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Spin-Hall current and spin polarization in an electrically biased SNS Josephson junction
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Periodic in time spin-Hall current and spin polarization induced by a dc electric bias have been calculated in
a superconductor-normal two-dimensional electron gas-superconductor (SNS) Josephson junction. We assumed
that the band energies of electrons in the normal system are split due to Rashba spin-orbit coupling. The transport
parameters have been calculated within the diffusion approximation and by using perturbation expansion over
a small SN contact transparency. We found out that, in contrast to the stationary Josephson effect, the spin-Hall
current does not turn to zero. Besides a direct proximity effect caused by a Cooper pair’s transition into a triplet
state, the spin current and polarization are also driven by a periodic electric field associated with the charge
imbalance.
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I. INTRODUCTION

The spin-Hall effect (SHE) is a fundamental physical
phenomenon where the spin-orbit interaction (SOI) shows up
in electron transport on a macroscopic level. The interplay of
spin precession caused by the SOI and electron acceleration
in the electric field gives rise to a flux of out-of-plane spin
polarization flowing perpendicular to the electric current.
Although this effect was predicted a long time ago,1 it has been
observed experimentally only recently in semiconductors2,3

and metals.4 The nature of this phenomenon is now well
understood and has been studied for various systems (for
a review, see Ref. 5). The SHE is being considered as a
tool for manipulating electron spins in perspective spintronic
applications. On the other hand, the spin polarization accu-
mulated due to the SHE is subject to dissipative processes of
spin relaxation and diffusion. From this point of view, it is
interesting to consider the SHE in superconductors, as well
as in superconductor-normal two-dimensional electron gas
(2DEG)-superconductor (SNS) junctions, where the N region
is represented by a normal electron system with strong enough
spin-orbit coupling. Also, in such systems SHE provides an
opportunity for direct coupling of spin degrees of freedom to
superconducting quibits.6,7

An important distinction of spin-Hall effects in supercon-
ducting and normal systems is that in the latter case this effect
is determined by spin dynamics of single particles, while in the
former case a major role is played by the interference of triplet
and singlet Cooper pairs.8 The triplet correlations, in turn, are
induced in the condensate wave function by SOI9 and show up
as an admixture to the singlet state. Therefore, the spin current
and spin accumulation caused by the SHE are determined
by a coherent macroscopic state and do not dissipate. The
SHE has been considered in bulk superconductors10 and SNS
tunneling contacts.8 An effect reciprocal to SHE was also
recently studied in such contacts.11 These studies have been
restricted to stationary transport. In the case of SNS junctions,
this means that the Josephson electric current is driven by a
phase difference of superconducting order parameters of two
superconducting electrodes. If these electrodes have different
electric potentials, this current will periodically vary in time.

One would expect that, due to such a time dependence, the
nonzero spin-Hall current will be induced, while it is forbidden
in the stationary case by the time-inversion symmetry.8 One
more nonstationary effect is associated with an electric field
caused by a dynamic electron-hole charge imbalance within
the normal layer. Such a periodic field will drive a flux of the
spin polarization, in a way quite similar to the conventional
SHE in normal systems.

The goal of the present study is to extend the theory of
Ref. 8 to the case of the nonstationary Josephson effect.
We will calculate the spin-Hall current and spin polarization
created by the combined effects of the Josephson tunneling
and SOI. It will be assumed that two singlet superconducting
electrodes are under dc electric voltage V . The normal layer
contacts them through the low-transparency tunneling barriers,
as shown in Fig. 1. This layer is thin enough that electrons are
restricted to 2D motion, as, for example, in a semiconductor
quantum well. The spin-orbit coupling in the N layer is given
by the Rashba interaction,12 and we will ignore the spin-orbit
effects in the scattering of electrons from impurities. At the
same time, the spin-independent scattering will be taken into
account within the Born approximation. The particle’s mean
free path l will be assumed to be smaller than all relevant
parameters of length dimension, except the Fermi wavelength
kF, which in the semiclassical approximation is much smaller
than l. Therefore, the electron transport within the N layer is
dominated by diffusion.

The outline of this paper is as follows. The general expres-
sions for the spin-Hall current and spin density are derived
in Sec. II. In Sec. III, some numerical results are presented
and discussed. Finally, the Appendix presents some details of
analytical calculations within the Keldysh formalism.

