this study: ‘changed building’, ‘newly built from
existing building-to-building’, ‘newly built from non-building-to-building’, and ‘demol-
ished building’. Knowing the accuracy of the assigned change type is critical. The results
show that most of the change types are in the ‘newly built from non-building-to-building’
category. They are 42 in number, and the classification accuracy is 74%. The commission
error arose primarily from misclassification. Eight newly built buildings changed from old,
existing buildings. This number is reasonable, because people seldom demolish a house to
build a new one; instead, they renovate or rebuild the old one. Thus, the accuracy achieves
88%. A changed building refers to a building with major structural change. Fifteen regions
were defined as changed buildings. Thus, the accuracy is 93%. The number of ‘demolished
building’ was 6 with an accuracy of 83%. The total number of changed regions was 71. The
number of correct change types was 57. The overall accuracy is 80% in the change-type
determination. The results are summarized in Table 4.
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(a) (b)

(c) Legend
Building
Vegetation

Legend
Building
Vegetation

Changed building: building to building

Newly built: building to building

Newly built: non-building to building

Demolished building: building to non-building

Legend
Changed building: building to building

Newly built: building to building

Newly built: non-building to building

Demolished building: building to non-building

Legend

(d)

(e) (f )

Figure 7. Experimental results: (a) segmentation results (colours indicate isolated regions) (2002);
(b) segmentation results (colours indicate isolated regions) (2005); (c) classification results (2002);
(d) classification results (2005); (e) results of changed types (2002); (f ) results of changed types
(2005).

4. Conclusions

This article proposes an object-based change detection scheme to detect changes in build-
ings using multi-temporal interpolated lidar data. The idea of this approach is to detect
the changed objects based on object properties in different periods. This method integrates
height differences and above-ground objects to extract the changed objects. The changed
objects are classified into buildings and vegetation, based on surface roughness. Finally, the
change type is identified with the attributes of the objects. Four change types were exam-
ined in this study: changed building, newly built from existing building-to-building, newly
built from non-building-to-building, and demolished building.
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Change types Lidar dsm Reference aerial images 

2002 2005 2002 2005 2002 2005 

(a)

(b)

(c)

(d)

Figure 8. Example of the four categories: (a) changed building; (b) newly built from existing
buildings; (c) newly built from non-buildings; (d) demolished buildings.

Table 3. Correctness of classification.

Year 2002 Year 2005

Buildings Vegetation Buildings Vegetation

Number of classified regions 29 303 65 246
Number of correct regions 29 279 52 222
Correctness (%) 100 92 80 90

Table 4. Correctness of change-type determination.

Changed building:
building-to-

building

Newly built:
building-to-

building

Newly built:
non-building-

to-building

Demolished:
building-to-
non-building

Changed building:
building-to-building

14 1 0 1

Newly built:
building-to-building

0 7 0 0

Newly built:
non-building-to-building

0 0 31 0

Demolished:
building-to-non-building

0 0 0 5

Others (vegetation) 1 0 11 0
Total regions/correctness 15/93% 8/88% 42/74% 6/83%
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The results indicate that the correctness of classification achieved was 80%. The veg-
etation with low roughness was the primary cause of the commission error. The results
show that 71 regions are marked as changed. From these changed regions, 80% represent
real change, while 20% are wrongly classified. The newly built buildings are further clas-
sified into 16% of building-to-building, and 84% of non-building-to-building. This can be
explained by the fact that the change of non-building-to-building is more cost-effective
than that of building-to-building. The proposed method can provide detailed change types
to increase the knowledge of change behaviours regarding urban areas.

As most of the errors are caused by the vegetation areas, further study could improve
the classification accuracy when additional image data are available. Moreover, improving
the accuracy of vegetation classification is possible, as the full-waveform lidar recorded all
return echoes. Hence, further techniques could also focus on the change detection using
full-waveform lidar.
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