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O
ver the past decade or so, several advances have 
been made to the design of modern large-
vocabulary continuous speech recognition 
(LVCSR) systems to the point where their 
application has broadened from early speaker-

dependent dictation systems to speaker-independent automat-
ic broadcast news transcription and indexing, lectures and 
meetings transcription, conversational telephone speech tran-
scription, open-domain voice search, medical and legal speech 
recognition, and call center applications, to name a few. The 

commercial success of these systems is an impressive testimo-
ny to how far research in LVCSR has come, and the aim of this 
article is to describe some of the technological underpinnings 
of modern systems. It must be said, however, that, despite the 
commercial success and widespread adoption, the problem of 
large-vocabulary speech recognition is far from being solved: 
background noise, channel distortions, foreign accents, casual 
and disfluent speech, or unexpected topic change can cause 
automated systems to make egregious recognition errors. This 
is because current LVCSR systems are not robust to mis-
matched training and test conditions and cannot handle con-
text as well as human listeners despite being trained on 
thousands of hours of speech and billions of words of text. 

[A look at some recent advances]
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INTRODUCTION
There is a vast body of literature on LVCSR research and some 
limitation is necessary in the scope of this article. We will focus 
primarily on the techniques that have been successful in vari-
ous U.S. government-led speech recognition evaluations that 
aim to measure yearly progress in the field of automatic speech 
recognition. These techniques have been incorporated in most 
competition-grade LVCSR systems fielded by universities such 
as Cambridge (United Kingdom), LIMSI (France), RWTH 
Aachen (Germany), Carnegie Mellon University (United States), 
and commercial institutions like AT&T, BBN, IBM, and SRI in 
the areas of English conversational telephone speech transcrip-
tion [1]–[4] and broadcast news transcription for English [3], 
[5], Arabic [6]–[10], and Mandarin [11]–[13]. Moreover, we will 
limit the discussion to language-independent techniques and 
will not address language specific issues such as, for example, 
tone modeling for Mandarin or vowelization for Arabic. 

Technological improvements have been made in all areas of 
LVCSR: front-end processing, acoustic modeling, language 
modeling, hypothesis search, and system combination as shown 
in Figure 1. A comprehensive survey of early LVCSR systems 
was presented in [14] and, more recently, in [15]. The state of 
the art in LVCSR has shifted considerably since then through 
the advent of powerful speaker adaptation, discriminative train-
ing, and language modeling techniques some of which will be 
detailed in this article. In [16] and [17], the grand challenges in 
speech recognition and understanding were addressed. 
Compared to [16] and [17], this article reports more advanced 
and focused techniques in different areas of LVCSR, which are a 
substantial step toward implementing these grand challenges 
and making a number of high-utility applications possible. 

FRONT-END PROCESSING
We first address some new front-end processing methods for 
LVCSR that cover feature extraction and transformation, noise 
robust feature processing, and the estimation of adaptive and 
discriminative features as summarized in Figure 2. 

FEATURE EXTRACTION AND TRANSFORMATION
The role of the front-end processing module is to extract a 
sequence of acoustic feature vectors X from the speech wave-
form S. Today, this is done by computing a short-term fast 
Fourier transform (FFT) of the speech signal within a 25 ms 
time window 100 times/s. The energies of the neighboring fre-
quencies within each frame are binned together via a mel-
scale filterbank whose width and spacing of the filters is 
inspired by human auditory processing. Next, a logarithm is 
applied to the outputs of the filters and the log mel-spectra 
are decorrelated via a discrete cosine transform resulting in a 
13-dimensional vector of mel frequency cepstral coefficients 
(MFCC). Lately, MFCCs have been replaced with a more noise-
robust representation based on perceptual linear prediction 
(PLP) coefficients [18]. 

In the context of LVCSR, feature extraction has benefited 
from the advent of two important techniques. The first is the use 
of speaker-based mean and variance normalization of the ceps-
tral coefficients. While utterance-based cepstral mean subtrac-
tion (CMS) is a well-known technique, cepstral variance 
normalization (CVN) at the speaker level was introduced recent-
ly during the HUB-5 (or Switchboard) evaluations [1]. The sec-
ond idea has to do with incorporating temporal context across 
cepstral frames. A common practice is to compute speed and 
acceleration coefficients (also called delta and delta-delta 

LVCSR System

Front-End
Processing

Acoustic
Model

Language
Model

Search and
System

Combination

Word

Sequence

Speech

Signal
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 coefficients) from the neighboring frames within a window of, 
typically, /+ - 4 frames. These coefficients are appended to the 
static cepstra to form the final feature vector [19]. This ad hoc 
heuristic has been replaced in modern LVCSR systems by a lin-
ear projection matrix that maps the vector obtained by concate-
nating consecutive frames to a lower-dimensional space. The 
projection is designed such as to maximally separate the phonet-
ic classes in the transformed space. The separation is typically 
measured by a linear discriminant analysis (LDA) criterion [20]. 
Extensions of LDA, which remove the equal class covariance 
constraint such as heteroscedastic LDA (HLDA) [21], [22] and 
variants thereof [20], have also been considered. The resulting 
feature vectors are typically modeled with diagonal covariance 
Gaussians. To make the diagonal covariance modeling assump-
tion more valid, the LDA feature space is “rotated” by means of a 
semitied covariance transform (STC) [23], which aims to mini-
mize the loss in likelihood between full and diagonal covariance 
Gaussians. Using this cascade of LDA and STC transforms leads 
to a 10–15% relative improvement in word error rate (WER) 
over simple temporal derivatives on several LVCSR tasks [20]. 

NOISE ROBUST FEATURES
Speech signals are often contaminated with environmental nois-
es, which can adversely affect the recognition performance. 
Developing noise robustness techniques in the front-end pro-
cessing is crucial to ensure robustness in speech recognition 
[24]. One such algorithm, called SPLICE [25], [26], which 
stands for “stereo-based piecewise linear compensation for envi-
ronments,” was proposed for noisy speech recognition in non-
stationary noise environments. The essence of the SPLICE 
algorithm is to perform feature enhancement by removing noise 
from the corrupted speech via the most likely correction vector 
that is the expected difference between the clean speech and the 
corrupted speech, associated with the most probable region in 
acoustic space. Stereo clean/noisy speech data are required to 
estimate maximum likelihood correction vectors. In [27], anoth-
er algorithm called quantile-based histogram equalization (QE) 
was developed to compensate the mismatched distributions of 
training and test speech data based on the quantiles of the dis-
tributions. The parameters of a compensation function were 
estimated by minimizing the squared distance between the cur-
rent quantiles and the training quantiles in the mel-scaled filter 
bank. SPLICE and QE were evaluated for noisy speech recogni-
tion using The Wall Street Journal (WSJ) corpus under various 
noise types and noise levels. Significant improvements were 
obtained in clean and multicondition training scenarios. 

SPEAKER-ADAPTIVE FEATURES
The training data for a speaker independent system usually 
comprises speech from a large number of different speakers. 
The variation of the acoustic features can be seen as having two 
components: an intraspeaker component due to the different 
phonetic classes being uttered and an interspeaker component 
due to the different vocal characteristics of the various speak-
ers. For the purpose of discriminating between phonetic class-

es, we are only interested in modeling the intraspeaker 
variation rather than the interspeaker variation. Speaker nor-
malization techniques operating in the feature domain aim at 
producing a canonical feature space by eliminating as much of 
the interspeaker variability as possible. Examples of such tech-
niques are as follows:

1) warping the frequency axis to match the vocal tract length 
of a reference speaker as in vocal tract length normalization 
(VTLN) [28], [29]
2) affinely transforming the features to maximize the likeli-
hood under the current model as in feature-space maximum 
likelihood linear regression (fMLLR) [23]
3) a dimension-wise nonlinear transformation of the empiri-
cal distribution of the adaptation data to match a reference 
normal distribution as in feature space Gaussianization [30]. 

