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Abstract

Two sampling-and-classification–based procedures were developed for automated
test assembly: the Cell Only and the Cell and Cube methods. A simulation study
based on a 540-item bank was conducted to compare the performance of the proce-
dures with the performance of a mixed-integer programming (MIP) method for
assembling multiple parallel test forms. The study investigated the statistical equiva-
lence of the forms generated by the three test assembly methods (Cell Only, Cell and
Cube, and MIP) in terms of test information functions, test characteristic curves,
mean square deviations, and practical constraints, such as content balancing and non-
overlap among forms. The results indicated that the 13-point MIP method outper-
formed the other two methods in terms of the ‘‘closeness’’ test information functions
between the reference form and the assembled parallel tests. Regarding test charac-
teristic curves, the Cell Only and Cell and Cube methods yielded more similar test
characteristic curves than the MIP method. Constraining test information functions
apparently does not guarantee that the assembled forms will yield similar test charac-
teristic curves. Overall, the Cell Only and Cell and Cube methods have the potential
to provide results similar to the optimization approach.
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Large-scale assessments are usually required to administer tests at multiple locations

and sessions. Testing agencies and organizations, therefore, typically desire to gener-

ate multiple parallel test forms. In recent years, advanced innovations in computer

technology and psychometric theory have led to changes in test assembly practices.

Most researchers (Breithaupt & Hare, 2007; Finkelman, Kim, & Roussos, 2009;

Luecht, 1998; Sanders & Verschoor, 1998; Swanson & Stocking, 1993; van der

Linden, 2005; Veldkamp, 2002) solve test assembly problems by using the con-

strained combinatorial optimization approach, which seeks the values of the decision

variables that optimize the objective function, subject to specified constraints (Hillier

& Lieberman, 2001). In such a context, a test assembly problem can be treated as

trying to match a certain target test information function (objective function) subject

to test length and content coverage (constraints).

Optimization approaches to automated test assembly (ATA) identify optimal solu-

tion under the specific constraints of statistical and content-related test specifications

within a given item bank. Therefore, having successively constructed forms means

that items selected for previous forms are removed from the item pool, and new forms

are constructed with the remaining items. Thus, forms built later are not nearly as par-

allel as forms built earlier. A heuristic correction or replacement phase (Swanson &

Stocking, 1993; van der Linden, 2005) is usually required to avoid such a problem.

Although multiple-form assembly problems can be simultaneously modeled and con-

structed, the increase in computation time is commensurate with the expansion in the

size of the problem. Furthermore, optimization approaches find the optimal test forms

based mainly on the objective function; therefore, test forms are not built by means

of uniform sampling, meaning that there is an equal chance for each feasible test to

be selected (Belov & Armstrong, 2005).

A random search approach has been recently introduced into the area of ATA

(Belov & Armstrong, 2005; Chen, 2005; Chen & Chang, 2005, 2006). Unlike the

optimization approaches that pick the best possible solutions first, the random search

approach has the demonstrable advantage of producing uniform tests (Belov, 2008).

One test assembly method, the Monte Carlo random search with tabu search elements

(Glover, Taillard, & de Werra, 1993) proposed by Belov and Armstrong (2005), has

the major advantage of uniform test assembly. Based on the random search character-

istics, each form has an equal chance of selection, thereby avoiding the sequential

degradation problem without any need for a second step modification. The present

study also proposes a similar randomization-based approach to assemble multiple

parallel test forms.

The goal of the present study was to develop two random sampling and classifica-

tion approaches—the Cell Only and the Cell and Cube methods—to build multiple

forms based on a reference form (i.e., a target test or a seed test). The performance of
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the proposed methods was measured against the baseline of one of the commonly

used approaches in test assembly: the mixed-integer programming (MIP) method.

This article is organized as follows. We briefly review optimization approaches and

follow with discussion of some of the issues encountered in multiple-form ATA. We

then provide the rationale for our sampling and classification methods. Finally, we

compare test assembly methods using several criteria, such as mean square deviations

between the reference form and the assembled form, target test information func-

tions, and test characteristic curves.

