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a b s t r a c t

In many management situations multiple agents pursuing different objectives compete on the usage of

common processing resources. In this paper we study a two-agent single-machine scheduling problem

with release times where the objective is to minimize the total weighted completion time of the jobs of

one agent with the constraint that the maximum lateness of the jobs of the other agent does not exceed

a given limit. We propose a branch-and-bound algorithm to solve the problem, and a primary and a

secondary simulated annealing algorithm to find near-optimal solutions. We conduct computational

experiments to test the effectiveness of the algorithms. The computational results show that the

branch-and-bound algorithm can solve most of the problem instances with up to 24 jobs in a

reasonable amount of time and the primary simulated annealing algorithm performs well with an

average percentage error of less than 0.5% for all the tested cases.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In traditional scheduling models, there is a single criterion for all
the jobs. However, in the real world, customers are distinct in that
they pursue different objectives. For instance, Baker and Smith [1]
give an example of a prototype shop being shared by a research and
development (R&D) department, which tests new designs, and by a
manufacturing engineering department, which runs experiments to
improve the robustness of production processes. In this context, the
R&D customers might be concerned about meeting due-dates, while
the engineering customers might be more concerned about quick
response time. Kim et al. [2] point out that in project scheduling the
major concern is with negotiation to resolve conflicts whenever the
agents find their own schedules unacceptable. Schultz et al. [3]
remark that in telecommunications services, the problem is to satisfy
the service requirements of individual agents, who compete for the
use of a commercial satellite to transfer voice, image, and text files for
their clients. Agnetis et al. [4] present examples of scheduling
involving multiple agents competing on the usage of common
processing resources in different application environments and
methodological fields, such as artificial intelligence, decision theory,
and operations research.

Agnetis et al. [4] and Baker and Smith [1] first introduced the
multi-agent problems into the scheduling field. They considered
scheduling models with two agents and their objective functions
ll rights reserved.
include the total weighted completion time, the number of tardy jobs,
and the maximum of regular non-decreasing functions of the job
completion times. Later, Yuan et al. [5] revised the dynamic program-
ming recursion formulae in Baker and Smith [1] and derived a
polynomial-time algorithm for the same problem. Ng et al. [6]
considered a single-machine two-agent problem where the objective
is to minimize the total completion time of one agent, given that the
number of tardy jobs of the other agent cannot exceed a certain
number. They showed that the problem is NP-hard under high
multiplicity encoding and can be solved in pseudo-polynomial time
under binary encoding. Cheng et al. [7] studied the feasibility model
involving more than two agents on a single machine where each
agent’s objective function is to minimize the total weighted number
of tardy jobs. They showed that the general problem is strongly NP-
complete. Agnetis et al. [8] studied the scheduling problems where
several agents compete to perform their respective jobs on one
sharing processing resource and the cost function depends on the
job completion times only. They analyzed the complexity of various
problems arising from different combinations of the cost functions of
each agent. In particular, they investigated the problem of finding
schedules whose cost for each agent does not exceed a given bound.
Cheng et al. [9] examined scheduling problems on a single machine
involving more than two agents where the objective functions are of
the max-form. In addition, Liu and Tang [10] discussed two two-agent
scheduling problems with the consideration of a simple linear
deterioration effect on a single machine. Their objective functions
are the maximum lateness and the total completion time of the jobs
of one agent, given a bound on the maximum of a non-decreasing
function of the job completion times of the other agent. Moreover, Lee
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et al. [11] discussed a scheduling problem on a single machine
involving more than two agents in which each agent is responsible
for his own set of jobs and wishes to minimize the total weighted
completion time of his own set of jobs. They reduced this NP-hard
problem to a multi-objective short-path problem. They also provided
an efficient approximation algorithm with a reasonably good worst-
case ratio. Agnetis et al. [12] developed branch-and-bound algorithms
for several single-machine scheduling problems with two competing
agents. They used Lagrangian duals to derive bounds for the branch-
and-bound algorithm in strongly polynomial time. Lee et al. [13]
studied a two-agent scheduling problem in a two-machine permuta-
tion flowshop where the objective is to minimize the total tardiness
of the jobs of one agent, given that the number of late jobs of the
other agent is zero. Recently, Leung et al. [14] generalized the two-
agent single-machine problems proposed by Agnetis et al. [4] to the
case of multiple identical parallel machines. In addition, they also
considered the situations where the jobs may have different release
dates and preemptions may or may not be allowed. Lee et al. [15]
studied a two-agent problem with a common linear deterioration rate
for all the jobs on a single machine. They provided the optimal
solution and several heuristic algorithms for the problem of mini-
mizing the total weighted completion time of the jobs of one agent,
given that no tardy jobs are allowed for the other agent. Liu et al. [16]
considered a two-agent single-machine problem with linear aging or
learning effects. For the objective of minimizing the total completion
time of one agent, given that the maximum cost of the other agent
cannot exceed an upper bound, they presented polynomial-time
algorithms. Wan et al. [17] considered several two-agent problems
with controllable job processing times on a single machine or two
identical machines in parallel. For several problems of minimizing the
objective of one agent, including the total completion time plus the
compression cost, the maximum tardiness plus the compression cost,
the maximum lateness plus the compression cost, and the total
compression cost, subject to a given upper bound on the objective
function of the other agent, they provided the NP-hard proofs for the
more general problems and presented polynomial-time algorithms
for several special cases. Lee et al. [18] considered a two-agent
scheduling problem in a two-machine permutation flowshop. Their
objective is to minimize the total completion time of the jobs of one
agent with the constraint that no tardy jobs are allowed for the other
agent. They developed a branch-and-bound and simulated annealing
algorithm to derive the optimal and near optimal solutions, for the
problem, respectively.