Next, the acoustic model is trained in this canonical feature 
space, which ideally becomes devoid of interspeaker variations. 
Speaker-adaptive features in combination with model-space 
adaptation results in performance improvements ranging from 
20% to 30% relative on a variety of LVCSR tasks [1], [31]. 

DISCRIMINATIVE FEATURES
Another powerful tool in the modeling arsenal of modern 
LVCSR systems is feature-space discriminative training. 
Feature-space minimum phone error (fMPE) [32] is a transfor-
mation that provides time-dependent offsets to the regular fea-
ture vectors. The offsets are obtained by a linear projection from 
a high-dimensional space of Gaussian posteriors. The projection 
is trained such as to enhance the discrimination between cor-
rect and incorrect word sequences. In conjunction with model-
space discriminative training, this technique usually leads to a 
25% relative improvement in recognition performance on sev-
eral tasks [32], [33]. Another promising tack for discriminative 
feature extraction is the use of a neural network (NN) (or 
 connectionist) parameterization of the speech signal. The 
approach proposed in [34] consists in estimating phone posteri-
ors using a multilayer perceptron and in modeling the outputs 
of the network with conventional Gaussian mixture models. A 
refinement to this technique was presented in [35] where bot-
tleneck features are introduced for LVCSR and are derived from 
a five-layer NN with a constriction in the middle (hidden layer 
with few units). While not necessarily better by themselves, 
models built on NN acoustic features improve LVCSR perfor-
mance through system combination [10], [36]. 

In summary, the typical front-end pipeline of a modern LVCSR 
system is illustrated in Figure 3. Next, we briefly review some fun-
damental acoustic modeling techniques and present some new 
methods that can be encountered in modern LVCSR systems. 

ACOUSTIC MODELING

HIDDEN MARKOV MODELS
Hidden Markov models (HMMs) [37] are a popular formalism 
for the representation of temporal or spatial sequence data, e.g., 
speech, image, video, text, music, biology, finance, and many 
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 others. Assume that a set of D-dimensional continuous-valued 
speech feature vectors { }xX t t

T
1= =  is collected for acoustic 

modeling. The state observation probability density function of 
a feature vector xt  at time t is expressed by Gaussian mixture 
model (GMM) 

 ( ) ( )xxp N ; ,t i ik t ik ik
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where the state parameters , ,i ik ik ik~ nK K R= =" ", , consist 
of mixture weights ik~ , mean vectors ikn , and covariance 
matrices ikR  for K Gaussian mixture components. Typically, ikR
are assumed to be diagonal although more sophisticated models 
such as subspace precision and mean (SPAM) [38] aiming to 
bridge the gap between full and diagonal covariance modeling 
have been proposed. 

The joint likelihood of speech data collection X is given by 

 .x xp X p a ps s s s s
t

T

S s
1

2
t

t

; ; ;rK K K=
==

t t1 t1 1-
^ ^ ^h h h= G

" ,

%/  (2)

The HMM parameters a, , , ,i ij ik ik ikr ~ nK R= " , obey the con-
straints of initial state probabilities 1i i/ r = , state transition 
probabilities 1aij/ =j , and mixture weights 1ik/ ~ =k . 

MAXIMUM LIKELIHOOD ESTIMATION
Conventional HMMs are generative models trained according to 
the maximum likelihood (ML) criterion where the model parame-
ters are estimated by maximizing the joint likelihood function 
p X ;K^ h. ML estimation suffers from an incomplete data problem 
because the state labels s it =  are missing in the objective func-

tion p X ;K^ h. The expectation-maximization (EM) algorithm [39] 
is used to tackle this problem by maximizing the expectation 
function or auxiliary function of the log likelihood log p X ;K^ h 
over the missing variables { { }} .S st=  At each EM iteration, a 
new ML estimate K  is obtained by maximizing the auxiliary func-
tion Q ( )k

;K K^ h given the old estimate kK^ h at the kth iteration 
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Performing EM iterations guarantees that the likelihood func-
tion does not decrease, i.e., new estimate K  and old estimate 

kK^ h  satisfy p X p X ( )k
; $ ;K K^ ^h h  if Q Q( )k k k

; $ ;K K K K^ ^
^ ^

h h
h h  

[39]. Figure 4 displays an overview of state-of-the-art acoustic 
modeling techniques for LVCSR. The various approaches for 
discriminative training, speaker adaptation, and noise adapta-
tion are summarized by their objective functions. Several joint 
algorithms in feature space and model space are indicated. 
Acoustic modeling using deep neural networks is addressed. 

DISCRIMINATIVE TRAINING
ML estimation guarantees the “optimality” in distribution for a 
generative model. However, for general pattern recognition sys-
tems the “optimality” in classification accuracy is desired. By 
being directly related to classification accuracy, discriminative 
estimation is more effective than ML estimation. In LVCSR sys-
tems, we aim to find the best discriminative acoustic model 
to achieve the lowest WERs on unseen test data. Directly 
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 minimizing WER is hard because the objective function is not 
differentiable and gradient-based techniques cannot be applied. 
An alternative solution is to estimate the discriminative model 
by minimizing the classification error rate (MCE), which is a 
smooth approximation to the word or sentence error rate. MCE 
estimation originated from the Bayes’ decision rule and signifi-
cantly outperformed ML estimation for speech recognition [40]. 
Alternatively, discriminative acoustic models can be trained 
according to the maximum mutual information (MMI) criterion 
[41], which is expressed as the mutual information between the 
observation data X and the sequence of reference words W r
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or equivalently as the difference between a numerator function 
Fnum K^ h corresponding to the reference word sequence W r  
and a denominator function Fden K^ h for all possible word 
sequences { }W . When the exact reference is not available, the 
decoded output (unsupervised training) or the agreement 
between the decoded output and some available transcript 
(lightly supervised training [42]) can be substituted. The 
denominator term Fden K^ h can be efficiently approximated by 
restricting the sum to only the word sequences that occur in a 
word lattice of alternative sentence hypotheses obtained by 
decoding with a weak (typically unigram) language model. The 
objective in (4) is similar to the negative misclassification error 
rate function in MCE estimation [43]. The MMI estimation of 
HMM parameters K  is typically performed through an extended 
Baum-Welch algorithm by maximizing the “weak-sense” auxil-
iary function Q k

;K K^ h given by [44] 
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where the first and second terms correspond to the auxiliary 
functions for the numerator Fnum K^ h  and denominator 
Fden K^ h, respectively, and Q ( )ksm

;K K^ h denotes a smoothing 
function which is added so as to guarantee that the objective 
function Q ( )k

;K K^ h increases after parameter updates. A popular 
smoothing function is given by the sum of negative Kullback-
Leibler divergences between the state-conditional distributions 
for K  and kK^ h. From (4), MMI training can be interpreted as a 
maximization of the log posterior probability log p W Xr

;K ^ h of 
the correct word sequence W r  [44], which is also known as con-
ditional maximum likelihood (CML) estimation. 

In another approach, discriminative training based on the 
criterion of minimum phone error (MPE) [44] has been suc-
cessfully developed for LVCSR. Unlike MCE and minimum word 
error objective functions, which are used for minimizing the 
weighted sentence error rate [40] and the weighted WER [44], 

respectively, MPE training aims to minimize the weighted 
phone error rate or equivalently maximize the weighted phone 
accuracy 

 F p W X A W W,r
r

Wr

R
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K
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^ ^ ^h h h// , (6)

where X Xr r
R

1= =" ,  denotes R training sentences, p W Xr;
l
K ^ h is 

defined as a scaled posterior sentence probability of hypothe-
sized word sequence W with a scalar l , and ,A W W r

^ h is the 
number of correct phones in W (given reference word sequence 
W r ). MPE training leads to improved accuracy over ML and 
MMI training for different LVCSR tasks [44]. MPE training can 
be computed in a lattice framework where a lattice or word 
graph is generated to efficiently encode all possible word 
sequences which have appreciable likelihood given the acoustic 
evidence [45]. A variant of MPE called minimum phone frame 
error (MPFE) was proposed in [46] and has the advantage that it 
uses a frame-based phone accuracy measure (as opposed to raw 
phone accuracy), which is easier to compute. 

