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Abstract To improve the quality of life for the dis-
abled and elderly, this paper develops an upper-
limb, EMG-based robot control system to pro-
vide natural, intuitive manipulation for robot arm
motions. Considering the non-stationary and non-
linear characteristics of the Electromyography
(EMG) signals, especially when multi-DOF move-
ments are involved, an empirical mode decom-
position method is introduced to break down the
EMG signals into a set of intrinsic mode functions,
each of which represents different physical charac-
teristics of muscular movement. We then integrate
this new system with an initial point detection
method previously proposed to establish the map-
ping between the EMG signals and corresponding
robot arm movements in real-time. Meanwhile,
as the selection of critical values in the initial
point detection method is user-dependent, we em-
ploy the adaptive neuro-fuzzy inference system
to find proper parameters that are better suited
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for individual users. Experiments are performed
to demonstrate the effectiveness of the proposed
upper-limb EMG-based robot control system.
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1 Introduction

Electromyography (EMG) signals, generated dur-
ing muscle contraction, in some sense reflect hu-
man intentions. Therefore, some research has
focused on the study of using EMG signals to
control rehabilitation devices [1–4] and human-
assisting manipulators [5–10], so that the physi-
cally handicapped as well as the elderly may use
them to improve their mobility and quality of life.
However, since nonlinear, non-stationary charac-
teristics and high variations are inherently present
in EMG signals, these disturbances make it hard
to analyze and discriminate among EMG signals.
Consequently, figuring out how to achieve a high
discrimination rate for EMG pattern recognition
still remains a challenge. Several methods for
recognizing the intended movements from EMG
signals have been proposed. In the time domain,
there are mean absolute value, variance, bias
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zero-crossing, Willison amplitude, AR-model [1,
2, 11], Euclidean distance and standard deviation
[12], and hidden Markov model [13], etc. In the
frequency domain, there are Fourier transform
[14] and wavelet analysis [15, 16], etc. Unfortu-
nately, the time-domain approaches usually in-
clude high computational complexity [2]. As for
approaches in frequency domain, the data must be
linear and strictly stationary for Fourier transform
[17] to work; however, EMG signals are non-
linear and non-stationary signals, especially for
contraction levels higher than 50% of maximum
voluntary contraction [18]. Meanwhile, a mother
wavelet has to be defined a priori for wavelet
analysis [19]. Unsuitable mother wavelets may
lead to unsatisfactory results.

In contrast, Hilbert–Huang transform (HHT) is
a time-frequency method. Based on the local time
scale of the data, HHT breaks down a signal into
several intrinsic mode functions (IMFs) via empir-
ical mode decomposition (EMD), and then calcu-
lates the instantaneous frequency of each IMF at
any point in time via Hilbert transform. Hence,
it is suitable for nonlinear and non-stationary
data analysis. HHT has been broadly applied in
numerous scientific disciplines and investigations,
e.g., analysis on the bioelectricity signal, failure
testing, and earthquake signals, etc [20]. Several
researchers have applied HHT to EMG related
studies. Xie et al. [18] and Peng et al. [21] adopted
HHT to find the features of muscular fatigue. Ma
and Luo [20] proposed using HHT and AR-model
to extract the surface EMG feature to recog-
nize hand-motions. Wang et al. [22] presented a
feature extraction technique based on EMD to
classify the walking activities from accelerometry
data. Chen et al. [23] employed HHT to extract
the frequency features of the stump to control
transfemoral prosthesis. Zong and Chetouani [17]
presented a feature extraction technique based
on HHT for emotion recognition from physio-
logical signals. In our previous research [24], we
employed the EMD method to extract the upper-
limb EMG signals for governing 1-DOF robot
arms in real time.

