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LETTER TO THE EDITOR 

Finite matrix computations applied to the scattering of a 
wavepacket in the Coulomb potential 

Ue-Li Pent and T F Jiangt 
t Department of Astrophysical Sciences, Princeton University, Princeton. NJ 08544-100, USA 
t Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of 
China 

Received 22 November 1994 

Abstract. We develop a finite dimensional matrix method to mat  wavepacket propagation in 
potential scattering problems ?be method is useful for general quanNm mechanical problems. 
The scattering dynamics of a minimum unceminty wavepwket in the Coulomb potential is 
presented. 

In this letter, we propose to approximate a physical problem through finite dimensional 
matrix representation of observables. An implementation of this method to the above- 
threshold-ionizaton of atomic hydrogen has been published (pen and Jiang 1991). We 
present here a study of tbe scattering of a minimum uncertainty wavepacket in the Coulombic 
potential. 

Coulombic potential scattering is one of the paradigms in the development of quantum 
mechanics. Both quantum theory and classical mechanics lead to the correct Rutherford 
cross section formula. However, the quantum Rutherford formula is obtained with plane 
wave incidence and usually treated in a time-independent way. It is of interest to represent 
the incident particle by a wavepacket and to have a picture of the time evolution of the 
system. Unfortunately this type of calculation is not easy (Sakurai 1985). There are several 
works on the scattering of a wavepacket by a step potential (Goldberg etal 1967, Diu 1980, 
Brandt and Dahmen 1990) but it is difficult to find a wavepacket treatment of Coulomb 
scattering. However, the dynamics of a wavepacket is of fundamental importance. We 
h o w  that even the motion of a minimum uncertainty wavepacket under no external force 
has interesting dynamics (Schiff 1971). 

The Coulombic singularity at the origin and the long-range interaction nature of the 
problem sometimes cause previously effective numerical procedures from the study of 
related problems to fail. For instance, in atom-laser interaction problems, a softened 
Coulomb potential has been used to avoid singularity at times (Eberly eta1 1989, Javanainen 
etal 1988, Rae and Burnett 1993, Rae etal 1994). Indeed the form of the softened potential 
affects ionization (Grochmalicki et al 1991, Mknis er al 1992). Furthermore, the spatial 
spread of a wavepacket as time evolves usually demands a large grid which strains the 
capacity of even modest current high-speed computers. The following two choices allow 
us to break through the limits: (i) the use of the Heisenberg picture, where we only require 
the space grids to represent the initial state, with no need for an increasing spatial range 
due to wave propagation as time goes on; and (ii) the use of a finite dimensional matrix 
representation for the observables. As an illustration, we choose the harmonic oscillator 
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eigenstates as a basis. This forms a complete L2 set so that any bound or continuum state 
can be expanded in  this basis. 

We study in this IeUer the scattering of a wavepacket i n  the one-dimensional Coulomb 
potential. This formalism can be straightforwardly generalized to other problems. We 
describe our approach below. Consider 

We require as a boundary condition that all solutions vanish for x -+ 0. So the basis set 
used contains the odd eigenfunctions of the simple harmonic oscillator: 

The well-known normalized odd eigenfunctions in coordinate representation are: 

4; = N(H, (CUX)  exp(-w2x2/2) (3) 

E( = (i + $)w0 

i = 2 n + 1  n = 0 . 1 , 2 , 3  ,... 

where a4 = mk, 00 = Jk7;;;. H ; ( x ) ~ i s  the Hermite polynomial and atomic units are used 
throughout. For Hamiltonian ( I ) ,  the Heisenberg state IQH) i s  independent of time and 
related to the Schrodinger state IW,) through a unitary transformation U ( t ) :  

u(t) = e-iHsr. (7) 

The observable 6" in the Heisenberg picture is related to the Schrodinger observable 6s 
by 

& = Ut6SrJ. (8 )  

H = SASt (9) 

If we diagonalize the Hamiltonian matrix by a similarity transformation S: 

then 

(10) 

Since our basis functions are not eigenfunctions of the Hamiltonian ( I ) ,  its matrix elements 
are not diagonal and we have to compute them explicitly. The matrix elements of I j x  and 
x are not easy to handle in the harmonic oscillator basis. Consider 

= Se-iAISt. 
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as an example, although by expanding the Hermite polynomials i n  algebraic form, the 
integrals can be found term by term in standard integral tables (Abramowitz and Stegun 
1972), the large values of the coefficients of high-power terms lead to cancellation errors. 
The numerical results fail to be meaningful for i, j 2 IS in double precision. 