In addition to model-space discriminative training for the 
HMM parameters K , the same objective function, either MPE 
or MMI, can be optimized to perform feature-space discrimina-
tive training, which consists in estimating a projection matrix 
that maps high-dimensional posterior vectors to offset vectors, 
which get added to the acoustic features [32]. More concretely, 
feature-space MPE (fMPE) or feature-space MMI (fMMI) training 
is performed by transforming acoustic features xt  to x xt td= tt " , 
for each frame t by x x hMt t t= +t  where { }M mdj=  is a trans-
formation matrix and { }h ht jt=  is a high-dimensional feature 
vector that is formed by Gaussian posteriors given the current 
frame and is calculated from a GMM. The transformation matrix 
M is estimated by maximizing the auxiliary function Q k

;K K^
^
h
h  

(without the smoothing term) under the same criterion as in 
(4) or (6) by using a gradient descent algorithm 
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where the parameter-specific learning rate djo  is empirically 
determined. Since the MPE or MMI objective function depends 
on the HMM parameters K  and the transformed features x tt" ,, 
the partial differentiation in (7) contains a direct derivative and 
an indirect derivative 
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which is detailed in [32]. Observe that fMPE can be equiva-
lently written as a mixture of time-dependent biases xt =t

( )x mhj tj t j/ +  where htj  is the posterior for Gaussian j at time 
t and m j  is the j th column of M. A generalization of fMPE 
called region-dependent linear transform (RDLT) was intro-
duced in [47] and consists of replacing the biases with a mixture 
of affine transforms ( )x x bh At j tj j t j/= +t . On several LVCSR 
tasks, fMPE training outperformed MPE training. The system 
performance was further improved by combining fMPE training 
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with MPE training of the model parameters (also denoted by 
fMPE+MPE) [32]. 

In yet another approach inspired by large-margin classifica-
tion techniques, a boosted MMI (BMMI) objective function was 
constructed by introducing a scaling parameter l  and a boost-
ing factor into the MMI objective function in (4) as follows [33]: 
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The boosting factor is controlled by parameter b and phone 
accuracy measure ,A W W r

^ h  between hypothesized word 
sequence and reference word sequence ,W W r

^ h. The underly-
ing idea of BMMI training is to artificially increase the likeli-
hood of more confusable sentences that have more errors so 
that the training algorithm focuses more on them. Feature-
space and model-space BMMI training (denoted by 
fBMMI+BMMI) has been shown to be superior to fMPE+MPE 
for several LVCSR tasks [11], [31], [33] and is currently the 
best discriminative training scheme for LVCSR for which we 
are aware. 

To make the link with large margin classification more 
explicit, in [48] and [49] the BMMI criterion was modified as 
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which is seen as a penalized large-margin (PLM) criterion and is 
derived from a constrained optimization problem for general 
large-margin classification 
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In (10) and (11), H W W, r
^ h denotes the number of frame phone 

errors or the Hamming distance between W and W r  [50], 0b $

is viewed as a margin scale parameter, and t  is a penalty 
parameter controlling the tradeoff between margin maximiza-
tion and constraints. The tradeoff parameter is similar to that 
adopted in soft-margin classification [51], [52] where the soft 
margin is proportional to the number of errors in a hypothe-
sized sentence. In [52] and [53], large-margin estimation was 
proposed by performing frame selection and utterance selec-
tion. Support tokens for acoustic modeling are identified similar 
to the support vectors used in a support vector machine. In 
[54], Bayesian large-margin estimation was proposed by com-
bining Bayesian learning and large-margin estimation for HMM 
training and model regularization. Compared to the overview of 
discriminative training methods in [55], this article additionally 
surveys feature-space discriminative training and large-margin 

training based on fMPE, fMPE+MPE, BMMI, fBMMI+BMMI, and 
PLM, which were effective in improving LVCSR performance. 

SPEAKER ADAPTATION
Speaker adaptation aims to compensate the acoustic mismatch 
between training and test environments and is playing an 
important role in LVCSR systems. System performance is 
improved by conducting speaker adaptation during training as 
well as at test time by using speaker-specific data. In [28] and 
[29], vocal tract length normalization (VTLN) was proposed to 
reduce the variability among speakers. The basic idea of VTLN is 
to determine speaker-specific warp scales of the frequency axis 
and to normalize the speech signal from all speakers to that of a 
single canonical speaker with a standard vocal tract length. A 
generic speech model is iteratively trained from voiced frames 
of warped data and is employed to select the updated warp scale 
[29]. VTLN can be applied prior to extracting PLP [18] cepstral 
features on a per-speaker basis. 

In addition to speaker normalized feature extraction, maxi-
mum likelihood linear regression (MLLR) [56] was developed 
for speaker adaptation by maximizing the likelihood of the 
adaptation data X given the correct word sequence for super-
vised MLLR or given the decoded word sequence or a lattice of 
word sequences for unsupervised MLLR [57]. Generally, super-
vised adaptation is performed by using training utterances or 
enrollment data from the same speaker and unsupervised adap-
tation (or self adaptation) is done on the test utterances. MLLR 
is a transformation-based adaptation technique where clusters 
of speaker-independent HMM Gaussian mean vectors ikn" , are 
transformed using cluster-dependent regression matrices 

{ }M Mc=  by Mik c ikpn =t  where 1ik ik
T T

p n= 6 @  is an extended 
( 1)D+ -dimensional vector and Mc  is a D D 1# +^ h matrix. 
Similar to the ML estimation of HMM parameters K  in (3), the 
ML estimation of regression matrices M is formulated according 
to an EM algorithm where the auxiliary function Q M M( )k

;^ h of 
the log likelihood log p X M;K ^ h of the new estimate M given 
the old estimate M k^ h at iteration k is maximized. The row vec-
tors of { }M Mc=  that maximize Q M M( )k

;^ h have a closed-form 
solution. 

Alternatively, fMLLR [23] was proposed for speaker adap-
tation where the acoustic features xt" ,are transformed to 

xtt" ,  by using a regression matrix Mf  via x Mt
f

tp=t , where 
1xt t

T Tp = 6 @  is an extended feature vector. The ML estimate of 
the regression matrix Mf  is calculated according to a new auxil-
iary function Q M M ( )f f k

;^ h based on the likelihood of the trans-
formed adaptation data x tt  plus the log determinant 

( )log det Mf
; ;  due to the Jacobian of the feature-space transfor-

mation. Unlike MLLR, there is no closed-form solution for 
fMLLR; an iterative row-by-row optimization of Mf has to be 
performed as shown in [23]. Traditionally, MLLR and fMLLR are 
derived by assuming diagonal covariance matrices 

{ }diagik ik
2vR = . Efficient solutions to MLLR and fMLLR for full 

covariance matrices were presented in [58]. In LVCSR systems 
[1], [9], [36], [59], [60], acoustic models are speaker adaptively 
trained in a canonical feature space given by VTLN-warped and 
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fMLLR-transformed features. At test time, speaker adaptation 
consists in VTLN, fMLLR, and MLLR. This recipe for feature-
space and model-space speaker adaptation has led to significant 
gains in LVCSR performance. 

In the context of rapid speaker adaptation, one technique 
aptly named eigenvoices [61] assumes that the supervector of 
Gaussian means lies in a subspace spanned by a few eigenvec-
tors and the adaptation consists of estimating the coefficients 
of the linear expansion. In a similar vein, eigen-MLLR [62] con-
siders the adaptation matrix to be a linear combination of 
 eigen-matrices. 