A Brief Review of Optimization Approaches in ATA

Previous studies based on optimization approaches have used the MIP (Breithaupt &

Hare, 2007; van der Linden, 2005; Veldkamp, 2002) and the enumerative heuristic

methods (Finkelman et al., 2009; Luecht, 1998; Luecht & Hirsch, 1992; Sanders &

Verschoor, 1998; Swanson & Stocking, 1993) to tackle various ATA problems. The

MIP method has been popular in test assembly practice mainly because of its flexi-

bility to deal with very complicated test specifications—such as content areas, enemy

items, item type, and word counts—as well as its superiority in assembling numerous

forms with respect to large item banks. For example, the MIP method can specify a

test assembly problem by using a weighted target information function in the objec-

tive function with appropriate constraints to construct forms that can yield uniform

test information functions along the ability scale.

An effective solution to a complicated and large MIP problem usually requires

sophisticated algorithms. Commercial optimization software packages (usually called

solvers), such as the IBM ILOG CPLEX Optimization Studio 12 (IBM, 2009), have

readily built-in algorithms, and they require only very little customized programming.

Large or mid-sized testing organizations can benefit from commercially available sol-

vers to handle computationally intensive real assembly problems. Furthermore, MIP

results provide a global optimal solution, whereas other heuristic approaches gener-

ally produce a suboptimal solution.

Although the MIP method offers a powerful solution to test assembly problems,

the cost of a commercial license for specialized solvers ranges from hundreds to

thousands of U.S. dollars, which makes it difficult for small or not-for-profit testing

agencies to afford (Davey, 2009). Although free-version solvers are available, such

as the standard solver built in to Microsoft Excel 2007 (Cor, Alves, & Gierl, 2008,

2009), limits on decision variables and constraints make them unsuitable for han-

dling most real test assembly problems. Moreover, while researchers can write their

own MIP code in any programming language, such an undertaking is usually very

complicated and time consuming. Therefore, practitioners are greatly interested in

employing alternative approaches, such as heuristic methods, which can use existing

programming software to assemble test forms, particularly for some testing programs

with relatively simple test specifications.
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Enumerative heuristics like the Weighted Deviation Model (Swanson & Stocking,

1993) or the Normalized Weighted Absolute Deviation Heuristic (NWADH) pro-

posed by Luecht (1998), on the other hand, do not rely on commercial optimization

software packages, and they often provide a relatively quick solution. Enumerative

heuristics, however, often require computation of the differences between the target

values and the current values at each iteration, and therefore, the computation time is

proportional to item pool size and test length. Building tests using enumerative heur-

istics typically requires customized programming, and therefore, it usually involves

intensive computation for tests with complicated specifications (Luecht, 1998;

Swanson & Stocking, 1993).

Issues in Constructing Parallel Test Forms

Meaning of Parallel Test Forms

Parallel test forms are required to be equivalent in terms of their statistical and

content-related properties. When the test information functions of alternative test

forms are identical, the statistical equivalence of these forms is called weakly parallel

in an item response theory (IRT) framework (Samejima, 1977). Most test assembly

studies restrict the test information function within a certain range of the target by

matching information functions pointwise along the ability scale (Luecht, 1998; van

der Linden, 2005). For a new testing program, generating test forms that target a

given shape of the test information function is generally useful. There is no need to

equate the forms to the reference form.

Although computerized test assembly typically uses test information functions

when evaluating parallel test construction, traditional paper-and-pencil forms are

assembled according to score distributions. Matching forms using test information

functions does not guarantee matched score distributions (Wightman, 1998).

However, for an existing assessment, reference forms are available, and it makes

sense to build new forms based on the reference form for at least two reasons. First,

matching forms item by item guarantees matched test information functions and

score distributions. Second, because testing agencies have expended considerable

money and effort validating reference forms, their scores are typically more readily

interpretable by test professionals. For example, Armstrong, Jones, and Wu (1992)

created parallel test forms to match an existing seed test by formulating the test

assembly problem into an MIP model. The present study also built parallel forms by

matching an existing reference form, but it did so using a different approach that

employed random sampling and classification.

A Sequential Versus a Simultaneous Approach

The major challenge of ATA is to construct multiple parallel forms as opposed to a

single form. Multiple test forms can be assembled sequentially or simultaneously. A

sequential approach assembles forms successively. When building multiple forms
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sequentially based on the optimization approach, the algorithm tends to pick the best

set of items for the first form, the second best set of items for the second form, and so

on. As the number of assembled forms increases, the later forms are not as nearly par-

allel as the first form. Therefore, a heuristic correction, such as the Big-Shadow-Test

(BST) method (van der Linden, 2005) or a replacement phase (Swanson & Stocking,

1993), is needed to successively replace and swap previously selected items until no

further improvement can be made to mitigate such a problem (Swanson & Stocking,

1993; van der Linden, 2005).