This paper proposes developing an upper-limb
EMG-based robot control system that can govern
human assisting robot manipulators in natural and
intuitive manner. The developed system is not

intended to serve as a classifier that accurately
identifies human intention from EMG signals.
The development of such a classifier needs to
well consider the influence from the muscle type,
strength of muscle contraction, fatigue level, strat-
egy in performing the task, and others. Instead,
we attempt to develop a system for effective ro-
bot motion governing in real-time. At the current
stage, we aim to govern the robot manipulator
of 2 DOFs via the EMG signals measured from
four surface electrodes placed on Biceps Brachii,
Triceps Brachii, Pectoralis Major, and Teres Mi-
nor of the human operator. To tackle the non-
stationary and nonlinear EMG signals generated
during multi-joint movements, the EMD method
is employed to break down the EMG signals
into a set of IMFs, representing different physical
characteristics for muscular movement recogni-
tion. We then utilize the initial point detection
method previously proposed [10] to establish the
relationship between the upper-limb EMG signals
and corresponding robot arm movements in real
time. As the selection of critical values in the
initial point detection method is user-dependent,
we need to find proper system parameters that
are better suited for individual users. For such sys-
tem parameter search, the adaptive neuro-fuzzy
inference system (ANFIS) [10, 25] is employed to
realize the fuzzy system, due to high complexity
exhibited by the 2-DOF movements. A series of
experiments are performed to demonstrate the
effectiveness of the proposed system. Some other
learning schemes have been proposed for related
applications. Chan et al. [26] proposed a fuzzy
approach to classify single-site EMG signals for
prosthesis control based on the time-segmented
features, which uses the Basic Isodata algorithm
to cluster the features without supervision and
the back-propagation algorithm to train the fuzzy
rules. Vachkov and Fukuda [27] proposed struc-
tured learning and decomposition of fuzzy models
for robotic control. The random walk algorithm
with variable step size was used to tune the an-
tecedent parameters of the membership functions
and a local learning algorithm to tune the conse-
quent parameters of the singletons.

The rest of the paper is organized as follows. In
Section 2, the upper-limb EMG-based robot con-
trol system is described, including the modules for
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EMG signal measurement and processing, EMD
feature extraction, and motion classification with
adaptation. Section 3 presents the experimental
results and discussions. The conclusion is given in
Section 4.

2 Proposed Upper-Limb EMG-Based Robot
Control System

Figure 1 shows the system diagram of the pro-
posed upper-limb, EMG-based robot control sys-
tem for governing a 2-DOF robot manipulator,
which consists of three main modules: signal mea-
surement and processing, EMD feature extrac-
tion, and motion classification with adaptation.
The signal measurement and processing module
measures the raw EMG signals and also filters
out noise. The filtered EMG signals are then sent
to the EMD feature extraction module to break
down the signals into a set of IMFs. With the
IMFs, the motion classification with adaptation
module then determines the arm movement of the
operator and generates the commands to drive the
human-assisting robot. From the resultant robot
motion, the operator evaluates the performance
and determines the next movement. These three
modules are described below.

2.1 Signal Measurement and Processing

For this upper-limb, EMG-based robot control
system, we extract the EMG signals of Biceps
Brachii, Triceps Brachii, Pectoralis Major, and
Teres Minor. To obtain more precise EMG sig-

nals, the electrodes are placed on the belly of
the muscle. The recommended inter-electrode
distance (from one differential electrode to the
other) is about 1∼2 cm [28, 29]. Several types
of noises may affect the measurement of the
EMG signals, such as ECG crosstalk, electro-
magnetic induction from power lines, and arm
and cable movements. The ECG crosstalk can
be suppressed by measuring signals from those
muscles away from the heart. The frequency of
the electromagnetic noise is around 60 Hz. While
a notch filter at that frequency can be an option, it
should be avoided, because EMG generates many
extra signals at these and neighboring frequen-
cies (the primary frequency of the EMG signal is
50∼150 Hz). We thus let the proposed approach
tackle its influence as the disturbance. Meanwhile,
the frequency distribution for the arm and cable
movements is around 0–20 Hz, which can be han-
dled using a high-pass filter.