However, in real-life situations, customer orders do not necessarily
arrive at the same time. To the best of our knowledge, the multi-
agent scheduling problem with consideration of release times has
hardly been studied in the literature. In this paper we study a two-
agent scheduling problem on a single machine with job release times
where the objective is to minimize the total weighted completion
time of the jobs of one agent, subject to the maximum lateness of the
jobs of the other agent does not exceed a given limit. The research
results on the classical single-machine scheduling problem with
release times to minimize the total weighed completion time can
be found in [19–23]. The rest of this paper is organized as follows: we
present the problem formulation in the next section. We develop a
branch-and-bound algorithm incorporating several dominance prop-
erties and a lower bound in Section 3. We propose a primary
simulated annealing algorithm in Section 4. We introduce a second-
ary simulated annealing algorithm and report the computational
results in Section 5. Finally, we conclude the paper in the last section
and suggest topics for future research.

2. Problem description

The problem under study can be described as follows: there are n

jobs to be processed on a single machine. Each job belongs to either
one of the two agents, namely AG1 and AG2. Associated with each job
j, there is a processing time pj, a weight wj, a release time rj, a due
date dj, and an agent code Ij, where Ij ¼ 1 if jAAG1 and Ij ¼ 2 if
jAAG2. Given a schedule S, let CjðSÞ be the completion time of job j,
LjðSÞ ¼ CjðSÞ�dj be the lateness of job j, and L2

maxðSÞ ¼maxjAAG2
fLjðSÞg

be the maximum lateness of the jobs of agent AG2. The objective of
the problem is to find a schedule that minimizes the total weighted
completion time of the jobs of AG1 with the restriction that the
maximum lateness of the jobs of agent AG2 does not exceed a given
upper bound M. Since the objective function is a regular scheduling
performance measure, we use the terms schedule and sequence
interchangeably in this paper. Using the conventional three-field
notation for describing scheduling problems, we denote our problem
as 19L2

maxrM,rj9
P

jAAG1
wjCj.

3. A branch-and-bound algorithm

When the number of jobs of agent AG2 is zero, the problem
under consideration reduces to the classical single-machine
scheduling problem with release times to minimize the total
weighted completion time, which is NP-hard [24]. So it is justified
that we deploy the branch-and-bound technique to solve the
problem under study. In this section we first provide several
dominance properties, followed by a lower bound to speed up the
search process in the branch-and-bound scheme, and finally the
description of the branch-and-bound algorithm.

3.1. Dominance properties

First, we provide some results that help reduce the size of
solution space of the problem or determine the optimal schedule
under certain conditions. Since the correctness of both Theorems
1 and 2 are easy to establish, we omit their proofs.

Theorem 1. If there is a job i such that riþpirrj for any other job j,

then there is an optimal sequence in which job i is scheduled first.

Let Sn be a sequence in which the jobs of AG1 are scheduled first in
non-decreasing order of their release times, followed by the jobs of
AG2 in non-decreasing order of their due dates. Let C½k�ðS

n
Þ, r½k�ðS

n
Þ,

and d½k�ðS
n
Þ denote the completion time, release time, and due date of

the kth scheduled job under schedule Sn, respectively.

Theorem 2. If C½k�ðS
n
Þrr½kþ1�ðS

n
Þ for the jobs of AG1 and

C½k�ðS
n
Þ�d½k�ðS

n
ÞrM for the jobs of AG2 , k¼1, y, n, then Sn is an

optimal schedule.

Next, we provide several adjacent dominance properties.
Suppose that S and S0 are two job schedules and the difference
between S and S0 is a pairwise interchange of two adjacent jobs
i and j. That is, S¼ ðp,i,j,p0Þ and S0 ¼ ðp,j,i,p0Þ, where p and p0 each
denote a partial sequence. In addition, let t denote the completion
time of the last job in p. Depending on whether jobs i and j are
from agent AG1 or AG2, we consider the following four cases:

Case 1. Both jobs i and j are from agent AG1 in sequences S and S0.

To show that S dominates S0, it suffices to show that
CjðSÞ�CiðS

0
Þr0 and wiCiðSÞþwjCjðSÞowjCjðS

0
ÞþwiCiðS

0
Þ in this case.

Property 1.1. If maxft,rigrrj, maxft,rigþpiZrj , and pi=wiopj=wj

, then S dominates S0 .

Proof. Since maxft,rigrrj, the completion times of jobs j and i in
S0 are

CjðS
0
Þ ¼ rjþpj ð1Þ

and

CiðS
0
Þ ¼ rjþpjþpi ð2Þ
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Similarly, the completion times of jobs i and j in S are

CiðSÞ ¼maxft,rigþpirrjþpi ð3Þ

and

CjðSÞ ¼maxfCiðSÞ,rjgþpjrmaxft,ri,rjgþpiþpj ¼ rjþpiþpj ð4Þ

since maxft,rigrrj. From (2) and (4), we have CjðSÞ�CiðS
0
Þr0.

Since pi=wiopj=wj, from (1) to (4), we have

wiCiðSÞþwjCjðSÞ�wjCjðS
0
Þ�wiCiðS

0
Þrwjpi�wipjo0

Thus, S dominates S0. &

Property 1.2. If tZmaxfri,rjg and pi=wiopj=wj , then S dominates S0 .

Property 1.3. If maxft,rigþpiorj , then S dominates S0 .

Case 2. Job i is from agent AG1 and job j is from agent AG2 in
sequences S and S0.

To show that S dominates S0, it suffices to show that
LjðSÞ�Mr0 and CjðSÞ�CiðS

0
Þo0 in this case.