Conversely, building forms sequentially based on the randomization approach

does not cause deterioration problems because of its stochastic nature. Earlier built

forms are not necessarily superior to or inferior to their successors. Therefore, it is

worth exploring the feasibility of applying the randomization approach in test

assembly.

Another approach is to assemble forms simultaneously based on the MIP method

as proposed by Boekkooi-Timminga (1990). The simultaneous approach builds mul-

tiple test form assembly problems into a single model, using new decision variables

to link item-level and form-level variables. This approach builds the required forms

all at the same time and is known to be computationally intensive; computation time

increases exponentially as problem size grows. Solving an MIP problem requires

exponential running time in general, and so the solution time for the MIP method

depends highly on the computer processor and the memory space in the hardware.

For example, using quad core capability processors can halve the solution time or

even reduce it further. Such high-speed processors and high-capacity memories are

quite common in most modern computers, so they can help reduce the solution time

for large MIP problems.

Rationale for the Sampling and Classification Approaches

The rationale for the sampling and classification approaches is somewhat similar to

the method of ‘‘matched random subsets,’’ which constructs parallel tests based on

the classical test theory proposed by Gulliksen (1950). Under the matched random

subsets method, items that are close to one another on the scatter diagram of item dif-

ficulty (p) and the point–biserial correlation with total test score (rpbs) are grouped

into ‘‘subsets.’’ Items selected from each subset are randomly assigned to each of the

required forms. Matching items based on item statistics and assigning them to subsets

ensures parallel subsets and thus parallel test forms (Gulliksen, 1950).

The IRT-based sampling and classification approach to ATA uses a similar ratio-

nale to use the joint distribution of item parameter values, which determine the indi-

vidual item information functions and the collective test information function. In a

three-parameter logistic (3PL) IRT model, the item information function is deter-

mined by three item parameters—for item discrimination, item difficulty, and item

guessing (ai, bi, ci)—and one examinee ability parameter (u). If û is approximated

close to bi, then the larger the value of ai, the larger the value of item information.
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Item information values, in other words, are mainly determined by the item discrimi-

nation parameter (ai), which is conditional on ability level.

The relationship of item information functions to the item parameters used in

computerized adaptive testing can also be applied in ATA. If the joint distribution of

a- and b-parameters for a reference form is already known, then the target test infor-

mation curve across ability levels can be determined. That is, mimicking the item

parameter distribution of the reference form results in achieving the target test infor-

mation. Therefore, if the scatter plot of the a- and b-parameters in the reference form

is provided, the task of assembling a statistically equivalent test becomes the task of

creating another scatter plot, with the new test having a joint distribution of a- and b-

parameters similar to the reference form.

Cell Only Method

Mimicking the scatter plot of a- and b-parameters in the reference form is not easy.

Classification of the item pool and reference form, however, can play a crucial role in

simplifying the process. Items in the pool and reference form can be partitioned into

M groups from m = 1, . . . , M according to their a-parameters. Similarly, items can be

divided into N groups from n = 1, . . . , N according to their b-parameters. Thus, the

scatter plot of the a- and b-parameters for the whole item pool and the reference form

can be categorized into M 3 N = MN cells. Figure 1 shows a representation of the

item pool categorization for the Cell Only method. The values of a parameters in

Figure 1 are between 0 and 3 and are categorized into six groups, whereas the values

of b parameters are between 24 and 4 and are categorized into four groups. Item

selection under this method involves randomly selecting the number of items within

each cell in the reference form from the item pool such that the number of items from

each cell in the reference form and in the assembled test is the same. This process

0

0.5

1

1.5

2

2.5

3

-4 -2

a
pa

ra
m

at
er

b parameter
6420

Figure 1. An example of item pool categorization for scatter plot of a- and b-parameters
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approximates the joint distribution of the a- and b-parameters and is called the Cell

Only method.

Cell and Cube Method

Although the Cell Only method appears to be a reasonable approach, some items in

the pool remain unselected if there is no item in the corresponding cell in the refer-

ence form. To improve item pool utilization and the item exposure rate, the present

study introduced a two-stage sampling method: the Cell and Cube method.