2.2 Empirical Mode Decomposition Feature
Extraction

Hilbert–Huang transform (HHT) [21, 23, 30] is an
adaptive signal processing technique based on the
local characteristic time scale of the data. The key
part of the HHT is the EMD process, which uses
the sifting process to break down a complicated
signal without a basis function, such as sine or
wavelet functions, into several IMFs that are em-
bedded in the complicated signal [31]. Each IMF,
linear or nonlinear, represents a simple oscillation,
which has the same number of extremes and zero-
crossings. Figure 2 shows the flow chart of the

Fig. 1 Proposed
upper-arm EMG-based
robot control system
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Fig. 2 Flow chart for
empirical mode
decomposition
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EMD process, which breaks down the complete
signal into a set of IMFs in eight steps:

Step 1 Obtain the upper envelop U(t) of the
filtered EMG data x(t) by using a cubic
spline curve to interpolate between those
maximum points.

Step 2 Apply the same actions in Step 1 to obtain
the lower envelope L(t).

Step 3 Compute the mean value of the upper
and lower envelope m1(t):

m1(t) = U(t) − L(t)
2

(1)

Step 4 Subtract the running mean value m1(t)
from the original data x(t) to obtain the
first component h1(t):

h1(t) = x(t) − m1(t) (2)

Step 5 Iterate Steps 1–4 on h1(t) for k times

h11(t) = h1(t) − m11(t)
•
•

h1k(t) = h1(k−1)(t) − m1(k−1)(t)

(3)

until the resulting component h1k(t) sat-
isfies two conditions: (a) the difference
between the number of local extremes
and that of zero-crossings is zero or one
and (b) the running mean value is zero. In
Eq. 3, m1(k−1)(t) is the mean value of the
upper and lower envelope of h1(k−1)(t).

Step 6 Designate c1(t) = h1k(t) if h1k meets the
two requirements mentioned above.

Step 7 Subtract the first IMF c1(t) from the orig-
inal data to obtain the residual r1(t):

r1(t) = x(t) − c1(t) (4)

Step 8 Treat r1(t) as the new data and repeat
Steps 1–7 on r1(t) to obtain all the
subsequent i.e., r2 (t) = r1 (t) − c2 (t) , . . .,
rn (t) = rn−1 (t) − cn (t) until the final
residual rn(t) meets the predefined
stopping criteria as a monotonic function,
considered as the trend.

Based on the procedure above, the original data
x(t) can be exactly reconstructed by a linear su-
perposition:

x (t) =
n∑

i=1

ci(t) + rn(t) (5)

where n is the number of IMFs.
The number of IMFs depends on the charac-

teristics of the data. Complex data can be de-
composed into more IMFs, which increases the
computational load in EMD. As EMG signals
are nonlinear, non-stationary, and varying, using
a high data sampling window would lead to a
situation where the mapping between the upper-
limb EMG signals and corresponding robot arm
movements cannot be established within the ex-
pected time interval. After several experiments,
it was found that combining a sixth-order band-
pass Butterworth filter (a type of filter designed
to have as flat a frequency response as possible in
the passband) with the cut-off frequencies at 20
and 400 Hz with a window containing 20 samples
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per second could reduce the computational load
and noises, and this was used afterward. Figure 3
shows a typical example of the EMD process
when a muscle relaxes and then flexes. Each of
example includes the empirical EMG signal x(t),
three IMFs (c1(t), c2(t), c3(t)), and residue (r3(t)).

Judging from Fig. 2a and b, c1(t) should be the
background noise induced by skin impedance and
temperature, cable movement, etc., since its mag-
nitude did not vary with arm movement evidently.
In contrast, those of c2(t) and c3(t) did vary. We
found that the variation of the magnitude of c2(t)

Fig. 3 A typical example
of an empirical EMG
signal and corresponding
empirical mode
decomposition
components, including
3 IMFs and 1 residue
(trend): muscle in
a relaxation and b flexion
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is incremental, which basically followed that of the
muscle activities, while that of c3(t) is decremen-
tal. Therefore, c2(t) was identified to represent the
limb movement.