II. BASIC EQUATIONS

Since we will focus on the basic characteristics of the
SHE, the simplest approach will be employed within the
lowest-order perturbation theory with respect to transmission
coefficients of interface barriers. It should be noted, how-
ever, that higher-order corrections to the electric Josephson
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FIG. 1. (Color online) A SNS Josephson junction. The ac
Josephson electric current flows in the x direction between two
superconducting electrodes (S) through normal 2DEG (N). Black
layers show tunneling barriers. In the presence of Rashba spin-orbit
coupling the ac spin current of z-polarized electrons in the y

direction is induced, with a zero z-oriented spin density. A finite
spin polarization in the y direction (not shown) is also induced.

current are not always small,13 in particular in the range
of temperatures T that are larger than the Thouless energy
ETh = D/L2, where D is the diffusion constant and L is the
distance between contacts. We will assume the temperature
and/or the transmission coefficient to be low enough to avoid
such a situation. The tunneling is presented by the perturbation
Hamiltonian

Ĥint =
∑
k,k′,σ

tk,k′ â
†
k′σ τ3ĉkσ + H.c., (1)

where akσ and ckσ are electron destruction operators in the
superconductor and the N layer, respectively, with k denoting
the wave vector and σ the spin projection of the particles. The
transmission coefficient will be assumed to be a slowly varying
function of wave vectors in the vicinity of the Fermi surface.
Hamiltonian (1) is written in the Nambu representation, where
destruction operators are defined as

ĉkσ =
(

ckσ

c
†
−kσ̄

)
, (2)

and τ1,τ2,τ3 are the Pauli matrices in the Nambu space. In turn,
the unperturbed Hamiltonian of the normal layer has the form

Ĥ0 =
∑
k,σ,σ ′

ĉ
†
kσ

(
δσσ ′ τ̂3

2m∗ k2 − δσσ ′ τ̂3μ + σ σσ ′ · hk

)
ĉkσ ′

+
∑
k,k′,σ

Uk,k′ ĉ
†
k′σ τ3ĉkσ + Hc, (3)

where σ = (σx,σ y,σ z) is the Pauli spin vector. The Rashba
spin-orbit field hk, which is the odd function of k, is given by12

ĥx
k = αky,ĥ

y

k = −αkx . The random impurity-scattering poten-
tial is represented by its matrix elements Uk,k′ . This scattering
determines the elastic mean free time τ of electrons. For short-
range scattering it is given by 1/τ = 2πNF〈|Uk,k′ |2〉imp =
2πniNF|U |2, where NF is the state density at the Fermi level,
ni is the impurity concentration, and the subscript “imp”
denotes averaging over impurity positions. The Hamiltonian
Hc represents the Coulomb interaction of electrons. It will be
treated within the random-phase approximation to take into
account the screening effects associated with the dynamic
charge imbalance, while its contribution to the self-energy
and electron-electron correlations will be ignored.

We assume that the SNS contact is unbounded in the y

direction. Hence, the Josephson current is in the x direction,
as shown in Fig. 1, and the spin-Hall current polarized parallel
to the z axis flows in the y direction and depends on the x

coordinate. In the framework of the Keldysh formalism14 it
can be written as

Js(x,t) = 1

4m∗ (∇y ′ − ∇y)Tr
[
σ z

〈
GK

11(t,r; t,r′)
〉
imp

]∣∣
r→r′ ,

(4)

where GK
11(t,r; t,r′) is a nondiagonal (Keldysh) component of

the Green’s function, which is a 2 × 2 matrix in the spin space,
with subscript 11 denoting the corresponding projection in the
Nambu space. Besides the spin current, we will also calculate
the spin polarization along the y axis. In normal systems such
a spin polarization is due to the electric spin orientation.15

It is usually associated with SHE and takes place also at
stationary Josephson tunneling conditions.8 This polarization
can be expressed as

Sy(x,t) = − i

2
Tr

[
σy

〈
GK

11(t,r; t,r)
〉
imp

]
. (5)

Expressions (4) and (5) have to be expanded up to the
fourth order with respect to the transmittance. The relevant
diagrams are shown in Fig. 2. Comparing them to a diagram
representation of the charge Josephson current,16 one can see
that in the latter case the diagrams are much simpler. That
is because conservation of the Josephson current allows for
the reduction of its calculation to the calculation of the charge

FIG. 2. Examples of Feynman diagrams for calculation of the
spin current and spin polarization. The operator Ō denotes the
spin current, or spin-density operators. Gray boxes are diffusion
propagators. Boxes denoted by K and D relate to Cooperon and
diffuson, respectively. r and a stand for retarded and advanced Green’s
functions. Slashes denote the tunneling amplitude.
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FIG. 3. Examples of Feynman diagrams for the calculation of
Coulomb screening effects on the spin current and spin polarization
(see Fig. 2 for details). The dashed line denotes the screened Coulomb
potential.

time derivative in one of the superconducting terminals. Unlike
the Josephson current, the spin current does not conserve and
such a simplification is not possible. An additional problem is
caused by time dependence of the charge transport. It results in
an electric potential inside the N layer. Therefore, one should
take into account diagrams which explicitly take into account
the Coulomb screening there. These diagrams are shown in
Fig. 3. The calculations below will be restricted to the low
temperature T and small enough dc voltage V , both which are
much less than the superconducting gap �. In this regime the
electron transport through the contact will be dominated by
the tunneling of Cooper pairs between two superconducting
electrodes, while a dissipative transport due to electronic
excitations will be exponentially suppressed. Henceforth, the
Green’s functions of superconductor terminals are represented
in Figs. 2 and 3 by corresponding anomalous functions. More
details on the calculation of Feynman diagrams in Figs. 2
and 3 can be found in the Appendix.