Van der Linden (2005) proposed a BST method to solve a large simultaneous

ATA problem by treating it as a sequence of smaller simultaneous problems. Current

constructed forms are assembled along with a shadow test that includes the remain-

ing test items in the pool. Items in the shadow test are returned to the pool once cur-

rent forms are built. This process is repeated until all test forms are constructed.

The Cell and Cube method is similar to the BST method in the sense that both

decompose a big problem into a series of smaller subproblems and the test items are

partially filled up at each stage. Under the BST method, the variation in the number

of subproblems depends on the number of forms one tries to build, whereas under

the Cell and Cube method there are only two stages, making it a special case of the

BST method.

Luecht and Hirsch (1992) proposed a heuristic search to iteratively calculate the

moving average of the differences between target information and previously selected

items as the basis for sequentially selecting the next item. This algorithm tends to

select items with moderate information at each iteration. The proposed Cell and Cube

method tries to improve the selection probability of items with relatively low or high

information. This method is described below.

Suppose the test length of the reference form is n and that n1 items were selected

during the cell stage. Then, n2 items will be selected during the cube stage, where

n = n1 + n2: Test information functions are smooth and well-behaved continuous curves,

and optimizing a test information function with three to five well-chosen ability points

is appropriate (van der Linden, 2005). Suppose we consider T ability points at ut

(t = 1, . . . , T ). We then have T target test information values ½T (u1), T (u2), . . . , T (uT )�.
The value of the target test information T (ut) at ability point ut can be decomposed into

two parts: the target test information for the cell stage (T1(ut)) and the target test infor-

mation for the cube stage (T2(ut)), where T (ut) = T1(ut) + T2(ut). After selecting items

during the cell stage, the required test information function for the cube stage can be

determined to be ½T2(u1), T2(u2), . . . , T2(uT )�. If there are n2 items to be selected dur-

ing the cube stage, the average contribution of each item to the new target information

function can be written as

T2(u1)

n2

,
T2(u2)

n2

, . . . ,
T2(uT )

n2

� �
= �T 2(u1), �T2(u2), . . . , �T2(uT )½ �:

The item information at ut for each item i in the subpool can be calculated as

½Ii(u1), Ii(u2), . . . , Ii(uT )�.
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The standard deviations of the item information functions at T ability points in

the item pool can also be obtained, (s(u1), s(u2), . . . , s(ut)). Because only a few

items are selected in the cell stage, using the complete item pool to calculate the

standard deviation of item information at three ability points is appropriate. If the

subpool is divided into K categories by T item information functions at

T ability levels, the subpool will be categorized into KT cubes. The partition points

of the K categories can be determined by the required average target information

function per item �T2(ut) and the standard deviation of the item information s(ut) at

tth ability point (ut). When three ability points (T = 3, ut = 21, 0, and 1) and three

item information categories (K = 3) are considered, the information function of

an item for each ability point ut can be categorized as below �T2(ut)� s(ut),

between �T2(ut)6s(ut), and above �T2(ut) + s(ut). The cutoff points for dividing the

item subpool into 33 cubes are �T2(ut)� s(ut) and �T2(ut) + s(ut), where ut = 21, 0,

and 1.

Now each item can have an address dut
(ut = �1, 0, 1) for the cube it belongs to

(d�1, d0, d1). Any item i in the subpool can be put into one of the three groups

according to its item information Ii(ut) at each ability point ut:

Ii(ut) � �T2(ut)� s(ut), (dut
= �1), ð1Þ

�T2(ut)� s(ut)\Ii(ut)\�T2(ut) + s(ut), (dut
= 0), ð2Þ

and

Ii(ut) � �T2(ut) + s(ut), (dut
= 1): ð3Þ

Matrix 4 shows the categorization into three groups of the information function

values at three ability levels (ut = �1, 0, 1), which can be coded accordingly as in

Matrix 5. Figure 2 shows a representation of the information function divided into

three groups at three ability points.