2.3 Motion Classification with Adaptation

To achieve real-time motion classification, we
adopt the initial critical value detection method
previously proposed. Note that this method is not
intended to provide a classifier that accurately
identifies human intention from EMG signals, but
to efficiently establish the relationship between
the upper-limb EMG signal and corresponding
movements. Its feasibility and effectiveness have
been verified via experiments based on one-joint
upper-limb movement [10, 24]. Details of the
method can be referred to [10, 24], and are briefly
described below.

The initial point detection method determines
the onset of the upper limb motion by detecting
the instant when the magnitude of the extracted
feature reaches the critical value, as illustrated
in Fig. 4. In Fig. 4, the state of the muscle, MS,
is determined to be active when the value for
the extracted feature Fk, calculated by the root
mean square (RMS) method, is larger than the
predefined upper critical value CVu, and MS is
inactive when Fk is smaller than the predefined
lower critical value CVl. Furthermore, an active
MS corresponds to an “ON” robot command and

Fk 
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OFF 

State 

Robot Command

OFF 

lCV  

Fig. 4 Conceptual diagram for initial value detection

an inactive one to “OFF.” This relationship can be
formulated as:

MS =
{

1, if Fk > CVu

0, if Fk < CVl
(6)

where Fk = RMS(c2(t)), 0 ≤ t ≤ 20 samples, and
c2(t) is the 2nd IMF.

The proper selection of CVu and CVl is criti-
cal for the performance of the motion classifier.
And, their selection is user-dependent. Finding
the proper CVu and CVl for individual users
is very challenging, especially when limb move-
ments of multi-DOF are involved. In the search
of proper CVu and CVl, we employ the adaptive
neuro-fuzzy inference system (ANFIS) [25] to uti-
lize the fuzzy system due to its excellence at adap-
tation. Figure 5 shows the conceptual diagram of
the proposed ANFIS for CVu and CVl determina-
tion, which consists of fuzzy rule, fuzzifier, fuzzy
inference engine, and defuzzifier. We utilize the
empirical knowledge to generate the fuzzy rules,
listed in Table 1, where INa, INb, INc, and INd

stand for the EMG signals of BB, TB, PM, and
TM, respectively, OUT for CVu, and W, M, S, VL,
L, H, and VH for weak, middle, strong, very low,
low, high, and very high. Fuzzifier transforms the
measured EMG signals of Biceps Brachii (BB),
Triceps Brachii (TB), Pectoralis Major (PM), and
Teres Minor (TM) into linguistic variables. In
addition, a one-degree Sugeno-type inference sys-
tem is employed to depict the fuzzy rules in the
fuzzy inference engine. The fuzzy rules are formu-
lated as:

Ri : IF BB is Ai and TB is Bi and PM is Ci

and TM is Di THEN CVu (CVl)

= pi × BB + qi × TB + ri × PM + si

× TM, i ∈ {1, 2, . . . , 54} (7)

where BB, TB, PM, and TM are the input
variables, A, B, C, D = {W, M, S} the linguis-
tic variables, CVu(CVl) the output variable, and
[pi qi ri si] the consequent parameter set, which
can be determined by the least-squares method.
Defuzzifier transforms the fuzzy results of the
inference into a real CVu(CVl) using the weighted
averaged method.
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Fig. 5 Conceptual
diagram of the proposed
ANFIS to determine CVu
and CVl
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Via extensive experiments, the values of the
W, M, and S in INa ∼INd and those of VL, L,
M, H and VH in OUT are empirically set, as
shown in Table 2, and CVl is set to be 0.7 times
the value of CVu. Since some conditions, such
as skin impedance and temperature, etc. may be
different from those for training, the values afore-
mentioned can be adjusted via a compensating

factor λ, ranging from 0.8 to 1.3. The procedure for
determining CVu andCVl is described as follows:

Step 1 Set the compensating parameter λ to be
0.8 in the proposed ANFIS to obtain the
first set of CVu and CVl.