Speaker adaptation can be improved by extending generative 
linear transformations such as MLLR to discriminative linear 
transformations trained using discriminative criteria like 
aggregate a posteriori (AAP) [63], MMI [64], and MPE [65]. The 
AAP criterion was established by aggregating or summing up 
the posterior probabilities of all the classes at the sentence 
level. A closed-form solution to AAP regression was derived in 
[63] and was shown to be faster than MCE-based linear regres-
sion [66], where the generalized probabilistic descent algorithm 
was applied to iteratively estimate the regression parameters. 
MMI-based discriminative adaptation was proposed to estimate 
the regression matrix M by maximizing the mutual information 

, ;I X W Mr
K ^ h given adaptation data X and reference transcrip-

tion W r . This objective function was expressed as the logarithm 
of the a posteriori probability or the conditional likelihood 

,log p W X Mr
;K ^ h. The CML linear regression adaptation [64] 

was performed after several EM iterations of MLLR adaptation 
(denoted by MLLR+CMLLR). Good improvements on supervised 
and unsupervised adaptation were obtained for LVCSR. By mod-
ifying the objective function from MMI to MPE, the phone accu-
racy ,A W W r

^ h of the adaptation data is incorporated into the 
“weak-sense” auxiliary function as shown in (5) and (6). MPE-
based speaker adaptation outperformed MMI-based speaker 
adaptation on several LVCSR tasks [65]. 

NOISE ADAPTATION
Some model-based compensation methods were also proposed 
for noise robust speech recognition on large-vocabulary speech 
corpora under different added noises and signal-to-noise ratios. 
Parallel model combination (PMC) [67] was developed for 
robust continuous speech recognition where the corrupted 
speech due to additive noise was compensated by combining 
clean speech HMMs and noise HMMs in the log spectral domain 
via mismatch functions for static and dynamic ceptral features. 
Vector Taylor series-based (VTS) compensation [68] was pre-
sented to adapt the existing HMM parameters to an unknown 
noisy environment. This HMM adaptation technique is based on 
a first-order Taylor series expansion around the Gaussian means 
of the clean speech signal and noise signals where the additive 
noise and the convolutive noise are characterized by an acoustic 
environmental model. To handle different noise environments, 
the noise adaptive training (NAT) [25] algorithm was proposed 
as a form of multistyle training where the pools of noisy speech 
with different noise types and noise levels are preprocessed by 

SPLICE-based noise reduction and then applied to estimate an 
integrated set of HMMs that was robust across a wide range of 
noise conditions. In addition, noise robustness in speech recog-
nition was achieved by exploiting the uncertainty introduced by 
noise interference. The issue of uncertainty was tackled during 
recognition by adding the variance of the error due to feature 
enhancement to the HMM variances. Joint uncertainty decod-
ing (JUD) [26] was implemented according to a joint Gaussian 
density of the clean and corrupted speech. 

DEEP NEURAL NETWORKS
For the past 30 years or so, HMMs with state-dependent GMMs 
have been the de facto standard in acoustic modeling. The domi-
nance of GMM-HMMs in acoustic modeling has, over time, led to 
an entire “ecosystem” of front-end processing and speaker adapta-
tion techniques specifically tailored to maximize the recognition 
performance under this model. Because of this, the status quo 
was hard to challenge with competing acoustic modeling 
approaches until very recently. The success of using a deep neural 
network acoustic model in LVCSR was first reported in [69]. In 
[70], the authors further presented a 33% relative improvement 
in WER over a discriminatively trained GMM-HMM on a 300-h 
English conversational telephone speech transcription task. The 
moniker “deep” comes from using more than one hidden layer, 
typically three to five. The network models the context-depen-
dent output distributions directly and uses a greedy, layer-wise 
pretraining of the weights with either a supervised or unsuper-
vised criterion [69]. This pretraining step, popularized by Hinton 
[71] in the context of deep belief networks (DBNs) [72], prevents 
the supervised training of the network from being trapped in a 
poor local optimum. A thorough discussion about deep NNs and 
their application to acoustic modeling on a variety of LVCSR 
tasks can be found in the article by G. Hinton et al., also included 
in this issue of IEEE Signal Processing Magazine [73]. 

LANGUAGE MODELING
A statistical language model (LM) ( )p WC  with n-gram parame-
ters C  represents the prior probability of a word string 

{ }W w w w, , T
T

1 1f _= , which is calculated by multiplying the 
probabilities of a predicted word wi  conditioned on the preced-
ing n 1-  words wi n

i
1

1
- +
- . The n-gram probabilities can be calcu-

lated according to the maximum likelihood estimate 
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where ( )c $  is the count of a word sequence. The prior probabili-
ty ( )p WC  is combined with the acoustic likelihood function 

( )p X W;K  given HMM parameters K  to find the most likely 
word sequence Wt  according to the Bayes decision rule. 
Although n-gram language models are effective at exploiting 
local lexical regularities, they suffer from the inadequacies of 
training data, long-distance information, and model general-
ization, which constrain the prediction capability for LVCSR. 
Figure 5 summarizes some new language modeling methods 
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that have been popular for LVCSR systems. These methods are 
categorized according to three issues in language modeling. 

KNESER-NEY LANGUAGE MODEL
Chen [74] surveyed a series of smoothing techniques of the  
n-gram language model that are used to tackle the issue of inad-
equate training data. These techniques basically cope with zero 
probability estimates for n-grams not observed in the training 
corpus. Among these techniques, a variant of Kneser-Ney (KN) 
smoothing outperformed all other algorithms for LVCSR. The 
interpolated KN (IKN) smoothing was formed by utilizing abso-
lute discounting, modified counts for n-gram probabilities, and 
interpolation with lower-order n-gram probabilities as [74], [75] 
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1
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^ h  denotes the number of words following 
wi n

i
1

1
- +
-  that have one or more counts. The discount parameter 

| |$d  in (13) depends on the length of context wi n
i

1
1

- +
- . This IKN 

language model was derived by involving marginal constraints. 
In addition, a modified KN (MKN) language model [74] was pro-
posed by extending IKN language model via allowing three dif-
ferent discount parameters | |$d  for n grams with one 
N wi n

i
1 1

1 $- +
-

^ h , two N wi n
i

2 1
1 $- +

-
^ h , and three or more counts 

N wi n
i

3 1
1 $+ - +

-
^ h. The MKN language model outperformed IKN 

language model in [74].   

HIERARCHICAL PITMAN-YOR LANGUAGE MODEL
The KN language model (KNLM) was further generalized to a 
hierarchical Pitman-Yor (PY) language model (HPYLM) [76], 
where a nonparametric prior based on PY process was intro-
duced to interpret language model smoothing from a Bayesian 
perspective. Interpolating with lower-order n-grams is equiva-
lent to performing hierarchical Bayesian framework by recur-
sively combining the t( ) hn 1- -order PY process priors over 
the nth-order predictive distributions until the unigram model 
is reached. A PY process is a generalization of a Dirichlet pro-
cess with an additional discount parameter | |$d , which acts as 
discounting for language model smoothing. A PY process can be 
described by the Chinese restaurant metaphor of having an infi-

nite number of tables, each with infinite seating capacity. Each 
customer (i.e., word token wi ) enters the restaurant and sits at 
an occupied table with probability proportional to the number 
of customers already sitting there, or at a new unoccupied table 
with probability determined by the current number of occupied 
tables. This PY process produces a power-law distribution that is 
well suited to model word frequencies in natural language [76]. 
HPYLM is constructed via Bayesian nonparametric learning and 
allows the number of n-gram parameters to grow indefinitely 
with large n and increasing amount of training data. HPYLM 
was derived as the predictive probability of a new customer wi  
given the seating arrangement of wi n

i
1

1
- +
-  through collecting the 

probabilities of choosing occupied tables and an unoccupied 
table, which are labeled by wi  [76], [77] 
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where c w c w uvi n
i

i n
i

v1
1

1
1

u
$ $ =- +

-
- +
-

^ ^h h//  and | |$i  denotes a 
strength parameter of a PY process depending on the length of 
context wi n

i
1

1
- +
- . Gibbs sampling can be applied for model infer-

ence. Comparing (13) and (14), HPYLM is reduced to KNLM 
when | |$ 0i =  and N w 1i n

i
1 1 =+ - +^ h . HPYLM is a Bayesian gen-

eralization of KNLM with an additional strength parameter | |$i . 
In [77], HPYLM had improved performance over KNLM for 
LVCSR based on several large-scale training data sets. 