� �T2(�1)� s(�1), � �T2(0)� s(0), � �T2(1)� s(1)
�T2(�1)� s(�1);�T2(�1) + s(�1),

�T2(0)� s(0);�T2(0) + s(0),
�T2(1)� s(1);�T2(1) + s(1)

� �T2(�1)� s(�1), � �T2(0) + s(0), � �T2(1) + s(1)

2
4

3
5 ð4Þ

d�1 = �1, d0 = �1, d1 = �1

d�1 = 0, d0 = 0, d1 = 0

d�1 = 1, d0 = 1, d1 = 1

2
4

3
5 ð5Þ

After the subpool is categorized into 27 cubes, each item can only belong to one

cube. Now, we can select n2 items in the subpool according to the following

algorithm:

Step 0: Items are selected in pairs (x and y).

Step 1: Select item x randomly from the subpool and notice its address accord-

ing to the cube it belongs to, denoted dx,�1 = �1, dx, 0 = 0, dx, 1 = �1½ �:
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Step 2: Select item y such that its address, denoted dy,�1 = 1, dy, 0 = 0,
�

dy, 1 = 1�, satisfies (dx,�1 + dy,�1, dx, 0 + dy, 0, dx, 1 + dy, 1) = (0, 0, 0):
Step 3: Repeat Steps 1 and 2 until all n2 items are selected.

Figure 3 shows a representation of the selection for each pair of items. The pur-

pose of using the algorithm is to select each pair of items so that the sum of these n2

information functions equals the target test information T2(ut) at the cube stage, by

keeping the average of the two items in proximity to the average of the target infor-

mation per item (�T2(ut)). If the number of required items in the cube stage (n2) is odd,

the last item will be selected based on the difference between the current sum of the

item information functions
Pn�1

i = n1 + 1 Ii(ut) of the n2 2 1 items from the cube stage

and the target test information for the cube stage (�T2(ut)) at each ability level ut. If

for any selected item x there cannot be found a corresponding item y that satisfies the

requirement that the sum of the addresses of item x and y is zero (dx, ut
+ dy, ut

= 0) for

each ability point ut, the selected item x will not be included in the constructed test.

Another item will be selected until a corresponding item can be found. In this way,

the average item information values of each pair of selected items at each ability level

will be close to the average required test information function per item (�T2(ut)) at

ability point ut (t = 1, . . . , T ). As a result, the sum of the selected items is close to the

required test information function at ability level ut (t = 1, . . . , T ).

Method

One 540-item retired item pool from a large-scale assessment with three content areas

was used. The reference form was composed of 30 items—12 items from Content

I(−1)

2 ( 1) ( 1)T s− − −

2 ( 1) ( 1)T s− + −

( 1, 1, 1)− − −
( 1, 1, 0)− −
( 1, 1, 1)− −

:
:

( 0, 0, 0)
:
:

( 1, 1, 1)

I(0)

I(1)

33 27= cubes

(1,–1,–1)

(0,–1,–1)

(–1,–1,–1)

Figure 2. Graphic representation of 27 cubes in the subpool
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Area A, 9 items from Content Area B, and 9 items from Content Area C. Five forms

were constructed by means of each test assembly method (MIP, Cell Only, and Cell

and Cube) based on the reference form.

Item Pool and Reference Form Classification

Using the Cell Only method and executing the cell stage in the Cell and Cube

method require the classification of the item pool and the reference form according

to their item discrimination (a) and item difficulty (b) parameters. Because there

were three content areas, the item pool and reference form were first divided into

three subpools and three target subtests by content. Both the a- and b-parameters in

the target subtest and item subpool for each content area were then classified.

Preliminary experimentation determined that the use of only four a-groups and four

b-groups was inadequate to provide a scatter plot similar to that of the reference

form. Therefore, the scatter plots of the a- and b-parameters for the subpools and

the target subtests were divided into four times eight—that is, 32—cells for the sam-

pling and classification approach. First, the a-parameters were categorized into

four groups: (a) a � 0:7, (b) 0:7\a � 1:0, (c) 1:0\a � 1:3, and (d) a . 1:3:
Similarly, the b-parameters were divided into eight groups: (a) b � �3:0, (b)

�3:0\b � �2:0, (c) �2:0\b � �1:0, (d) �1:0\b � 0:0, (e) 0:0\b � 1:0, (f)

1:0\b � 2:0, (g) 2:0\b � 3:0, and (h) b . 3:0:

2 (0)T

2 ( 1) ( 1)T s− − − 2 (1) (1)T s−

-1 0 1

2 ( 1)T −

2 ( 1) ( 1)T s− + −

2 (0) (0)T s+

2 (0) (0)T s−

2 (1) (1)T s+

2 (1)T

(1,0,1)

( 1,0, 1)− −

1st item

2nd item

θ

Figure 3. An example of selecting one pair of items in the Cube stage
Note: The first item has an address of (�1, 0, �1), and the second item (corresponding item) has an

address of (1, 0, 1).
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Item Selection Method

MIP method. To determine whether a sampling and classification approach could

produce results the same or better than results obtained with MIP, a Minimax model

(van der Linden, 2005) of the MIP method was used as a baseline. The Minimax model

ensures that the largest deviation between the information function of the assembled

test and the target test is minimized by means of a fixed test information function. That

is, the Minimax model builds test forms by minimizing the absolute maximum devia-

tion from the points of the specified target test information function. The software

GAMS (GAMS, 2007) and the CPLEX solver (IBM, 2009) were used to solve the

Minimax model. Considered in the formula of the Minimax model were two different

sets of reference form values at 5 and 13 ability points (u = (�2, �1, 0, 1, 2) and

u = (�3, �2:5, �2, �1:5, �1, �0:5, 0, 0:5, 1, 1:5, 2, 2:5, 3)), along with three con-

tent constraints of 12, 9, and 9 items for each content area. Variables were set up to link

item-level and test-level constraints. Five 30-item forms were constructed simultaneously

for each set of ability points to fit the target test information function, with the con-

straints of number of forms, content coverage, and no overlap among forms. Separate

objective functions with random coefficients were used to deal with the simultaneous

approach, multiple-forms test assembly problem, as suggested by Luecht (1998).

Cell Only method. The item pool and reference form were divided into three sub-

pools and three target subtests according to the content areas. Five subtest forms from

each content area were randomly selected sequentially without replacement from

three subpools according to the number of items per cell in the target subtest, to con-

struct five 30-item test forms.

Cell and Cube method. The first stage of the Cell and Cube method randomly

selected 10, 7, and 7 items from the tests assembled using the Cell Only method from

Content Areas A, B, and C, respectively. The remaining items in each content area

created one new subpool for the Cube stage. The values of the item information func-

tion at the three ability points (�1, 0, 1) were calculated for each item in each new

subpool. The test information function was obtained for each subtest form from each

content area constructed using the Cell Only method. By similar means, the sums of

the selected 10-, 7-, and 7-item information values from the cell stage in the three

content areas for each subtest form were also computed. The required subtest infor-

mation function values for each content area at the three ability points (�1, 0, 1) for

the cube stage were obtained using the test information function from the Cell Only

method for each subtest form, minus the sum of the selected items at the cell stage.

Furthermore, the averages of each assembled item that contributed to the cube

stage of the target information function for the five forms in each content area were

obtained. The standard deviations of the item information function at the three ability

points (�1, 0, 1) in each new subpool were also calculated. The cutoff points for

dividing the cubes in each new pool for five forms differed, because the required test

information functions at the cube stage for the five forms were not identical. Finally,

the three new subpools were divided into 3 3 3 3 3 = 27 cubes using three item infor-

mation functions at the three ability levels (�1, 0, 1):
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Evaluation Criteria

Several criteria were used to evaluate the results of applying the different methods for

constructing forms. The first criterion was whether the test information functions pro-

duced by the three methods were similar. The test information functions of all the

assembled tests and the reference form were plotted on the same scale, because one

characteristic of the Minimax model (van der Linden, 2005) is that, if the two test

information curves in the Minimax model are as close as possible, the tests are treated

as statistically equivalent. That is, neither positive nor negative deviations from the

target information are desired under this model. Therefore, the test characteristic

curves of the three methods were compared visually to determine whether they were

close to one another. Test characteristic curves relate ability to number-correct true

scores, and they are widely used in test equating and scaling. Therefore, the test char-

acteristic curve was also included in the evaluation criteria.