Property 2.1. If riorj, maxft,rigþpiZrj , and djZmaxft,rigþpiþ

pj�M , then S dominates S0 .

Property 2.2. If maxft,rigþpiorj and djZrjþpj�M , then S

dominates S0 .

Case 3. Job j is from agent AG1 and job i is from agent AG2 in
sequences S and S0.

To show that S dominates S0, it suffices to show that
LiðSÞ�Mr0 and CjðSÞ�CiðS

0
Þo0 in this case.

Property 3.1. If t4ri, tþpirrj , and diZtþpi�M , then S

dominates S0 .

Property 3.2. If tori, riþpiorj , and di4riþpi�M , then S

dominates S0 .

Case 4. Both jobs i and j are from agent AG2 in sequences S and S0.

To show that S dominates S0, it suffices to show that
CjðSÞ�CiðS

0
Þo0, LiðSÞ�Mr0, and LjðSÞ�Mr0 in this case.

Property 4.1. If riot, tþpirrj, diZtþpi�M , and djZrjþpj�M ,

then S dominates S0 .

Property 4.2. If ri4t, riþpirrj, diZriþpi�M , and djZrjþpj�M

, then S dominates S0 .

Property 4.3. If riotorj, tþpi4rj , and minfdi,dj�pjgZtþpi�M

, then S dominates S0 .

We omit the proofs of Properties 1.2–4.3 since they are similar
to that of Property 1.1.

To further speed up the search for the optimal solution, we
provide a proposition to determine the sequence of the unsched-
uled jobs. Assume that p is a partial schedule in which the order
of the first s jobs is determined and there are (n�s) jobs yet to be
scheduled. Let t be the completion time of the sth job. Among the
(n�s) unscheduled jobs, there are n1 jobs of agent AG1 and n2 jobs
of agent AG2, where n1þn2 ¼ n�s. Without loss of generality, we
assume that the job processing times, weights, and release times
of the n1 jobs of agent AG1 are p1

1,p1
2, � � � ,p1

n1
, w1

1,w1
2, � � � ,w1

n1
, and

r1
1,r1

2, � � � ,r1
n1

, respectively, when they are arranged in the weighted
shortest processing time (WSPT) order. Let ðp,pn

1,pn

2Þ denote a
sequence, where pn

1 consists of n1 unscheduled jobs of agent AG1

in the WSPT order and pn
2 consists of n2 unscheduled jobs of agent

AG2 in the earliest due date (EDD) order.
Proposition 1. If tþ
Pk�1

l ¼ 1

p1
l Zr1

k for k¼ 1,2,:::,n1 in pn

1 and there is

no tardy job in pn

2 , then sequence ðp,pn

1,pn

2Þ dominates sequences of

the type ðp,�Þ .

3.2. A lower bound

In this subsection we develop a lower bound for the branch-
and-bound algorithm. Let PS be a partial sequence in which s jobs
are scheduled. Among the n�s jobs in the set of unscheduled jobs
US, there are n1 jobs of agent AG1 and n2 jobs of agent AG2, where
n1þn2 ¼ n�s. We assume that for these n�s unscheduled jobs,
pð1Þrpð2Þr � � �rpðn�sÞ ðrð1Þrrð2Þr � � �rrðn�sÞÞ when they are
arranged in non-decreasing order of their processing (release)
times. Note that pðiÞ and rðiÞ might not be associated with the same
job. Furthermore, the weights of the n1 unscheduled jobs of agent
AG1 are denoted as wð1ÞZwð2ÞZ � � �Zwðn1Þ when they are in non-
increasing order of their weights and the due dates of the n2 jobs
of agent AG2 are denoted as dð1Þrdð2Þr � � �rdðn2Þ when they are
in non-increasing order of their due dates. The idea of developing
a lower bound is that we first derive a lower bound on the
completion times of the unscheduled jobs, and then we assign
them to agents AG1 and AG2, respectively. By definition, the
completion time of the (sþ1)th job is

C½sþ1� ¼maxfC½s�,r½sþ1�gþp½sþ1�ZC½s� þpð1Þ

By induction, the completion time of the (sþ i)th job is

C½sþ i�ZC½s� þ
Xi

l ¼ 1

pðlÞ ð5Þ

On the other hand, this lower bound might not be tight if the
release times are large. Thus,

C½sþ1� ¼maxfC½s�,r½sþ1�gþp½sþ1�Zrð1Þ þpð1Þ

By induction, we have

C½sþ i� ¼ max
1rkr i

r½k� þ
Xi�kþ1

l ¼ 1

p½kþ l�

( )
Z max

1rkr i
rðkÞ þ

Xi�kþ1

l ¼ 1

pðlÞ

( )
ð6Þ

From (5) and (6), a lower bound on the completion time of the
(sþ i)th job is

C½sþ i�Zmax tþ
Xi

l ¼ 1

pðlÞ, max
1rkr i

rðkÞ þ
Xi�kþ1

l ¼ 1

pðlÞ

( )( )
ð7Þ

for i¼ 1,2,. . .,n�s. The remaining task is to assign the estimated
completion times to the jobs of agents AG1 and AG2. The principle
is to assign the completion times to the jobs of agent AG2 as
late as possible without violating the assumption that the max-
imum lateness of the jobs of agent AG2 cannot exceed an upper
bound.

Proposition 2. If there is an unscheduled job j of agent AG2 and

max tþ
Pi

l ¼ 1 pðlÞ,max1rkr i rðkÞ þ
Pi�kþ1

l ¼ 1 pðlÞ

n on o
�M4dj, then it

cannot be scheduled in and after the (sþ i)th position.