The main building blocks of diagrams in Figs. 2 and 3
are unperturbed equilibrium Green’s functions averaged over
impurity positions. For the normal layer, these functions are
determined by Hamiltonian (3) and are represented by their
retarded (r), advanced (a), and Keldysh components

Ĝ0r(a)(ω,k) = (ω − τ3Ek − σ · hk ± i	)−1, (6)

where Ek = (k2/2m∗) − μ and 	 = 1/2τ ,

Ĝ0K (ω,k) = tanh
ω

2kBT
[Ĝ0r (ω,k) − Ĝ0a(ω,k)]. (7)

Important entries in Fig. 2 are the propagators D and K

given by

Dαβνμ(ω1 − ω2) = ni |U |2〈Gr
αμ;11(r,r′,ω1)Ga

νβ;11(r′,r,ω2)
〉
imp

(8)

and

K
r(a)
αβνμ(ω1 + ω2) = ni |U |2〈Gr(a)

αμ;11(r,r′,ω1)Gr(a)
νβ;22(r′,r,ω2)

〉
imp.

(9)

The conjugated functions K† are defined by Eq. (9) with
interchanged Nambu subscripts 11 and 22. Within the semi-
classical approximation, D and K can be represented by the
ladder series.17 At small frequencies and large |r − r′| � l,
they satisfy a diffusion equation and are called “diffuson”
and “Cooperon,” respectively.18 Due to the time-inversion
symmetry these correlators are not independent. They can be
expressed via each other. Depending on a combination of spin
components, the diffuson and Cooperon describe either spin
or particle (charge) diffusion. Therefore, it is convenient to
expand them in terms of Pauli matrices, according to

Dαβνμ = 1
2Dijσ

i
αβσ j

νμ, (10)

where i,j = x,y,z,0 and σ 0 denotes the 2 × 2 unity matrix.
Here and below a summation is assumed over the vector or
spinor indexes entering twice into an expression. Cooperon
components can be represented in a way similar to Eq. (10).
The tensor components Dij have a clear physical meaning.
Namely, D00 relates to the particle diffusion, while various
components with i,j = x,y,z are associated with the spin
diffusion. Mixed terms, for example, Di0, are generally not
zero in the presence of SOI. As follows from definitions
(2) and (9), z components of K are related to the diffusion
of singlet Cooper pairs, because they involve antisymmetric
combinations of “up” and “down” spins in the particle-particle
scattering process associated with the propagator K . The other
components 0,x,y are related to triplet Cooperons. It is easy to
see that the 0 term gives a triplet with a 0 spin projection onto
the z axis, while x and y components are various combinations
of ±1 triplets. A singlet-triplet mixing is associated with
nondiagonal correlators Kzm,Kmz, where m = 0, ± 1. As it
will become clear below, the mixing terms are proportional
to the small parameter α/vF, where vF is the Fermi velocity.
Only terms which are linear in this parameter will be taken into
account in the following calculations of the spin-Hall current
and spin polarization.

Since K always enters together with the Green’s functions
of superconducting terminals, it is convenient to introduce the
pairing function

F
r(a)
αβ (r,ω) =

∫
d2r ′Kr(a)

αβνμ(r,r′,2ω)σ z
μνf

r(a)(r′,ω), (11)

where f r(a) are determined by the anomalous superconductor
Green’s functions G̃

r(a)
12 , as well as by geometry of contacts

and their transmittance. Similarly, the conjugated functions
F †r(a) are defined through K† and f †. We assume that the SNS
junction is symmetric, with the electric potentials ±V/2 ap-
plied to the left and right electrodes, respectively. These poten-
tials result in the time-dependent factors exp[±i�(t + t ′)/2]
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in superconductor functions G̃0
12(t,t ′) and G̃0

21(t,t ′), where
� = ±eV. In this case, f can be written in the form

f r(a) = −ia
�[c(x − xL)δ�,eV + c(x − xR)δ�,−eV]√

(ω ± iδ)2 − �2
, (12)

where a can be expressed19 through the resistance Rb of the
SN interface, as a = 1/4e2NF Rb and c(x) is determined by
a profile of the contact. For simplicity, assuming that the
distance between contacts L = xR − xL is much larger than
the contact length, c(x) will be approximated by the delta
function. Since for our choice of parameters � � ω,� the
retarded and advanced anomalous functions f coincide, we
will skip the labels r,a below. The functions f † are obtained
from Eq. (12) by the substitution L → R.