LATENT DIRICHLET ALLOCATION LANGUAGE MODEL
To compensate the inadequate handling of long-distance infor-
mation in n-gram models, latent semantic information of words 
and documents was explored and incorporated into the con-
struction of large-span language models. The semantic informa-
tion was represented in a low-dimensional vector space 
consisting of common latent topics [78]. The word clusters and 
the document clusters were found and used to measure the 
closeness between words and documents in latent semantic 
space. The latent semantic analysis (LSA) language model was 
calculated by cosine similarity measure between a predicted 
word wi  and its history context wi n

i
1

1
- +
-  in the common seman-

tic space. Integrating LSA language models with standard 
n-gram models has led to good LVCSR performance [78]. 

Language Modeling

Insufficient Training
Data

KNLM, HPYLM, NNLM

Large-Span Modeling

Cache DCLM, MELM, SLM

Model
Regularization  

Model M

Word
Sequence

Linguistic
Parameters

[FIG5] Overview of language modeling methods.
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However, LSA is not a probabilistic framework and cannot 
be generalized for unseen test data. In [79], a topic-based lan-
guage model based on probabilistic LSA (PLSALM) was pro-
posed. PLSA parameters were estimated by ML through the 
EM algorithm. To tackle the generalization issue in PLSA, Blei 
[80] presented latent Dirichlet allocation (LDA), where 
Dirichlet priors were introduced to represent topic mixtures 
for seen documents as well as unseen documents. In [81], 
LDA was employed to adapt language models according to 
maximum a posteriori (MAP) method. The transcriptions 
from speech recognition were treated as a “document” to 
compute an LDA-adapted marginal for language model adap-
tation. Instead of a document-based LDA language model 
(LDALM) [81], a history-based LDA  language model was pre-
sented to calculate the n-gram probability by [82] 
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In (15), the sequence of history words w 1
1

i n
i
- +
-  is transformed 

to topic space or class space via a function ( )g $  by using the 
class-based parameter A ac c

C
1= =" , . This transformation is 

used to find class-dependent hyperparameters of Dirichlet pri-
ors that draw the classes for a predicted word wi . A class mix-
ture model is established by integrating C class distributions 

ic c
C

1bb = =" , associated with word wi . The resulting Dirichlet 
class language model (DCLM) parameters are estimated by 
maximizing the marginal likelihood of n-gram events over 
classes and class mixtures through the variational Bayes’ EM 
algorithm. DCLM was interpolated with IKNLM and was fur-
ther extended to a cache DCLM by combining the class infor-
mation outside n-gram context wi n

i
1- + . This cache DCLM 

outperformed class-based LM [83], PLSALM, and LDALM for 
speech recognition [82]. 

MAXIMUM ENTROPY MODEL
The maximum entropy (ME) approach aims to completely 
model what is known, and carefully avoid assuming anything 
that is not known. The merit of ME model is the feasibility of 
merging nonindependent, asynchronous, and overlapping fea-
tures into a probability model. Rosenfeld [84] proposed an ME 
approach to integrate diverse knowledge sources in a single 
unified language model. The sources of low-order n-gram, 
high-order n-gram, long-distance information, and syntactic/
semantic knowledge are used as constraints to be imposed in 
an ME language model (MELM). The issues of inadequate 
training data and long-distance information can be addressed. 
Assuming that there are F features ( )fk $" ,  induced by the 
words preceding word wi  in the corresponding sentence W ,r i , 
the ME principle is used to estimate the MELM with ME, ran-
domness, or smoothness while all feature functions are con-
strained. MELM is expressed as a log-linear model 
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where km m= " , are Lagrange multipliers that arise from a con-
strained optimization problem. This ME technique acts as a 
model smoothing method over different backoff models. The con-
straints due to individual features ( )fk k

F
1$ =" ,  are imposed to 

equalize the true expectation E fp k6 @ and the empirical expecta-
tion E fp ku 6 @ calculated from training sentences { }W W r

R
1= = . In 

[84], ME parameters km m= " , were calculated by a generalized 
iterative scaling procedure. The MELM was constructed by select-
ing long-distance trigger pairs { }w wa b"  with rich  mutual infor-
mation from the word sequence { , }w w w w, , , , ,a b T1 f f f  and 
treating them as feature functions for estimating ME parameters. 
In [85], we further mined for information-theoretic association 
patterns containing more than two distant words. The association 
pattern language model was established based on the ME frame-
work. In [86], the ME model was extended to a joint acoustic and 
language model where the acoustic features extracted from HMM 
parameters and the linguistic features extracted from n-gram 
parameters were unified for joint optimization. This hybrid model 
characterized mutual dependencies between acoustic and linguis-
tic features. 

MODEL “M”
The ME model in (16) is known as an exponential n-gram model. 
Chen [87] addressed the issue of model regularization and investi-
gated a variety of exponential language models to find an empiri-
cal relationship between training set cross-entropy Htrain  and test 
set cross-entropy Htest  as /H H Nn k

F
k1test train. /c m+ =
u

^ h , 
where Nn  is the number of n-gram events, { }km m=u u  are regular-
ized ME parameters, and c  is a constant independent of data and 
model. This relationship was used to motivate a heuristic for 
improving LVCSR performance of test data by penalizing large-
sized language model with large kmu  values. The heuristic was to 
identify groups of features with similar kmu  values and add new fea-
tures that were the sums of the original features in individual 
groups. The size of the exponential language model k

F
k1/ m=
u  was 

surprisingly reduced and the prediction performance was 
improved [87]. This heuristic is important to explain why adding 
backoff n-gram features can shrink the model size and improve 
the model generalization. In [87], the heuristic was further applied 
to shrink exponential language model and build a middle-sized 
class-based language model, called model “M,” which was both 
smaller than the baseline classed-based model and had a lower 
training set cross-entropy. The trigram based on model “M” is 
expressed by 
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where ci  denotes the class of word wi . In (17), a class-based trigram 
based on exponential models is calculated. New features 

if w f ww w c i
i

w c w w w i
i

2 2i i i i2/= !- --i i i2 1 1- - -
^ ^h h are introduced to shrink 

the word trigrams that differ only in wi  since trigram events 
{ }wi

i
2-  that differ only in wi  (belonging to the same class) should 

have similar kmu . To shrink trigram features that differ only in their 
histories, the author creates new  features f wi

i
2 =-

i 1-c c ci i2-
^ h

f w,w c w c w w c i
i

2i i i i2 1 1/ ! ! -- - -i i1 2- -i 2-
^ h. The  resulting model complexity 
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k
F

k1/ m=
u  is simplified. Model “M” has been successfully applied in 

IBM systems that were fielded in LVCSR evaluations and obtained 
good performance [31], [36]. 

NEURAL NETWORK AND SYNTACTIC 
LANGUAGE MODELS
N-gram language models suffer from an exponential increase in 
the number of parameters with the length of the word history. 
In contrast, an NNLM has the potential of modeling long-span 
dependencies with a smaller number of parameters. The appli-
cation of NNs to language modeling is not straightforward 
because one has to transform what is inherently a discrete prob-
lem (i.e., counting words) into a continuous representation. 
Such a representation and corresponding NNLM has been pro-
posed in [88] and adapted to LVCSR in [89]. The idea is to have a 
low-dimensional continuous feature vector for each word in the 
n-gram history as input to the NN, which predicts the probabili-
ties for the most frequent words in the vocabulary. The NNLM is 
typically interpolated with a standard n-gram LM, which pro-
vides backoff probabilities for the words that are not modeled by 
the network. A recent development is to use a recurrent NNLM 
which, by nature, is not restricted to a word history of fixed 
length [90]. 