Proof. Suppose that job j is scheduled in a position h, where
hZsþ i, then we have from (7) that

C½h��djZC½sþ i��djZ max tþ
Xi

l ¼ 1

pðlÞ, max
1rkr i

rðkÞ þ
Xi�kþ1

l ¼ 1

pðlÞ

( )( )
�djZM

This leads to a contradiction that the maximum lateness of the

jobs of agent AG2 cannot exceed the upper bound M and this

completes the proof. &
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In addition, we use the notation C1
ð1ÞrC1

ð2Þr � � �rC1
ðn1Þ

and

C2
ð1ÞrC2

ð2Þr � � �rC2
ðn2Þ

to denote the estimated completion times

of the jobs of agents AG1 and AG2 when they are arranged in non-
decreasing order. By Proposition 2, we can assign the jobs in a
backward manner starting with the job with the largest due date.
Accordingly, we present the following Algorithm 1 to compute
the lower bound:
Algorithm 1.

Step 1: Set ic¼ n�s, i1 ¼ n1, i2 ¼ n2 and

Cðsþ iÞ ¼max tþ
Pi

l ¼ 1

pðlÞ, max
1rkr i

rðkÞ þ
Pi�kþ1

l ¼ 1

pðlÞ

( )( )
for i¼ 1,2,. . .,n�s

Step 2: If i1 ¼ 0, set C2
ði2Þ
¼ Cðsþ icÞ and go to Step 6.

Step 3: If i2 ¼ 0, set C1
ði1Þ
¼ Cðsþ icÞ, i1 ¼ i1�1, and go to Step 5.

Step 4: If Cðsþ icÞrdði2Þ þM, set C2
ði2Þ
¼ Cðsþ icÞ and i2 ¼ i2�1. Otherwise, set C1

ði1Þ
¼ Cðsþ icÞ and i1 ¼ i1�1.

Step 5: Set ic¼ ic�1. If ic¼ 0, go to Step 7. Otherwise, go to Step 2.

Step 6: If Cðsþ icÞ4dði2Þ þM, eliminate this infeasible node by setting LB¼1 and go to Step 7. Otherwise, set i2 ¼ i2�1 and go to Step 5.

Step 7: Output the lower bound.
Therefore, a lower bound on the total weighted completion
time of the jobs of agent AG1 for the partial sequence PS is
LB¼

P
jAAG1

wjCjðPSÞþ
Pn1

j ¼ 1

wðjÞC
1
ðjÞ.

3.3. Description of the branch-and-bound algorithm

We adopt a depth-first search to execute the branching
procedure. This method has the advantage that it only requires
very little storage space. Our branch-and-bound algorithm assigns
the jobs in a forward manner starting with the first position. In
the searching tree, the algorithm chooses a branch and system-
atically works down the tree until it either eliminates it by virtue
of the dominance properties or the lower bound, or reaches its
final node, in which case the resultant sequence either replaces
the incumbent solution or is eliminated. We present an outline of
the branch-and-bound algorithm as follows:

Step 1. {Initialization} Implement SA1 (to be discussed in the
next section) to obtain a sequence as the initial incumbent
solution.
Step 2. {Branching & Reduction} Apply Theorem 2 to deter-
mine the optimal subsequence. Next, apply Theorem 1 and
Properties 1.1–4.3 to eliminate the dominated partial
sequences. For the non-dominated nodes, apply Proposition 1
to determine the sequence of the unscheduled jobs.
Step 3. {Bounding} For the non-dominated nodes, compute the
lower bound on the total weighted completion time of the jobs
of agent AG1. If the lower bound on the total weighted
completion time for the partial sequence is greater than the
incumbent solution, eliminate that node and all the nodes
beyond it in the branch. If the value of the completed sequence
Table 1
Data of the illustrative example.

i 1 2 3 4 5

AGi 1 1 1 2 2

pi 12 7 5 23 10

wi 2

di – – – 55 60

ri 1 22 14 30 3
is less than the incumbent solution, replace it as the new
solution. Otherwise, eliminate it.

In the following, we present an example to illustrate the
procedures of the proposed branch-and-bound algorithm.

Example 1. There are five jobs, M¼ 5, and Table 1 lists their
information, in which AGi, pi, wi, di, and ri denote the agent code,
processing time, weight, due date, and release time of job i,
respectively. The steps to execute the proposed branch-and-
bound algorithm are as follows:

Step 1. We execute SA1 to obtain the sequence (5, 1, 3, 2, 4) as
the initial incumbent solution with the objective value 321.
Step 2. For the node (1, -, -, -, -), since the condition of
Theorem 2 holds, we obtain the optimal subsequence (1, 3, 2,
4, 5) with the objective value 203.
Step 3. For the node (2, -, -, -, -), we delete it since its lower
bound is 449, which is greater than 203. Similarly, we delete
the nodes of (3, -, -, -, -) and (4, -, -, -, -) since their lower
bounds are 320 and 747, respectively.
Step 4. For the node (5, -, -, -, -), since the condition of
Proposition 1 holds, we obtain the optimal subsequence (5, 1,
2, 3, 4) with the objective value 320, and we delete it since it is
greater than 203.