Let us introduce the vertex function

jl(�,q) = ni |U |2
∑

k

G0a
αβ;11(ω,k)

kyσ
z
βγ

m∗

×G0r
γρ;11(ω + �,k + q)Dρανμ(�,q)σ l

μν. (13)

Further, according to the diagram representation in Figs. 2
and 3, the spin-Hall current can be written as

Js(x,t) =
∑

q,q ′,�=±eV

∫
dω

2π
ei(q+q ′)xe−2i�t

×
[
J1 + J2 − j0(2�,Q)ṼQ

i�NF

	
(J1scr + J2scr)

]
,

(14)

where Q = q + q ′, while J1 and J2 are given by diagrams (a)
and (b) in Fig. 2, respectively. Other terms in the integrand
take into account Coulomb screening, as depicted in Fig. 3. Ṽq

denotes the screened Coulomb potential

Ṽq = Vq

ε(2�,q)
. (15)

At small � 	 EF and q 	 kF the dielectric function ε(2�,q)
is represented by the hydrodynamic expression (see, e.g.,
Ref. 18)

ε(2�,q) = 1 + Vq

NF

	
Dq2D00(2�,q), (16)

where the diffusion propagator D00(ω,q) is given by Eq. (28).
Taking into account that the two-dimensional Coulomb inter-
action Vq = 2π/ε0q, it follows from Eqs. (16) and (28) that at
small � and q the second term in Eq. (16) dominates. Retaining
only this term in ε we arrive at

Ṽq = Vq	

	 + VqNF Dq2D00(2�,q)

 	

NF Dq2D00(2�,q)
.

(17)

This approximation corresponds to a complete screening of
charge within a length scale that is much larger than the
screening length.

Using the above definitions of Green’s functions and
correlators, various terms in the integrand of Eq. (14) can
be expressed in the form

J1 = 1

2
brrr

zij F r
i,q

(
ω + �

2

)
F

†r
j,q ′

(
ω − �

2

)
tanh

ω − �

2kBT

− 1

2
baaa

zij F a
i,q

(
ω + �

2

)
F

†a
j,q ′

(
ω − �

2

)
tanh

ω + �

2kBT
,

(18)

where Fi,q are spatial Fourier transforms of x-coordinate-
dependent functions Fi defined as

Fi = 1√
2

Tr[σ iF ]. (19)

The coefficients blij are given by

babc
lij (q,q′) =

∑
k

ky

m∗ Tr
[
�abc

lij (q,q′)
]
, (20)

with � defined by the expression

�abc
lij (q,q′) = −i

∑
k

G0a
11(ω − �,k − q′)σlG

0b
11(ω + �,k + q)

× σiG
0c
22(ω,k)σj . (21)

Each of the symbols a, b, and c takes the value r or a, while
the subscripts l, i, and j run through 0, x, y, and z. Introducing
also the coefficients

cabc
lij =

∑
k

Tr
[
�abc

lij

]
, (22)

other terms in Eq. (14) are expressed as

J2 = 1

4
jl(2�,q + q′)carr

liz F r
i,q

(
ω + �

2

)
f

†
q ′

(
ω − �

2

)

×
(

tanh
ω

2kBT
− tanh

ω − �

2kBT

)
+ 1

4
jl(2�,q + q′)cara

lzi fq

×
(
ω + �

2

)
F

†a
i,q ′

(
ω − �

2

)(
tanh

ω + �

2kBT
− tanh

ω

2kBT

)
,

(23)

J1scr = 1

2
crrr

0ij F r
i,q

(
ω + �

2

)
F

†r
j,q ′

(
ω − �

2

)
tanh

ω − �

2kBT

− 1

2
caaa

0ij F a
i,q

(
ω + �

2

)
F

†a
j,q ′

(
ω − �

2

)
tanh

ω + �

2kBT
,

(24)

J2scr = 1

2
D00(2�,q + q′)carr

0iz F r
i,q

(
ω + �

2

)
f

†
q ′

×
(

ω − �

2

)(
tanh

ω

2kBT
− tanh

ω − �

2kBT

)

+ 1

2
D00(2�,q + q′)cara

0zi fq

(
ω + �

2

)
F

†a
i,q ′

×
(

ω − �

2

)(
tanh

ω + �

2kBT
− tanh

ω

2kBT

)
. (25)

The spin density given by Eq. (5) is calculated in a similar
way to the spin current. The same equation as Eq. (14) can be
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used with the following changes: In Eq. (18) the factors cyij

from Eq. (22) should be used instead of bzij ; in Eq. (23) one
should substitute 2Dyl(2�,q) for jl(2�,q). Also, in Eq. (14)
the vertex j0(2�,q) should be substituted for 2Dy0(2�,q).