Step 2 Ask the operator to perform the motion
of flexion, extension, internal rotation,

Table 1 Fuzzy rule base Rule No. INa INb INc INd OUT Rule No. INa INb INc INd OUT

1 W W W W VL 28 M W W W L
2 W W W M VL 29 M W W M L
3 W W W S L 30 M W W S M
4 W W M W VL 31 M W M W L
5 W W M M L 32 M W M M M
6 W W M S L 33 M W M S M
7 W W S W VL 34 M W S W L
8 W W S M L 35 M W S M M
9 W W S S L 36 M W S S M
10 W M W W L 37 M M W W M
11 W M W M L 38 M M W M M
12 W M W S L 39 M M W S M
13 W M M W M 40 M M M W H
14 W M M M M 41 M M M M H
15 W M M S M 42 M M M S H
16 W M S W M 43 M M S W H
17 W M S M M 44 M M S M H
18 W M S S M 45 M M S S H
19 W S W W H 46 M S W W VH
20 W S W M H 47 M S W M VH
21 W S W S H 48 M S W S VH
22 W S M W H 49 M S M W VH
23 W S M M H 50 M S M M VH
24 W S M S H 51 M S M S VH
25 W S S W VH 52 M S S W VH
26 W S S M VH 53 M S S M VH
27 W S S S VH 54 M S S S VH
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Table 2 Values of the linguistic variables in the fuzzy rule
base

INa ∼ INd OUT

W M S VL L M H VH
1/3 2/3 1 1/3 2/3 1 4/3 5/3

and external rotation two times
consecutively.

Step 3 If the successful discrimination rate
(SDR), defined in Eq. 8 below, is lower

than 80%, add 0.1 to λ, and iterate Steps
2 and 3 until the SDR is equal to or more
than 80%.

SDR = Number of successful motions following
Total number of classif ications

× 100% (8)

The proposed ANFIS consists of five layers, as
shown in Fig. 6. Layer 1 is the input layer. Each

Fig. 6 Structure of the
ANFIS for the proposed
system

A1 

A2 

B1 

B2 

Π 

A3 

B3 

Π 

Π 

Π 

Π 

Π 

N 

N 

N 

N 

N 

N 

Σ

BB 

TB 

Layer1    Layer2   Layer3    Layer4  Layer5 

)( lu CVCV

1w  

C1 

C2 

D1 

D2 

C3 

D3 

TM 

PM 

1w  CVu1  

(CVl1 ) 

2w  CVu2  

(CVl2 )

3w  CVu3  

(CVl3)

4w  CVu4  

(CVl4)

5w  CVu5  

(CVl5 )

6w  CVu6  

(CVl6)

Π 

Π 

Π 

Π 

Π 

N 

N 

N 

N 

N 

Π N 

49w  CVu49  

(CV l49)

50w  CVu50  

(CVl50)

51w  CVu51  

(CVl51)

52w  CVu52  

(CVl52 ) 

53w  CVu53  

(CVl53)

54w  CVu54  

(CVl54 ) 

•

)( 545454 lu CVCVw  

)( 111 lu CVCVw  

8w  

18w  

28w  

38w  

48w  

• • 

• 
•

• 
•

• 
•

• 
•

• 
•

• 
•

• 
•

• 
•

54w  

•

•

•

•

•

•

•

•

•

•

•

•

•

•



J Intell Robot Syst (2012) 68:275–291 283

node in this layer represents an input variable of
the model with the membership function:

O1
i = μAi (BB) , O1

i+3 = μBi (T B) ,

O1
I+6 = μCi (PM) , O1

i+9 = μDi (T M) , i = 1, 2, 3

(9)

The bell-shaped membership function is em-
ployed, shown in Fig. 7, and is expressed as:

μXi (Y) = 1

1 +
{[

(Y − ci) /ai
]2

}bi
, i = 1, 2, 3 (10)

where [X, Y] ∈ {[A, BB], [B, T B], [C, PM], [D,
T M]}, [ai b i ci] represent the premise parameter
set, which can be determined by the backpropa-
gation gradient descent method. Layer 2 is the in-
ference layer. Each node in this layer is multiplied
by the input signal to become wi:

O2
i = wi = μAi (BB) × μBi (T B) × μCi (PM)

×μDi (T M) , i = 1, 2, · · ·, 54 (11)

wi stands for the firing strength of the rule. Layer
3 is the normalization layer that normalizes the
firing strength by calculating the ratio of ith firing
strength to their sum:

O3
i = wi = wi∑54

j=1 w j

, i = 1, 2, · · ·, 54 (12)

Layer 4 is the output layer. Each node multiplies
the normalized firing strength by the consequent
function to generate the qualified consequent of
each rule. The output of the node is computed as:

O4
i = wiCVu (CVl)i

= wi (pi BB + qiT B + ri PM + siT M) ,

i = 1, 2, · · ·, 54 (13)

Layer 5 is the defuzzification layer, which com-
putes the weighted average of the output signals
from the output layer:

O5
i =

∑54

i=1
wiCVu (CVl)i

=
∑54

i=1 wiCVu (CVl)i∑54
i=1 wi

(14)

3 Experiments

We performed a series of experiments to evaluate
the performance of the proposed system. Figure 8
shows the implementation of the proposed system
for experiments. In Fig. 8, the measured EMG
signals are first amplified using the ETH-256 phys-
iological signal amplifier (manufactured by iWorx
Systems, USA), and the amplified analog signals
(voltages) then transformed into digital signals

Fig. 7 Bell-shaped
membership functions for
input variables
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Fig. 8 System
implementation of the
proposed scheme
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via a National Instrument USB-6009 A/D data
acquisition device with a 1 KHz sampling rate.
The digital signals are further forwarded to the
LabVIEW development system, which includes a
sixth-order band-pass Butterworth filter with the
cut-off frequencies at 20 and 400 Hz, respectively,
a 20-sampling-data-window EMD feature extrac-
tor; and a motion classifier with the initial point
detector and ANFIS. By using this processing
method, robot motion commands can be deter-
mined, and then sent to a 6-DOF Mitsubishi RV-
2A robot manipulator for execution (with only
J1 and J2 manipulated). The entire experimental
setup is shown in Fig. 9.

Four sets of electrodes were placed on BB,
TB, PM, and TM, as shown in Fig. 10. The clas-
sifier is designed to let the feature extracted from
BB, TB, PM, and TM correspond to upper limb

ETH-256 

RV-2A 

LabVIEW 
Develop System 

USB-6009 A/D 

Fig. 9 Experimental setup

flexion, extension, internal rotation, and external
rotation, respectively, and those for both BB and
PM and both TB and TM together for flexion-
internal rotation and extension-external rotation,
respectively. Their muscle states will determine
whether it is an up, down, turn-left, turn-right, up-
left, or down-right movement. Due to some mus-
cle crosstalk or imprecise feature identification,
there may be some conflict movement decisions
between the two muscles. Under such circum-
stances, the classifier will send out an error signal.
Totally, there are eight outputs for the classifier:
STOP, UP, DOWN, LEFT, RIGHT, UP-LEFT,
DOWN-RIGHT, and ERROR. Table 3 summa-
rizes the mapping from EMG to robot movement,
and Fig. 11 illustrates the classification outputs of
1∼6 corresponding to the robot arm movements.

Two male and two female subjects (with their
physical data listed in Table 4) were asked to
perform the following two experiments: (1) the
motions of flexion, extension, internal rotation,
and external rotation for four times consecutively,
and (2) the motions of flexion plus internal ro-
tation and extension plus external rotation for
three times consecutively. The first experiment
was used to evaluate the capability of the pro-
posed system to recognize those motions related
to basically one set of muscles (BB and TB or PM
and TM), while the second experiment was used
to recognize the motions involving the interaction
between muscles, which incurred larger mutual
interferences.