The second criterion was a mean square deviation (MSD) statistic, which was used

to evaluate the closeness of fit between the assembled tests and the reference form,

both for the test information functions and test characteristic curves. The value of the

mean square deviation was determined by calculating the deviations of points from

their desired target value, summing the measurements, and then dividing by the num-

ber of points:

Pn
i = 1

½(TIobs(ui)� TItgt(ui)�2

n
, ð6Þ

Pn
i = 1

½(TCobs(ui)� TCtgt(ui)�2

n
: ð7Þ

In Equation 6, TIobs(ui) indicates the test information of an assembled test at abil-

ity level ui, for every i = 1, . . . , n. Similarly, TItgt(ui) indicates the target test informa-

tion function values at ability level ui, for every i = 1, . . . , n. In Equation 7, TCobs(ui)

indicates the test characteristic curve of an assembled test at ability level ui, for every

i = 1, . . . , n. Similarly, the TCtgt(ui) indicates the test characteristic curve of the refer-

ence form. In the present study, 61 ability points, ranging from 23 to 3 in increments

of 0.1 units, were considered for both the test information function and the test char-

acteristic curve.

Results

Figures 4 and 5 show the test information functions resulting from the MIP method,

constraining on 5 and 13 ability points. Figure 4 shows that the information functions

fit almost perfectly around the 5 ability point constraints. The item information func-

tions deviated from the targets, both positively and negatively, between ability levels

ranging from 0 to 1 and 1 to 2. This pattern indicates that only specifying three to five
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target test information function values in the MIP method may be insufficient. Figure

5 shows that almost every assembled curve of the test information function was close

to the target information function at every ability point.

Figures 6 and 7 show the test information function curves from the Cell Only and

Cell and Cube methods. In the case of the Cell Only method, one form of the test

information curves deviated from the target moderately in the positive direction,

ranging from ability points 20.5 to 0.5, whereas another form also deviated posi-

tively between ability points 1.6 and 2.5. Additionally, two forms of the test informa-

tion curves deviated slightly from the target in the negative direction between ability

points 20.4 and 2. Figure 7 shows that two forms from the Cell and Cube method

deviated from the targets in the positive direction, predominantly between ability

points 0 and 1. One form deviated slightly from the target in the negative direction,

ranging from ability points 20.2 to 1. Two forms deviated from the target, ranging

from ability points 1 to 3 in both the positive and negative directions.

Figures 8 and 9 show the test characteristic curves for the MIP method with 5- and

13-point constraints of the test information function. In Figure 8, most of the test

characteristic curves shifted to the left in the positive direction, whereas three forms

deviated from the target in the negative direction at high ability levels. Unexpectedly,

the test characteristic curves of the forms with the 13-point constraints on the test

information function shown in Figure 9 were not close to each other. The deviations

increased in the positive direction when ability levels decreased, starting from the

ability point of 1. For the Cell Only method, most of the test characteristic curves in

Figure 10 were close to the target, except for one form that slightly deviated in the
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Figure 4. Test information functions of the 5-point mixed-integer programming method
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negative direction for ability points between 20.6 and 23. For the Cell and Cube

method, the test characteristic curves in Figure 11 slightly deviated from the target in

both the negative and positive directions. The test characteristic curve results show,

overall, that the Cell Only and Cell and Cube methods outperformed the MIP meth-

ods. The 13-point MIP method did not generate closer test characteristic curves, as

expected. The 5-point MIP method yielded the largest deviations from the target.
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Figure 5. Test information functions of the 13-point mixed-integer programming method
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Figure 6. Test information functions of the Cell Only method
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Tables 1 and 2 list the mean, the standard deviation, the maximum and minimum

values for the mean square deviation of the five forms from the target test informa-

tion, and the test characteristic curve at 61 ability points for all test assembly
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Figure 8. Test characteristic curves of the 5-point mixed-integer programming method
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Figure 7. Test information functions of the Cell and Cube method
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methods, respectively. Table 1 shows that the 13-point MIP method yielded the smal-

lest mean (0.002) and standard deviation (0.003). Although the mean for the Cell
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Figure 9. Test characteristic curves of the 13-point MIP method
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Figure 10. Test characteristic curves of the Cell Only method
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Only method was similar to that for the Cell and Cube method, it had a smaller stan-

dard deviation. The results for the 5-point MIP method exhibited the largest mean

and standard deviation among the four methods. In Table 2, the mean square devia-

tions from the test characteristic curve of the reference form show that the Cell Only

and Cell and Cube methods yielded similar results, with the smallest means and stan-

dard deviations of MSD. The 13-point MIP method did not yield better results than

did the Cell approach, whereas the MIP with a 5-point constraint yielded the largest

mean and standard deviations of test characteristic curve MSD.