Before proceeding with a further calculation of the spin-
Hall current and spin density, it is useful to discuss the
physical meaning of Eqs. (18) and (23)–(25). J1 gives a
“bulk” contribution to the spin current (spin density). It is
determined by diffusion of Cooper pairs from the left and right
superconducting leads. Since for a chosen range of parameters
the distances from the leads are much larger than the coherence
length in the normal metal

√
D/�, where D is the diffusion

constant, the penetration depth of Cooper pairs into the normal
metal is determined by the diffusion length during a time that is
much larger than �−1. Thus, the characteristic diffusion time
of singlet pairs is of the order of min[(kBT )−1,(eV)−1], while
in the case of triplets the spin-relaxation time comes into play
if it is shorter than the diffusion time of singlets. Therefore,
if the spin relaxation time is shorter than the Thouless time
E−1

Th = L2/D, the triplet components Fi (i = 0,x,y) of the
pairing function will be localized relatively close to the leads.
At the same time, at ETh � max[kBT ,eV], the singlets Fz can
propagate through the entire junction. As will be shown in
the next section, J1 is represented by a combination of a pure
singlet term of the form FzF

†
z and singlet-triplet interference

contributions, as FzF
†
x . The former can penetrate over large

distances, independent of the magnitude of the spin-relaxation
rate associated with the spin-orbit coupling. Therefore, at low
enough T and V , the spin current represented by J1 in Eq. (14)
can be observed far from the contacts. At the same time, the
spatial distribution of the current given by J2 is determined
by the spin density created by one-particle spin diffusion
near one of the contacts. This diffusion is represented by the
diffusion propagator D in Fig. 2(b). The diffusion in this case
is restricted by the spin-relaxation length. If this length is less
than L, the corresponding spin current (spin density) will be
distributed relatively close to the contacts. Therefore, it is of
the “surface” type. The remaining screening terms in Eq. (14)
are determined by long-range Coulomb interaction. Therefore,
their contribution will be of the “bulk” type.

III. RESULTS AND DISCUSSION

In this section we will calculate the functions and coef-
ficients entering into the general expressions Eqs. (14)–(25)
and present numerical results for spin-transport parameters.
The matrix Dij can be found from the diffusion equation. In
the SHE regime this equation has been derived in a number of
works.20 The Cooperon Kij can, in turn, be expressed through
Dij . Since the latter depends only on the x coordinate, the
diffusion drift of particles occurs in the x direction. Hence,
the effective “magnetic” field hk induced by the Rashba
interaction is directed parallel to the y axis. Therefore, electron
spins precess in the zx plane. This means that one has
coupled equations for Dzj and Dxj , while Dyj components are
decoupled from them. They do, however, stay coupled to the
“charge” diffuson D0j through weak spin-charge coupling. For
example, the mixed function Dy0(ω,x) satisfies the equation

−iωDy0 − D∇2
xDy0 + 	soDy0 − 2	χ∇xD00 = 0, (26)

where χ = −α	so/4	2 and the D’ykonov-Perel’21 spin-
relaxation rate is 	so = α2k2

F /	. The spin-charge coupling
χ will be taken into account in the lowest-order perturbation
expansion. Hence, after a Fourier transformation, Eq. (26)
gives

Dy0 = iqχDyyD00, (27)

where

Dyy = 2	

−iω + Dq2 + 	so

, D00 = 2	

−iω + Dq2
. (28)

When expressed through Dij , the corresponding Cooperon
components are

Kr
xz(ω,q) = −Ka

xz(−ω,q) = −iDy0(ω,q) (29)

and Kxz = K
†
xz. At the same time

Kr
zz(ω,q) = Ka

zz(−ω,q) = −D00(ω,q). (30)

Further, keeping only the leading terms with respect to
small parameters �τ , ωτ , qτ , and hkτ , from Eqs. (20)–(22)
one can easy calculate the factors b and c. The coefficients c

are given by

crrr
yxz = caaa

yzx = carr
yzx = cara

yxz = −i
πNF

	2
, (31)

carr
0zz = cara

0zz = −crrr
0zz = caaa

0zz = −πNF

	2
. (32)

In Eq. (31) these coefficients change their signs with each
permutation of lowercase indexes. The factors b, in turn, are
defined by

brrr
zxz = brrr

zzx = baaa
zxz = baaa

zzx = −i
αk2

F πNF

2m∗	3
, (33)

brrr
zzz = −baaa

zzz = i(q + q ′)
α2k2

F πNF

4m∗	4
, (34)

and the vertex functions ji calculated from Eqs. (13) and (27)
are given by

j0(2�,Q) = iQ
α2k2

F

2m∗	2

[
1 − 	so

2	
Dyy(2�,Q)

]
D00(2�,Q),

(35)

jy(2�,Q) = αk2
F

m∗	
Dyy(2�,Q). (36)