Finally, we have the optimal sequence (1, 3, 2, 4, 5) with the
objective value 203.
4. A simulated annealing algorithm

The computational effort can be reduced by using a heuristic
solution as an upper bound prior to applying the branch-and-
bound algorithm. Furthermore, the search for the optimal solution
for an instance with a large number of jobs is time consuming, but
an effective heuristic can provide a time-saving approximate
solution with a small margin of error. We use the simulated
annealing (SA) algorithm proposed by Kirkpatrick et al. [25] to
obtain a near-optimal solution in this section. The implementation
of the SA algorithm consists of the following steps:
(1)
 Initial sequence: For this problem, set the initial sequence by
placing the jobs of agent AG2 in the EDD order, followed by
the jobs of agent AG1 in the WSPT order.
(2)
 Neighborhood generation: Neighborhood generation plays
an important role in the efficiency of the SA method. We use
three neighborhood generation methods in each iteration.
They are the pairwise interchange (PI), the extraction and
forward-shifted reinsertion (EFSR), and the extraction and
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backward-shifted reinsertion (EBSR) movements. We choose
the movement that yields the smallest value of the objective
function as its neighborhood.
(3)
 Acceptance probability: Generate the probability of accep-
tance from the following exponential distribution

PðacceptÞ ¼ expð�a�DTCÞ

where a is a control parameter and DTC is the change in the
objective function. In addition, the method of changing a in
the kth iteration is given by

a¼ k

b

where b is an experimental factor [26]. After some pretests,
we set b¼ 100,000. If the total tardiness increases as a result
of a random neighborhood movement, the new sequence is
accepted when PðacceptÞ4r, where r is a uniform random
number between 0 and 1.
(4)
 Stopping condition: Our preliminary tests show that the
schedule is quite stable after 200n iterations, where n is the
number of jobs.
5. Computational experiments

We conducted computational experiments to evaluate the perfor-
mance of the proposed branch-and-bound and SA algorithms. We
coded all the proposed algorithms in Fortran 90 and ran them on a
personal computer with an AMD Athlon(tm) 64 Processor 3500þ at a
clock speed of 2.21 GHz and 1 GB RAM under Windows XP. We
randomly generated the processing times from a uniform distribution
over the integers 1–100. As in Chu [27], we generated the release
times randomly from uniform distributions over the integers
ð0,50:5nlÞ, where n is the number of jobs and l is a control variable.
We randomly generated the weights of the jobs of agent AG1 from a
uniform distribution over the integers between 1 and 10 and the due
date of job j of agent AG2 from a uniform distribution over the
e 2

rmance of the B&B and SA1 algorithms with n¼12, l¼ 1:0, M¼10n, and P¼0.5.

R Branch-and-bound algorithm

Number of nodes

BBP BBL

Mean SD Mean

5 0.25 4213.21 9752.70 864.440

0.50 8722.94 32,236.35 635.630

0.75 6034.27 15,322.25 1011.430

0 0.25 3508.56 8904.03 733.680

0.50 1404.58 2379.85 372.440

0.75 4698.59 18,470.60 514.440

5 0.25 725.11 1019.37 299.890

0.50 859.94 1092.57 250.990

CPU times

Branch-and-bound algorithm

BBP BBL

Mean SD Mean

5 0.25 0.11 0.24 0.018

0.50 0.21 0.78 0.011

0.75 0.15 0.35 0.018

0 0.25 0.08 0.16 0.013

0.50 0.03 0.05 0.005

0.75 0.10 0.33 0.011

5 0.25 0.02 0.02 0.006

0.50 0.02 0.02 0.004
integers between rjþTð1�t�R=2Þ and rjþTð1�tþR=2Þ, where R is
the due date range, t is the tardiness factor, rj is the release time of
job j, and T is the total job processing time. To ensure feasibility of
each test instance, we arranged the jobs of agent AG2 in the EDD
order and re-generated the instance if the maximum lateness of the
jobs of agent AG2 exceeds the upper bound M.

The computational experiment consisted of five parts. The first
part of the experiment was to test the effectiveness of the
dominance properties and the lower bound, and the impact of
the due date factors on the performance of the branch-and-bound
and the simulated annealing algorithms. We fixed the job size at
12 and the proportion of jobs of agent AG1 at 50%, i.e., each agent
has six jobs. We set the release time factor l at 1 and the
maximum lateness at 10n, where n is the number of jobs. We
evaluated eight combinations of ðt,RÞ, i.e., (0.25, 0.25), (0.25, 0.50),
(0.25, 0.75), (0.5, 0.25), (0.5, 0.50), (0.5, 0.75), (0.75, 0.25), and
(0.75, 0.50). We denote the branch-and-bound algorithm with
only the dominance properties as BBP, the branch-and-bound
algorithm with the only lower bound as BBL, the branch-and-
bound algorithm with both the properties and lower bound as
BBPþL, and the branch-and-bound algorithm with no property and
lower bound (the enumeration method) as BB0. We recorded the
mean and standard deviation of the number of nodes and the
mean and standard deviation of the CPU time (in seconds) for BBL,
BBP, and BBPþL, while only the mean and the standard deviation of
the CPU time (in seconds) for BB0. For the SA algorithm SA1, we
report the mean and the standard deviation of the percentage
error. The percentage error of the solution produced by SA1 is
calculated as

ðV�Vn
Þ=Vn
� 100%

where V is the total weighted completion time of the solution
generated by SA1 and Vn is the total weighted completion time
derived from the branch-and-bound algorithm. As a result, we
randomly generated 100 replications for each condition and
report the results in Table 2. It is seen that the contributions of
SA1