Another tack in language modeling research is to use syntax 
information to better predict words. Let’s say we want to predict 
the word “hits” in the following sentence: “Three taken to hos-
pital after flight from Tampa to Houston hits turbulence.” The 
4-gram history “Tampa to Houston” is a poor predictor of “hits” 
whereas “after flight” should be more effective. The structured 
language model (SLM) [91] uses headwords as context features 
that are obtained from a left-to-right parse of the sentence 
before the predicted word. 

NNLM and SLM can be combined by extracting syntactic fea-
tures from a parse tree and feeding their continuous representa-
tion into an NNLM. This has been done in an N-best rescoring 
framework for Arabic LVCSR in [92]. 

HYPOTHESIS SEARCH AND SYSTEM COMBINATION
Several new methods are described for hypothesis search and 
system combination as shown in Figure 6. These methods have 
a significant impact on LVCSR performance. 

HYPOTHESIS SEARCH
The role of the decoder is to compute the optimal sequence of 
words Wt  given the sequence of acoustic feature vectors X by 

incorporating information from the acoustic model and the 
language model via the Bayes’ decision rule W =t

argmax p X W p WW ;K C^ ^h h. A survey of early LVCSR decoders 
can be found in [14]. Since then, advances in decoding algo-
rithms coupled with the availability of increased computing 
power has made accurate, real-time LVCSR possible for various 
domains such as broadcast news transcription or conversation-
al telephone speech recognition [93]. Chief among these 
advances is the use of weighted finite-state transducers 
(WFSTs), which allow to efficiently encode all the various 
knowledge sources present in a speech recognition system 
(language model, pronunciation dictionary, context decision 
trees, and HMM topologies). The network resulting from the 
composition of these WFSTs, after minimization, can be 
directly used in a time-synchronous Viterbi decoder [94]. 
Such decoders have been shown to yield excellent perfor-
mance when compared to classic approaches [95], [96]. One 
such example of a WFST decoder [45] operates on static 
graphs obtained by successively expanding the words in an 
n-gram model in terms of their pronunciation variants, the 
phonetic sequences of these variants, and the context-depen-
dent acoustic realizations of the phones. This can be done 
even for large cross-word phonetic contexts such as penta-
phones (or quinphones) through an efficient incremental pro-
cedure described in [97]. The main advantage of using static 
graphs is that the graphs can be heavily optimized at “com-
pile” time (e.g., through determinization and minimization 
[94]) in advance, so that minimal decoding work is required at 
“decode” time. However, the composition and optimization of 
such search networks becomes computationally challenging 
when large components are used. For example, it takes about 
35 h to compile a search network for an Arabic LVCSR system 
with a vocabulary of 2.5 million words. Also, the size of the 
language model often exceeds the compilation limits of the 
search network, and the language model needs to be pruned. 
To use the full language model, a static decoder needs to first 
generate lattices with a smaller LM then rescore them with 
the full LM, which requires additional computations during 
the search. These drawbacks of static network decoders have 
led us to revisit dynamic network decoders where the lan-
guage model is applied dynamically. The advantages of decou-
pling the language model from the search network are that 
search network construction is much faster and the full lan-
guage model can be applied directly, without the need of a 
rescoring pass [96]. 

Hypothesis Search

Viterbi Decoding, LM
Rescoring, WFST Decoding

System Combination

ROVER, Cross-Adaptation
CNC, SCRF 

Bagging, Boosting

Word
Sequence

Sequence of
Feature Vectors

[FIG6] Overview of hypothesis search and system combination methods. 
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SYSTEM COMBINATION
To obtain high levels of performance for particular domains, 
modern LVCSR systems employ multiple decoding and rescor-
ing passes with several speaker adaptation passes in between.  
Improved system performance can be obtained by “cross-polli-
nating” diverse acoustic models through cross-adaptation and 
system combination. In contrast to self-adaptation, cross-adap-
tation means that the output of one system is used to adapt the 
acoustic models of another system. Another form of system 
combination pioneered by recognizer output voting error 
reduction (ROVER) [98] consists in aligning the word hypothe-
ses from the different systems and in outputting the words 
which have the most votes within each bin. In confusion net-
work combination (CNC) [99], consensus lattices (or “sausag-
es”) [100] from different systems are aligned and the output is 
given by the words with the highest posterior within each bin. 
In yet another approach, the lattices from multiple systems are 
intersected using WFST operations [94], [101]. Finally, segmen-
tal conditional random fields (SCRFs) [102] are a recent frame-
work for combining heterogeneous acoustic models (HMM 
based, template based, etc.) based on exponential modeling and 
conditional maximum likelihood (of the word sequence given 
the acoustics). 

The acoustic models that are combined usually differ in one 
or more design parameters such as input features, acoustic 
modeling paradigm, phonetic context, and discriminative train-
ing criterion, to name a few. Unfortunately, a lot of human 
intervention is required in choosing which systems are good 
for combination, knowledge that is often task dependent and 
cannot be easily transferred to other domains. Ideally, one 
would want an automatic procedure for training accurate sys-
tems or models that make complementary recognition errors. 
One such approach is a classifier combination technique called 
bagging and consists in training an ensemble of acoustic mod-
els by randomizing the questions in the context decision trees 
[103]. Another approach is to iteratively train a sequence of 
acoustic models on reweighted training samples where the 
weights of incorrectly decoded frames is progressively 
increased. This is an adaptation of the classifier combination 
technique called boosting and has been shown to be superior to 
bagging for LVCSR [104]. 

Finally, in Table 1 we indicate the accuracies for the various 
decoding passes of three different LVCSR systems for: English 
conversational telephone speech (CTS) (RT04 test set) [1], 
Arabic broadcast news (BN) transcription (GALE Phase 4 test 
set) [31], and Mandarin BN transcription (GALE Phase 2.5 test 
set) [11]. As can be seen, substantial gains in accuracy can be 
obtained from speaker adaptation, language model rescoring 
with more sophisticated LMs (large n-gram LMs, topic-adapted 
LMs, model “M” and syntactic and neural network LMs [31]), 
and system combination using ROVER. 

FUTURE DIRECTIONS
Up to now, we have described a series of approaches pertaining 
to all four LVCSR components that are fundamental for devel-
oping competitive LVCSR systems. In what follows, we present 
some new methods and point out possible directions for future 
LVCSR research. 

STRUCTURAL STATE MODELS
HMMs with state-dependent GMMs in (1) are prevalent for 
LVCSR. Speech feature vectors xt  are modeled by context-
dependent GMMs conditioned on HMM states and are assumed 
to be conditionally independent from one another. Each state 
has its own model parameters and there is no sharing across 
states. Povey [105] presented the subspace Gaussian mixture 
models (SGMMs) to allow all phonetic states to share a common 
GMM structure but with means and mixture weights varying in 
a subspace of the entire parameter space. According to SGMMs, 
the state observation distribution of feature vector x t  at state i 
is expressed by a mixture of substate distributions each with a 
mixture of GMMs of the form 

 | ( )p c N ; , .xxt i ij
j

N

ijk t ijk k
k

K

1 1
SGMM

i

~ nK R=
= =

^ h = G/ /  (18) 

In (18), each GMM consists of state dependent and substate depen-
dent mixture weights /exp exp ,w v w v

'
ijk k

T
ij k

T
ijk

K
1

~ =
=

l^ ^h h/  
mean vectors vijk k ijn U= , and canonical covariance matrices 

.kR  There are K canonical states with parameters , ,wk k kU R" , 
and Ni  substates for state i with each substate having its own mix-
ture weight cij  and subspace vector vij . SGMMs have two groups 
of parameters , {c , }, , ,v wijij k ij k k kSGMMK K K U R= =" "", ,, that 
are estimated with maximum likelihood. Compared to HMM 
parameters , ,ik ik ikHMM ~ nK R= " ,, a much more compact repre-
sentation is obtained by SGMMs due to the canonical parameters 

, ,wk k kU R" , globally shared across the different states i and 
 substates j. 