Figure 12 shows the results for the first exper-
iment, which includes the subjects’ filtered raw
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Fig. 10 Electrode
locations: a Biceps
Brachii and Pectoralis
Major and b Triceps
Brachii and Teres Minor

(a) (b)

Biceps Brachii 
(CH1) 

Pectoralis Major 
(CH3) 

Triceps Brachii
(CH2) 

Teres Minor 
(CH4) 

Table 3 Mapping from EMG to robot movement

EMG Upper limb status Classifier Robot arm

BB TB PM TM output
(CH1) (CH2) (CH3) (CH4)

OFF OFF OFF OFF Relaxation 0 STOP
ON OFF OFF OFF Flexion 1 J2 axis UP
OFF ON OFF OFF Extension 2 J2 axis DOWN
OFF OFF ON OFF Internal Rotation 3 J1 axis TURN LEFT
OFF OFF OFF ON External Rotation 4 J1 axis TURN RIGHT
ON OFF ON OFF Flexion-Internal Rotation 5 J1 axis TURN LEFT and J2 axis UP
OFF ON OFF ON Extension-External Rotation 6 J1 axis TURN RIGHT and J2 axis DOWN
All others Error 7 STOP

Fig. 11 Illustrations of
classification outputs
corresponding to the
robot arm movements
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Table 4 Physical data of the subjects

Subject Height Weight Gender Body
(cm) (kg) type

A 166 60 Male Slender
B 164 82 Male Overweight
C 155 52 Female Normal
D 150 50 Female Normal

EMG signals, muscle states, and classification out-
puts. The muscle states reveal that subjects C and
D exhibited certain muscle mutual interferences

during movements, especially for subject D. The
SDR for the subjects is 97%, 99%, 87.9%, and
81.8%, respectively. For these four kinds of mo-
tions dominated by basically one set of muscles,
the proposed system achieved quite high a suc-
cessful discrimination rate, even for subject D.

Figure 13 shows the results of the second ex-
periment. Different from the motions executed
in the first experiment, these motions involved
the onsets of two muscles simultaneously, leading
to larger mutual interferences and couplings be-
tween muscles. In Fig. 13, some muscle states of
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(b) Subject B 

Fig. 12 Experimental results for the motions of flexion, extension, internal rotation, and external rotation for four times
consecutively
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(c) Subject C 

(d) Subject D 
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Fig. 12 (continued).
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(a) Subject A
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(b) Subject B 

Fig. 13 Experimental results for the motions of flexion plus internal rotation and extension plus external rotation for three
times consecutively
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(c) Subject C 
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(d) Subject D 

Fig. 13 (continued).
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BB and PM (also TB and TM) did not simulta-
neously reach the individual critical upper value.
However, the SDR for the subjects was found to
be 84.6%, 92.3%, 76.9%, and 99%, respectively,
indicating that the proposed system still managed
these complex motions well. Videos for these ex-
periments can be located via the link connected to
our laboratory Web page (http://140.113.149.114).

4 Conclusion

This paper presents an upper-limb EMG-based
robot control system for achieving natural and in-
tuitive robot manipulation. By integrating the ini-
tial point detection method previously proposed
with the EMD approach and the ANFIS, the map-
ping between the upper limb EMG signals and
corresponding robot arm movements has been
established in real-time. Experiments have been
performed to demonstrate its effectiveness. For
the potential user to apply the proposed system
for movements involving upper or other limbs, or
involving more DOFs, they can follow the pro-
posed procedure, possibly at the expense of more
sophisticated learning schemes to deal with the
incurring complexity. In future works, we plan to
investigate the possibility of using varying CVs,
because fixed CVs lead to consistent classification
for about 5∼10 min, depending on the status of
muscle fatigue. Our intention is to let the system
maintain a high successful discrimination rate for
a longer time. We also plan to apply the proposed
system for full limb movement governing.
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