Percentage error

BBPþL

SD Mean SD Mean SD

3407.379 584.74 2178.56 0.002 0.018

1731.726 420.71 1009.04 0.000 0.000

3444.658 653.58 2071.59 0.000 0.000

2494.854 442.78 1211.24 0.043 0.298

769.440 257.03 454.69 0.021 0.211

1194.446 358.39 810.03 0.028 0.199

506.679 198.75 289.87 0.009 0.080

298.304 172.30 179.34 0.069 0.438

Enumeration

BBPþL

SD Mean SD Mean SD

0.063 0.012 0.040 230.712 13.204

0.025 0.007 0.014 226.874 12.790

0.054 0.011 0.029 227.895 13.350

0.043 0.008 0.023 210.039 8.889

0.013 0.005 0.009 208.629 9.876

0.024 0.007 0.016 210.923 10.848

0.012 0.004 0.008 195.704 5.356

0.008 0.003 0.007 195.777 6.392



Table 5
Performance of the B&B and SA1 algorithms with n¼12 and (t, R)¼(0.25, 0.75).

l M P BBPþL SA1

Number of nodes CPU time Percentage error

Mean SD Mean SD Mean SD

0.2 10n 0.25 184.0 1148.7 0.006 0.029 0.024 0.239

0.50 218.4 902.3 0.008 0.028 0.062 0.616

0.75 411.4 705.6 0.018 0.032 0.003 0.026

30n 0.25 12.8 19.9 0.001 0.002 0.000 0.000

0.50 11.1 21.8 0.001 0.002 0.000 0.000

0.75 12.2 21.2 0.001 0.003 0.008 0.077

50n 0.25 8.0 11.8 0.001 0.003 0.000 0.000

0.50 11.8 14.7 0.001 0.004 0.000 0.000

0.75 12.5 12.7 0.001 0.002 0.001 0.009

1.0 10n 0.25 1048.3 3800.4 0.013 0.046 0.000 0.000

0.50 393.7 814.3 0.007 0.015 0.000 0.000

0.75 228.8 403.1 0.005 0.009 0.000 0.000

30n 0.25 119.5 525.3 0.002 0.009 0.000 0.000

0.50 278.0 655.6 0.006 0.014 0.000 0.000

0.75 378.3 1780.7 0.007 0.032 0.000 0.000

50n 0.25 125.0 568.5 0.001 0.004 0.000 0.000

0.50 578.8 1762.3 0.012 0.032 0.000 0.000

0.75 213.7 470.2 0.004 0.008 0.000 0.000

3.0 10n 0.25 80.2 254.3 0.001 0.003 0.000 0.000

0.50 55.1 67.3 0.001 0.004 0.000 0.000

0.75 73.6 85.4 0.001 0.004 0.000 0.000

30n 0.25 97.5 389.1 0.002 0.005 0.000 0.000

0.50 63.0 94.7 0.001 0.004 0.000 0.000

0.75 64.2 152.3 0.001 0.004 0.000 0.000

50n 0.25 49.6 95.9 0.001 0.003 0.000 0.000

0.50 116.9 664.2 0.002 0.009 0.000 0.000

0.75 49.9 52.9 0.001 0.004 0.000 0.000

Table 6
ANOVA table for the number of nodes with n¼12 and (t, R)¼(0.25, 0.75).

Source SS DF MS F p-value

Factor (l) 5.03Eþ07 2 2.51Eþ07 25.52 0

Factor (M) 1.89Eþ07 2 9.43Eþ06 9.58 0

Factor (P) 5.87Eþ05 2 2.93Eþ05 0.30 0.743

Error 2.65Eþ09 2693 9.85Eþ05

Total 2.72Eþ09 2699

Table 7
ANOVA table for the percentage error of SA1 with n¼12 and (t, R)¼(0.25, 0.75)
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the dominance properties and the lower bound are notable in the
searching process for the optimal solution in terms of execution
time. The mean execution times are less than 1 second for BBL,
BBP, and BBPþL, while the mean execution time is more than 195 s
for BB0 when n¼12. Moreover, it is noted that the lower bound is
more effective than the dominance properties in terms of the
number of nodes explored. Thus, we used only BBPþL in the later
analysis. We conducted a one-way analysis of variance (ANOVA)
of the number of nodes of BBPþL to test the effects of the due date
factors. Table 3 reports the results. The resulting F-value for the
due-date factors is 1.95 with a p-value of 0.0588, which indicates
that t and R do not have a statistically significant impact on the
hardness of the problem. However, we see that the case
ðt,RÞ ¼ ð0:25, 0:75Þ has the most number of nodes with an average
of 653.58 among the eight cases. Thus, we used this case in the
later analysis. On the other hand, as shown in Table 4, the analysis
of variance of the percentage error of SA1 has an F-value of 1.29
with a p-value of 0.25, which indicates that the due date factors
have no effects on the performance of the simulated annealing
algorithm.

Similar to the first part, the second part of the experiment is to
test the effects of the release time control factor l, the proportion
of the jobs of agent AG1 P, and the value of the maximum lateness
M on the performance of the proposed algorithms. We fixed the
job size at 12 and ðt,RÞ at (0.25, 0.75). We used three different
values each of l (0.2, 1.0, 3.0), P (0.25, 0.50, 0.75), and M (10n,
30n, 50n), where n is the number of jobs. As a result, we tested 27
scenarios and randomly generated 100 replications for each
scenario. We present the results in Table 5. We conducted a
three-way ANOVA to test the effects of the parameters on the
performance of the branch-and-bound algorithm and we report
the results in Table 6. The resulting F-value for the release time
factor l is 25.52 with a p-value of less than 0.001, which shows
that l has a significant impact on the performance of the branch-
and-bound algorithm. A closer look at Table 5 reveals that the
problems are relatively easier to solve when l¼ 0:2 or 3.0, and
more difficult to solve when l¼ 1:0. The main reason for this
observation is that Theorem 1 is more effective when the range of
the release time is large (l¼ 3:0), while the other properties are
more potent when the range is small (l¼ 0:2). The statistical test
also shows that the value of the maximum lateness M is an
significant factor with an F-value of 9.58 and a p-value of less than
0.001. We see from Table 6 that the problems are easier to solve
when the value of M is larger. The main reason is that Theorem 2
is more effective in that case. However, the proportion of the jobs
of agent AG1 has no impact on the performance of the branch-
and-bound algorithm, since the resulting F-value is 0.3 and its
Table 3

ANOVA table for the number of nodes with. n¼12, l¼ 1:0, M¼10n, and P¼0.5.