The following important property of J1,J2 and J1scr,J2scr

calculated with functions and coefficients defined by
Eqs. (27)–(36) takes place: All these partial contributions to the
spin-Hall current, after initially increasing with the spin-orbit
coupling α, saturate when α → ∞. This behavior is already
seen in j0(2�,Q). Indeed, as follows from Eqs. (35) and (28),
due to cancellation at � → 0 and Q → 0 of the two terms
in the brackets of Eq. (35), this function becomes constant at
large 	so ∼ α2. It can be verified that the same combination
as in the brackets of Eq. (35) enters into all the terms
contributing to the spin-Hall current. This sort of cancellation
takes place also in normal systems and is inherent in all linear
k SOI couplings. In normal systems, it results in a vanishing
stationary spin-Hall effect.5 Indeed, there the spin current is
driven by the stationary electric field which, due to charge
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FIG. 4. (Color online) Coordinate dependence of two phase-
shifted components of the spin-Hall current, as defined by Eqs. (37)
and (41). 	so/ETh = 0.1 (1), 1 (2), and 10 (3). The curves are
calculated at πkBT /ETh = 0.5 and eV/ETh = 1.

screening, is homogeneous in samples of simple geometries
at the small screening length. That guarantees Q = 0 and,
hence, the vanishing spin-Hall current. In contrast, in the
case of a nonstationary and inhomogeneous electron transport
as is considered here, the spin-Hall current remains finite.
The reason is that it is determined by the superconducting
proximity effect, as is discussed at the end of Sec. II.
Consequently, a finite penetration range of Cooper pairs results
in finite Q. Moreover, there are also the “surface” terms, such
as the J2 term, localized near superconducting leads within the
spin-relaxation length

√
D/	so. For these terms DQ2 ∼ 	so.

Therefore, they are not expected to saturate with larger SOI.
We will normalize the spin-Hall current density

according to

Js = Jc

e

m∗α2

2	
I, (37)

where Jc is the critical Josephson current density defined by
the sum over Matsubara frequencies ω = πkBT (2n + 1) as16

Jc = e4πNF kBT a2

	

∑
ω�0

|�|2
|�|2 + ω2

D00(2iω,L). (38)

The diffuson in this equation is obtained as a Fourier
transform from Eq. (28) and has the form D00(2iω,L) =
	 exp(−κL)/Dκ , with κ = √

2ω/D. The so-defined dimen-
sionless factor I is of the order of 1. We note that although α can
be quite large in narrow-gap semiconductors,22 as well as in

FIG. 5. (Color online) Spin-Hall current as a function of the bias
voltage at 	so/ETh = 1 and x = 0. πkBT /ETh = 0.25 (3), 0.5 (2),
and 1 (1).

some metallic systems,23 the parameter m∗α2/	 in Eq. (37) is
small, because the diffusion approximation requires kF α 	 	.

The spin density is normalized as

Sy = Sy0P, (39)

where Sy0 is the spin polarization induced by the critical
Josephson current in the stationary case. This polarization is
given by8

Sy0 = ατ

2eD
Jc. (40)

Since, according to (12), the integrand in (14) contains terms
proportional to δ�,±eV, the normalized spin current and spin
polarization can in general be represented as

I = −I1 sin(2 eVt) + I2 cos(2 eVt), (41)

P = P1 sin(2 eVt) − P2 cos(2 eVt). (42)

The spatial distribution of I1 and I2 is shown in Fig. 4 at
different values of the spin-orbit couplings. It is seen that the
magnitude and direction of the spin-Hall current vary fast in
the region of contacts. We recall in this connection that the
contacts are assumed to be relatively narrow in Fig. 1 and
are approximated by pointlike sources placed at x = ±L/2.
At some moments of time, the normalized spin current (42)
changes its sign also as a function of 	so, as one can see
from the comparison of I2 curves at 	so = ETh and 	so =
10ETh. Such changes are associated with the cancellation of
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FIG. 6. (Color online) Coordinate dependence of two phase-
shifted components of the spin polarization, as defined by Eqs. (39)
and (42). 	so/ETh = 0.1 (3), 1 (2), and 10 (1). The curves are
calculated at πkBT /ETh = 0.5 and eV/ETh = 1.

various contributions to the spin current at eV and kBT 	 	so

discussed above.
It has been pointed out that there are two types of terms,

“bulk” and “surface” ones. At large 	so, the latter are localized
near contacts while the former penetrate deeper between and
outside contacts. These qualitative features are clearly seen
in Fig. 4. As expected, due to the spin-current saturation, the
bulk contribution to the normalized current decreases with
larger SOI. Indeed, I1 is reduced in the middle of the junction
at 	so = 10ETh, while smaller changes are seen just near the
contacts. At the same time, such a reduction is not so fast, as
it was expected at first sight. At least, even at 	so = 10ETh,
there is no considerable reduction of I2 at x = 0.