SGMMs were further generalized to canonical state models 
(CSMs) [106] where two sets of model parameters are involved in 
the state likelihood calculation: the context-dependent transform 
parameters ijK ; and the CSM parameters kK . The context-depen-
dent state parameters are a transformed version of one or more 
canonical state parameters at the global level or at the context-
independent phone level. The transformed parameters represent 
the substate parameters of a Markov state. Compared to HMMs, 
the structural state models using SGMMs and CSMs make the 

[TABLE 1] WERS AND CHARACTER ERROR RATES (CERS) FOR 
DIFFERENT  DECODING PASSES ON ENGLISH CTS (RT04 TEST 
SET), ARABIC BN TRANSCRIPTION (GALE PHASE FOUR TEST 
SET), AND MANDARIN BN TRANSCRIPTION (GALE PHASE 
2.5 TEST SET).

DECODING PASS 
WER 
(ENGLISH CTS)

WER 
(ARABIC BN)

CER 
(MANDARIN BN)

SPEAKER 
INDEPENDENT

26.7% 16.7% 15.6% 

SPEAKER ADAPTED 16.4% 8.9% 7.3% 

LM RESCORING 15.2% 7.8% 6.5% 

SYSTEM 
COMBINATION

— 7.4% 6.2% 
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state-space representation of acoustic features more compact and 
more efficient. According to CSMs, the state likelihood of xt  
given a context-dependent state i is similar to (18) except that 
the mixture weights, mean vectors, and covariance matrices of 
the GMM are replaced by general transformation functions 

,F k ,ijk ij~ i= ~ ^ h  ,F kijk ijn i= n ^ h ,  and  ,F kijk ijiR = R ^ h , 
respectively, where iji denotes the set of transform parameters, cij  
is seen as the transform prior, and { , }cij ij ijiK = . This CSM is a 
general model and can have particular realizations such as mix-
tures of MLLR transforms and mixtures of fMLLR transforms and 
SGMMs, which differ in the transformations ( )F $~ , ( )F $n , and 

( )F $R  that are applied to map the canonical state k to the context-
dependent state i [106]. For example, the state likelihood function 
in case of the mixture of MLLR transforms can be realized from 
CSM as  follows: 

 ( ; )p c N M ,x xt i ij
j

N

k t ij k k
k

K

1 1
CSM MLLR

i

; ~ pK R=-
= =

^ h = G/ / ,  (19) 

where 1k k
T T

p n= 6 @  and ,F k M Mijk ij ij kpn = =n ^ h . This CSM-
MLLR model is established by transforming a canonical GMM or 
universal background model , ,k k k k~ nK R= " ,by using trans-
form priors and context-dependent regression matrices and 

{ , }c Mij ijK = . SGMMs and CSMs have been successfully applied 
to several LVCSR tasks [105], [106]. 

BASIS REPRESENTATION
LVCSR systems are usually constructed by collecting large 
amounts of training data and estimating a large number of model 
parameters to achieve desirable recognition accuracy on test data. 
A large set of context-dependent Gaussian components (several 
hundred thousand components is usually the norm) is trained to 
build context-dependent phone models. GMMs with Gaussian 
mean vectors and diagonal covariance matrices may not be an 
accurate representation of high-dimensional acoustic features. 
Alternatively, acoustic feature vectors x  can be viewed as lying in 
a vector space spanned by a set of basis vectors. Such a basis rep-
resentation has been popular for regression problems in machine 
learning and for signal recovery in the signal processing litera-
ture. This direction is now increasingly important for acoustic fea-
ture representation. For instance, in the SGMM framework, the 
context-dependent mean vectors vijk k ijn U=  in (18) are 
expressed via a basis representation with canonical basis vectors 

kU  and context-dependent sensing weights vij . In [107], the full 
covariance matrix of a Gaussian distribution of HMMs was approx-
imated by a set of state-independent basis vectors and state-depen-
dent diagonal covariance matrices. The basis representation of 
HMM covariance matrices ikR  was effective for speech recogni-
tion. In addition, compressive sensing and sparse representation 
are now hot topics in the signal processing community and have 
been effectively exploited for speech recognition [108]. The basic 
idea of compressive sensing is to encode a feature vector x  based 
on a set of overdetermined dictionary or basis vectors 

,, N1 f{ {U = 6 @ via Ux w=  where the sensing weights w  are 
sparse and the basis vectors U are formed by training samples. A 
relatively small set of relevant basis vectors are used for sparse 

representation based on this exemplar-based method. The optimal 
sparse solution to w  can be derived by maximizing an approxi-
mate l1 -regularized objective function [108]. However, the capa-
bility of modeling continuous speech was limited since HMMs 
were not integrated in the model for sparse representation of 
sequence data. Implementing such a memory-based method is 
time-consuming with high memory cost. 

Consequently, Bayesian sensing HMMs (BS-HMMs) [109] 
were developed by incorporating Markov chains into the basis 
representation of continuous speech. A new Bayesian sensing 
framework was built for LVCSR. The underlying aspect of 
BS-HMMs is to measure an observed feature vector xt  of a speech 
sentence X xt t

T
1= =" ,  based on a compact set of state-dependent 

dictionary ,,i i iN1 f{ {U = 6 @. The reconstruction error between 
measurement X and its representation wi tU , where 

w w, ,wt t tN
T

1 f= 6 @ , is assumed to be Gaussian distributed 
with zero mean and a state-dependent covariance matrix or 
inverse  precision matrix R 1

i
- . The state likelihood function 

with time-dependent sensing weights wt  is defined by 
, , ( ; , )p R N Rw wx xt t i i t i t i

1
BSHMM ; U U= -

^ h . The Bayesian perspec-
tive in BS-HMMs has its origin from the relevance vector machine 
(RVM) [110] which is known as a sparse Bayesian learning 
approach for regression and classification tasks. The purpose of 
Bayesian learning in BS-HMMs is to yield “distribution estimates” 
of the speech feature vectors due to the variations of sensing 
weights wt . A Gaussian prior with zero mean and state-dependent 
diagonal covariance matrix is introduced to characterize the 
weight vector, i.e., ;p A N 0, diagw w in

1
t i t; a= -

^ ^h h" , . This prior is 
prone to be sparse [110]. The automatic relevance determination 
(ARD) parameters ina" , are likely to be large to draw zero values 
for wt . Only relevant basis vectors are selected to represent 
sequence data. Considering this Bayesian basis representation, 
BS-HMM parameters are formed by , ,A Ri i iBSHMMK U= " ,con-
sisting of basis vectors iU  and precision matrices of sensing 
weights Ai  and reconstruction errors Ri . The predictive state like-
lihood function of xt  at state i is derived by marginalizing over 
sensing weights to yield [109], [111] 
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For diagonal Ri , the state likelihood in (20) is seen as a new 
Gaussian distribution with a factor analyzed covariance matrix 
R A1 1

i i i i
TU U+- -  where the factor loading matrix A 1/2

i iU -  is 
seen as a rank-N correction to R 1

i
-  [111]. By applying the EM 

algorithm, the Type II ML estimates of BS-HMM parameters 
BSHMMK  are consistently formulated as implicit solutions with 

an efficient implementation and good convergence properties. 
Another important property of BS-HMMs is the ARD parameters 

ina" , that provide model complexity control. One can initially 
train a large model and then prune it to a smaller size by 
removing basis elements that correspond to the larger ARD 
 values [111]. 
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Different from conventional basis representation where basis 
vectors and sensing weights are found separately [108], [110], 
BS-HMMs provide a multivariate Bayesian approach to jointly 
estimate the compact basis vectors and the precision matrices of 
sensing weights under a consistent objective function. No train-
ing examples are stored for memory-based implementation. 
In [109] and [112], there were several extensions for acoustic 
 modeling: mixture models, nonzero means, speaker adapta-
tion, and discriminative training. BS-HMMs were extended by 
in  corporating the mixture component weights and the 
mean  vectors in the calculation of the state likelihood, i.e., 