Source SS DF MS F p-Value

Due date factors 2.14Eþ07 7 3.05Eþ06 1.953 0.059

Error 1.24Eþ09 792 1.56Eþ06

Total 1.26Eþ09 799

Table 4

ANOVA table for the percentage error of SA1 with. n¼12, l¼ 1:0, M¼10n, and

P¼0.5.

Source SS DF MS F p-Value

Due date factors 0.420 7 0.060 1.293 0.251

Error 36.741 792 0.046

Total 37.161 799

Source SS DF MS F p-value

Factor (l) 0.069 2 0.035 2.11 0.121

Factor (M) 0.052 2 0.026 1.60 0.203

Factor (P) 0.015 2 0.008 0.47 0.628

Error 44.222 2693 0.016

Total 44.359 2699
p-value is 0.743. As to the performance of the simulated anneal-
ing algorithm, the results in Table 7 show that none of the release
time factor, the value of the maximum lateness, and the propor-
tion of the jobs of agent AG1 has an impact on the percentage
error of SA1. Their resulting F-values are 2.11, 1.6, and 0.47, and
their associated p-values are 0.121, 0.203, and 0.628, respectively,
which indicates that the performance of SA1 is very consistent and
insensitive to these parameters.

In the third part of the experiment, we examine the impact of
the number of jobs. As mentioned in the first part of the
experiment, we set ðt,RÞ ¼ ð0:25,0:75Þ because it had generated
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the most number of nodes. Since the proportion of the jobs of
agent AG1 has no impact as indicated in the second part of the
experiment, we fixed it at 50%. We studied three different
numbers of jobs, i.e., n¼16, 20, and 24. In addition, we considered
three different values each of l (0.2, 1.0, 3.0) and M (10n, 30n,
50n). For each condition, we randomly generated 100 replications
and we report the results in Table 8. We terminate the branch-
and-bound algorithm if the number of nodes explored is over 108,
which is approximately 2.5 h in terms of execution time. We
denote the instances with number of nodes over 108 as unsol-
vable instances (UI), which are also reported. For the unsolvable
instances, the mean values of the gap percentages ðUB�LBÞ=LB�

100% are given, where UB is the solution of SA1 and LB is the
lower bound associated with the terminated node. It is seen that,
since the problem is NP-hard, the number of nodes and execution
time grow exponentially as the number of jobs increases. As
indicated earlier, instances with l¼ 1 are the most difficult to
solve. It is observed that the branch-and-bound algorithm could
solve most of the instances with up to 24 jobs in a reasonable
amount of time. Among the 900 instances with 24 jobs, only 21
are unsolvable instances, which are all associated with l¼ 1. In
addition, the mean gap percentages are all below 5%. As to the
performance of SA1, we see that it is very accurate with a mean
percentage error of less than 0.5% for all the cases. Moreover, we
observe from the mean and standard deviation that SA1 yields the
optimal solutions for most of the instances when l¼ 1, the most
difficult cases for the branch-and-bound algorithm. Thus, we
recommend SA1 in this case.

The fourth part of the computational experiments is to test the
performance of SA1 when the number of jobs is large. It is known
that the branch-and-bound algorithm with a limited number of
nodes explored could serve as a good heuristic in general. Thus,
we propose a second simulated annealing algorithm (the
Table 8
Performance of the B&B and SA1 algorithms with (t, R)¼(0.25, 0.75) and P¼0.5.

n l M BBPþL

Number of nodes

Mean SD

16 0.2 10n 5177.1 43,727.9

30n 71.8 114.7

50n 63.7 110.7

1.0 10n 13,880.6 41,690.1

30n 13,221.3 43,360.5

50n 15,472.7 74,318.4

3.0 10n 304.5 700.5

30n 289.3 1032.8

50n 256.7 553.0

20 0.2 10n 141,594.9 1,019,717.7

30n 532.9 993.2

50n 1009.1 3163.1

1.0 10n 1,242,077.8 4,490,595.2

30n 1,391,819.7 6,564,104.4

50n 261,915.9 570,324.6

3.0 10n 825.5 1752.5

30n 539.3 1202.7

50n 1103.3 2231.6

24 0.2 10n 424,630.7 2,008,466.5

30n 125,941.6 836,859.1

50n 52,668.8 320,054.0

1.0 10n 5,675,136.8 14,614,339.7

30n 3,707,708.2 10,342,309.1

50n 4,193,437.8 9,936,155.4

3.0 10n 2044.2 3989.5

30n 4038.4 13,036.9

50n 4603.2 20,555.4
secondary SA algorithm, denoted as SA2) by using the solution
obtained by the branch-and-bound algorithm with a maximum of
100n nodes as the initial sequence, where n is the number of jobs.
We tested two job sizes, i.e., n¼50 and 100. We randomly
generated 100 instances for each situation and we report the
results in Table 9. We recorded the mean and standard deviation
of the gap percentages (GPs). The gap percentage of the solution
produced by a simulated annealing algorithm is calculated as

ðVi�LBÞ=LB� 100%

for i¼1, 2 where Vi is the value of the total weighted completion
time of the jobs of the first agent generated by the ith simulated
annealing algorithm and LB is the lower bound of the terminated
node of the branch-and-bound algorithm. We also recorded the
mean and standard deviation of the execution time. As expected,
SA2 takes more time than SA1, especially when the number of jobs
increases and the release time range is small. In addition, the
performance of SA2 is not superior to that of SA1, which implies
that the performance of SA1 is very good.