Discussion and Conclusions

Current ATA methods have lightened the burden of the labor-intensive work of item

selection; however, most of them are essentially based on similar concepts of
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Figure 11. Test characteristic curves of the Cell and Cube method

Table 1. Descriptive Statistics of the Mean Square Deviation From the 61 Target Information
Values of Five Forms

Mean Square Deviation From the Target Information

Method Mean SD Maximum Minimum

Five-point MIP method 0.309 0.621 3.454 0.000
Thirteen-point MIP method 0.002 0.003 0.025 0.000
Cell Only method 0.100 0.172 1.060 0.000
Cell and Cube method 0.190 0.318 1.733 0.000

Note: MIP = mixed-integer programming.

Chen et al. 949

 at NATIONAL CHIAO TUNG UNIV LIB on April 28, 2014epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


constrained combinatorial optimization. Various methods belonging to the optimiza-

tion approach have been applied to real testing programs, such as the Law School

Admission Test, and they have shown promising results. Commercial discrete optimi-

zation solvers and modeling systems make it convenient to model and specify com-

plicated test assembly problems through syntax. However, the educational

measurement community is generally unfamiliar with such software and their associ-

ated platforms (Cor et al., 2009). Psychometricians usually require additional

optimization-related knowledge and programming competence. Therefore, it will be

interesting to see how this field develops as more alternatives become available,

which may provide simpler solutions.

The results show that the 13-point MIP method performed the best among the four

item selection methods, in terms of hitting target test information curves and posses-

sing the smallest mean square deviation of test information function curves.

However, the test characteristic curve results show that the Cell Only and Cell and

Cube methods yielded more closely matching test characteristic curves than did the

13-point MIP method. Therefore, by optimizing test information function curves

with respect to several well-chosen test information function points, the MIP method

could provide the most test information function curves well-fitted to the reference

form. However, it appears that constraining test information function points does not

exclusively guarantee the generation of similar test characteristic curves, also known

as true score, which is typically the basis for determining statistical equivalence in

test equating. The Cell Only and Cell and Cube methods did not yield better results

than did the 13-point MIP method in terms of test information functions, yet they

provided relatively consistent results in hitting both the target test information func-

tions and test characteristic curves.

The principal contribution of the present study has been to develop a new

sampling-and-classification method as a protocol to construct parallel forms from a

seed test. It has also contributed to the development of a concept that is simple to

comprehend and an easy implementation procedure, particularly for tests with simple

test specifications. Writing MIP programs to solve the problem of ATA without com-

mercial software is usually very costly in terms of time and effort. Large-scale

Table 2. Descriptive Statistics of the Mean Square Deviation From the 61 Target Test
Characteristic Curves of Five Forms

Mean Square Deviation From the Target Information

Method Mean SD Maximum Minimum

Five-point MIP method 1.934 2.232 7.698 0.000
Thirteen-point MIP method 1.246 1.565 5.277 0.000
Cell Only method 0.115 0.178 0.961 0.000
Cell and Cube method 0.115 0.117 0.480 0.000

Note: MIP = mixed-integer programming.
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assessments with complicated test constraints could benefit from the power of an

optimization solver to build desired forms very quickly. The sampling and classifica-

tion method is suitable for testing programs with simple test specifications and for

testing agencies with limited budgets. This method mimics the joint distribution of

a- and b-parameters and is more intuitive, making it easier for most educators and

researchers to understand.

The Cell Only and Cell and Cube methods presented here are simplified versions.

This approach could be further modified to make it more practical. Before applying

the Cell Only and Cell and Cube methods to operational item banks, other issues

must be addressed. First, the number of cells and cubes, and the cutoff points to be

used, is intuitive. When specifying the cutoff points of cells and cubes, test construc-

tors should consider several factors, including item pool size, the composition of

item parameters in the item bank, and test specifications. Second, although this study

incorporated simple nonstatistical characteristics, such as content specifications, real

tests might include complicated test specifications, such as item type, enemy items,

or set-based items. The present study should be viewed as the first of a series of stud-

ies in the development of a sampling and classification approach to ATA. Further

research is underway on how to incorporate content balancing techniques or to sat-

isfy complex test specifications based on this approach.
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