, , , ,A Rik ik ik ik ikBSHMM ~ nK U= " , . ML estimates of mixture 
weights ik~  and mean vectors ikn  can be easily obtained. 
Borrowing ideas from MLLR speaker adaptation, BS-HMMs were 
extended by adapting basis vectors to different speakers based on 
ML regression matrices. The implicit solution to regression 
matrices { }M Mc=  are described in [113]. Furthermore, 
BS-HMMs were extended from a generative model based on ML 
estimates to a discriminative model based on MMI estimates 
[112]. Model-space and feature-space BMMI training was devel-
oped and was significantly better than ML training. In the latest 
DARPA GALE Arabic broadcast news transcription evaluation, 
BS-HMMs trained on 1,800 h of data outperformed state-of-the-
art HMMs with diagonal covariance GMMs even after feature-
space and model-space discriminative training [111]. 

MODEL REGULARIZATION
ML acoustic models and language models in LVCSR systems 
may suffer from an overtraining problem where the estimated 
models are too complex to generalize for future data [51]. This 
leads to a limited prediction capability on unknown test sen-
tences. In general, context-dependent GMMs with many 
Gaussian components are trained from a large collection of 
training utterances. The trained ML parameters are forced to 
represent the underlying distribution of the speech features 
given the phonetic states. But, the real-world continuous speech 
is collected from heterogeneous environments with mismatched 
training and test conditions and various sources of variations 
due to noise, channel, gender, speaker, accent, coarticulation, 
speaking rate, and emotion. The issues of overtraining and het-
erogeneous data warrant more investigation. In addition, train-
ing data may be incorrectly labeled or even without labels. The 
selected model structure may not be appropriate for the collect-
ed data or, otherwise stated, the assumed models may be differ-
ent from the true ones. Estimation errors may exist in the 
model construction due to sparse data, approximate inference or 
slow convergence. Overall, future LVCSR systems should tackle 
model regularization and compensate for the uncertainties and 
weaknesses in the construction of component models. 

There have been several approaches developed to handle 
model regularization for LVCSR. Model-space and feature-space 
speaker adaptation [58] provides a solution to regularize the 
trained model parameters by compensating for the mismatch 
between training and test data. The language model  based on 
model “M” [87] and the acoustic model based on BS-HMMs 

[113] are two new trends towards high-performance LVCSR as 
far as model regularization is concerned. Model “M” shrinks the 
exponential model to a “middl e” size resulting in improved pre-
diction performance of test data. BS-HMMs propose a Bayesian 
basis representation where the uncertainty of sensing weights is 
taken into account. A predictive Gaussian distribution with a 
factor analyzed cova riance matrix is employed to characterize 
continuous speech. Nevertheless, there are other LVCSR pro-
cessing components that have not been thoroughly investigated 
from the perspective of model regularization. For example, the 
issue of model selection could be extensively considered. 
Similar to model “M” for language modeling, the selection of 
middle-sized acoustic  models is helpful to improve generaliza-
tion for test speech. Bayesian approaches [113]–[115] have been 
proposed to deal with model regularization for HMMs. The 
common theme of these approaches is to express the uncertain-
ties of HMM parameters by using conjugate priors. The closed-
form evidence functions or predictive distrib utions are derived 
as an objective function for model complexity optimization. The 
evidence framework [51] has been employed to control com-
plexity of decision trees for context-dependent acoustic model-
ing [114], [116] and to  learn hyperparameters of HMMs for 
noisy speech recognition [115]. In the implementation, the 
prior distributions are estimated from training data and then 
applied to calcula te the predictive distributions of test data. The 
uncertainty decoding [26] is performed to improve robustness 
in speech recognition. Also, the sparse representation provides a 
solu tion to the ill-posed problem for different models. Although 
BS-HMMs were motivated by RVM which performed sparse 
Bayesian learning, the regularization could be further enhanced 
by  introducing a truly sparse prior and conducting Bayesian 
compressive sensing for LVCSR. 

Previous methods require that the number of latent vari-
ables in the acoustic model and language model is fixed in 
advance. This is a serious  limitation. Adaptively selecting the 
number of latent variables is an alternative direction toward 
achieving model regularization and improving future LVCSR. 
For example, in HMM-based acoustic modeling, we may need to 
adaptively decide the number of states for  different context-
dependent phonetic units and the number of Gaussian compo-
nents for different context-dependent Markov states. In 
language modeling, we may need to choose the number of top-
ics  or classes for different n-grams. A new paradigm called 
Bayesian nonparametrics (BNP) [117], [118] provides an elegant 
solution to model complexity optimization with the least model 
assumpti on about the underlying dynamics in the data. BNP 
has been extensively developed for document representation 
and information retrieval. BNP allows the data to drive the com-
plexity of the inferr ed model. The HPY language model [76] was 
constructed by using BNP where the number of n-gram param-
eters was allowed to grow ind efinitely with large n. According to 
the paradigm of BNP, the latent variables and their number in a 
mixture model are automatically i nferred from training data 
through the hierarchical Dirichlet process, which can be real-
ized by a stick-breaking or Chinese restaurant process. A 
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 nonparametric prior for the number of mixture components is 
introduce d to capture the latent structure in a set of grouped 
data. As the amount of training data increases, the number of 
latent variables may grow infinitely for each group. The approxi-
mate posterior inference based on Gibbs sa mpling is used to 
implement BNP methods [117]. Furthermore, moving beyond 
temporal segmentation based on discrete Markov chains in 
HMMs,  the Markov switching process [118] was developed as a 
more complicated process that can realize different BNP mod-
els. This process was designed to capture the continuous 
d ynamics of multivariate time series signals. Considering the 
phenomena of high coarticulation and complex variations in 
continuous speech, the extensions of Mark ov switching process 
for acoustic modeling and language modeling will be impacting 
the future of LVCSR systems. 

CONCLUSIONS
We have surveyed a series of  approaches to front-end process-
ing, acoustic modeling, language modeling, and back-end 
search and system combination that have made big contribu-
tions for LVCSR systems  in the past decade or so. In the area of 
front-end processing, feature transformations using LDA and 
STC, speaker-adaptive features using VTLN and fM LLR, and dis-
criminative features using fMPE worked well for acoustic fea-
ture extraction. In the area of acoustic  modeling, feature-space 
and model-space discriminative training based on boosted MMI 
and feature-space and model-space speaker adaptation based on 
fMLLR and MLLR achieved  the best recognition results among 
different methods. Alternatively, deep neural networks hold a lot 
of promise for acoustic modeling although training time  on 
large amounts of data is a limiting factor. In the area of lan-
guage modeling, backoff smoothing using HPYLM, large-span 
modeling using ME, model regularization based on mo del “M,” 
and syntactic and neural network language models obtained 
competitive performance. Finally, in the area of hypothesis 
search, dynami c and WFST Viterbi decoding and system combi-
nation using ROVER, cross-adaptation, and boosting obtained 
good LVCSR performance. In addition, we presented flexible 
acoustic  models based on structural state models (SGMMs and 
CSMs) and robust basis representation based on BS-HMMs. 
With the aim of modeling un known variations in the data and 
model parameters, we pointed out possible future directions for 
LVCSR research towards model regularization for the different 
components of an LVCSR system. 
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