We conducted the final part of the computational experiments
to test the performance of SA1 in treating instances with very large
numbers of jobs. We used five job sizes ranging from small to very
large (n¼20, 50, 100, 1000, and 10,000). We randomly generated a
set of ten instances for each situation. Table 10 presents the
results. We recorded the mean and standard deviation of the gap
percentages (GPs). The gap percentage of the solution produced by
the simulated annealing algorithm is calculated as

ðV�LBÞ=LB� 100%,

where V is the value of the total weighted completion time of the
jobs of the first agent generated by SA1 and LB is the lower bound
associated with the root node of the branch-and-bound algorithm.
We also recorded the mean and standard deviation of the
UI SA1

CPU time Percentage error

Mean SD Mean SD

0.43 3.52 0 0.203 0.919

0.01 0.01 0 0.038 0.269

0.01 0.01 0 0.002 0.019

0.47 1.41 0 0.000 0.000

0.48 1.66 0 0.000 0.000

0.66 3.17 0 0.000 0.000

0.01 0.02 0 0.000 0.000

0.01 0.02 0 0.000 0.000

0.01 0.01 0 0.000 0.000

27.88 204.82 0 0.065 0.447

0.07 0.12 0 0.002 0.015

0.13 0.39 0 0.000 0.000

59.59 221.68 0 0.000 0.000

84.55 378.86 0 0.000 0.000

12.47 26.15 0 0.000 0.000

0.02 0.04 0 0.000 0.000

0.01 0.03 0 0.000 0.000

0.03 0.05 0 0.000 0.000

137.22 615.32 0 0.234 1.153

17.67 115.17 0 0.117 0.452

7.99 45.88 0 0.082 0.305

460.01 1189.86 7(3.06) 0.007 0.072

262.09 746.10 6(4.55) 0.004 0.044

331.86 762.29 8(4.57) 0.000 0.000

0.06 0.13 0 0.000 0.000

0.11 0.34 0 0.000 0.000

0.13 0.58 0 0.000 0.000



Table 9
The GP of the SA1 and SA2 algorithms with (t, R)¼(0.25, 0.75) and P¼0.5

n l M SA1 SA2

Gap percentage CPU time Gap percentage CPU time

Mean SD Mean SD Mean SD Mean SD

50 0.2 10n 5.487 6.71 0.091 0.01 6.129 7.063 9.111 2.277

30n 8.878 10.48 0.099 0.009 9.696 10.534 7.665 0.88

50n 10.088 9.815 0.1 0.01 10.929 10.157 7.667 0.94

1.0 10n 0.306 0.644 0.094 0.009 0.324 0.658 1.568 0.481

30n 0.267 2.921 0.104 0.011 0.315 3.055 1.544 0.416

50n 0.308 0.621 0.107 0.01 0.38 0.716 1.528 0.424

3.0 10n 2.654 4.557 0.085 0.009 2.655 4.556 0.396 0.075

30n 3.249 6.145 0.093 0.008 3.261 6.141 0.404 0.059

50n 3.292 4.642 0.097 0.009 3.298 4.643 0.409 0.074

100 0.2 10n 3.638 8.457 0.345 0.016 4.375 8.484 108.915 15.369

30n 4.749 6.364 0.378 0.015 5.617 6.411 101.768 7.921

50n 4.874 6.285 0.378 0.013 5.715 6.272 108.954 9.719

1.0 10n 0.006 1.402 0.358 0.017 0.007 1.395 15.819 4.273

30n 0.025 0.708 0.395 0.015 0.031 1.2 15.781 4.105

50n 0.026 1.108 0.413 0.014 0.033 1.092 15.27 4.045

3.0 10n 0.847 0.959 0.323 0.014 0.849 0.961 2.017 0.3

30n 0.831 1.229 0.347 0.015 0.835 1.229 2.073 0.283

50n 0.746 1.088 0.364 0.014 0.747 1.088 2.129 0.315

Table 10
The GP of SA1 with (t, R)¼(0.25, 0.75) and P¼0.5.

n Gap percentage CPU time

Mean Max SD Mean Max SD

20 189.64 393.46 80.76 0.01 0.02 0.01

50 201.72 347.92 61.03 0.04 0.06 0.01

100 193.51 386.18 47.66 0.17 0.20 0.01

1000 197.70 268.15 25.29 20.79 23.84 1.48

10,000 201.41 243.49 24.95 1687.54 1954.23 121.03
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execution time. It is seen that the mean GP remains around 200%
as the number of jobs increases, which implies that the perfor-
mance of SA1 is consistent.
6. Conclusions

In this paper we study a two-agent single-machine scheduling
problem with release times. The objective is to minimize the total
weighted completion time of the jobs of one agent, given that the
maximum lateness of the jobs of the other agent cannot exceed a
given upper bound. We propose a branch-and-bound algorithm to
solve the problem, and a primary and a secondary simulated
annealing algorithm to find near-optimal solutions. We conduct
computational experiments to evaluate the performance of the
proposed algorithms. The computational results show that the
branch-and-bound algorithm can solve most of the problem
instances with up to 24 jobs in a reasonable amount of time. They
also show that the performance of the primary SA algorithm is very
good, yielding an average percentage error of less than 0.5% for all
the tested cases, and the performance is stable with respect to the
due dates, proportions of jobs of the two agents, release times, and
bound on the of maximum lateness of the jobs of the other agent.
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