A way out of the problem is to apply the finite matrix idea. In practical calculations, 
we are always working with a finite basis set, so we consider the following sum in a finite 
dimensional vector space: 

This is clearly not an identity matrix as would be expected in an infinite dimensional Hilbert 
space. Since the numerical calculation must he carried in finite dimensional space, and we 
have to be consistent with the relation @irac 1926) 

(14) 
^ ^  xx = 2 

as well as for m e  of calculation, we define the finite dimensional matrix elements by 

Here Axx is the diagonalized matrix of xi. These definitions force the second term in 
equation (13) to vanish identically. The various position observable functionals (such 
as .?,i', .?-I,. . .) share common eigenstates. We then choose the most easily computed 
position observable and obtain the matrix representations of its derived observables in the 
same way as equation (16). For example, from equation (2) we can find easily the matrix 
elements: 

(4i - 1)/2 

J-/2 

for i = j 
f o r i  = j - I 

otherwise. 

With this result, other functionals of observable i can be calculated along the same lines 
as equations (15) and (16). In this way, the Coulomb potential I/x turns out to be a matrix 
operator. The singularity is regularized naturally. 

For the calibration of our calculation, we study the propagation of an eigenstate of 
Hamiltonian (1). In figure 1, we show the variation of the second excited state with respect 
to both space and time. The calculation is carried out as follows. 
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Figure 1. Change of probabilily 
density with respect to coordinate 
and lime, This is for lhe second 
excited state. The probability is in 
relative s d e .  

where I@;) is the basis function of equation (2) and e& is calculated in the finite 
dimensional harmonic oscillator basis and diagonalized as in equation (10). The probability 
density I(xlIv&))12 is stationary as it should be. The size of the basis set used in the 
calculation is n = 30. These calculations show the reliability of our approach. Also 
in the above calculation, the only time dependence is in the factor e-iAr. This enables 
us to calculate the wavefunction at any global time in one step without propagating the 
wavefunction step by step in time like popular finite difference algorithms. We regard this 
as a very useful starting point for time-dependent calculations. Transformations between 
different pictures can also be accomplished easily. 

Now consider the problem of Coulomb scattering. The Coulomb scattering problem is a 
good test case in the development of numerical methods. As we have stated, the singularity 
at the origin is crucial to many numerical methods. We consider an incoming minimum 
uncertainty wavepacket with i = 2, Ax = 1/4, ,5 = -2 and 

Figure 2 Average position against lime. Figure 3. Position uncertainty against time, 

In figure 2 we show the change in average position with time. The wavepacket is 
attracted toward the singularity first by the Coulomb force and bounces backward around 
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Figure 4. Average momentum against time. Figure 5. Momentum uncetrainty against time. 

t = 0.5. Figure 3 is the corresponding change in position uncertainty, There is small bump 
around t = 0.5 and then Ax increases linearly in time. Figure 4 shows the time history of the 
momentum average. The initial momentum p = -2 of the wavepacket is unchanged until 
it enters the scattering region around t = 0.5 where the momentum reverses gradually and 
keeps around p = +2 afterwards. The momentum uncertainty remains unchanged beyond 
the Coulomb-interaction dominant region as shown in figure 5. This is quite reasonable: 
away from the Coulomb centre, there is no obstacle to change the momentum and hence ii 
and A p  are roughly unchanged. The position variables i, Ax increase in the way described 
in standard reference books (Schiff 1971). Since A x  increases approximately linearly in 
time and A p  is constant, the product is obviously linear in time. This means the coherence 
is soon lost in this problem, in contrast to the harmonic oscillator potential, where coherence 
is always maintained (Walker and Preston 1977). In the classical counterpart, the particle 
with initial condition x = 2 ,  p = -2 will impact on the Coulomb centre at f = t~ = 0.8264 
and reflect back. The trajectory is described hy 

and subjected to the energy constraint 

In figure 6 we plot the classical position as a function of time. The conservation of total 
energy keeps the system from collapse to the attractive centre. The correspondence between 
quantum and classical behaviour can be found by comparing figures 2 and 6. Finally, a 
three-dimensional graph (figure 7) shows the evolution of the relative probability density in 
space and time. This picture shows the scattering dynamics clearly. I n  the calculation the 
algorithm used is equation (19) and a basis set n = 100 was used to obtain convergent results. 
Since matrix operations are fully vectorizable, computations with IZ = 1000 and higher are 
easily accomplished on a vector machine. Much smaller values of n are satisfactoly as the 
convergence is rapid. 

In'summary, using the definition of finite matrix elements as in equations (15) and (16), 
the singularity can be removed reasonably. The Heisenberg representation enables us to 
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Figure 7. Dynamics of the minimum 
uncertainty wavepacket. Initially 
wifi 2 = 2, f = -2, AA = 114. 
The probability is in relative scale. 

calculate the dynamics globally in time, There will be much potential benefit in dynamics 
calculations for time-dependent problems. The harmonic oscillator basis is used only to 
demonstrate our ideas. Our method can be applied to other bases as well. A comparison 
between conventional coordinate and momentum representation as well as Sturmian and 
Hermite bases have been investigated and will be presented shortly. 

This work was supported by the National Science Council of Taiwan under the contract of 
number NSC-84-2112-M009-002. 
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