It is important to note that the spin current is not zero at
|x| > 1/2, while the Josephson current is absent there. In this
region the former is driven by the time-dependent potential,
associated with the charge imbalance, rather than by a direct
conversion of singlet Cooper pairs to triplet ones. In this spatial
region the spin current is contributed to by both “surface” and
“bulk” terms. In Fig. 4 it extends outside the junction over the
range ∼L, because both characteristic lengths

√
D/kBT and√

D/eV are taken of the order of L.
The voltage dependence of the spin-Hall current at x = 0

and various temperatures is presented in Fig. 5. We note that
both phase-shifted components change sign at some voltages.
At the same time, the behavior at the small bias is given by
I1 ∼ V 2 and I2 ∼ V , as can also be checked analytically.

FIG. 7. (Color online) Spin polarization as a function of the bias
voltage at 	so/ETh = 1 and x = 0. πkBT /ETh = 1 (3), 0.5 (2), and
0.1 (1).

The coordinate dependence of the normalized spin polariza-
tion is shown in Fig. 6. In contrast to the previously considered
stationary case,8 it is finite in the region |x| > 1/2. Similar to
the spin-Hall current, such a behavior can be explained by the
charge imbalance effect. This effect becomes weaker at larger
	so. Indeed, at 	so = 10ETh the magnitude of P considerably
increases inside the junction, while it becomes smaller outside
of it at |x| > 1/2. This is the opposite of the spin current
trend observed in Fig. 4. The reason is that the slowly varying
“bulk” terms are not suppressed in P at larger SOI, because in
contrast to the spin current, there is no cancellation of the spin
polarization at DQ2 and � 	 	so.

A variation of the polarization with V is presented in Fig. 7
for 	so = ETh. P2 linearly turns to 0 at V → 0, while P1

reaches its maximum there. Our numerical results also show
that the magnitude of P1 at V = 0 increases with 	so → ∞
and reaches 1, which can also be checked analytically. At the
same time, the spatial dependence of P1 takes the form of a
step function, such that P1 = 1 when |x| < 0.5L and P1 = 0
at |x| > 0.5L. Hence, as expected, in this limiting case the
spin polarization coincides with polarization calculated in the
regime of the stationary Josephson effect8 after substitution
in (42) of the phase factor sin(2 eVt) by sin φ, where φ is the
phase difference between superconductors.

In the case considered here, the spin-Hall current carries the
z-oriented time-dependent spin polarization in the transverse
(y) direction. Hence, the corresponding time-dependent spin
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density can be accumulated at some distance near the flanks
of the junction, while in its bulk the y polarization is finite
between and outside the contacts. The spin polarization might
be detected by various methods employed in the case of
the ordinary SHE.2,4 An all-electric method used in Ref. 4
is quite efficient. In this method a nonequilibrium spin
polarization in the normal metal diffuses into an adjacent
ferromagnet. On the other hand, it is well known24 that
the spin flux through a ferromagnet–normal metal interface
induces a voltage difference across the interface that can be
measured. If we try, however, to extend this method to the
superconducting transport, we face the problem of evaluating
this voltage. It is well known how to calculate it in the case
of a nonequilibrium flux of single-particle spins. Much less,
however, is known about how to do this in our case, when triplet
Cooper pairs contribute to this flux. Therefore, additional
studies are necessary for a more complicated system than that
considered here.
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APPENDIX: DERIVATION OF BASIC EQUATIONS

In this Appendix, some explanations will be given of how
Eqs. (14) and (18)–(25) have been derived within the Keldysh
diagrammatic technique. We start from definitions of Green’s
functions entering into perturbation expansions. Each of the
Green’s functions is a matrix in the Keldysh space:14

G =
(

Ĝr ĜK

0 Ĝa

)
. (A1)

The elements of this matrix are 2 × 2 matrices in the Nambu
space and 2 × 2 matrices in the spin space. Besides, they
depend on two time arguments and two wave vectors k and k′.
These vectors are not equal, because there is no momentum
conservation in the presence of impurity scattering. At the
same time, the functions averaged over impurity positions
become diagonal in the momentum space. Considering G as
matrices in k space and also the tunneling amplitudes tk,k′ in
Eq. (1) as elements of the matrix t̂ , one can write the expression
for the spin current (4) in the fourth perturbation order with
respect to the tunneling Hamiltonian (1) in the form

Js(x,t) = 1

4

∫ ∏
i

dtiTr

[
σ z

〈
k̂

m∗ Ĝ11(t − t1)t̂ ˜̂G12(t1,t2)t̂ Ĝ22

× (t2 − t3)t̂ ˜̂G21(t3,t4)t̂ Ĝ11(t4 − t)

〉
imp

]K

, (A2)

where ˜̂G and Ĝ denote the Green’s function of the su-
perconductor and the normal metal, respectively, and the
operator k̂ = kyδk,k′ . We explicitly wrote the Nambu labels
of functions, so that only the trace over spin and momentum
variables must be taken in Eq. (A2). Since only the Josephson
tunneling is considered, in the perturbation expansion we
take into account only anomalous ˜̂G12 and ˜̂G21 functions of
superconducting leads, thus neglecting the usual stationary

one-particle tunneling. These functions can be written in the
form

˜̂G12(t,t ′) = F̂(t − t ′) exp[±ieV(t + t ′)/2], (A3)

where the signs “−” and “+” relate to the left and right
superconducting leads, respectively. ˜̂G21 is obtained from this
equation with the substitution F → F† and V → −V . After
a Fourier transform of the Green’s functions in Eq. (A2), the
time-dependent exponential factors in ˜̂G12(t,t ′) and ˜̂G21(t,t ′)
give the factors exp(±2ieVt) in Eq. (14). It is important
that the functions F and F† in Eq. (A2) belong to different
superconducting leads. Therefore, they are independently
averaged over impurity positions and, hence, are diagonal
in the momentum space. In the spin space they are pro-
portional to the Pauli matrix σz, because, as is discussed in
Sec. II, these functions are associated with the singlet Cooper
pairing.

It is easy to see that the Keldysh component of a product
ABCD . . . of matrices having the triangular form (A1)
can be written as the sum of products: (AKBaCaDa · · · ) +
(ArBKCaDa · · · ) + (ArBrCKDa · · · ) + · · · . In all these
products the Keldysh function enters only once, while retarded
and advanced functions are placed on the left and the right
of it, respectively. The time Fourier expansions of thermal-
equilibrium Keldysh functions G and F can be expressed in
terms of retarded and advanced functions as

ĜK (ω) = [Ĝr (ω) − Ĝa(ω)] tanh
ω

2kBT
. (A4)

We thus will apply the above expressions to the Keldysh
component of the product in Eq. (A2). This equation can be
further simplified by taking into account that kBT , eV 	 �

and distances of interest �√
D/�. Therefore, the main

contribution to Eq. (A2) is given by small frequencies ω 	 �.
Since the difference of retarded and advanced anomalous
functions F in Eq. (A4) gives an expression proportional to
δ(E2

k + �2 − ω2), the corresponding Keldysh component can
be neglected for small ω.

The next step is averaging over disorder. From Eqs. (A2)
and (A4), and taking into account that ˆ̃G ∼ σz, we get
the following products to be averaged: Ĝr

11σzĜ
r
22σzĜ

r
11,

Ĝa
11σzĜ

a
22σzĜ

a
11, Ĝr

11σzĜ
a
22σzĜ

a
11, and Ĝr

11σzĜ
r
22σzĜ

a
11. In its

turn, each of the Green’s functions is a sum of the products
GkUk,k1Gk1Uk1,k2 . . ., where Gk are diagonal in k unperturbed
functions and the number of impurity-scattering amplitudes U

in each product is equal to the corresponding perturbation
order. Calculation of such averages is described in many
textbooks (for example, see Ref. 18). Briefly, within the
Born approximation, assuming random impurity positions
the averages of Uk,k′ products decouples into pair averages.
In this way each pair enters as an effective two-particle
interaction carrying a zero frequency. So, the average of a
Green’s function can be expressed through the self-energy.
In Eq. (6) this self-energy is given by i	. When a product
of Green’s functions is averaged, a considerable simplification
takes place in the semiclassical approximation when 	 	 EF .
In this case a special class of the so-called “ladder” diagrams
dominates in the perturbation expansion over disorder. Let
us consider, for example, the average 〈Ĝr

11σzĜ
r
22σzĜ

r
11〉imp.

Combining in pairs U -s in Gr
22 with its neighbors on the
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left and the right, we obtain two ladder series. These are
“Cooperons,” according to definition (9). They are shown
as gray boxes in Fig. 2(a). At the same time, one cannot
build the ladder out of the pair Ĝr

11

⊗
Ĝr

11. The reason
is that the sum over k of a typical ladder element, the
product Ĝ0r

k11

⊗
Ĝ0r

k11, where Ĝ0r is given by Eq. (6), turns
to zero, because both functions have poles in the same
semiplane of the complex variable Ek . For the same reason, the
ladders built of Ĝr

22

⊗
Ĝa

11 also turn to zero, as follows from
definition (6). Therefore, the average 〈Ĝr

11σzĜ
r
22σzĜ

a
11〉imp

contains only one Cooperon originating from the first

two functions. Besides, the combination Ĝr
11

⊗
Ĝa

11 en-
tering into this product results in a diffuson defined by
Eq. (8). The corresponding Feynman diagram is shown in
Fig. 2(b).

In the same way as the spin current, one may calculate
the electric charge, substituting σ zky/2m∗ for e in Eq. (A2).
This charge is given by the sum of polygons in Figs. 3(a)
and 3(b). They represent J1scr and J2scr, respectively. Further,
the screening electric potential is calculated within the random-
phase approximation. This potential drives the spin-Hall effect
in the same way as in normal systems.5
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